Journal of Online Learning Research (JOLR)

Issn# 2374-1473.

Journal of Online Learning Research (JOLR)

The Journal of Online Learning Research (JOLR) is a peer-reviewed journal devoted to the theoretical, empirical, and pragmatic understanding of technologies and their impact on pedagogy and policy in primary and secondary (K-12) online and blended environments.  

Three issues are published annually. Each submitted manuscript goes through a rigorous blind peer review process. If accepted, article is then published in either the general research or international section. Additional information for each section is found below. 

JOLR is Open Access, free-of-charge and distributed by LearnTechLib-The Learning and Technology Library . It is the official journal of the Association for the Advancement of Computing in Education (AACE) .   All have free, online access to all back issues via LearnTechLib–The Learning & Technology Library .

  • Contents:   Current Issue Contents & Abstracts  or browse previous issues
  • Subscribe:   Individual or Library/Institution
  • Submit:   Author Guidelines
  • Review:   Review Policies , Reviewer Application,   Review Board
  • Editors:  Mary Rice , Editor-in-chief, Michael Barbour , Associate Editor
  • Alert:   Sign-up for New Issue Alerts

Types of Articles

Research Section

Articles focus on research related to K-12 online and blended learning. Research articles can:

  • Address online learning, catering particularly to the educators who research, practice, design, and/or administer in primary and secondary schooling in online settings. However, the journal also serves those educators who have chosen to blend online learning tools and strategies in their face-to-face classroom.
  • Include qualitative, quantitative, and mixed methods research from multiple fields and disciplines that have a shared goal of improving primary and secondary education worldwide.

Research should be both theoretical and practical with implications for research, policy, and practice. Each research article is critically-reviewed by the editors and then undergoes a double blind-peer review process to ensure publication of rigorous and thoughtful research. 

International Section

Articles focus on research related to online and blended learning with primary and secondary students in international contexts. Articles can include: 

  • State-of-a-nation reports that shares trends related to policy, growth, pedagogy, promises, and challenges in areas related to primary and secondary (K-12) distance, online and blended environments.
  • Original, empirical research using qualitative, quantitative, or mixed methods research that features participants from outside the United States.   

Research should focus discussion on cross cultural connections and that may have implications for global educational settings. Each article is critically reviewed by the editors. It then undergoes a double blind-peer review process with reviewers who have international experience or background to ensure publication of rigorous and thoughtful research.

Practitioner Corner

Practitioner’s personal experiences with teaching and learning can provide valuable information about the contexts to which some researchers expect their findings to apply. Articles in the Practitioner Corner section should present detailed explanations and reflections on educational innovations. Ideally, these articles document problems posed in specific contexts, strategies tried, outcomes, and reflections on learning. Taken together, these articles should reveal trends in educational needs and everyday factors that influence K-12 distance, online, and blended learning. Articles in the Practitioner Corner section should go beyond “Did it work?” to explore how interventions function and the boundaries of their scalability (i.e., how could it be or what is stopping it from being implemented elsewhere?).

Articles in the Practitioner Corner section should contain a structured abstract using the format presented below. The body of the manuscript need not conform to the structure of the abstract.

  • Context. Briefly summarize the context in which the intervention was implemented.
  • Problem. Briefly state the practical learning or performance gap addressed by the intervention or other strategy and how the present intervention addresses the problem in a novel way
  • Intervention. Briefly describe the strategy or intervention, specifying why it addresses the practical problem and was thought to improve upon previous approaches
  • Outcomes. Briefly describe what happened to BOTH educational process AND outcomes when the intervention was implemented
  • Lessons Learned. Briefly summarize lessons learned that other educators could use when attempting to address a similar practical problem – note this is not a summary of impact, but a reflection on what was learned about implementing the strategy

Articles in the Practitioner Corner section must be at least 1000 words but should be no more than 3500 words. Articles submitted to the Practitioner Corner section will not be sent through a traditional blind review process but will undergo an editorial review or a review by a topical expert.

Inquiries should be sent to Mary Rice .

Book Reviews

JOLR reserves a section for the scholarly review of current books that contribute to the literature related to K-12 online and blended learning. The aim of our Book Reviews is to engage distance educators in sharing their perspectives about new publications that contribute to the field. Book reviews should be composed in the following manner:

  • Heading and Signature  – Book title, author name, location, publisher, date of publication, book edition, number of pages, and ISBN. Ensure that the name of reviewer and their institutional affiliation is included.
  • Introduction  – The review should begin with an introduction to the topic and an overview of the content of the book. Describe the background and qualifications of the author. Who is the author’s intended audience? What is the author’s purpose and/or main thesis?
  • Organization/Structure  – What is the organization/structure of the book? How accurate and current is the information presented? Does the evidence support the conclusions?
  • Significance to the Field and Overall Impression  – How current is the information presented? How effective is the author’s method of developing the information? What is your assessment of the book’s major strengths and weaknesses? How does it compare with other works on the same subject? Does the book make a meaningful contribution to the literature? What are your overall comments and conclusions about the book?

Authors should aim for 1000-1500 words.

Indexed in leading indices including: ERIC, LearnTechLib-The Learning and Technology Library , Index Copernicus, GetCited, Google Scholar, and several others.

Privacy Overview

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • Open access
  • Published: 09 January 2024

Online vs in-person learning in higher education: effects on student achievement and recommendations for leadership

  • Bandar N. Alarifi 1 &
  • Steve Song 2  

Humanities and Social Sciences Communications volume  11 , Article number:  86 ( 2024 ) Cite this article

8618 Accesses

2 Citations

2 Altmetric

Metrics details

  • Science, technology and society

This study is a comparative analysis of online distance learning and traditional in-person education at King Saud University in Saudi Arabia, with a focus on understanding how different educational modalities affect student achievement. The justification for this study lies in the rapid shift towards online learning, especially highlighted by the educational changes during the COVID-19 pandemic. By analyzing the final test scores of freshman students in five core courses over the 2020 (in-person) and 2021 (online) academic years, the research provides empirical insights into the efficacy of online versus traditional education. Initial observations suggested that students in online settings scored lower in most courses. However, after adjusting for variables like gender, class size, and admission scores using multiple linear regression, a more nuanced picture emerged. Three courses showed better performance in the 2021 online cohort, one favored the 2020 in-person group, and one was unaffected by the teaching format. The study emphasizes the crucial need for a nuanced, data-driven strategy in integrating online learning within higher education systems. It brings to light the fact that the success of educational methodologies is highly contingent on specific contextual factors. This finding advocates for educational administrators and policymakers to exercise careful and informed judgment when adopting online learning modalities. It encourages them to thoroughly evaluate how different subjects and instructional approaches might interact with online formats, considering the variable effects these might have on learning outcomes. This approach ensures that decisions about implementing online education are made with a comprehensive understanding of its diverse and context-specific impacts, aiming to optimize educational effectiveness and student success.

Similar content being viewed by others

online learning research paper

Elementary school teachers’ perspectives about learning during the COVID-19 pandemic

online learning research paper

Quality of a master’s degree in education in Ecuador

online learning research paper

Impact of video-based learning in business statistics: a longitudinal study

Introduction.

The year 2020 marked an extraordinary period, characterized by the global disruption caused by the COVID-19 pandemic. Governments and institutions worldwide had to adapt to unforeseen challenges across various domains, including health, economy, and education. In response, many educational institutions quickly transitioned to distance teaching (also known as e-learning, online learning, or virtual classrooms) to ensure continued access to education for their students. However, despite this rapid and widespread shift to online learning, a comprehensive examination of its effects on student achievement in comparison to traditional in-person instruction remains largely unexplored.

In research examining student outcomes in the context of online learning, the prevailing trend is the consistent observation that online learners often achieve less favorable results when compared to their peers in traditional classroom settings (e.g., Fischer et al., 2020 ; Bettinger et al., 2017 ; Edvardsson and Oskarsson, 2008 ). However, it is important to note that a significant portion of research on online learning has primarily focused on its potential impact (Kuhfeld et al., 2020 ; Azevedo et al., 2020 ; Di Pietro et al., 2020 ) or explored various perspectives (Aucejo et al., 2020 ; Radha et al., 2020 ) concerning distance education. These studies have often omitted a comprehensive and nuanced examination of its concrete academic consequences, particularly in terms of test scores and grades.

Given the dearth of research on the academic impact of online learning, especially in light of Covid-19 in the educational arena, the present study aims to address that gap by assessing the effectiveness of distance learning compared to in-person teaching in five required freshmen-level courses at King Saud University, Saudi Arabia. To accomplish this objective, the current study compared the final exam results of 8297 freshman students who were enrolled in the five courses in person in 2020 to their 8425 first-year counterparts who has taken the same courses at the same institution in 2021 but in an online format.

The final test results of the five courses (i.e., University Skills 101, Entrepreneurship 101, Computer Skills 101, Computer Skills 101, and Fitness and Health Culture 101) were examined, accounting for potential confounding factors such as gender, class size and admission scores, which have been cited in past research to be correlated with student achievement (e.g., Meinck and Brese, 2019 ; Jepsen, 2015 ) Additionally, as the preparatory year at King Saud University is divided into five tracks—health, nursing, science, business, and humanity, the study classified students based on their respective disciplines.

Motivation for the study

The rapid expansion of distance learning in higher education, particularly highlighted during the recent COVID-19 pandemic (Volk et al., 2020 ; Bettinger et al., 2017 ), underscores the need for alternative educational approaches during crises. Such disruptions can catalyze innovation and the adoption of distance learning as a contingency plan (Christensen et al., 2015 ). King Saud University, like many institutions worldwide, faced the challenge of transitioning abruptly to online learning in response to the pandemic.

E-learning has gained prominence in higher education due to technological advancements, offering institutions a competitive edge (Valverde-Berrocoso et al., 2020 ). Especially during conditions like the COVID-19 pandemic, electronic communication was utilized across the globe as a feasible means to overcome barriers and enhance interactions (Bozkurt, 2019 ).

Distance learning, characterized by flexibility, became crucial when traditional in-person classes are hindered by unforeseen circumstance such as the ones posed by COVID-19 (Arkorful and Abaidoo, 2015 ). Scholars argue that it allows students to learn at their own pace, often referred to as self-directed learning (Hiemstra, 1994 ) or self-education (Gadamer, 2001 ). Additional advantages include accessibility, cost-effectiveness, and flexibility (Sadeghi, 2019 ).

However, distance learning is not immune to its own set of challenges. Technical impediments, encompassing network issues, device limitations, and communication hiccups, represent formidable hurdles (Sadeghi, 2019 ). Furthermore, concerns about potential distractions in the online learning environment, fueled by the ubiquity of the internet and social media, have surfaced (Hall et al., 2020 ; Ravizza et al., 2017 ). The absence of traditional face-to-face interactions among students and between students and instructors is also viewed as a potential drawback (Sadeghi, 2019 ).

Given the evolving understanding of the pros and cons of distance learning, this study aims to contribute to the existing literature by assessing the effectiveness of distance learning, specifically in terms of student achievement, as compared to in-person classroom learning at King Saud University, one of Saudi Arabia’s largest higher education institutions.

Academic achievement: in-person vs online learning

The primary driving force behind the rapid integration of technology in education has been its emphasis on student performance (Lai and Bower, 2019 ). Over the past decade, numerous studies have undertaken comparisons of student academic achievement in online and in-person settings (e.g., Bettinger et al., 2017 ; Fischer et al., 2020 ; Iglesias-Pradas et al., 2021 ). This section offers a concise review of the disparities in academic achievement between college students engaged in in-person and online learning, as identified in existing research.

A number of studies point to the superiority of traditional in-person education over online learning in terms of academic outcomes. For example, Fischer et al. ( 2020 ) conducted a comprehensive study involving 72,000 university students across 433 subjects, revealing that online students tend to achieve slightly lower academic results than their in-class counterparts. Similarly, Bettinger et al. ( 2017 ) found that students at for-profit online universities generally underperformed when compared to their in-person peers. Supporting this trend, Figlio et al. ( 2013 ) indicated that in-person instruction consistently produced better results, particularly among specific subgroups like males, lower-performing students, and Hispanic learners. Additionally, Kaupp’s ( 2012 ) research in California community colleges demonstrated that online students faced lower completion and success rates compared to their traditional in-person counterparts (Fig. 1 ).

figure 1

The figure compared student achievement in the final tests in the five courses by year, using independent-samples t-tests; the results show a statistically-significant drop in test scores from 2020 (in person) to 2021 (online) for all courses except CT_101.

In contrast, other studies present evidence of online students outperforming their in-person peers. For example, Iglesias-Pradas et al. ( 2021 ) conducted a comparative analysis of 43 bachelor courses at Telecommunication Engineering College in Malaysia, revealing that online students achieved higher academic outcomes than their in-person counterparts. Similarly, during the COVID-19 pandemic, Gonzalez et al. ( 2020 ) found that students engaged in online learning performed better than those who had previously taken the same subjects in traditional in-class settings.

Expanding on this topic, several studies have reported mixed results when comparing the academic performance of online and in-person students, with various student and instructor factors emerging as influential variables. Chesser et al. ( 2020 ) noted that student traits such as conscientiousness, agreeableness, and extraversion play a substantial role in academic achievement, regardless of the learning environment—be it traditional in-person classrooms or online settings. Furthermore, Cacault et al. ( 2021 ) discovered that online students with higher academic proficiency tend to outperform those with lower academic capabilities, suggesting that differences in students’ academic abilities may impact their performance. In contrast, Bergstrand and Savage ( 2013 ) found that online classes received lower overall ratings and exhibited a less respectful learning environment when compared to in-person instruction. Nevertheless, they also observed that the teaching efficiency of both in-class and online courses varied significantly depending on the instructors’ backgrounds and approaches. These findings underscore the multifaceted nature of the online vs. in-person learning debate, highlighting the need for a nuanced understanding of the factors at play.

Theoretical framework

Constructivism is a well-established learning theory that places learners at the forefront of their educational experience, emphasizing their active role in constructing knowledge through interactions with their environment (Duffy and Jonassen, 2009 ). According to constructivist principles, learners build their understanding by assimilating new information into their existing cognitive frameworks (Vygotsky, 1978 ). This theory highlights the importance of context, active engagement, and the social nature of learning (Dewey, 1938 ). Constructivist approaches often involve hands-on activities, problem-solving tasks, and opportunities for collaborative exploration (Brooks and Brooks, 1999 ).

