Sage-Advices

Collection of recommendatory guides

Why is it important to have a control group in a scientific experiment?

Table of Contents

  • 1 Why is it important to have a control group in a scientific experiment?
  • 2 What is the purpose of a control group?
  • 3 Why is a control important in an experiment simple?
  • 4 Why is a control group important?
  • 5 Why is it necessary to have a control group in an experiment?

A scientific control group is an essential part of many research designs, allowing researchers to minimize the effect of all variables except the independent variable. The control group, receiving no intervention, is used as a baseline to compare groups and assess the effect of that intervention.

What is the purpose of a control in the scientific method?

In scientific experiments, a scientific control is one in which the subject or a group would not be tested for the dependent variable(s). The inclusion of a control in an experiment is crucial for generating conclusions from the empirical data.

Why is control group necessary?

You would compare the results from the experimental group with the results of the control group to see what happens when you change the variable you want to examine. A control group is an essential part of an experiment because it allows you to eliminate and isolate these variables.

What is the purpose of a control group?

The control group (sometimes called a comparison group) is used in an experiment as a way to ensure that your experiment actually works. It’s a way to make sure that the treatment you are giving is causing the experimental results, and not something outside the experiment.

Do you always need a control group?

Do experiments always need a control group? A true experiment (a.k.a. a controlled experiment) always includes at least one control group that doesn’t receive the experimental treatment. However, some experiments use a within-subjects design to test treatments without a control group.

Do you need a control group in an experiment?

While all experiments have an experimental group, not all experiments require a control group. Controls are extremely useful where the experimental conditions are complex and difficult to isolate. Experiments that use control groups are called controlled experiments.

Why is a control important in an experiment simple?

A control is important for an experiment because it allows the experiment to minimize the changes in all other variables except the one being tested.

Why is a control group important in an experiment quizlet?

Why is it important that an experiment include a control group? Without a control group, there is no basis for knowing if a particular result is due to the variable being tested or to some other factor. If it is unknown which group subjects are in, it is less likely that results can be tampered with.

Why do we need control group?

A control group is an essential part of an experiment because it allows you to eliminate and isolate these variables. Control groups are particularly important in social sciences, such as psychology.

Why is a control group important?

What is the purpose of control group?

A typical use of a control group is in an experiment in which the effect of a treatment is unknown and comparisons between the control group and the experimental group are used to measure the effect of the treatment.

Why is it important than an experiment include a control group?

Why is it necessary to have a control group in an experiment?

Why do many experiment make use of a control group?

Does an experiment always have a control group?

Begin typing your search term above and press enter to search. Press ESC to cancel.

Privacy Overview

Control Group vs Experimental Group

Julia Simkus

Editor at Simply Psychology

BA (Hons) Psychology, Princeton University

Julia Simkus is a graduate of Princeton University with a Bachelor of Arts in Psychology. She is currently studying for a Master's Degree in Counseling for Mental Health and Wellness in September 2023. Julia's research has been published in peer reviewed journals.

Learn about our Editorial Process

Saul McLeod, PhD

Editor-in-Chief for Simply Psychology

BSc (Hons) Psychology, MRes, PhD, University of Manchester

Saul McLeod, PhD., is a qualified psychology teacher with over 18 years of experience in further and higher education. He has been published in peer-reviewed journals, including the Journal of Clinical Psychology.

Olivia Guy-Evans, MSc

Associate Editor for Simply Psychology

BSc (Hons) Psychology, MSc Psychology of Education

Olivia Guy-Evans is a writer and associate editor for Simply Psychology. She has previously worked in healthcare and educational sectors.

On This Page:

In a controlled experiment , scientists compare a control group, and an experimental group is identical in all respects except for one difference – experimental manipulation.

Differences

Unlike the experimental group, the control group is not exposed to the independent variable under investigation. So, it provides a baseline against which any changes in the experimental group can be compared.

Since experimental manipulation is the only difference between the experimental and control groups, we can be sure that any differences between the two are due to experimental manipulation rather than chance.

Almost all experimental studies are designed to include a control group and one or more experimental groups. In most cases, participants are randomly assigned to either a control or experimental group.

