ENCYCLOPEDIC ENTRY

Photosynthesis.

Photosynthesis is the process by which plants use sunlight, water, and carbon dioxide to create oxygen and energy in the form of sugar.

Loading ...

Learning materials, instructional links.

  • Photosynthesis (Google doc)

Most life on Earth depends on photosynthesis .The process is carried out by plants, algae, and some types of bacteria, which capture energy from sunlight to produce oxygen (O 2 ) and chemical energy stored in glucose (a sugar). Herbivores then obtain this energy by eating plants, and carnivores obtain it by eating herbivores.

The process

During photosynthesis, plants take in carbon dioxide (CO 2 ) and water (H 2 O) from the air and soil. Within the plant cell, the water is oxidized, meaning it loses electrons, while the carbon dioxide is reduced, meaning it gains electrons. This transforms the water into oxygen and the carbon dioxide into glucose. The plant then releases the oxygen back into the air, and stores energy within the glucose molecules.

Chlorophyll

Inside the plant cell are small organelles called chloroplasts , which store the energy of sunlight. Within the thylakoid membranes of the chloroplast is a light-absorbing pigment called chlorophyll , which is responsible for giving the plant its green color. During photosynthesis , chlorophyll absorbs energy from blue- and red-light waves, and reflects green-light waves, making the plant appear green.

Light-dependent Reactions vs. Light-independent Reactions

While there are many steps behind the process of photosynthesis, it can be broken down into two major stages: light-dependent reactions and light-independent reactions. The light-dependent reaction takes place within the thylakoid membrane and requires a steady stream of sunlight, hence the name light- dependent reaction. The chlorophyll absorbs energy from the light waves, which is converted into chemical energy in the form of the molecules ATP and NADPH . The light-independent stage, also known as the Calvin cycle , takes place in the stroma , the space between the thylakoid membranes and the chloroplast membranes, and does not require light, hence the name light- independent reaction. During this stage, energy from the ATP and NADPH molecules is used to assemble carbohydrate molecules, like glucose, from carbon dioxide.

C3 and C4 Photosynthesis

Not all forms of photosynthesis are created equal, however. There are different types of photosynthesis, including C3 photosynthesis and C4 photosynthesis. C3 photosynthesis is used by the majority of plants. It involves producing a three-carbon compound called 3-phosphoglyceric acid during the Calvin Cycle, which goes on to become glucose. C4 photosynthesis, on the other hand, produces a four-carbon intermediate compound, which splits into carbon dioxide and a three-carbon compound during the Calvin Cycle. A benefit of C4 photosynthesis is that by producing higher levels of carbon, it allows plants to thrive in environments without much light or water. The National Geographic Society is making this content available under a Creative Commons CC-BY-NC-SA license . The License excludes the National Geographic Logo (meaning the words National Geographic + the Yellow Border Logo) and any images that are included as part of each content piece. For clarity the Logo and images may not be removed, altered, or changed in any way.

Media Credits

The audio, illustrations, photos, and videos are credited beneath the media asset, except for promotional images, which generally link to another page that contains the media credit. The Rights Holder for media is the person or group credited.

Production Managers

Program specialists, last updated.

June 21, 2024

User Permissions

For information on user permissions, please read our Terms of Service. If you have questions about how to cite anything on our website in your project or classroom presentation, please contact your teacher. They will best know the preferred format. When you reach out to them, you will need the page title, URL, and the date you accessed the resource.

If a media asset is downloadable, a download button appears in the corner of the media viewer. If no button appears, you cannot download or save the media.

Text on this page is printable and can be used according to our Terms of Service .

Interactives

Any interactives on this page can only be played while you are visiting our website. You cannot download interactives.

Related Resources

  • Biology Article

Photosynthesis

Photosynthesis is a process by which phototrophs convert light energy into chemical energy, which is later used to fuel cellular activities. The chemical energy is stored in the form of sugars, which are created from water and carbon dioxide.

process of photosynthesis

Table of Contents

  • What is Photosynthesis?
  • Site of photosynthesis

BTC Doubt solving Mobile

What Is Photosynthesis in Biology?

The word “ photosynthesis ” is derived from the Greek words  phōs  (pronounced: “fos”) and σύνθεσις (pronounced: “synthesis “) Phōs means “light” and σύνθεσις   means, “combining together.” This means “ combining together with the help of light .”

Photosynthesis also applies to other organisms besides green plants. These include several prokaryotes such as cyanobacteria, purple bacteria and green sulfur bacteria. These organisms exhibit photosynthesis just like green plants.The glucose produced during photosynthesis is then used to fuel various cellular activities. The by-product of this physio-chemical process is oxygen.