In the realm of education, subject-specific pedagogy emerges as a vital perspective that acknowledges the distinctive nature of different academic disciplines (Shulman, 1986 ). It suggests that teaching methods should be tailored to the specific characteristics of each subject, recognizing that subjects like mathematics, literature, or science require different approaches to facilitate effective learning (Shulman, 1987 ). Subject-specific pedagogy emphasizes that the methods of instruction should mirror the ways experts in a particular field think, reason, and engage with their subject matter (Cochran-Smith and Zeichner, 2005 ).

When applying these principles to the design of instruction for online and in-person learning environments, the significance of adapting methods becomes even more pronounced. Online learning often requires unique approaches due to its reliance on technology, asynchronous interactions, and potential for reduced social presence (Anderson, 2003 ). In-person learning, on the other hand, benefits from face-to-face interactions and immediate feedback (Allen and Seaman, 2016 ). Here, the interplay of constructivism and subject-specific pedagogy becomes evident.

Online learning. In an online environment, constructivist principles can be upheld by creating interactive online activities that promote exploration, reflection, and collaborative learning (Salmon, 2000 ). Discussion forums, virtual labs, and multimedia presentations can provide opportunities for students to actively engage with the subject matter (Harasim, 2017 ). By integrating subject-specific pedagogy, educators can design online content that mirrors the discipline’s methodologies while leveraging technology for authentic experiences (Koehler and Mishra, 2009 ). For instance, an online history course might incorporate virtual museum tours, primary source analysis, and collaborative timeline projects.

In-person learning. In a traditional brick-and-mortar classroom setting, constructivist methods can be implemented through group activities, problem-solving tasks, and in-depth discussions that encourage active participation (Jonassen et al., 2003 ). Subject-specific pedagogy complements this by shaping instructional methods to align with the inherent characteristics of the subject (Hattie, 2009). For instance, in a physics class, hands-on experiments and real-world applications can bring theoretical concepts to life (Hake, 1998 ).

In sum, the fusion of constructivism and subject-specific pedagogy offers a versatile approach to instructional design that adapts to different learning environments (Garrison, 2011 ). By incorporating the principles of both theories, educators can tailor their methods to suit the unique demands of online and in-person learning, ultimately providing students with engaging and effective learning experiences that align with the nature of the subject matter and the mode of instruction.

Course description

The Self-Development Skills Department at King Saud University (KSU) offers five mandatory freshman-level courses. These courses aim to foster advanced thinking skills and cultivate scientific research abilities in students. They do so by imparting essential skills, identifying higher-level thinking patterns, and facilitating hands-on experience in scientific research. The design of these classes is centered around aiding students’ smooth transition into university life. Brief descriptions of these courses are as follows:

University Skills 101 (CI 101) is a three-hour credit course designed to nurture essential academic, communication, and personal skills among all preparatory year students at King Saud University. The primary goal of this course is to equip students with the practical abilities they need to excel in their academic pursuits and navigate their university lives effectively. CI 101 comprises 12 sessions and is an integral part of the curriculum for all incoming freshmen, ensuring a standardized foundation for skill development.

Fitness and Health 101 (FAJB 101) is a one-hour credit course. FAJB 101 focuses on the aspects of self-development skills in terms of health and physical, and the skills related to personal health, nutrition, sports, preventive, psychological, reproductive, and first aid. This course aims to motivate students’ learning process through entertainment, sports activities, and physical exercises to maintain their health. This course is required for all incoming freshmen students at King Saud University.

Entrepreneurship 101 (ENT 101) is a one-hour- credit course. ENT 101 aims to develop students’ skills related to entrepreneurship. The course provides students with knowledge and skills to generate and transform ideas and innovations into practical commercial projects in business settings. The entrepreneurship course consists of 14 sessions and is taught only to students in the business track.

Computer Skills 101 (CT 101) is a three-hour credit course. This provides students with the basic computer skills, e.g., components, operating systems, applications, and communication backup. The course explores data visualization, introductory level of modern programming with algorithms and information security. CT 101 course is taught for all tracks except those in the human track.

Computer Skills 102 (CT 102) is a three-hour credit course. It provides IT skills to the students to utilize computers with high efficiency, develop students’ research and scientific skills, and increase capability to design basic educational software. CT 102 course focuses on operating systems such as Microsoft Office. This course is only taught for students in the human track.

Structure and activities

These courses ranged from one to three hours. A one-hour credit means that students must take an hour of the class each week during the academic semester. The same arrangement would apply to two and three credit-hour courses. The types of activities in each course are shown in Table 1 .

At King Saud University, each semester spans 15 weeks in duration. The total number of semester hours allocated to each course serves as an indicator of its significance within the broader context of the academic program, including the diverse tracks available to students. Throughout the two years under study (i.e., 2020 and 2021), course placements (fall or spring), course content, and the organizational structure remained consistent and uniform.

Participants

The study’s data comes from test scores of a cohort of 16,722 first-year college students enrolled at King Saud University in Saudi Arabia over the span of two academic years: 2020 and 2021. Among these students, 8297 were engaged in traditional, in-person learning in 2020, while 8425 had transitioned to online instruction for the same courses in 2021 due to the Covid-19 pandemic. In 2020, the student population consisted of 51.5% females and 48.5% males. However, in 2021, there was a reversal in these proportions, with female students accounting for 48.5% and male students comprising 51.5% of the total participants.

Regarding student enrollment in the five courses, Table 2 provides a detailed breakdown by average class size, admission scores, and the number of students enrolled in the courses during the two years covered by this study. While the total number of students in each course remained relatively consistent across the two years, there were noticeable fluctuations in average class sizes. Specifically, four out of the five courses experienced substantial increases in class size, with some nearly doubling in size (e.g., ENT_101 and CT_102), while one course (CT_101) showed a reduction in its average class size.

In this study, it must be noted that while some students enrolled in up to three different courses within the same academic year, none repeated the same exam in both years. Specifically, students who failed to pass their courses in 2020 were required to complete them in summer sessions and were consequently not included in this study’s dataset. To ensure clarity and precision in our analysis, the research focused exclusively on student test scores to evaluate and compare the academic effectiveness of online and traditional in-person learning methods. This approach was chosen to provide a clear, direct comparison of the educational impacts associated with each teaching format.

Descriptive analysis of the final exam scores for the two years (2020 and 2021) were conducted. Additionally, comparison of student outcomes in in-person classes in 2020 to their online platform peers in 2021 were conducted using an independent-samples t -test. Subsequently, in order to address potential disparities between the two groups arising from variables such as gender, class size, and admission scores (which serve as an indicator of students’ academic aptitude and pre-enrollment knowledge), multiple regression analyses were conducted. In these multivariate analyses, outcomes of both in-person and online cohorts were assessed within their respective tracks. By carefully considering essential aforementioned variables linked to student performance, the study aimed to ensure a comprehensive and equitable evaluation.

Study instrument

The study obtained students’ final exam scores for the years 2020 (in-person) and 2021 (online) from the school’s records office through their examination management system. In the preparatory year at King Saud University, final exams for all courses are developed by committees composed of faculty members from each department. To ensure valid comparisons, the final exam questions, crafted by departmental committees of professors, remained consistent and uniform for the two years under examination.

Table 3 provides a comprehensive assessment of the reliability of all five tests included in our analysis. These tests exhibit a strong degree of internal consistency, with Cronbach’s alpha coefficients spanning a range from 0.77 to 0.86. This robust and consistent internal consistency measurement underscores the dependable nature of these tests, affirming their reliability and suitability for the study’s objectives.

In terms of assessing test validity, content validity was ensured through a thorough review by university subject matter experts, resulting in test items that align well with the content domain and learning objectives. Additionally, criterion-related validity was established by correlating students’ admissions test scores with their final required freshman test scores in the five subject areas, showing a moderate and acceptable relationship (0.37 to 0.56) between the test scores and the external admissions test. Finally, construct validity was confirmed through reviews by experienced subject instructors, leading to improvements in test content. With guidance from university subject experts, construct validity was established, affirming the effectiveness of the final tests in assessing students’ subject knowledge at the end of their coursework.

Collectively, these validity and reliability measures affirm the soundness and integrity of the final subject tests, establishing their suitability as effective assessment tools for evaluating students’ knowledge in their five mandatory freshman courses at King Saud University.

After obtaining research approval from the Research Committee at King Saud University, the coordinators of the five courses (CI_101, ENT_101, CT_101, CT_102, and FAJB_101) supplied the researchers with the final exam scores of all first-year preparatory year students at King Saud University for the initial semester of the academic years 2020 and 2021. The sample encompassed all students who had completed these five courses during both years, resulting in a total of 16,722 students forming the final group of participants.

Limitations

Several limitations warrant acknowledgment in this study. First, the research was conducted within a well-resourced major public university. As such, the experiences with online classes at other types of institutions (e.g., community colleges, private institutions) may vary significantly. Additionally, the limited data pertaining to in-class teaching practices and the diversity of learning activities across different courses represents a gap that could have provided valuable insights for a more thorough interpretation and explanation of the study’s findings.

To compare student achievement in the final tests in the five courses by year, independent-samples t -tests were conducted. Table 4 shows a statistically-significant drop in test scores from 2020 (in person) to 2021 (online) for all courses except CT_101. The biggest decline was with CT_102 with 3.58 points, and the smallest decline was with CI_101 with 0.18 points.

However, such simple comparison of means between the two years (via t -tests) by subjects does not account for the differences in gender composition, class size, and admission scores between the two academic years, all of which have been associated with student outcomes (e.g., Ho and Kelman, 2014 ; De Paola et al., 2013 ). To account for such potential confounding variables, multiple regressions were conducted to compare the 2 years’ results while controlling for these three factors associated with student achievement.

Table 5 presents the regression results, illustrating the variation in final exam scores between 2020 and 2021, while controlling for gender, class size, and admission scores. Importantly, these results diverge significantly from the outcomes obtained through independent-sample t -test analyses.

Taking into consideration the variables mentioned earlier, students in the 2021 online cohort demonstrated superior performance compared to their 2020 in-person counterparts in CI_101, FAJB_101, and CT_101, with score advantages of 0.89, 0.56, and 5.28 points, respectively. Conversely, in the case of ENT_101, online students in 2021 scored 0.69 points lower than their 2020 in-person counterparts. With CT_102, there were no statistically significant differences in final exam scores between the two cohorts of students.

The study sought to assess the effectiveness of distance learning compared to in-person learning in the higher education setting in Saudi Arabia. We analyzed the final exam scores of 16,722 first-year college students in King Saud University in five required subjects (i.e., CI_101, ENT_101, CT_101, CT_102, and FAJB_101). The study initially performed a simple comparison of mean scores by tracks by year (via t -tests) and then a number of multiple regression analyses which controlled for class size, gender composition, and admission scores.

Overall, the study’s more in-depth findings using multiple regression painted a wholly different picture than the results obtained using t -tests. After controlling for class size, gender composition, and admissions scores, online students in 2021 performed better than their in-person instruction peers in 2020 in University Skills (CI_101), Fitness and Health (FAJB_101), and Computer Skills (CT_101), whereas in-person students outperformed their online peers in Entrepreneurship (ENT_101). There was no meaningful difference in outcomes for students in the Computer Skills (CT_102) course for the two years.

In light of these findings, it raises the question: why do we observe minimal differences (less than a one-point gain or loss) in student outcomes in courses like University Skills, Fitness and Health, Entrepreneurship, and Advanced Computer Skills based on the mode of instruction? Is it possible that when subjects are primarily at a basic or introductory level, as is the case with these courses, the mode of instruction may have a limited impact as long as the concepts are effectively communicated in a manner familiar and accessible to students?

In today’s digital age, one could argue that students in more developed countries, such as Saudi Arabia, generally possess the skills and capabilities to effectively engage with materials presented in both in-person and online formats. However, there is a notable exception in the Basic Computer Skills course, where the online cohort outperformed their in-person counterparts by more than 5 points. Insights from interviews with the instructors of this course suggest that this result may be attributed to the course’s basic and conceptual nature, coupled with the availability of instructional videos that students could revisit at their own pace.

Given that students enter this course with varying levels of computer skills, self-paced learning may have allowed them to cover course materials at their preferred speed, concentrating on less familiar topics while swiftly progressing through concepts they already understood. The advantages of such self-paced learning have been documented by scholars like Tullis and Benjamin ( 2011 ), who found that self-paced learners often outperform those who spend the same amount of time studying identical materials. This approach allows learners to allocate their time more effectively according to their individual learning pace, providing greater ownership and control over their learning experience. As such, in courses like introductory computer skills, it can be argued that becoming familiar with fundamental and conceptual topics may not require extensive in-class collaboration. Instead, it may be more about exposure to and digestion of materials in a format and at a pace tailored to students with diverse backgrounds, knowledge levels, and skill sets.

Further investigation is needed to more fully understand why some classes benefitted from online instruction while others did not, and vice versa. Perhaps, it could be posited that some content areas are more conducive to in-person (or online) format while others are not. Or it could be that the different results of the two modes of learning were driven by students of varying academic abilities and engagement, with low-achieving students being more vulnerable to the limitations of online learning (e.g., Kofoed et al., 2021 ). Whatever the reasons, the results of the current study can be enlightened by a more in-depth analysis of the various factors associated with such different forms of learning. Moreover, although not clear cut, what the current study does provide is additional evidence against any dire consequences to student learning (at least in the higher ed setting) as a result of sudden increase in online learning with possible benefits of its wider use being showcased.

Based on the findings of this study, we recommend that educational leaders adopt a measured approach to online learning—a stance that neither fully embraces nor outright denounces it. The impact on students’ experiences and engagement appears to vary depending on the subjects and methods of instruction, sometimes hindering, other times promoting effective learning, while some classes remain relatively unaffected.