Because participants are randomly assigned to either group, we can assume that the groups are identical except for manipulating the independent variable in the experimental group.

It is important that every aspect of the experimental environment is the same and that the experimenters carry out the exact same procedures with both groups so researchers can confidently conclude that any differences between groups are actually due to the difference in treatments.

Control Group

A control group consists of participants who do not receive any experimental treatment. The control participants serve as a comparison group.

The control group is matched as closely as possible to the experimental group, including age, gender, social class, ethnicity, etc.

The difference between the control and experimental groups is that the control group is not exposed to the independent variable , which is thought to be the cause of the behavior being investigated.

Researchers will compare the individuals in the control group to those in the experimental group to isolate the independent variable and examine its impact.

The control group is important because it serves as a baseline, enabling researchers to see what impact changes to the independent variable produce and strengthening researchers’ ability to draw conclusions from a study.

Without the presence of a control group, a researcher cannot determine whether a particular treatment truly has an effect on an experimental group.

Control groups are critical to the scientific method as they help ensure the internal validity of a study.

Assume you want to test a new medication for ADHD . One group would receive the new medication, and the other group would receive a pill that looked exactly the same as the one that the others received, but it would be a placebo. The group that takes the placebo would be the control group.

Types of Control Groups

Positive control group.

  • A positive control group is an experimental control that will produce a known response or the desired effect.
  • A positive control is used to ensure a test’s success and confirm an experiment’s validity.
  • For example, when testing for a new medication, an already commercially available medication could serve as the positive control.

Negative Control Group

  • A negative control group is an experimental control that does not result in the desired outcome of the experiment.
  • A negative control is used to ensure that there is no response to the treatment and help identify the influence of external factors on the test.
  • An example of a negative control would be using a placebo when testing for a new medication.

Experimental Group

An experimental group consists of participants exposed to a particular manipulation of the independent variable. These are the participants who receive the treatment of interest.

Researchers will compare the responses of the experimental group to those of a control group to see if the independent variable impacted the participants.

An experiment must have at least one control group and one experimental group; however, a single experiment can include multiple experimental groups, which are all compared against the control group.

Having multiple experimental groups enables researchers to vary different levels of an experimental variable and compare the effects of these changes to the control group and among each other.

Assume you want to study to determine if listening to different types of music can help with focus while studying.

You randomly assign participants to one of three groups: one group that listens to music with lyrics, one group that listens to music without lyrics, and another group that listens to no music.

The group of participants listening to no music while studying is the control group, and the groups listening to music, whether with or without lyrics, are the two experimental groups.

Frequently Asked Questions

1. what is the difference between the control group and the experimental group in an experimental study.

Put simply; an experimental group is a group that receives the variable, or treatment, that the researchers are testing, whereas the control group does not. These two groups should be identical in all other aspects.

2. What is the purpose of a control group in an experiment

A control group is essential in experimental research because it:

Provides a baseline against which the effects of the manipulated variable (the independent variable) can be measured.

Helps to ensure that any changes observed in the experimental group are indeed due to the manipulation of the independent variable and not due to other extraneous or confounding factors.

Helps to account for the placebo effect, where participants’ beliefs about the treatment can influence their behavior or responses.

In essence, it increases the internal validity of the results and the confidence we can have in the conclusions.

3. Do experimental studies always need a control group?

Not all experiments require a control group, but a true “controlled experiment” does require at least one control group. For example, experiments that use a within-subjects design do not have a control group.

In  within-subjects designs , all participants experience every condition and are tested before and after being exposed to treatment.

These experimental designs tend to have weaker internal validity as it is more difficult for a researcher to be confident that the outcome was caused by the experimental treatment and not by a confounding variable.

4. Can a study include more than one control group?

Yes, studies can include multiple control groups. For example, if several distinct groups of subjects do not receive the treatment, these would be the control groups.

5. How is the control group treated differently from the experimental groups?

The control group and the experimental group(s) are treated identically except for one key difference: exposure to the independent variable, which is the factor being tested. The experimental group is subjected to the independent variable, whereas the control group is not.

This distinction allows researchers to measure the effect of the independent variable on the experimental group by comparing it to the control group, which serves as a baseline or standard.