Photosynthesis Reaction

A visual representation of the photosynthesis reaction

  • Photosynthesis is also used by algae to convert solar energy into chemical energy. Oxygen is liberated as a by-product and light is considered as a major factor to complete the process of photosynthesis.
  • Photosynthesis occurs when plants use light energy to convert carbon dioxide and water into glucose and oxygen. Leaves contain microscopic cellular organelles known as chloroplasts.
  • Each chloroplast contains a green-coloured pigment called chlorophyll. Light energy is absorbed by chlorophyll molecules whereas carbon dioxide and oxygen enter through the tiny pores of stomata located in the epidermis of leaves.
  • Another by-product of photosynthesis is sugars such as glucose and fructose.
  • These sugars are then sent to the roots, stems, leaves, fruits, flowers and seeds. In other words, these sugars are used by the plants as an energy source, which helps them to grow. These sugar molecules then combine with each other to form more complex carbohydrates like cellulose and starch. The cellulose is considered as the structural material that is used in plant cell walls.

Where Does This Process Occur?

Chloroplasts are the sites of photosynthesis in plants and blue-green algae.  All green parts of a plant, including the green stems, green leaves,  and sepals – floral parts comprise of chloroplasts – green colour plastids. These cell organelles are present only in plant cells and are located within the mesophyll cells of leaves.

Photosynthesis process requires several factors such as:

Increased light intensity results in a higher rate of photosynthesis. On the other hand, low light intensity results in a lower rate of photosynthesis. Higher concentration of carbon dioxide helps in increasing the rate of photosynthesis. Usually, carbon dioxide in the range of 300 – 400 PPM is adequate for photosynthesis. For efficient execution of photosynthesis, it is important to have a temperature range between 25° to 35° C. As water is an important factor in photosynthesis, its deficiency can lead to problems in the intake of carbon dioxide. The scarcity of water leads to the refusal of stomatal opening to retain the amount of water they have stored inside. : Industrial pollutants and other particulates may settle on the leaf surface. This can block the pores of stomata which makes it difficult to take in carbon dioxide.

Also Read:  Photosynthesis Early Experiments

Photosynthesis Equation

Photosynthesis reaction involves two reactants, carbon dioxide and water. These two reactants yield two products, namely, oxygen and glucose. Hence, the photosynthesis reaction is considered to be an endothermic reaction. Following is the photosynthesis formula:

   +   6H O  —>  C H O  + 6O

Unlike plants, certain bacteria that perform photosynthesis do not produce oxygen as the by-product of photosynthesis. Such bacteria are called anoxygenic photosynthetic bacteria. The bacteria that do produce oxygen as a by-product of photosynthesis are called oxygenic photosynthetic bacteria.

There are four different  types of pigments present in leaves:

Structure Of Chlorophyll

Structure of chlorophyll

The structure of Chlorophyll consists of 4 nitrogen atoms that surround a magnesium atom. A hydrocarbon tail is also present. Pictured above is chlorophyll- f,  which is more effective in near-infrared light than chlorophyll- a

Chlorophyll is a green pigment found in the chloroplasts of the  plant cell   and in the mesosomes of cyanobacteria. This green colour pigment plays a vital role in the process of photosynthesis by permitting plants to absorb energy from sunlight. Chlorophyll is a mixture of chlorophyll- a  and chlorophyll- b .Besides green plants, other organisms that perform photosynthesis contain various other forms of chlorophyll such as chlorophyll- c1 ,  chlorophyll- c2 ,  chlorophyll- d and chlorophyll- f .

Also Read:   Biological Pigments

Process Of Photosynthesis

At the cellular level,  the photosynthesis process takes place in cell organelles called chloroplasts. These organelles contain a green-coloured pigment called chlorophyll, which is responsible for the characteristic green colouration of the leaves.

As already stated, photosynthesis occurs in the leaves and the specialized cell organelles responsible for this process is called the chloroplast. Structurally, a leaf comprises a petiole, epidermis and a lamina. The lamina is used for absorption of sunlight and carbon dioxide during photosynthesis.

Structure of Chloroplast

Structure of Chloroplast. Note the presence of the thylakoid

“Photosynthesis Steps:”

  • During the process of photosynthesis, carbon dioxide enters through the stomata, water is absorbed by the root hairs from the soil and is carried to the leaves through the xylem vessels. Chlorophyll absorbs the light energy from the sun to split water molecules into hydrogen and oxygen.
  • The hydrogen from water molecules and carbon dioxide absorbed from the air are used in the production of glucose. Furthermore, oxygen is liberated out into the atmosphere through the leaves as a waste product.
  • Glucose is a source of food for plants that provide energy for  growth and development , while the rest is stored in the roots, leaves and fruits, for their later use.
  • Pigments are other fundamental cellular components of photosynthesis. They are the molecules that impart colour and they absorb light at some specific wavelength and reflect back the unabsorbed light. All green plants mainly contain chlorophyll a, chlorophyll b and carotenoids which are present in the thylakoids of chloroplasts. It is primarily used to capture light energy. Chlorophyll-a is the main pigment.