Rather than taking a one-size-fits-all approach, educational leaders should be open to exploring the nuances behind these outcomes. This involves examining why certain courses thrived with online delivery, while others either experienced a decline in student achievement or remained largely unaffected. By exploring these differentiated outcomes associated with diverse instructional formats, leaders in higher education institutions and beyond can make informed decisions about resource allocation. For instance, resources could be channeled towards in-person learning for courses that benefit from it, while simultaneously expanding online access for courses that have demonstrated improved outcomes through its virtual format. This strategic approach not only optimizes resource allocation but could also open up additional revenue streams for the institution.

Considering the enduring presence of online learning, both before the pandemic and its accelerated adoption due to Covid-19, there is an increasing need for institutions of learning and scholars in higher education, as well as other fields, to prioritize the study of its effects and optimal utilization. This study, which compares student outcomes between two cohorts exposed to in-person and online instruction (before and during Covid-19) at the largest university in Saudi Arabia, represents a meaningful step in this direction.

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request.

Allen IE, Seaman J (2016) Online report card: Tracking online education in the United States . Babson Survey Group

Anderson T (2003) Getting the mix right again: an updated and theoretical rationale for interaction. Int Rev Res Open Distrib Learn , 4 (2). https://doi.org/10.19173/irrodl.v4i2.149

Arkorful V, Abaidoo N (2015) The role of e-learning, advantages and disadvantages of its adoption in higher education. Int J Instruct Technol Distance Learn 12(1):29–42

Google Scholar  

Aucejo EM, French J, Araya MP, Zafar B (2020) The impact of COVID-19 on student experiences and expectations: Evidence from a survey. Journal of Public Economics 191:104271. https://doi.org/10.1016/j.jpubeco.2020.104271

Article   PubMed   PubMed Central   Google Scholar  

Azevedo JP, Hasan A, Goldemberg D, Iqbal SA, and Geven K (2020) Simulating the potential impacts of COVID-19 school closures on schooling and learning outcomes: a set of global estimates. World Bank Policy Research Working Paper

Bergstrand K, Savage SV (2013) The chalkboard versus the avatar: Comparing the effectiveness of online and in-class courses. Teach Sociol 41(3):294–306. https://doi.org/10.1177/0092055X13479949

Article   Google Scholar  

Bettinger EP, Fox L, Loeb S, Taylor ES (2017) Virtual classrooms: How online college courses affect student success. Am Econ Rev 107(9):2855–2875. https://doi.org/10.1257/aer.20151193

Bozkurt A (2019) From distance education to open and distance learning: a holistic evaluation of history, definitions, and theories. Handbook of research on learning in the age of transhumanism , 252–273. https://doi.org/10.4018/978-1-5225-8431-5.ch016

Brooks JG, Brooks MG (1999) In search of understanding: the case for constructivist classrooms . Association for Supervision and Curriculum Development

Cacault MP, Hildebrand C, Laurent-Lucchetti J, Pellizzari M (2021) Distance learning in higher education: evidence from a randomized experiment. J Eur Econ Assoc 19(4):2322–2372. https://doi.org/10.1093/jeea/jvaa060

Chesser S, Murrah W, Forbes SA (2020) Impact of personality on choice of instructional delivery and students’ performance. Am Distance Educ 34(3):211–223. https://doi.org/10.1080/08923647.2019.1705116

Christensen CM, Raynor M, McDonald R (2015) What is disruptive innovation? Harv Bus Rev 93(12):44–53

Cochran-Smith M, Zeichner KM (2005) Studying teacher education: the report of the AERA panel on research and teacher education. Choice Rev Online 43 (4). https://doi.org/10.5860/choice.43-2338

De Paola M, Ponzo M, Scoppa V (2013) Class size effects on student achievement: heterogeneity across abilities and fields. Educ Econ 21(2):135–153. https://doi.org/10.1080/09645292.2010.511811

Dewey, J (1938) Experience and education . Simon & Schuster

Di Pietro G, Biagi F, Costa P, Karpinski Z, Mazza J (2020) The likely impact of COVID-19 on education: reflections based on the existing literature and recent international datasets. Publications Office of the European Union, Luxembourg

Duffy TM, Jonassen DH (2009) Constructivism and the technology of instruction: a conversation . Routledge, Taylor & Francis Group

Edvardsson IR, Oskarsson GK (2008) Distance education and academic achievement in business administration: the case of the University of Akureyri. Int Rev Res Open Distrib Learn, 9 (3). https://doi.org/10.19173/irrodl.v9i3.542

Figlio D, Rush M, Yin L (2013) Is it live or is it internet? Experimental estimates of the effects of online instruction on student learning. J Labor Econ 31(4):763–784. https://doi.org/10.3386/w16089

Fischer C, Xu D, Rodriguez F, Denaro K, Warschauer M (2020) Effects of course modality in summer session: enrollment patterns and student performance in face-to-face and online classes. Internet Higher Educ 45:100710. https://doi.org/10.1016/j.iheduc.2019.100710

Gadamer HG (2001) Education is self‐education. J Philos Educ 35(4):529–538

Garrison DR (2011) E-learning in the 21st century: a framework for research and practice . Routledge. https://doi.org/10.4324/9780203838761

Gonzalez T, de la Rubia MA, Hincz KP, Comas-Lopez M, Subirats L, Fort S, & Sacha GM (2020) Influence of COVID-19 confinement on students’ performance in higher education. PLOS One 15 (10). https://doi.org/10.1371/journal.pone.0239490

Hake RR (1998) Interactive-engagement versus traditional methods: a six-thousand-student survey of mechanics test data for introductory physics courses. Am J Phys 66(1):64–74. https://doi.org/10.1119/1.18809

Article   ADS   Google Scholar  

Hall ACG, Lineweaver TT, Hogan EE, O’Brien SW (2020) On or off task: the negative influence of laptops on neighboring students’ learning depends on how they are used. Comput Educ 153:1–8. https://doi.org/10.1016/j.compedu.2020.103901

Harasim L (2017) Learning theory and online technologies. Routledge. https://doi.org/10.4324/9780203846933

Hiemstra R (1994) Self-directed learning. In WJ Rothwell & KJ Sensenig (Eds), The sourcebook for self-directed learning (pp 9–20). HRD Press

Ho DE, Kelman MG (2014) Does class size affect the gender gap? A natural experiment in law. J Legal Stud 43(2):291–321

Iglesias-Pradas S, Hernández-García Á, Chaparro-Peláez J, Prieto JL (2021) Emergency remote teaching and students’ academic performance in higher education during the COVID-19 pandemic: a case study. Comput Hum Behav 119:106713. https://doi.org/10.1016/j.chb.2021.106713

Jepsen C (2015) Class size: does it matter for student achievement? IZA World of Labor . https://doi.org/10.15185/izawol.190

Jonassen DH, Howland J, Moore J, & Marra RM (2003) Learning to solve problems with technology: a constructivist perspective (2nd ed). Columbus: Prentice Hall

Kaupp R (2012) Online penalty: the impact of online instruction on the Latino-White achievement gap. J Appli Res Community Coll 19(2):3–11. https://doi.org/10.46569/10211.3/99362

Koehler MJ, Mishra P (2009) What is technological pedagogical content knowledge? Contemp Issues Technol Teacher Educ 9(1):60–70

Kofoed M, Gebhart L, Gilmore D, & Moschitto R (2021) Zooming to class?: Experimental evidence on college students’ online learning during COVID-19. SSRN Electron J. https://doi.org/10.2139/ssrn.3846700

Kuhfeld M, Soland J, Tarasawa B, Johnson A, Ruzek E, Liu J (2020) Projecting the potential impact of COVID-19 school closures on academic achievement. Educ Res 49(8):549–565. https://doi.org/10.3102/0013189x20965918

Lai JW, Bower M (2019) How is the use of technology in education evaluated? A systematic review. Comput Educ 133:27–42

Meinck S, Brese F (2019) Trends in gender gaps: using 20 years of evidence from TIMSS. Large-Scale Assess Educ 7 (1). https://doi.org/10.1186/s40536-019-0076-3

Radha R, Mahalakshmi K, Kumar VS, Saravanakumar AR (2020) E-Learning during lockdown of COVID-19 pandemic: a global perspective. Int J Control Autom 13(4):1088–1099

Ravizza SM, Uitvlugt MG, Fenn KM (2017) Logged in and zoned out: How laptop Internet use relates to classroom learning. Psychol Sci 28(2):171–180. https://doi.org/10.1177/095679761667731

Article   PubMed   Google Scholar  

Sadeghi M (2019) A shift from classroom to distance learning: advantages and limitations. Int J Res Engl Educ 4(1):80–88

Salmon G (2000) E-moderating: the key to teaching and learning online . Routledge. https://doi.org/10.4324/9780203816684

Shulman LS (1986) Those who understand: knowledge growth in teaching. Edu Res 15(2):4–14

Shulman LS (1987) Knowledge and teaching: foundations of the new reform. Harv Educ Rev 57(1):1–22

Tullis JG, Benjamin AS (2011) On the effectiveness of self-paced learning. J Mem Lang 64(2):109–118. https://doi.org/10.1016/j.jml.2010.11.002

Valverde-Berrocoso J, Garrido-Arroyo MDC, Burgos-Videla C, Morales-Cevallos MB (2020) Trends in educational research about e-learning: a systematic literature review (2009–2018). Sustainability 12(12):5153

Volk F, Floyd CG, Shaler L, Ferguson L, Gavulic AM (2020) Active duty military learners and distance education: factors of persistence and attrition. Am J Distance Educ 34(3):1–15. https://doi.org/10.1080/08923647.2019.1708842

Vygotsky LS (1978) Mind in society: the development of higher psychological processes. Harvard University Press

Download references

Author information

Authors and affiliations.

Department of Sports and Recreation Management, King Saud University, Riyadh, Saudi Arabia

Bandar N. Alarifi

Division of Research and Doctoral Studies, Concordia University Chicago, 7400 Augusta Street, River Forest, IL, 60305, USA

You can also search for this author in PubMed   Google Scholar

Contributions

Dr. Bandar Alarifi collected and organized data for the five courses and wrote the manuscript. Dr. Steve Song analyzed and interpreted the data regarding student achievement and revised the manuscript. These authors jointly supervised this work and approved the final manuscript.

Corresponding author

Correspondence to Bandar N. Alarifi .

Ethics declarations

Competing interests.

The author declares no competing interests.

Ethical approval

This study was approved by the Research Ethics Committee at King Saud University on 25 March 2021 (No. 4/4/255639). This research does not involve the collection or analysis of data that could be used to identify participants (including email addresses or other contact details). All information is anonymized and the submission does not include images that may identify the person. The procedures used in this study adhere to the tenets of the Declaration of Helsinki.

Informed consent

This article does not contain any studies with human participants performed by any of the authors.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Cite this article.

Alarifi, B.N., Song, S. Online vs in-person learning in higher education: effects on student achievement and recommendations for leadership. Humanit Soc Sci Commun 11 , 86 (2024). https://doi.org/10.1057/s41599-023-02590-1

Download citation

Received : 07 June 2023

Accepted : 21 December 2023

Published : 09 January 2024

DOI : https://doi.org/10.1057/s41599-023-02590-1

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

online learning research paper

Impact of online classes on the satisfaction and performance of students during the pandemic period of COVID 19

  • Published: 21 April 2021
  • Volume 26 , pages 6923–6947, ( 2021 )

Cite this article

online learning research paper

  • Ram Gopal 1 ,
  • Varsha Singh 1 &
  • Arun Aggarwal   ORCID: orcid.org/0000-0003-3986-188X 2  

The aim of the study is to identify the factors affecting students’ satisfaction and performance regarding online classes during the pandemic period of COVID–19 and to establish the relationship between these variables. The study is quantitative in nature, and the data were collected from 544 respondents through online survey who were studying the business management (B.B.A or M.B.A) or hotel management courses in Indian universities. Structural equation modeling was used to analyze the proposed hypotheses. The results show that four independent factors used in the study viz. quality of instructor, course design, prompt feedback, and expectation of students positively impact students’ satisfaction and further student’s satisfaction positively impact students’ performance. For educational management, these four factors are essential to have a high level of satisfaction and performance for online courses. This study is being conducted during the epidemic period of COVID- 19 to check the effect of online teaching on students’ performance.

Avoid common mistakes on your manuscript.

1 Introduction

Coronavirus is a group of viruses that is the main root of diseases like cough, cold, sneezing, fever, and some respiratory symptoms (WHO, 2019 ). Coronavirus is a contagious disease, which is spreading very fast amongst the human beings. COVID-19 is a new sprain which was originated in Wuhan, China, in December 2019. Coronavirus circulates in animals, but some of these viruses can transmit between animals and humans (Perlman & Mclntosh, 2020 ). As of March 282,020, according to the MoHFW, a total of 909 confirmed COVID-19 cases (862 Indians and 47 foreign nationals) had been reported in India (Centers for Disease Control and Prevention, 2020 ). Officially, no vaccine or medicine is evaluated to cure the spread of COVID-19 (Yu et al., 2020 ). The influence of the COVID-19 pandemic on the education system leads to schools and colleges’ widespread closures worldwide. On March 24, India declared a country-wide lockdown of schools and colleges (NDTV, 2020 ) for preventing the transmission of the coronavirus amongst the students (Bayham & Fenichel, 2020 ). School closures in response to the COVID-19 pandemic have shed light on several issues affecting access to education. COVID-19 is soaring due to which the huge number of children, adults, and youths cannot attend schools and colleges (UNESCO, 2020 ). Lah and Botelho ( 2012 ) contended that the effect of school closing on students’ performance is hazy.

Similarly, school closing may also affect students because of disruption of teacher and students’ networks, leading to poor performance. Bridge ( 2020 ) reported that schools and colleges are moving towards educational technologies for student learning to avoid a strain during the pandemic season. Hence, the present study’s objective is to develop and test a conceptual model of student’s satisfaction pertaining to online teaching during COVID-19, where both students and teachers have no other option than to use the online platform uninterrupted learning and teaching.

UNESCO recommends distance learning programs and open educational applications during school closure caused by COVID-19 so that schools and teachers use to teach their pupils and bound the interruption of education. Therefore, many institutes go for the online classes (Shehzadi et al., 2020 ).