Bailey, R. A. (2008). Design of Comparative Experiments. Cambridge University Press. ISBN 978-0-521-68357-9.

Hinkelmann, Klaus; Kempthorne, Oscar (2008). Design and Analysis of Experiments, Volume I: Introduction to Experimental Design (2nd ed.). Wiley. ISBN 978-0-471-72756-9.

Print Friendly, PDF & Email

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Methodology
  • Control Groups and Treatment Groups | Uses & Examples

Control Groups & Treatment Groups | Uses & Examples

Published on 6 May 2022 by Lauren Thomas . Revised on 13 April 2023.

In a scientific study, a control group is used to establish a cause-and-effect relationship by isolating the effect of an independent variable .

Researchers change the independent variable in the treatment group and keep it constant in the control group. Then they compare the results of these groups.

Control groups in research

Using a control group means that any change in the dependent variable can be attributed to the independent variable.

Table of contents

Control groups in experiments, control groups in non-experimental research, importance of control groups, frequently asked questions about control groups.

Control groups are essential to experimental design . When researchers are interested in the impact of a new treatment, they randomly divide their study participants into at least two groups:

  • The treatment group (also called the experimental group ) receives the treatment whose effect the researcher is interested in.
  • The control group receives either no treatment, a standard treatment whose effect is already known, or a placebo (a fake treatment).

The treatment is any independent variable manipulated by the experimenters, and its exact form depends on the type of research being performed. In a medical trial, it might be a new drug or therapy. In public policy studies, it could be a new social policy that some receive and not others.

In a well-designed experiment, all variables apart from the treatment should be kept constant between the two groups. This means researchers can correctly measure the entire effect of the treatment without interference from confounding variables .

  • You pay the students in the treatment group for achieving high grades.
  • Students in the control group do not receive any money.

Studies can also include more than one treatment or control group. Researchers might want to examine the impact of multiple treatments at once, or compare a new treatment to several alternatives currently available.

  • The treatment group gets the new pill.
  • Control group 1 gets an identical-looking sugar pill (a placebo).
  • Control group 2 gets a pill already approved to treat high blood pressure.

Since the only variable that differs between the three groups is the type of pill, any differences in average blood pressure between the three groups can be credited to the type of pill they received.

  • The difference between the treatment group and control group 1 demonstrates the effectiveness of the pill as compared to no treatment.
  • The difference between the treatment group and control group 2 shows whether the new pill improves on treatments already available on the market.

Prevent plagiarism, run a free check.

Although control groups are more common in experimental research, they can be used in other types of research too. Researchers generally rely on non-experimental control groups in two cases: quasi-experimental or matching design.

Control groups in quasi-experimental design

While true experiments rely on random assignment to the treatment or control groups, quasi-experimental design uses some criterion other than randomisation to assign people.

Often, these assignments are not controlled by researchers, but are pre-existing groups that have received different treatments. For example, researchers could study the effects of a new teaching method that was applied in some classes in a school but not others, or study the impact of a new policy that is implemented in one region but not in the neighbouring region.

In these cases, the classes that did not use the new teaching method, or the region that did not implement the new policy, is the control group.

Control groups in matching design

In correlational research , matching represents a potential alternate option when you cannot use either true or quasi-experimental designs.

In matching designs, the researcher matches individuals who received the ‘treatment’, or independent variable under study, to others who did not – the control group.

Each member of the treatment group thus has a counterpart in the control group identical in every way possible outside of the treatment. This ensures that the treatment is the only source of potential differences in outcomes between the two groups.

Control groups help ensure the internal validity of your research. You might see a difference over time in your dependent variable in your treatment group. However, without a control group, it is difficult to know whether the change has arisen from the treatment. It is possible that the change is due to some other variables.

If you use a control group that is identical in every other way to the treatment group, you know that the treatment – the only difference between the two groups – must be what has caused the change.

For example, people often recover from illnesses or injuries over time regardless of whether they’ve received effective treatment or not. Thus, without a control group, it’s difficult to determine whether improvements in medical conditions come from a treatment or just the natural progression of time.