The process of photosynthesis occurs in two stages:

  • Light-dependent reaction or light reaction
  • Light independent reaction or dark reaction

Stages of Photosynthesis

Stages of Photosynthesis in Plants depicting the two phases – Light reaction and Dark reaction

Light Reaction of Photosynthesis (or) Light-dependent Reaction

  • Photosynthesis begins with the light reaction which is carried out only during the day in the presence of sunlight. In plants, the light-dependent reaction takes place in the thylakoid membranes of chloroplasts.
  • The Grana, membrane-bound sacs like structures present inside the thylakoid functions by gathering light and is called photosystems.
  • These photosystems have large complexes of pigment and proteins molecules present within the plant cells, which play the primary role during the process of light reactions of photosynthesis.
  • There are two types of photosystems: photosystem I and photosystem II.
  • Under the light-dependent reactions, the light energy is converted to ATP and NADPH, which are used in the second phase of photosynthesis.
  • During the light reactions, ATP and NADPH are generated by two electron-transport chains, water is used and oxygen is produced.

The chemical equation in the light reaction of photosynthesis can be reduced to:

2H 2 O + 2NADP+ + 3ADP + 3Pi → O 2 + 2NADPH + 3ATP

Dark Reaction of Photosynthesis (or) Light-independent Reaction

  • Dark reaction is also called carbon-fixing reaction.
  • It is a light-independent process in which sugar molecules are formed from the water and carbon dioxide molecules.
  • The dark reaction occurs in the stroma of the chloroplast where they utilize the NADPH and ATP products of the light reaction.
  • Plants capture the carbon dioxide from the atmosphere through stomata and proceed to the Calvin photosynthesis cycle.
  • In the Calvin cycle , the ATP and NADPH formed during light reaction drive the reaction and convert 6 molecules of carbon dioxide into one sugar molecule or glucose.

The chemical equation for the dark reaction can be reduced to:

3CO 2 + 6 NADPH + 5H 2 O + 9ATP → G3P + 2H+ + 6 NADP+ + 9 ADP + 8 Pi

* G3P – glyceraldehyde-3-phosphate

Calvin cycle

Calvin photosynthesis Cycle (Dark Reaction)

Also Read:  Cyclic And Non-Cyclic Photophosphorylation

Importance of Photosynthesis

  • Photosynthesis is essential for the existence of all life on earth. It serves a crucial role in the food chain – the plants create their food using this process, thereby, forming the primary producers.
  • Photosynthesis is also responsible for the production of oxygen – which is needed by most organisms for their survival.

Frequently Asked Questions

1. what is photosynthesis explain the process of photosynthesis., 2. what is the significance of photosynthesis, 3. list out the factors influencing photosynthesis., 4. what are the different stages of photosynthesis, 5. what is the calvin cycle, 6. write down the photosynthesis equation..

Quiz Image

Put your understanding of this concept to test by answering a few MCQs. Click ‘Start Quiz’ to begin!

Select the correct answer and click on the “Finish” button Check your score and answers at the end of the quiz

Visit BYJU’S for all Biology related queries and study materials

Your result is as below

Request OTP on Voice Call

BIOLOGY Related Links

Leave a Comment Cancel reply

Your Mobile number and Email id will not be published. Required fields are marked *

Post My Comment

process of photosynthesis

very useful

It’s very helpful ☺️

Please What Is Meant By 300-400 PPM

PPM stands for Parts-Per-Million. It corresponds to saying that 300 PPM of carbon dioxide indicates that if one million gas molecules are counted, 300 out of them would be carbon dioxide. The remaining nine hundred ninety-nine thousand seven hundred are other gas molecules.

Thank you very much Byju’s! I couldn’t find the answer anywhere. But luckily I hit upon this website. Awesome explanation and illustration.

byjus = Wow!

It helps me a lot thank you

Thanks in a million I love Byjus!

Super Byjus

Thanks helped a lot

Very interesting and helpful site.

Nice it is very uesful

It’s very useful 👍 Thank you Byju’s

Thank you very much Byju’s! I couldn’t find the answer anywhere. But luckily I hit upon this website. Awesome explanation and illustration.