As a versatile platform for learning and teaching processes, the E-learning framework has been increasingly used (Salloum & Shaalan, 2018 ). E-learning is defined as a new paradigm of online learning based on information technology (Moore et al., 2011 ). In contrast to traditional learning academics, educators, and other practitioners are eager to know how e-learning can produce better outcomes and academic achievements. Only by analyzing student satisfaction and their performance can the answer be sought.

Many comparative studies have been carried out to prove the point to explore whether face-to-face or traditional teaching methods are more productive or whether online or hybrid learning is better (Lockman & Schirmer, 2020 ; Pei & Wu, 2019 ; González-Gómez et al., 2016 ; González-Gómez et al., 2016 ). Results of the studies show that the students perform much better in online learning than in traditional learning. Henriksen et al. ( 2020 ) highlighted the problems faced by educators while shifting from offline to online mode of teaching. In the past, several research studies had been carried out on online learning to explore student satisfaction, acceptance of e-learning, distance learning success factors, and learning efficiency (Sher, 2009 ; Lee, 2014 ; Yen et al., 2018 ). However, scant amount of literature is available on the factors that affect the students’ satisfaction and performance in online classes during the pandemic of Covid-19 (Rajabalee & Santally, 2020 ). In the present study, the authors proposed that course design, quality of the instructor, prompt feedback, and students’ expectations are the four prominent determinants of learning outcome and satisfaction of the students during online classes (Lee, 2014 ).

The Course Design refers to curriculum knowledge, program organization, instructional goals, and course structure (Wright, 2003 ). If well planned, course design increasing the satisfaction of pupils with the system (Almaiah & Alyoussef, 2019 ). Mtebe and Raisamo ( 2014 ) proposed that effective course design will help in improving the performance through learners knowledge and skills (Khan & Yildiz, 2020 ; Mohammed et al., 2020 ). However, if the course is not designed effectively then it might lead to low usage of e-learning platforms by the teachers and students (Almaiah & Almulhem, 2018 ). On the other hand, if the course is designed effectively then it will lead to higher acceptance of e-learning system by the students and their performance also increases (Mtebe & Raisamo, 2014 ). Hence, to prepare these courses for online learning, many instructors who are teaching blended courses for the first time are likely to require a complete overhaul of their courses (Bersin, 2004 ; Ho et al., 2006 ).

The second-factor, Instructor Quality, plays an essential role in affecting the students’ satisfaction in online classes. Instructor quality refers to a professional who understands the students’ educational needs, has unique teaching skills, and understands how to meet the students’ learning needs (Luekens et al., 2004 ). Marsh ( 1987 ) developed five instruments for measuring the instructor’s quality, in which the main method was Students’ Evaluation of Educational Quality (SEEQ), which delineated the instructor’s quality. SEEQ is considered one of the methods most commonly used and embraced unanimously (Grammatikopoulos et al., 2014 ). SEEQ was a very useful method of feedback by students to measure the instructor’s quality (Marsh, 1987 ).

The third factor that improves the student’s satisfaction level is prompt feedback (Kinicki et al., 2004 ). Feedback is defined as information given by lecturers and tutors about the performance of students. Within this context, feedback is a “consequence of performance” (Hattie & Timperley, 2007 , p. 81). In education, “prompt feedback can be described as knowing what you know and what you do not related to learning” (Simsek et al., 2017 , p.334). Christensen ( 2014 ) studied linking feedback to performance and introduced the positivity ratio concept, which is a mechanism that plays an important role in finding out the performance through feedback. It has been found that prompt feedback helps in developing a strong linkage between faculty and students which ultimately leads to better learning outcomes (Simsek et al., 2017 ; Chang, 2011 ).

The fourth factor is students’ expectation . Appleton-Knapp and Krentler ( 2006 ) measured the impact of student’s expectations on their performance. They pin pointed that the student expectation is important. When the expectations of the students are achieved then it lead to the higher satisfaction level of the student (Bates & Kaye, 2014 ). These findings were backed by previous research model “Student Satisfaction Index Model” (Zhang et al., 2008 ). However, when the expectations are students is not fulfilled then it might lead to lower leaning and satisfaction with the course. Student satisfaction is defined as students’ ability to compare the desired benefit with the observed effect of a particular product or service (Budur et al., 2019 ). Students’ whose grade expectation is high will show high satisfaction instead of those facing lower grade expectations.

The scrutiny of the literature show that although different researchers have examined the factors affecting student satisfaction but none of the study has examined the effect of course design, quality of the instructor, prompt feedback, and students’ expectations on students’ satisfaction with online classes during the pandemic period of Covid-19. Therefore, this study tries to explore the factors that affect students’ satisfaction and performance regarding online classes during the pandemic period of COVID–19. As the pandemic compelled educational institutions to move online with which they were not acquainted, including teachers and learners. The students were not mentally prepared for such a shift. Therefore, this research will be examined to understand what factors affect students and how students perceived these changes which are reflected through their satisfaction level.

This paper is structured as follows: The second section provides a description of theoretical framework and the linkage among different research variables and accordingly different research hypotheses were framed. The third section deals with the research methodology of the paper as per APA guideline. The outcomes and corresponding results of the empirical analysis are then discussed. Lastly, the paper concludes with a discussion and proposes implications for future studies.

2 Theoretical framework

Achievement goal theory (AGT) is commonly used to understand the student’s performance, and it is proposed by four scholars Carole Ames, Carol Dweck, Martin Maehr, and John Nicholls in the late 1970s (Elliot, 2005 ). Elliott & Dweck ( 1988 , p11) define that “an achievement goal involves a program of cognitive processes that have cognitive, affective and behavioral consequence”. This theory suggests that students’ motivation and achievement-related behaviors can be easily understood by the purpose and the reasons they adopted while they are engaged in the learning activities (Dweck & Leggett, 1988 ; Ames, 1992 ; Urdan, 1997 ). Some of the studies believe that there are four approaches to achieve a goal, i.e., mastery-approach, mastery avoidance, performance approach, and performance-avoidance (Pintrich, 1999 ; Elliot & McGregor, 2001 ; Schwinger & Stiensmeier-Pelster, 2011 , Hansen & Ringdal, 2018 ; Mouratidis et al., 2018 ). The environment also affects the performance of students (Ames & Archer, 1988 ). Traditionally, classroom teaching is an effective method to achieve the goal (Ames & Archer, 1988 ; Ames, 1992 ; Clayton et al., 2010 ) however in the modern era, the internet-based teaching is also one of the effective tools to deliver lectures, and web-based applications are becoming modern classrooms (Azlan et al., 2020 ). Hence, following section discuss about the relationship between different independent variables and dependent variables (Fig. 1 ).

figure 1

Proposed Model

3 Hypotheses development

3.1 quality of the instructor and satisfaction of the students.

Quality of instructor with high fanaticism on student’s learning has a positive impact on their satisfaction. Quality of instructor is one of the most critical measures for student satisfaction, leading to the education process’s outcome (Munteanu et al., 2010 ; Arambewela & Hall, 2009 ; Ramsden, 1991 ). Suppose the teacher delivers the course effectively and influence the students to do better in their studies. In that case, this process leads to student satisfaction and enhances the learning process (Ladyshewsky, 2013 ). Furthermore, understanding the need of learner by the instructor also ensures student satisfaction (Kauffman, 2015 ). Hence the hypothesis that the quality of instructor significantly affects the satisfaction of the students was included in this study.

H1: The quality of the instructor positively affects the satisfaction of the students.

3.2 Course design and satisfaction of students

The course’s technological design is highly persuading the students’ learning and satisfaction through their course expectations (Liaw, 2008 ; Lin et al., 2008 ). Active course design indicates the students’ effective outcomes compared to the traditional design (Black & Kassaye, 2014 ). Learning style is essential for effective course design (Wooldridge, 1995 ). While creating an online course design, it is essential to keep in mind that we generate an experience for students with different learning styles. Similarly, (Jenkins, 2015 ) highlighted that the course design attributes could be developed and employed to enhance student success. Hence the hypothesis that the course design significantly affects students’ satisfaction was included in this study.

H2: Course design positively affects the satisfaction of students.

3.3 Prompt feedback and satisfaction of students

The emphasis in this study is to understand the influence of prompt feedback on satisfaction. Feedback gives the information about the students’ effective performance (Chang, 2011 ; Grebennikov & Shah, 2013 ; Simsek et al., 2017 ). Prompt feedback enhances student learning experience (Brownlee et al., 2009 ) and boosts satisfaction (O'donovan, 2017 ). Prompt feedback is the self-evaluation tool for the students (Rogers, 1992 ) by which they can improve their performance. Eraut ( 2006 ) highlighted the impact of feedback on future practice and student learning development. Good feedback practice is beneficial for student learning and teachers to improve students’ learning experience (Yorke, 2003 ). Hence the hypothesis that prompt feedback significantly affects satisfaction was included in this study.

H3: Prompt feedback of the students positively affects the satisfaction.

3.4 Expectations and satisfaction of students

Expectation is a crucial factor that directly influences the satisfaction of the student. Expectation Disconfirmation Theory (EDT) (Oliver, 1980 ) was utilized to determine the level of satisfaction based on their expectations (Schwarz & Zhu, 2015 ). Student’s expectation is the best way to improve their satisfaction (Brown et al., 2014 ). It is possible to recognize student expectations to progress satisfaction level (ICSB, 2015 ). Finally, the positive approach used in many online learning classes has been shown to place a high expectation on learners (Gold, 2011 ) and has led to successful outcomes. Hence the hypothesis that expectations of the student significantly affect the satisfaction was included in this study.

H4: Expectations of the students positively affects the satisfaction.

3.5 Satisfaction and performance of the students

Zeithaml ( 1988 ) describes that satisfaction is the outcome result of the performance of any educational institute. According to Kotler and Clarke ( 1986 ), satisfaction is the desired outcome of any aim that amuses any individual’s admiration. Quality interactions between instructor and students lead to student satisfaction (Malik et al., 2010 ; Martínez-Argüelles et al., 2016 ). Teaching quality and course material enhances the student satisfaction by successful outcomes (Sanderson, 1995 ). Satisfaction relates to the student performance in terms of motivation, learning, assurance, and retention (Biner et al., 1996 ). Mensink and King ( 2020 ) described that performance is the conclusion of student-teacher efforts, and it shows the interest of students in the studies. The critical element in education is students’ academic performance (Rono, 2013 ). Therefore, it is considered as center pole, and the entire education system rotates around the student’s performance. Narad and Abdullah ( 2016 ) concluded that the students’ academic performance determines academic institutions’ success and failure.

Singh et al. ( 2016 ) asserted that the student academic performance directly influences the country’s socio-economic development. Farooq et al. ( 2011 ) highlights the students’ academic performance is the primary concern of all faculties. Additionally, the main foundation of knowledge gaining and improvement of skills is student’s academic performance. According to Narad and Abdullah ( 2016 ), regular evaluation or examinations is essential over a specific period of time in assessing students’ academic performance for better outcomes. Hence the hypothesis that satisfaction significantly affects the performance of the students was included in this study.

H5: Students’ satisfaction positively affects the performance of the students.

3.6 Satisfaction as mediator

Sibanda et al. ( 2015 ) applied the goal theory to examine the factors persuading students’ academic performance that enlightens students’ significance connected to their satisfaction and academic achievement. According to this theory, students perform well if they know about factors that impact on their performance. Regarding the above variables, institutional factors that influence student satisfaction through performance include course design and quality of the instructor (DeBourgh, 2003 ; Lado et al., 2003 ), prompt feedback, and expectation (Fredericksen et al., 2000 ). Hence the hypothesis that quality of the instructor, course design, prompts feedback, and student expectations significantly affect the students’ performance through satisfaction was included in this study.

H6: Quality of the instructor, course design, prompt feedback, and student’ expectations affect the students’ performance through satisfaction.

H6a: Students’ satisfaction mediates the relationship between quality of the instructor and student’s performance.

H6b: Students’ satisfaction mediates the relationship between course design and student’s performance.

H6c: Students’ satisfaction mediates the relationship between prompt feedback and student’s performance.

H6d: Students’ satisfaction mediates the relationship between student’ expectations and student’s performance.

4.1 Participants

In this cross-sectional study, the data were collected from 544 respondents who were studying the management (B.B.A or M.B.A) and hotel management courses. The purposive sampling technique was used to collect the data. Descriptive statistics shows that 48.35% of the respondents were either MBA or BBA and rests of the respondents were hotel management students. The percentages of male students were (71%) and female students were (29%). The percentage of male students is almost double in comparison to females. The ages of the students varied from 18 to 35. The dominant group was those aged from 18 to 22, and which was the under graduation student group and their ratio was (94%), and another set of students were from the post-graduation course, which was (6%) only.

4.2 Materials

The research instrument consists of two sections. The first section is related to demographical variables such as discipline, gender, age group, and education level (under-graduate or post-graduate). The second section measures the six factors viz. instructor’s quality, course design, prompt feedback, student expectations, satisfaction, and performance. These attributes were taken from previous studies (Yin & Wang, 2015 ; Bangert, 2004 ; Chickering & Gamson, 1987 ; Wilson et al., 1997 ). The “instructor quality” was measured through the scale developed by Bangert ( 2004 ). The scale consists of seven items. The “course design” and “prompt feedback” items were adapted from the research work of Bangert ( 2004 ). The “course design” scale consists of six items. The “prompt feedback” scale consists of five items. The “students’ expectation” scale consists of five items. Four items were adapted from Bangert, 2004 and one item was taken from Wilson et al. ( 1997 ). Students’ satisfaction was measure with six items taken from Bangert ( 2004 ); Wilson et al. ( 1997 ); Yin and Wang ( 2015 ). The “students’ performance” was measured through the scale developed by Wilson et al. ( 1997 ). The scale consists of six items. These variables were accessed on a five-point likert scale, ranging from 1(strongly disagree) to 5(strongly agree). Only the students from India have taken part in the survey. A total of thirty-four questions were asked in the study to check the effect of the first four variables on students’ satisfaction and performance. For full details of the questionnaire, kindly refer Appendix Tables 6 .

The study used a descriptive research design. The factors “instructor quality, course design, prompt feedback and students’ expectation” were independent variables. The students’ satisfaction was mediator and students’ performance was the dependent variable in the current study.