Risks from invalid control groups

If your control group differs from the treatment group in ways that you haven’t accounted for, your results may reflect the interference of confounding variables instead of your independent variable.

Minimising this risk

A few methods can aid you in minimising the risk from invalid control groups.

  • Ensure that all potential confounding variables are accounted for , preferably through an experimental design if possible, since it is difficult to control for all the possible confounders outside of an experimental environment.
  • Use double-blinding . This will prevent the members of each group from modifying their behavior based on whether they were placed in the treatment or control group, which could then lead to biased outcomes.
  • Randomly assign your subjects into control and treatment groups. This method will allow you to not only minimise the differences between the two groups on confounding variables that you can directly observe, but also those you cannot.

An experimental group, also known as a treatment group, receives the treatment whose effect researchers wish to study, whereas a control group does not. They should be identical in all other ways.

A true experiment (aka a controlled experiment) always includes at least one control group that doesn’t receive the experimental treatment.

However, some experiments use a within-subjects design to test treatments without a control group. In these designs, you usually compare one group’s outcomes before and after a treatment (instead of comparing outcomes between different groups).

For strong internal validity , it’s usually best to include a control group if possible. Without a control group, it’s harder to be certain that the outcome was caused by the experimental treatment and not by other variables.

In a controlled experiment , all extraneous variables are held constant so that they can’t influence the results. Controlled experiments require:

  • A control group that receives a standard treatment, a fake treatment, or no treatment
  • Random assignment of participants to ensure the groups are equivalent

Depending on your study topic, there are various other methods of controlling variables .

A confounding variable , also called a confounder or confounding factor, is a third variable in a study examining a potential cause-and-effect relationship.

A confounding variable is related to both the supposed cause and the supposed effect of the study. It can be difficult to separate the true effect of the independent variable from the effect of the confounding variable.

In your research design , it’s important to identify potential confounding variables and plan how you will reduce their impact.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

Thomas, L. (2023, April 13). Control Groups & Treatment Groups | Uses & Examples. Scribbr. Retrieved 29 October 2024, from https://www.scribbr.co.uk/research-methods/control-groups/

Is this article helpful?

Lauren Thomas

Lauren Thomas

Other students also liked, controlled experiments | methods & examples of control, a quick guide to experimental design | 5 steps & examples, correlation vs causation | differences, designs & examples.

IMAGES

  1. What Is A Control Group In Biology at Thomas Aquino blog

    do you always need a control group in an experiment

  2. Control group in science

    do you always need a control group in an experiment

  3. Examples of Control Groups in Experiments and Research

    do you always need a control group in an experiment

  4. Control group in science

    do you always need a control group in an experiment

  5. Positive Control Group

    do you always need a control group in an experiment

  6. Experiments With Control Groups at Lawrence Holland blog

    do you always need a control group in an experiment

VIDEO

  1. What is the control group in an experiment?

  2. What is a control group?

  3. Control and Variable Groups

  4. Understanding Control Groups

  5. Difference between Control Variable and Control Group in an Experiment

  6. Experiments Explained: Clear and Simple! Learn the Basics

COMMENTS

  1. When is not necessary to use a control group in an …

    There are a lot of instances when a control group is not included in an experimental design. Prospective cohort studies are one, in which a group of individuals are tracked longitudinally.

  2. Do experiments always require a control group?

    A true experiment (aka a controlled experiment) always includes at least one control group that doesn’t receive the experimental treatment. However, some experiments use a within-subjects …

  3. Why is it important to have a control group in a scientific …

    Do experiments always need a control group? A true experiment (a.k.a. a controlled experiment) always includes at least one control group that doesn’t receive the …

  4. Is a control group always necessary in experimental design?

    Control group: A control group is not always necessary. Experiments that describe something seldom have a control group. In your case, you probably want a control.

  5. Control Group Vs Experimental Group In Science

    Not all experiments require a control group, but a true “controlled experiment” does require at least one control group. For example, experiments that use a within-subjects design do not have a control group.

  6. Control Groups & Treatment Groups

    An experimental group, also known as a treatment group, receives the treatment whose effect researchers wish to study, whereas a control group does not. They should be identical in all other ways. Do experiments always …