Thank you BYJU’S for helping me in further clarifying my concepts

Excellent material easy to understand

Indeed, it’s precise and understandable. I like it.

process of photosynthesis

Register with BYJU'S & Download Free PDFs

Register with byju's & watch live videos.

It’s a wonderful world — and universe — out there.

Come explore with us!  

Science News Explores

Explainer: how photosynthesis works.

Plants make sugar and oxygen with the power of water, carbon dioxide and sunlight

green leaves lit up from behind with sunlight

Green plants take in light from the sun and turn water and carbon dioxide into the oxygen we breathe and the sugars we eat.

Jeja/E+/Getty Images

Share this:

  • Google Classroom

By Bethany Brookshire

October 28, 2020 at 6:30 am

Take a deep breath. Then thank a plant. If you eat fruit, vegetables, grains or potatoes, thank a plant too.  Plants and algae provide us with the oxygen we need to survive, as well as the carbohydrates we use for energy. They do it all through photosynthesis.

Photosynthesis is the process of creating sugar and oxygen from carbon dioxide, water and sunlight. It happens through a long series of chemical reactions. But it can be summarized like this: Carbon dioxide, water and light go in. Glucose, water and oxygen come out. (Glucose is a simple sugar.)

Photosynthesis can be split into two processes. The “photo” part refers to reactions triggered by light. “Synthesis” — the making of the sugar — is a separate process called the Calvin cycle.

Both processes happen inside a chloroplast. This is a specialized structure, or organelle, in a plant cell. The structure contains stacks of membranes called thylakoid membranes. That’s where the light reaction begins.

a diagram showing the inside of a chloroplast

Let the light shine in

When light hits a plant’s leaves, it shines on chloroplasts and into their thylakoid membranes. Those membranes are filled with chlorophyll , a green pigment. This pigment absorbs light energy. Light travels as electromagnetic waves . The wavelength — distance between waves — determines energy level. Some of those wavelengths are visible to us as the colors we see . If a molecule, such as chlorophyll, has the right shape, it can absorb the energy from some wavelengths of light.

Chlorophyll can absorb light we see as blue and red. That’s why we see plants as green. Green is the wavelength plants reflect, not the color they absorb.

While light travels as a wave, it also can be a particle called a photon . Photons have no mass. They do, however, have a small amount of light energy.

When a photon of light from the sun bounces into a leaf, its energy excites a chlorophyll molecule. That photon starts a process that splits a molecule of water. The oxygen atom that splits off from the water instantly bonds with another, creating a molecule of oxygen, or O 2 . The chemical reaction also produces a molecule called ATP and another molecule called NADPH. Both of these allow a cell to store energy. The ATP and NADPH also will take part in the synthesis part of photosynthesis.

Notice that the light reaction makes no sugar. Instead, it supplies energy — stored in the ATP and NADPH — that gets plugged into the Calvin cycle. This is where sugar is made.

But the light reaction does produce something we use: oxygen. All the oxygen we breathe is the result of this step in photosynthesis, carried out by plants and algae (which are not plants ) the world over.

Give me some sugar

The next step takes the energy from the light reaction and applies it to a process called the Calvin cycle. The cycle is named for Melvin Calvin, the man who discovered it.

The Calvin cycle is sometimes also called the dark reaction because none of its steps require light. But it still happens during the day. That’s because it needs the energy produced by the light reaction that comes before it.

While the light reaction takes place in the thylakoid membranes, the ATP and NADPH it produces end up in the stroma. This is the space inside the chloroplast but outside the thylakoid membranes.

The Calvin cycle has four major steps:

  • carbon fixation : Here, the plant brings in CO 2 and attaches it to another carbon molecule, using rubisco. This is an enzyme , or chemical that makes reactions move faster. This step is so important that rubisco is the most common protein in a chloroplast — and on Earth. Rubisco attaches the carbon in CO 2 to a five-carbon molecule called ribulose 1,5-bisphosphate (or RuBP). This creates a six-carbon molecule, which immediately splits into two chemicals, each with three carbons.
  • reduction : The ATP and NADPH from the light reaction pop in and transform the two three-carbon molecules into two small sugar molecules. The sugar molecules are called G3P. That’s short for glyceraldehyde 3-phosphate (GLIH- sur-AAL-duh-hide 3-FOS-fayt).
  • carbohydrate formation : Some of that G3P leaves the cycle to be converted into bigger sugars such as glucose (C 6 H 12 O 6 ).
  • regeneration : With more ATP from the continuing light reaction, leftover G3P picks up two more carbons to become RuBP. This RuBP pairs up with rubisco again. They are now ready to start the Calvin cycle again when the next molecule of CO 2 arrives.