4.4 Procedure

In this cross-sectional research the respondents were selected through judgment sampling. They were informed about the objective of the study and information gathering process. They were assured about the confidentiality of the data and no incentive was given to then for participating in this study. The information utilizes for this study was gathered through an online survey. The questionnaire was built through Google forms, and then it was circulated through the mails. Students’ were also asked to write the name of their college, and fifteen colleges across India have taken part to fill the data. The data were collected in the pandemic period of COVID-19 during the total lockdown in India. This was the best time to collect the data related to the current research topic because all the colleges across India were involved in online classes. Therefore, students have enough time to understand the instrument and respondent to the questionnaire in an effective manner. A total of 615 questionnaires were circulated, out of which the students returned 574. Thirty responses were not included due to the unengaged responses. Finally, 544 questionnaires were utilized in the present investigation. Male and female students both have taken part to fill the survey, different age groups, and various courses, i.e., under graduation and post-graduation students of management and hotel management students were the part of the sample.

5.1 Exploratory factor analysis (EFA)

To analyze the data, SPSS and AMOS software were used. First, to extract the distinct factors, an exploratory factor analysis (EFA) was performed using VARIMAX rotation on a sample of 544. Results of the exploratory analysis rendered six distinct factors. Factor one was named as the quality of instructor, and some of the items were “The instructor communicated effectively”, “The instructor was enthusiastic about online teaching” and “The instructor was concerned about student learning” etc. Factor two was labeled as course design, and the items were “The course was well organized”, “The course was designed to allow assignments to be completed across different learning environments.” and “The instructor facilitated the course effectively” etc. Factor three was labeled as prompt feedback of students, and some of the items were “The instructor responded promptly to my questions about the use of Webinar”, “The instructor responded promptly to my questions about general course requirements” etc. The fourth factor was Student’s Expectations, and the items were “The instructor provided models that clearly communicated expectations for weekly group assignments”, “The instructor used good examples to explain statistical concepts” etc. The fifth factor was students’ satisfaction, and the items were “The online classes were valuable”, “Overall, I am satisfied with the quality of this course” etc. The sixth factor was performance of the student, and the items were “The online classes has sharpened my analytic skills”, “Online classes really tries to get the best out of all its students” etc. These six factors explained 67.784% of the total variance. To validate the factors extracted through EFA, the researcher performed confirmatory factor analysis (CFA) through AMOS. Finally, structural equation modeling (SEM) was used to test the hypothesized relationships.

5.2 Measurement model

The results of Table 1 summarize the findings of EFA and CFA. Results of the table showed that EFA renders six distinct factors, and CFA validated these factors. Table 2 shows that the proposed measurement model achieved good convergent validity (Aggarwal et al., 2018a , b ). Results of the confirmatory factor analysis showed that the values of standardized factor loadings were statistically significant at the 0.05 level. Further, the results of the measurement model also showed acceptable model fit indices such that CMIN = 710.709; df = 480; CMIN/df = 1.481 p  < .000; Incremental Fit Index (IFI) = 0.979; Tucker-Lewis Index (TLI) = 0.976; Goodness of Fit index (GFI) = 0.928; Adjusted Goodness of Fit Index (AGFI) = 0.916; Comparative Fit Index (CFI) = 0.978; Root Mean Square Residual (RMR) = 0.042; Root Mean Squared Error of Approximation (RMSEA) = 0.030 is satisfactory.

The Average Variance Explained (AVE) according to the acceptable index should be higher than the value of squared correlations between the latent variables and all other variables. The discriminant validity is confirmed (Table 2 ) as the value of AVE’s square root is greater than the inter-construct correlations coefficient (Hair et al., 2006 ). Additionally, the discriminant validity existed when there was a low correlation between each variable measurement indicator with all other variables except with the one with which it must be theoretically associated (Aggarwal et al., 2018a , b ; Aggarwal et al., 2020 ). The results of Table 2 show that the measurement model achieved good discriminate validity.

5.3 Structural model

To test the proposed hypothesis, the researcher used the structural equation modeling technique. This is a multivariate statistical analysis technique, and it includes the amalgamation of factor analysis and multiple regression analysis. It is used to analyze the structural relationship between measured variables and latent constructs.

Table  3 represents the structural model’s model fitness indices where all variables put together when CMIN/DF is 2.479, and all the model fit values are within the particular range. That means the model has attained a good model fit. Furthermore, other fit indices as GFI = .982 and AGFI = 0.956 be all so supportive (Schumacker & Lomax, 1996 ; Marsh & Grayson, 1995 ; Kline, 2005 ).

Hence, the model fitted the data successfully. All co-variances among the variables and regression weights were statistically significant ( p  < 0.001).

Table 4 represents the relationship between exogenous, mediator and endogenous variables viz—quality of instructor, prompt feedback, course design, students’ expectation, students’ satisfaction and students’ performance. The first four factors have a positive relationship with satisfaction, which further leads to students’ performance positively. Results show that the instructor’s quality has a positive relationship with the satisfaction of students for online classes (SE = 0.706, t-value = 24.196; p  < 0.05). Hence, H1 was supported. The second factor is course design, which has a positive relationship with students’ satisfaction of students (SE = 0.064, t-value = 2.395; p < 0.05). Hence, H2 was supported. The third factor is Prompt feedback, and results show that feedback has a positive relationship with the satisfaction of the students (SE = 0.067, t-value = 2.520; p < 0.05). Hence, H3 was supported. The fourth factor is students’ expectations. The results show a positive relationship between students’ expectation and students’ satisfaction with online classes (SE = 0.149, t-value = 5.127; p < 0.05). Hence, H4 was supported. The results of SEM show that out of quality of instructor, prompt feedback, course design, and students’ expectation, the most influencing factor that affect the students’ satisfaction was instructor’s quality (SE = 0.706) followed by students’ expectation (SE =5.127), prompt feedback (SE = 2.520). The factor that least affects the students’ satisfaction was course design (2.395). The results of Table 4 finally depicts that students’ satisfaction has positive effect on students’ performance ((SE = 0.186, t-value = 2.800; p < 0.05). Hence H5 was supported.

Table 5 shows that students’ satisfaction partially mediates the positive relationship between the instructor’s quality and student performance. Hence, H6(a) was supported. Further, the mediation analysis results showed that satisfaction again partially mediates the positive relationship between course design and student’s performance. Hence, H6(b) was supported However, the mediation analysis results showed that satisfaction fully mediates the positive relationship between prompt feedback and student performance. Hence, H6(c) was supported. Finally, the results of the Table 5 showed that satisfaction partially mediates the positive relationship between expectations of the students and student’s performance. Hence, H6(d) was supported.

6 Discussion

In the present study, the authors evaluated the different factors directly linked with students’ satisfaction and performance with online classes during Covid-19. Due to the pandemic situation globally, all the colleges and universities were shifted to online mode by their respective governments. No one has the information that how long this pandemic will remain, and hence the teaching method was shifted to online mode. Even though some of the educators were not tech-savvy, they updated themselves to battle the unexpected circumstance (Pillai et al., 2021 ). The present study results will help the educators increase the student’s satisfaction and performance in online classes. The current research assists educators in understanding the different factors that are required for online teaching.

Comparing the current research with past studies, the past studies have examined the factors affecting the student’s satisfaction in the conventional schooling framework. However, the present study was conducted during India’s lockdown period to identify the prominent factors that derive the student’s satisfaction with online classes. The study also explored the direct linkage between student’s satisfaction and their performance. The present study’s findings indicated that instructor’s quality is the most prominent factor that affects the student’s satisfaction during online classes. This means that the instructor needs to be very efficient during the lectures. He needs to understand students’ psychology to deliver the course content prominently. If the teacher can deliver the course content properly, it affects the student’s satisfaction and performance. The teachers’ perspective is critical because their enthusiasm leads to a better online learning process quality.

The present study highlighted that the second most prominent factor affecting students’ satisfaction during online classes is the student’s expectations. Students might have some expectations during the classes. If the instructor understands that expectation and customizes his/her course design following the student’s expectations, then it is expected that the students will perform better in the examinations. The third factor that affects the student’s satisfaction is feedback. After delivering the course, appropriate feedback should be taken by the instructors to plan future courses. It also helps to make the future strategies (Tawafak et al., 2019 ). There must be a proper feedback system for improvement because feedback is the course content’s real image. The last factor that affects the student’s satisfaction is design. The course content needs to be designed in an effective manner so that students should easily understand it. If the instructor plans the course, so the students understand the content without any problems it effectively leads to satisfaction, and the student can perform better in the exams. In some situations, the course content is difficult to deliver in online teaching like the practical part i.e. recipes of dishes or practical demonstration in the lab. In such a situation, the instructor needs to be more creative in designing and delivering the course content so that it positively impacts the students’ overall satisfaction with online classes.

Overall, the students agreed that online teaching was valuable for them even though the online mode of classes was the first experience during the pandemic period of Covid-19 (Agarwal & Kaushik, 2020 ; Rajabalee & Santally, 2020 ). Some of the previous studies suggest that the technology-supported courses have a positive relationship with students’ performance (Cho & Schelzer, 2000 ; Harasim, 2000 ; Sigala, 2002 ). On the other hand, the demographic characteristic also plays a vital role in understanding the online course performance. According to APA Work Group of the Board of Educational Affairs ( 1997 ), the learner-centered principles suggest that students must be willing to invest the time required to complete individual course assignments. Online instructors must be enthusiastic about developing genuine instructional resources that actively connect learners and encourage them toward proficient performances. For better performance in studies, both teachers and students have equal responsibility. When the learner faces any problem to understand the concepts, he needs to make inquiries for the instructor’s solutions (Bangert, 2004 ). Thus, we can conclude that “instructor quality, student’s expectation, prompt feedback, and effective course design” significantly impact students’ online learning process.

7 Implications of the study

The results of this study have numerous significant practical implications for educators, students and researchers. It also contributes to the literature by demonstrating that multiple factors are responsible for student satisfaction and performance in the context of online classes during the period of the COVID-19 pandemic. This study was different from the previous studies (Baber, 2020 ; Ikhsan et al., 2019 ; Eom & Ashill, 2016 ). None of the studies had examined the effect of students’ satisfaction on their perceived academic performance. The previous empirical findings have highlighted the importance of examining the factors affecting student satisfaction (Maqableh & Jaradat, 2021 ; Yunusa & Umar, 2021 ). Still, none of the studies has examined the effect of course design, quality of instructor, prompt feedback, and students’ expectations on students’ satisfaction all together with online classes during the pandemic period. The present study tries to fill this research gap.

The first essential contribution of this study was the instructor’s facilitating role, and the competence he/she possesses affects the level of satisfaction of the students (Gray & DiLoreto, 2016 ). There was an extra obligation for instructors who taught online courses during the pandemic. They would have to adapt to a changing climate, polish their technical skills throughout the process, and foster new students’ technical knowledge in this environment. The present study’s findings indicate that instructor quality is a significant determinant of student satisfaction during online classes amid a pandemic. In higher education, the teacher’s standard referred to the instructor’s specific individual characteristics before entering the class (Darling-Hammond, 2010 ). These attributes include factors such as instructor content knowledge, pedagogical knowledge, inclination, and experience. More significantly, at that level, the amount of understanding could be given by those who have a significant amount of technical expertise in the areas they are teaching (Martin, 2021 ). Secondly, the present study results contribute to the profession of education by illustrating a realistic approach that can be used to recognize students’ expectations in their class effectively. The primary expectation of most students before joining a university is employment. Instructors have agreed that they should do more to fulfill students’ employment expectations (Gorgodze et al., 2020 ). The instructor can then use that to balance expectations to improve student satisfaction. Study results can be used to continually improve and build courses, as well as to make policy decisions to improve education programs. Thirdly, from result outcomes, online course design and instructors will delve deeper into how to structure online courses more efficiently, including design features that minimize adversely and maximize optimistic emotion, contributing to greater student satisfaction (Martin et al., 2018 ). The findings suggest that the course design has a substantial positive influence on the online class’s student performance. The findings indicate that the course design of online classes need to provide essential details like course content, educational goals, course structure, and course output in a consistent manner so that students would find the e-learning system beneficial for them; this situation will enable students to use the system and that leads to student performance (Almaiah & Alyoussef, 2019 ). Lastly, the results indicate that instructors respond to questions promptly and provide timely feedback on assignments to facilitate techniques that help students in online courses improve instructor participation, instructor interaction, understanding, and participation (Martin et al., 2018 ). Feedback can be beneficial for students to focus on the performance that enhances their learning.

Author information

Authors and affiliations.

Chitkara College of Hospitality Management, Chitkara University, Chandigarh, Punjab, India

Ram Gopal & Varsha Singh

Chitkara Business School, Chitkara University, Chandigarh, Punjab, India

Arun Aggarwal

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Arun Aggarwal .

Ethics declarations

Ethics approval.

Not applicable.

Conflict of interest

The authors declare no conflict of interest, financial or otherwise.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Gopal, R., Singh, V. & Aggarwal, A. Impact of online classes on the satisfaction and performance of students during the pandemic period of COVID 19. Educ Inf Technol 26 , 6923–6947 (2021). https://doi.org/10.1007/s10639-021-10523-1

Download citation

Received : 07 December 2020

Accepted : 22 March 2021

Published : 21 April 2021

Issue Date : November 2021

DOI : https://doi.org/10.1007/s10639-021-10523-1

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Quality of instructor
  • Course design
  • Instructor’s prompt feedback
  • Expectations
  • Student’s satisfaction
  • Perceived performance

Advertisement

  • Find a journal
  • Publish with us
  • Track your research
  • Research article
  • Open access
  • Published: 02 December 2020

Integrating students’ perspectives about online learning: a hierarchy of factors

  • Montgomery Van Wart 1 ,
  • Anna Ni 1 ,
  • Pamela Medina 1 ,
  • Jesus Canelon 1 ,
  • Melika Kordrostami 1 ,
  • Jing Zhang 1 &

International Journal of Educational Technology in Higher Education volume  17 , Article number:  53 ( 2020 ) Cite this article

149k Accesses

52 Citations

24 Altmetric

Metrics details

This article reports on a large-scale ( n  = 987), exploratory factor analysis study incorporating various concepts identified in the literature as critical success factors for online learning from the students’ perspective, and then determines their hierarchical significance. Seven factors--Basic Online Modality, Instructional Support, Teaching Presence, Cognitive Presence, Online Social Comfort, Online Interactive Modality, and Social Presence--were identified as significant and reliable. Regression analysis indicates the minimal factors for enrollment in future classes—when students consider convenience and scheduling—were Basic Online Modality, Cognitive Presence, and Online Social Comfort. Students who accepted or embraced online courses on their own merits wanted a minimum of Basic Online Modality, Teaching Presence, Cognitive Presence, Online Social Comfort, and Social Presence. Students, who preferred face-to-face classes and demanded a comparable experience, valued Online Interactive Modality and Instructional Support more highly. Recommendations for online course design, policy, and future research are provided.

Introduction

While there are different perspectives of the learning process such as learning achievement and faculty perspectives, students’ perspectives are especially critical since they are ultimately the raison d’être of the educational endeavor (Chickering & Gamson, 1987 ). More pragmatically, students’ perspectives provide invaluable, first-hand insights into their experiences and expectations (Dawson et al., 2019 ). The student perspective is especially important when new teaching approaches are used and when new technologies are being introduced (Arthur, 2009 ; Crews & Butterfield, 2014 ; Van Wart, Ni, Ready, Shayo, & Court, 2020 ). With the renewed interest in “active” education in general (Arruabarrena, Sánchez, Blanco, et al., 2019 ; Kay, MacDonald, & DiGiuseppe, 2019 ; Nouri, 2016 ; Vlachopoulos & Makri, 2017 ) and the flipped classroom approach in particular (Flores, del-Arco, & Silva, 2016 ; Gong, Yang, & Cai, 2020 ; Lundin, et al., 2018 ; Maycock, 2019 ; McGivney-Burelle, 2013 ; O’Flaherty & Phillips, 2015 ; Tucker , 2012 ) along with extraordinary shifts in the technology, the student perspective on online education is profoundly important. What shapes students’ perceptions of quality integrate are their own sense of learning achievement, satisfaction with the support they receive, technical proficiency of the process, intellectual and emotional stimulation, comfort with the process, and sense of learning community. The factors that students perceive as quality online teaching, however, has not been as clear as it might be for at least two reasons.

First, it is important to note that the overall online learning experience for students is also composed of non-teaching factors which we briefly mention. Three such factors are (1) convenience, (2) learner characteristics and readiness, and (3) antecedent conditions that may foster teaching quality but are not directly responsible for it. (1) Convenience is an enormous non-quality factor for students (Artino, 2010 ) which has driven up online demand around the world (Fidalgo, Thormann, Kulyk, et al., 2020 ; Inside Higher Education and Gallup, 2019 ; Legon & Garrett, 2019 ; Ortagus, 2017 ). This is important since satisfaction with online classes is frequently somewhat lower than face-to-face classes (Macon, 2011 ). However, the literature generally supports the relative equivalence of face-to-face and online modes regarding learning achievement criteria (Bernard et al., 2004 ; Nguyen, 2015 ; Ni, 2013 ; Sitzmann, Kraiger, Stewart, & Wisher, 2006 ; see Xu & Jaggars, 2014 for an alternate perspective). These contrasts are exemplified in a recent study of business students, in which online students using a flipped classroom approach outperformed their face-to-face peers, but ironically rated instructor performance lower (Harjoto, 2017 ). (2) Learner characteristics also affect the experience related to self-regulation in an active learning model, comfort with technology, and age, among others,which affect both receptiveness and readiness of online instruction. (Alqurashi, 2016 ; Cohen & Baruth, 2017 ; Kintu, Zhu, & Kagambe, 2017 ; Kuo, Walker, Schroder, & Belland, 2013 ; Ventura & Moscoloni, 2015 ) (3) Finally, numerous antecedent factors may lead to improved instruction, but are not themselves directly perceived by students such as instructor training (Brinkley-Etzkorn, 2018 ), and the sources of faculty motivation (e.g., incentives, recognition, social influence, and voluntariness) (Wingo, Ivankova, & Moss, 2017 ). Important as these factors are, mixing them with the perceptions of quality tends to obfuscate the quality factors directly perceived by students.

Second, while student perceptions of quality are used in innumerable studies, our overall understanding still needs to integrate them more holistically. Many studies use student perceptions of quality and overall effectiveness of individual tools and strategies in online contexts such as mobile devices (Drew & Mann, 2018 ), small groups (Choi, Land, & Turgeon, 2005 ), journals (Nair, Tay, & Koh, 2013 ), simulations (Vlachopoulos & Makri, 2017 ), video (Lange & Costley, 2020 ), etc. Such studies, however, cannot provide the overall context and comparative importance. Some studies have examined the overall learning experience of students with exploratory lists, but have mixed non-quality factors with quality of teaching factors making it difficult to discern the instructor’s versus contextual roles in quality (e.g., Asoodar, Vaezi, & Izanloo, 2016 ; Bollinger & Martindale, 2004 ; Farrell & Brunton, 2020 ; Hong, 2002 ; Song, Singleton, Hill, & Koh, 2004 ; Sun, Tsai, Finger, Chen, & Yeh, 2008 ). The application of technology adoption studies also fall into this category by essentially aggregating all teaching quality in the single category of performance ( Al-Gahtani, 2016 ; Artino, 2010 ). Some studies have used high-level teaching-oriented models, primarily the Community of Inquiry model (le Roux & Nagel, 2018 ), but empirical support has been mixed (Arbaugh et al., 2008 ); and its elegance (i.e., relying on only three factors) has not provided much insight to practitioners (Anderson, 2016 ; Cleveland-Innes & Campbell, 2012 ).

Research questions

Integration of studies and concepts explored continues to be fragmented and confusing despite the fact that the number of empirical studies related to student perceptions of quality factors has increased. It is important to have an empirical view of what students’ value in a single comprehensive study and, also, to know if there is a hierarchy of factors, ranging from students who are least to most critical of the online learning experience. This research study has two research questions.

The first research question is: What are the significant factors in creating a high-quality online learning experience from students’ perspectives? That is important to know because it should have a significant effect on the instructor’s design of online classes. The goal of this research question is identify a more articulated and empirically-supported set of factors capturing the full range of student expectations.

The second research question is: Is there a priority or hierarchy of factors related to students’ perceptions of online teaching quality that relate to their decisions to enroll in online classes? For example, is it possible to distinguish which factors are critical for enrollment decisions when students are primarily motivated by convenience and scheduling flexibility (minimum threshold)? Do these factors differ from students with a genuine acceptance of the general quality of online courses (a moderate threshold)? What are the factors that are important for the students who are the most critical of online course delivery (highest threshold)?

This article next reviews the literature on online education quality, focusing on the student perspective and reviews eight factors derived from it. The research methods section discusses the study structure and methods. Demographic data related to the sample are next, followed by the results, discussion, and conclusion.

Literature review

Online education is much discussed (Prinsloo, 2016 ; Van Wart et al., 2019 ; Zawacki-Richter & Naidu, 2016 ), but its perception is substantially influenced by where you stand and what you value (Otter et al., 2013 ; Tanner, Noser, & Totaro, 2009 ). Accrediting bodies care about meeting technical standards, proof of effectiveness, and consistency (Grandzol & Grandzol, 2006 ). Institutions care about reputation, rigor, student satisfaction, and institutional efficiency (Jung, 2011 ). Faculty care about subject coverage, student participation, faculty satisfaction, and faculty workload (Horvitz, Beach, Anderson, & Xia, 2015 ; Mansbach & Austin, 2018 ). For their part, students care about learning achievement (Marks, Sibley, & Arbaugh, 2005 ; O’Neill & Sai, 2014 ; Shen, Cho, Tsai, & Marra, 2013 ), but also view online education as a function of their enjoyment of classes, instructor capability and responsiveness, and comfort in the learning environment (e.g., Asoodar et al., 2016 ; Sebastianelli, Swift, & Tamimi, 2015 ). It is this last perspective, of students, upon which we focus.

It is important to note students do not sign up for online classes solely based on perceived quality. Perceptions of quality derive from notions of the capacity of online learning when ideal—relative to both learning achievement and satisfaction/enjoyment, and perceptions about the likelihood and experience of classes living up to expectations. Students also sign up because of convenience and flexibility, and personal notions of suitability about learning. Convenience and flexibility are enormous drivers of online registration (Lee, Stringer, & Du, 2017 ; Mann & Henneberry, 2012 ). Even when students say they prefer face-to-face classes to online, many enroll in online classes and re-enroll in the future if the experience meets minimum expectations. This study examines the threshold expectations of students when they are considering taking online classes.

When discussing students’ perceptions of quality, there is little clarity about the actual range of concepts because no integrated empirical studies exist comparing major factors found throughout the literature. Rather, there are practitioner-generated lists of micro-competencies such as the Quality Matters consortium for higher education (Quality Matters, 2018 ), or broad frameworks encompassing many aspects of quality beyond teaching (Open and Distant Learning Quality Council, 2012 ). While checklists are useful for practitioners and accreditation processes, they do not provide robust, theoretical bases for scholarly development. Overarching frameworks are heuristically useful, but not for pragmatic purposes or theory building arenas. The most prominent theoretical framework used in online literature is the Community of Inquiry (CoI) model (Arbaugh et al., 2008 ; Garrison, Anderson, & Archer, 2003 ), which divides instruction into teaching, cognitive, and social presence. Like deductive theories, however, the supportive evidence is mixed (Rourke & Kanuka, 2009 ), especially regarding the importance of social presence (Annand, 2011 ; Armellini and De Stefani, 2016 ). Conceptually, the problem is not so much with the narrow articulation of cognitive or social presence; cognitive presence is how the instructor provides opportunities for students to interact with material in robust, thought-provoking ways, and social presence refers to building a community of learning that incorporates student-to-student interactions. However, teaching presence includes everything else the instructor does—structuring the course, providing lectures, explaining assignments, creating rehearsal opportunities, supplying tests, grading, answering questions, and so on. These challenges become even more prominent in the online context. While the lecture as a single medium is paramount in face-to-face classes, it fades as the primary vehicle in online classes with increased use of detailed syllabi, electronic announcements, recorded and synchronous lectures, 24/7 communications related to student questions, etc. Amassing the pedagogical and technological elements related to teaching under a single concept provides little insight.

In addition to the CoI model, numerous concepts are suggested in single-factor empirical studies when focusing on quality from a student’s perspective, with overlapping conceptualizations and nonstandardized naming conventions. Seven distinct factors are derived here from the literature of student perceptions of online quality: Instructional Support, Teaching Presence, Basic Online Modality, Social Presence, Online Social Comfort, cognitive Presence, and Interactive Online Modality.

Instructional support

Instructional Support refers to students’ perceptions of techniques by the instructor used for input, rehearsal, feedback, and evaluation. Specifically, this entails providing detailed instructions, designed use of multimedia, and the balance between repetitive class features for ease of use, and techniques to prevent boredom. Instructional Support is often included as an element of Teaching Presence, but is also labeled “structure” (Lee & Rha, 2009 ; So & Brush, 2008 ) and instructor facilitation (Eom, Wen, & Ashill, 2006 ). A prime example of the difference between face-to-face and online education is the extensive use of the “flipped classroom” (Maycock, 2019 ; Wang, Huang, & Schunn, 2019 ) in which students move to rehearsal activities faster and more frequently than traditional classrooms, with less instructor lecture (Jung, 2011 ; Martin, Wang, & Sadaf, 2018 ). It has been consistently supported as an element of student perceptions of quality (Espasa & Meneses, 2010 ).

  • Teaching presence

Teaching Presence refers to students’ perceptions about the quality of communication in lectures, directions, and individual feedback including encouragement (Jaggars & Xu, 2016 ; Marks et al., 2005 ). Specifically, instructor communication is clear, focused, and encouraging, and instructor feedback is customized and timely. If Instructional Support is what an instructor does before the course begins and in carrying out those plans, then Teaching Presence is what the instructor does while the class is conducted and in response to specific circumstances. For example, a course could be well designed but poorly delivered because the instructor is distracted; or a course could be poorly designed but an instructor might make up for the deficit by spending time and energy in elaborate communications and ad hoc teaching techniques. It is especially important in student satisfaction (Sebastianelli et al., 2015 ; Young, 2006 ) and also referred to as instructor presence (Asoodar et al., 2016 ), learner-instructor interaction (Marks et al., 2005 ), and staff support (Jung, 2011 ). As with Instructional Support, it has been consistently supported as an element of student perceptions of quality.

Basic online modality

Basic Online Modality refers to the competent use of basic online class tools—online grading, navigation methods, online grade book, and the announcements function. It is frequently clumped with instructional quality (Artino, 2010 ), service quality (Mohammadi, 2015 ), instructor expertise in e-teaching (Paechter, Maier, & Macher, 2010 ), and similar terms. As a narrowly defined concept, it is sometimes called technology (Asoodar et al., 2016 ; Bollinger & Martindale, 2004 ; Sun et al., 2008 ). The only empirical study that did not find Basic Online Modality significant, as technology, was Sun et al. ( 2008 ). Because Basic Online Modality is addressed with basic instructor training, some studies assert the importance of training (e.g., Asoodar et al., 2016 ).

Social presence

Social Presence refers to students’ perceptions of the quality of student-to-student interaction. Social Presence focuses on the quality of shared learning and collaboration among students, such as in threaded discussion responses (Garrison et al., 2003 ; Kehrwald, 2008 ). Much emphasized but challenged in the CoI literature (Rourke & Kanuka, 2009 ), it has mixed support in the online literature. While some studies found Social Presence or related concepts to be significant (e.g., Asoodar et al., 2016 ; Bollinger & Martindale, 2004 ; Eom et al., 2006 ; Richardson, Maeda, Lv, & Caskurlu, 2017 ), others found Social Presence insignificant (Joo, Lim, & Kim, 2011 ; So & Brush, 2008 ; Sun et al., 2008 ).

Online social comfort

Online Social Comfort refers to the instructor’s ability to provide an environment in which anxiety is low, and students feel comfortable interacting even when expressing opposing viewpoints. While numerous studies have examined anxiety (e.g., Liaw & Huang, 2013 ; Otter et al., 2013 ; Sun et al., 2008 ), only one found anxiety insignificant (Asoodar et al., 2016 ); many others have not examined the concept.