At the end of photosynthesis, a plant ends up with glucose (C 6 H 12 O 6 ), oxygen (O 2 ) and water (H 2 O). The glucose molecule goes on to bigger things. It can become part of a long-chain molecule, such as cellulose; that’s the chemical that makes up cell walls. Plants also can store the energy packed in a glucose molecule within larger starch molecules. They can even put the glucose into other sugars — such as fructose — to make a plant’s fruit sweet.

All of these molecules are carbohydrates — chemicals containing carbon, oxygen and hydrogen. (CarbOHydrate makes it easy to remember.) The plant uses the bonds in these chemicals to store energy. But we use the these chemicals too. Carbohydrates are an important part of the foods we eat, particularly grains, potatoes, fruits and vegetables.

More Stories from Science News Explores on Plants

hands holding rice grains in the field

Gene editing may help rice better withstand climate change

A bee flies toward a yellow buttercup flower.

Flowers may electrically detect bees buzzing nearby

a view of sunlit treetops from below

Let’s learn about photosynthesis

a coastal landslide drags a river of water and soil down a hill from farmland to the beach

Experiment: Can plants stop soil erosion?

image of yellow thistle flower head

On hot summer days, this thistle stays cool to the touch

a photo of the base of a huge tree wrapped in multiple thick woody vines climbing up it and out of the image frame

Rampaging vines are slowly strangling tropical forests

A photo of Kwesi Joseph, a Black man with a big smile, short hair and a neatly trimmed beard. He's wearing a dress shirt with a sweater and a pink tie.

This urban gardener is mimicking nature to create healthier plants

A photograph of the palm Pinanga subterranea with its green palms sprouting out from brown leaf-strewn ground.

To spy this palm’s blooms and fruits, start digging underground

IMAGES

  1. Diagram showing process of photosynthesis in plant 1972165 Vector Art

    process of photosynthesis

  2. Photosynthesis Diagram

    process of photosynthesis

  3. [Class 7] Photosynthesis

    process of photosynthesis

  4. Diagram showing process of photosynthesis in plant

    process of photosynthesis

  5. What is Photosynthesis: Light Reaction, Dark Reaction, and Significance

    process of photosynthesis

  6. Photosynthesis Explained With A Diagram

    process of photosynthesis

VIDEO

  1. Photosynthesis Explained in 60 Seconds #photosynthesis

  2. Definition of Photosynthesis

  3. Life Process

  4. What is Photosynthesis

  5. Process of Photosynthesis Short

  6. Photosynthesis

COMMENTS

  1. Photosynthesis

    The process. During photosynthesis, plants take in carbon dioxide (CO 2) and water (H 2 O) from the air and soil. Within the plant cell, the water is oxidized, meaning it loses electrons, while the carbon dioxide is reduced, meaning it gains electrons.

  2. Intro to photosynthesis (article)

    Photosynthesis is the process in which light energy is converted to chemical energy in the form of sugars. In a process driven by light energy, glucose molecules (or other sugars) are constructed from water and carbon dioxide, and oxygen is released as a byproduct.

  3. Photosynthesis

    The process of photosynthesis provides the main input of free energy into the biosphere, and is one of four main ways in which radiation is important for plant life. The radiation climate within plant communities is extremely variable, in both time and space.

  4. Photosynthesis

    Photosynthesis is a biological process utilized by all green plants to synthesize their own nutrients. The process of photosynthesis requires solar energy, water and carbon dioxide. The by-product of this process is oxygen.

  5. Explainer: How photosynthesis works

    Photosynthesis is the process of creating sugar and oxygen from carbon dioxide, water and sunlight. It happens through a long series of chemical reactions. But it can be summarized like this: Carbon dioxide, water and light go in. Glucose, water and oxygen come out.

  6. 5.1: Overview of Photosynthesis

    Photosynthesis takes place in two stages: the light-dependent reactions and the Calvin cycle. In the light-dependent reactions, which take place at the thylakoid membrane, chlorophyll absorbs energy from sunlight and then converts it into chemical energy with the use of water.

  7. Photosynthesis

    Conceptual overview of light dependent reactions. Light dependent reactions actors. Photosynthesis: Overview of the light-dependent reactions. Light and photosynthetic pigments. The light-dependent reactions.

  8. Photosynthesis in organisms (article)

    Key points: Many organisms make their own food through photosynthesis. Plants, algae, and some unicellular organisms do photosynthesis. Photosynthesis is powered by energy from sunlight. This energy is used to rearrange atoms in carbon dioxide and water to make oxygen and sugars. Carbon dioxide and water are inputs of photosynthesis.