  • Cognitive presence

Cognitive Presence refers to the engagement of students such that they perceive they are stimulated by the material and instructor to reflect deeply and critically, and seek to understand different perspectives (Garrison et al., 2003 ). The instructor provides instructional materials and facilitates an environment that piques interest, is reflective, and enhances inclusiveness of perspectives (Durabi, Arrastia, Nelson, Cornille, & Liang, 2011 ). Cognitive Presence includes enhancing the applicability of material for student’s potential or current careers. Cognitive Presence is supported as significant in many online studies (e.g., Artino, 2010 ; Asoodar et al., 2016 ; Joo et al., 2011 ; Marks et al., 2005 ; Sebastianelli et al., 2015 ; Sun et al., 2008 ). Further, while many instructors perceive that cognitive presence is diminished in online settings, neuroscientific studies indicate this need not be the case (Takamine, 2017 ). While numerous studies failed to examine Cognitive Presence, this review found no studies that lessened its significance for students.

Interactive online modality

Interactive Online Modality refers to the “high-end” usage of online functionality. That is, the instructor uses interactive online class tools—video lectures, videoconferencing, and small group discussions—well. It is often included in concepts such as instructional quality (Artino, 2010 ; Asoodar et al., 2016 ; Mohammadi, 2015 ; Otter et al., 2013 ; Paechter et al., 2010 ) or engagement (Clayton, Blumberg, & Anthony, 2018 ). While individual methods have been investigated (e.g. Durabi et al., 2011 ), high-end engagement methods have not.

Other independent variables affecting perceptions of quality include age, undergraduate versus graduate status, gender, ethnicity/race, discipline, educational motivation of students, and previous online experience. While age has been found to be small or insignificant, more notable effects have been reported at the level-of-study, with graduate students reporting higher “success” (Macon, 2011 ), and community college students having greater difficulty with online classes (Legon & Garrett, 2019 ; Xu & Jaggars, 2014 ). Ethnicity and race have also been small or insignificant. Some situational variations and student preferences can be captured by paying attention to disciplinary differences (Arbaugh, 2005 ; Macon, 2011 ). Motivation levels of students have been reported to be significant in completion and achievement, with better students doing as well across face-to-face and online modes, and weaker students having greater completion and achievement challenges (Clayton et al., 2018 ; Lu & Lemonde, 2013 ).

Research methods

To examine the various quality factors, we apply a critical success factor methodology, initially introduced to schools of business research in the 1970s. In 1981, Rockhart and Bullen codified an approach embodying principles of critical success factors (CSFs) as a way to identify the information needs of executives, detailing steps for the collection and analyzation of data to create a set of organizational CSFs (Rockhart & Bullen, 1981 ). CSFs describe the underlying or guiding principles which must be incorporated to ensure success.

Utilizing this methodology, CSFs in the context of this paper define key areas of instruction and design essential for an online class to be successful from a student’s perspective. Instructors implicitly know and consider these areas when setting up an online class and designing and directing activities and tasks important to achieving learning goals. CSFs make explicit those things good instructors may intuitively know and (should) do to enhance student learning. When made explicit, CSFs not only confirm the knowledge of successful instructors, but tap their intuition to guide and direct the accomplishment of quality instruction for entire programs. In addition, CSFs are linked with goals and objectives, helping generate a small number of truly important matters an instructor should focus attention on to achieve different thresholds of online success.

After a comprehensive literature review, an instrument was created to measure students’ perceptions about the importance of techniques and indicators leading to quality online classes. Items were designed to capture the major factors in the literature. The instrument was pilot studied during academic year 2017–18 with a 397 student sample, facilitating an exploratory factor analysis leading to important preliminary findings (reference withheld for review). Based on the pilot, survey items were added and refined to include seven groups of quality teaching factors and two groups of items related to students’ overall acceptance of online classes as well as a variable on their future online class enrollment. Demographic information was gathered to determine their effects on students’ levels of acceptance of online classes based on age, year in program, major, distance from university, number of online classes taken, high school experience with online classes, and communication preferences.

This paper draws evidence from a sample of students enrolled in educational programs at Jack H. Brown College of Business and Public Administration (JHBC), California State University San Bernardino (CSUSB). The JHBC offers a wide range of online courses for undergraduate and graduate programs. To ensure comparable learning outcomes, online classes and face-to-face classes of a certain subject are similar in size—undergraduate classes are generally capped at 60 and graduate classes at 30, and often taught by the same instructors. Students sometimes have the option to choose between both face-to-face and online modes of learning.

A Qualtrics survey link was sent out by 11 instructors to students who were unlikely to be cross-enrolled in classes during the 2018–19 academic year. 1 Approximately 2500 students were contacted, with some instructors providing class time to complete the anonymous survey. All students, whether they had taken an online class or not, were encouraged to respond. Nine hundred eighty-seven students responded, representing a 40% response rate. Although drawn from a single business school, it is a broad sample representing students from several disciplines—management, accounting and finance, marketing, information decision sciences, and public administration, as well as both graduate and undergraduate programs of study.

The sample age of students is young, with 78% being under 30. The sample has almost no lower division students (i.e., freshman and sophomore), 73% upper division students (i.e., junior and senior) and 24% graduate students (master’s level). Only 17% reported having taken a hybrid or online class in high school. There was a wide range of exposure to university level online courses, with 47% reporting having taken 1 to 4 classes, and 21% reporting no online class experience. As a Hispanic-serving institution, 54% self-identified as Latino, 18% White, and 13% Asian and Pacific Islander. The five largest majors were accounting & finance (25%), management (21%), master of public administration (16%), marketing (12%), and information decision sciences (10%). Seventy-four percent work full- or part-time. See Table  1 for demographic data.

Measures and procedure

To increase the reliability of evaluation scores, composite evaluation variables are formed after an exploratory factor analysis of individual evaluation items. A principle component method with Quartimin (oblique) rotation was applied to explore the factor construct of student perceptions of online teaching CSFs. The item correlations for student perceptions of importance coefficients greater than .30 were included, a commonly acceptable ratio in factor analysis. A simple least-squares regression analysis was applied to test the significance levels of factors on students’ impression of online classes.

Exploratory factor constructs

Using a threshold loading of 0.3 for items, 37 items loaded on seven factors. All factors were logically consistent. The first factor, with eight items, was labeled Teaching Presence. Items included providing clear instructions, staying on task, clear deadlines, and customized feedback on strengths and weaknesses. Teaching Presence items all related to instructor involvement during the course as a director, monitor, and learning facilitator. The second factor, with seven items, aligned with Cognitive Presence. Items included stimulating curiosity, opportunities for reflection, helping students construct explanations posed in online courses, and the applicability of material. The third factor, with six items, aligned with Social Presence defined as providing student-to-student learning opportunities. Items included getting to know course participants for sense of belonging, forming impressions of other students, and interacting with others. The fourth factor, with six new items as well as two (“interaction with other students” and “a sense of community in the class”) shared with the third factor, was Instructional Support which related to the instructor’s roles in providing students a cohesive learning experience. They included providing sufficient rehearsal, structured feedback, techniques for communication, navigation guide, detailed syllabus, and coordinating student interaction and creating a sense of online community. This factor also included enthusiasm which students generally interpreted as a robustly designed course, rather than animation in a traditional lecture. The fifth factor was labeled Basic Online Modality and focused on the basic technological requirements for a functional online course. Three items included allowing students to make online submissions, use of online gradebooks, and online grading. A fourth item is the use of online quizzes, viewed by students as mechanical practice opportunities rather than small tests and a fifth is navigation, a key component of Online Modality. The sixth factor, loaded on four items, was labeled Online Social Comfort. Items here included comfort discussing ideas online, comfort disagreeing, developing a sense of collaboration via discussion, and considering online communication as an excellent medium for social interaction. The final factor was called Interactive Online Modality because it included items for “richer” communications or interactions, no matter whether one- or two-way. Items included videoconferencing, instructor-generated videos, and small group discussions. Taken together, these seven explained 67% of the variance which is considered in the acceptable range in social science research for a robust model (Hair, Black, Babin, & Anderson, 2014 ). See Table  2 for the full list.

To test for factor reliability, the Cronbach alpha of variables were calculated. All produced values greater than 0.7, the standard threshold used for reliability, except for system trust which was therefore dropped. To gauge students’ sense of factor importance, all items were means averaged. Factor means (lower means indicating higher importance to students), ranged from 1.5 to 2.6 on a 5-point scale. Basic Online Modality was most important, followed by Instructional Support and Teaching Presence. Students deemed Cognitive Presence, Social Online Comfort, and Online Interactive Modality less important. The least important for this sample was Social Presence. Table  3 arrays the critical success factor means, standard deviations, and Cronbach alpha.

To determine whether particular subgroups of respondents viewed factors differently, a series of ANOVAs were conducted using factor means as dependent variables. Six demographic variables were used as independent variables: graduate vs. undergraduate, age, work status, ethnicity, discipline, and past online experience. To determine strength of association of the independent variables to each of the seven CSFs, eta squared was calculated for each ANOVA. Eta squared indicates the proportion of variance in the dependent variable explained by the independent variable. Eta squared values greater than .01, .06, and .14 are conventionally interpreted as small, medium, and large effect sizes, respectively (Green & Salkind, 2003 ). Table  4 summarizes the eta squared values for the ANOVA tests with Eta squared values less than .01 omitted.

While no significant differences in factor means among students in different disciplines in the College occur, all five other independent variables have some small effect on some or all CSFs. Graduate students tend to rate Online Interactive Modality, Instructional Support, Teaching Presence, and Cognitive Presence higher than undergraduates. Elder students value more Online Interactive Modality. Full-time working students rate all factors, except Social Online Comfort, slightly higher than part-timers and non-working students. Latino and White rate Basic Online Modality and Instructional Support higher; Asian and Pacific Islanders rate Social Presence higher. Students who have taken more online classes rate all factors higher.

In addition to factor scores, two variables are constructed to identify the resultant impressions labeled online experience. Both were logically consistent with a Cronbach’s α greater than 0.75. The first variable, with six items, labeled “online acceptance,” included items such as “I enjoy online learning,” “My overall impression of hybrid/online learning is very good,” and “the instructors of online/hybrid classes are generally responsive.” The second variable was labeled “face-to-face preference” and combines four items, including enjoying, learning, and communicating more in face-to-face classes, as well as perceiving greater fairness and equity. In addition to these two constructed variables, a one-item variable was also used subsequently in the regression analysis: “online enrollment.” That question asked: if hybrid/online classes are well taught and available, how much would online education make up your entire course selection going forward?

Regression results

As noted above, two constructed variables and one item were used as dependent variables for purposes of regression analysis. They were online acceptance, F2F preference, and the selection of online classes. In addition to seven quality-of-teaching factors identified by factor analysis, control variables included level of education (graduate versus undergraduate), age, ethnicity, work status, distance to university, and number of online/hybrid classes taken in the past. See Table  5 .

When the ETA squared values for ANOVA significance were measured for control factors, only one was close to a medium effect. Graduate versus undergraduate status had a .05 effect (considered medium) related to Online Interactive Modality, meaning graduate students were more sensitive to interactive modality than undergraduates. Multiple regression analysis of critical success factors and online impressions were conducted to compare under what conditions factors were significant. The only consistently significant control factor was number of online classes taken. The more classes students had taken online, the more inclined they were to take future classes. Level of program, age, ethnicity, and working status do not significantly affect students’ choice or overall acceptance of online classes.

The least restrictive condition was online enrollment (Table  6 ). That is, students might not feel online courses were ideal, but because of convenience and scheduling might enroll in them if minimum threshold expectations were met. When considering online enrollment three factors were significant and positive (at the 0.1 level): Basic Online Modality, Cognitive Presence, and Online Social Comfort. These least-demanding students expected classes to have basic technological functionality, provide good opportunities for knowledge acquisition, and provide comfortable interaction in small groups. Students who demand good Instructional Support (e.g., rehearsal opportunities, standardized feedback, clear syllabus) are less likely to enroll.

Online acceptance was more restrictive (see Table  7 ). This variable captured the idea that students not only enrolled in online classes out of necessity, but with an appreciation of the positive attributes of online instruction, which balanced the negative aspects. When this standard was applied, students expected not only Basic Online Modality, Cognitive Presence, and Online Social Comfort, but expected their instructors to be highly engaged virtually as the course progressed (Teaching Presence), and to create strong student-to-student dynamics (Social Presence). Students who rated Instructional Support higher are less accepting of online classes.

Another restrictive condition was catering to the needs of students who preferred face-to-face classes (see Table  8 ). That is, they preferred face-to-face classes even when online classes were well taught. Unlike students more accepting of, or more likely to enroll in, online classes, this group rates Instructional Support as critical to enrolling, rather than a negative factor when absent. Again different from the other two groups, these students demand appropriate interactive mechanisms (Online Interactive Modality) to enable richer communication (e.g., videoconferencing). Student-to-student collaboration (Social Presence) was also significant. This group also rated Cognitive Presence and Online Social Comfort as significant, but only in their absence. That is, these students were most attached to direct interaction with the instructor and other students rather than specific teaching methods. Interestingly, Basic Online Modality and Teaching Presence were not significant. Our interpretation here is this student group, most critical of online classes for its loss of physical interaction, are beyond being concerned with mechanical technical interaction and demand higher levels of interactivity and instructional sophistication.

Discussion and study limitations

Some past studies have used robust empirical methods to identify a single factor or a small number of factors related to quality from a student’s perspective, but have not sought to be relatively comprehensive. Others have used a longer series of itemized factors, but have less used less robust methods, and have not tied those factors back to the literature. This study has used the literature to develop a relatively comprehensive list of items focused on quality teaching in a single rigorous protocol. That is, while a Beta test had identified five coherent factors, substantial changes to the current survey that sharpened the focus on quality factors rather than antecedent factors, as well as better articulating the array of factors often lumped under the mantle of “teaching presence.” In addition, it has also examined them based on threshold expectations: from minimal, such as when flexibility is the driving consideration, to modest, such as when students want a “good” online class, to high, when students demand an interactive virtual experience equivalent to face-to-face.

Exploratory factor analysis identified seven factors that were reliable, coherent, and significant under different conditions. When considering students’ overall sense of importance, they are, in order: Basic Online Modality, Instructional Support, Teaching Presence, Cognitive Presence, Social Online Comfort, Interactive Online Modality, and Social Presence. Students are most concerned with the basics of a course first, that is the technological and instructor competence. Next they want engagement and virtual comfort. Social Presence, while valued, is the least critical from this overall perspective.

The factor analysis is quite consistent with the range of factors identified in the literature, pointing to the fact that students can differentiate among different aspects of what have been clumped as larger concepts, such as teaching presence. Essentially, the instructor’s role in quality can be divided into her/his command of basic online functionality, good design, and good presence during the class. The instructor’s command of basic functionality is paramount. Because so much of online classes must be built in advance of the class, quality of the class design is rated more highly than the instructor’s role in facilitating the class. Taken as a whole, the instructor’s role in traditional teaching elements is primary, as we would expect it to be. Cognitive presence, especially as pertinence of the instructional material and its applicability to student interests, has always been found significant when studied, and was highly rated as well in a single factor. Finally, the degree to which students feel comfortable with the online environment and enjoy the learner-learner aspect has been less supported in empirical studies, was found significant here, but rated the lowest among the factors of quality to students.

Regression analysis paints a more nuanced picture, depending on student focus. It also helps explain some of the heterogeneity of previous studies, depending on what the dependent variables were. If convenience and scheduling are critical and students are less demanding, minimum requirements are Basic Online Modality, Cognitive Presence, and Online Social Comfort. That is, students’ expect an instructor who knows how to use an online platform, delivers useful information, and who provides a comfortable learning environment. However, they do not expect to get poor design. They do not expect much in terms of the quality teaching presence, learner-to-learner interaction, or interactive teaching.

When students are signing up for critical classes, or they have both F2F and online options, they have a higher standard. That is, they not only expect the factors for decisions about enrolling in noncritical classes, but they also expect good Teaching and Social Presence. Students who simply need a class may be willing to teach themselves a bit more, but students who want a good class expect a highly present instructor in terms responsiveness and immediacy. “Good” classes must not only create a comfortable atmosphere, but in social science classes at least, must provide strong learner-to-learner interactions as well. At the time of the research, most students believe that you can have a good class without high interactivity via pre-recorded video and videoconference. That may, or may not, change over time as technology thresholds of various video media become easier to use, more reliable, and more commonplace.

The most demanding students are those who prefer F2F classes because of learning style preferences, poor past experiences, or both. Such students (seem to) assume that a worthwhile online class has basic functionality and that the instructor provides a strong presence. They are also critical of the absence of Cognitive Presence and Online Social Comfort. They want strong Instructional Support and Social Presence. But in addition, and uniquely, they expect Online Interactive Modality which provides the greatest verisimilitude to the traditional classroom as possible. More than the other two groups, these students crave human interaction in the learning process, both with the instructor and other students.

These findings shed light on the possible ramifications of the COVID-19 aftermath. Many universities around the world jumped from relatively low levels of online instruction in the beginning of spring 2020 to nearly 100% by mandate by the end of the spring term. The question becomes, what will happen after the mandate is removed? Will demand resume pre-crisis levels, will it increase modestly, or will it skyrocket? Time will be the best judge, but the findings here would suggest that the ability/interest of instructors and institutions to “rise to the occasion” with quality teaching will have as much effect on demand as students becoming more acclimated to online learning. If in the rush to get classes online many students experience shoddy basic functional competence, poor instructional design, sporadic teaching presence, and poorly implemented cognitive and social aspects, they may be quite willing to return to the traditional classroom. If faculty and institutions supporting them are able to increase the quality of classes despite time pressures, then most students may be interested in more hybrid and fully online classes. If instructors are able to introduce high quality interactive teaching, nearly the entire student population will be interested in more online classes. Of course students will have a variety of experiences, but this analysis suggests that those instructors, departments, and institutions that put greater effort into the temporary adjustment (and who resist less), will be substantially more likely to have increases in demand beyond what the modest national trajectory has been for the last decade or so.

There are several study limitations. First, the study does not include a sample of non-respondents. Non-responders may have a somewhat different profile. Second, the study draws from a single college and university. The profile derived here may vary significantly by type of student. Third, some survey statements may have led respondents to rate quality based upon experience rather than assess the general importance of online course elements. “I felt comfortable participating in the course discussions,” could be revised to “comfort in participating in course discussions.” The authors weighed differences among subgroups (e.g., among majors) as small and statistically insignificant. However, it is possible differences between biology and marketing students would be significant, leading factors to be differently ordered. Emphasis and ordering might vary at a community college versus research-oriented university (Gonzalez, 2009 ).

Availability of data and materials

We will make the data available.

Al-Gahtani, S. S. (2016). Empirical investigation of e-learning acceptance and assimilation: A structural equation model. Applied Comput Information , 12 , 27–50.

Google Scholar  

Alqurashi, E. (2016). Self-efficacy in online learning environments: A literature review. Contemporary Issues Educ Res (CIER) , 9 (1), 45–52.

Anderson, T. (2016). A fourth presence for the Community of Inquiry model? Retrieved from https://virtualcanuck.ca/2016/01/04/a-fourth-presence-for-the-community-of-inquiry-model/ .

Annand, D. (2011). Social presence within the community of inquiry framework. The International Review of Research in Open and Distributed Learning , 12 (5), 40.

Arbaugh, J. B. (2005). How much does “subject matter” matter? A study of disciplinary effects in on-line MBA courses. Academy of Management Learning & Education , 4 (1), 57–73.

Arbaugh, J. B., Cleveland-Innes, M., Diaz, S. R., Garrison, D. R., Ice, P., Richardson, J. C., & Swan, K. P. (2008). Developing a community of inquiry instrument: Testing a measure of the Community of Inquiry framework using a multi-institutional sample. Internet and Higher Education , 11 , 133–136.

Armellini, A., & De Stefani, M. (2016). Social presence in the 21st century: An adjustment to the Community of Inquiry framework. British Journal of Educational Technology , 47 (6), 1202–1216.

Arruabarrena, R., Sánchez, A., Blanco, J. M., et al. (2019). Integration of good practices of active methodologies with the reuse of student-generated content. International Journal of Educational Technology in Higher Education , 16 , #10.

Arthur, L. (2009). From performativity to professionalism: Lecturers’ responses to student feedback. Teaching in Higher Education , 14 (4), 441–454.

Artino, A. R. (2010). Online or face-to-face learning? Exploring the personal factors that predict students’ choice of instructional format. Internet and Higher Education , 13 , 272–276.

Asoodar, M., Vaezi, S., & Izanloo, B. (2016). Framework to improve e-learner satisfaction and further strengthen e-learning implementation. Computers in Human Behavior , 63 , 704–716.

Bernard, R. M., et al. (2004). How does distance education compare with classroom instruction? A meta-analysis of the empirical literature. Review of Educational Research , 74 (3), 379–439.

Bollinger, D., & Martindale, T. (2004). Key factors for determining student satisfaction in online courses. Int J E-learning , 3 (1), 61–67.

Brinkley-Etzkorn, K. E. (2018). Learning to teach online: Measuring the influence of faculty development training on teaching effectiveness through a TPACK lens. The Internet and Higher Education , 38 , 28–35.

Chickering, A. W., & Gamson, Z. F. (1987). Seven principles for good practice in undergraduate education. AAHE Bulletin , 3 , 7.

Choi, I., Land, S. M., & Turgeon, A. J. (2005). Scaffolding peer-questioning strategies to facilitate metacognition during online small group discussion. Instructional Science , 33 , 483–511.

Clayton, K. E., Blumberg, F. C., & Anthony, J. A. (2018). Linkages between course status, perceived course value, and students’ preferences for traditional versus non-traditional learning environments. Computers & Education , 125 , 175–181.

Cleveland-Innes, M., & Campbell, P. (2012). Emotional presence, learning, and the online learning environment. The International Review of Research in Open and Distributed Learning , 13 (4), 269–292.

Cohen, A., & Baruth, O. (2017). Personality, learning, and satisfaction in fully online academic courses. Computers in Human Behavior , 72 , 1–12.

Crews, T., & Butterfield, J. (2014). Data for flipped classroom design: Using student feedback to identify the best components from online and face-to-face classes. Higher Education Studies , 4 (3), 38–47.

Dawson, P., Henderson, M., Mahoney, P., Phillips, M., Ryan, T., Boud, D., & Molloy, E. (2019). What makes for effective feedback: Staff and student perspectives. Assessment & Evaluation in Higher Education , 44 (1), 25–36.

Drew, C., & Mann, A. (2018). Unfitting, uncomfortable, unacademic: A sociological reading of an interactive mobile phone app in university lectures. International Journal of Educational Technology in Higher Education , 15 , #43.

Durabi, A., Arrastia, M., Nelson, D., Cornille, T., & Liang, X. (2011). Cognitive presence in asynchronous online learning: A comparison of four discussion strategies. Journal of Computer Assisted Learning , 27 (3), 216–227.

Eom, S. B., Wen, H. J., & Ashill, N. (2006). The determinants of students’ perceived learning outcomes and satisfaction in university online education: An empirical investigation. Decision Sciences Journal of Innovative Education , 4 (2), 215–235.

Espasa, A., & Meneses, J. (2010). Analysing feedback processes in an online teaching and learning environment: An exploratory study. Higher Education , 59 (3), 277–292.

Farrell, O., & Brunton, J. (2020). A balancing act: A window into online student engagement experiences. International Journal of Educational Technology in High Education , 17 , #25.

Fidalgo, P., Thormann, J., Kulyk, O., et al. (2020). Students’ perceptions on distance education: A multinational study. International Journal of Educational Technology in High Education , 17 , #18.

Flores, Ò., del-Arco, I., & Silva, P. (2016). The flipped classroom model at the university: Analysis based on professors’ and students’ assessment in the educational field. International Journal of Educational Technology in Higher Education , 13 , #21.

Garrison, D. R., Anderson, T., & Archer, W. (2003). A theory of critical inquiry in online distance education. Handbook of Distance Education , 1 , 113–127.

Gong, D., Yang, H. H., & Cai, J. (2020). Exploring the key influencing factors on college students’ computational thinking skills through flipped-classroom instruction. International Journal of Educational Technology in Higher Education , 17 , #19.

Gonzalez, C. (2009). Conceptions of, and approaches to, teaching online: A study of lecturers teaching postgraduate distance courses. Higher Education , 57 (3), 299–314.

Grandzol, J. R., & Grandzol, C. J. (2006). Best practices for online business Education. International Review of Research in Open and Distance Learning , 7 (1), 1–18.

Green, S. B., & Salkind, N. J. (2003). Using SPSS: Analyzing and understanding data , (3rd ed., ). Upper Saddle River: Prentice Hall.

Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2014). Multivariate data analysis: Pearson new international edition . Essex: Pearson Education Limited.

Harjoto, M. A. (2017). Blended versus face-to-face: Evidence from a graduate corporate finance class. Journal of Education for Business , 92 (3), 129–137.

Hong, K.-S. (2002). Relationships between students’ instructional variables with satisfaction and learning from a web-based course. The Internet and Higher Education , 5 , 267–281.

Horvitz, B. S., Beach, A. L., Anderson, M. L., & Xia, J. (2015). Examination of faculty self-efficacy related to online teaching. Innovation Higher Education , 40 , 305–316.

Inside Higher Education and Gallup. (2019). The 2019 survey of faculty attitudes on technology. Author .

Jaggars, S. S., & Xu, D. (2016). How do online course design features influence student performance? Computers and Education , 95 , 270–284.

Joo, Y. J., Lim, K. Y., & Kim, E. K. (2011). Online university students’ satisfaction and persistence: Examining perceived level of presence, usefulness and ease of use as predictor in a structural model. Computers & Education , 57 (2), 1654–1664.

Jung, I. (2011). The dimensions of e-learning quality: From the learner’s perspective. Educational Technology Research and Development , 59 (4), 445–464.

Kay, R., MacDonald, T., & DiGiuseppe, M. (2019). A comparison of lecture-based, active, and flipped classroom teaching approaches in higher education. Journal of Computing in Higher Education , 31 , 449–471.

Kehrwald, B. (2008). Understanding social presence in text-based online learning environments. Distance Education , 29 (1), 89–106.

Kintu, M. J., Zhu, C., & Kagambe, E. (2017). Blended learning effectiveness: The relationship between student characteristics, design features and outcomes. International Journal of Educational Technology in Higher Education , 14 , #7.

Kuo, Y.-C., Walker, A. E., Schroder, K. E., & Belland, B. R. (2013). Interaction, internet self-efficacy, and self-regulated learning as predictors of student satisfaction in online education courses. Internet and Education , 20 , 35–50.

Lange, C., & Costley, J. (2020). Improving online video lectures: Learning challenges created by media. International Journal of Educational Technology in Higher Education , 17 , #16.

le Roux, I., & Nagel, L. (2018). Seeking the best blend for deep learning in a flipped classroom – Viewing student perceptions through the Community of Inquiry lens. International Journal of Educational Technology in High Education , 15 , #16.

Lee, H.-J., & Rha, I. (2009). Influence of structure and interaction on student achievement and satisfaction in web-based distance learning. Educational Technology & Society , 12 (4), 372–382.

Lee, Y., Stringer, D., & Du, J. (2017). What determines students’ preference of online to F2F class? Business Education Innovation Journal , 9 (2), 97–102.

Legon, R., & Garrett, R. (2019). CHLOE 3: Behind the numbers . Published online by Quality Matters and Eduventures. https://www.qualitymatters.org/sites/default/files/research-docs-pdfs/CHLOE-3-Report-2019-Behind-the-Numbers.pdf

Liaw, S.-S., & Huang, H.-M. (2013). Perceived satisfaction, perceived usefulness and interactive learning environments as predictors of self-regulation in e-learning environments. Computers & Education , 60 (1), 14–24.

Lu, F., & Lemonde, M. (2013). A comparison of online versus face-to-face students teaching delivery in statistics instruction for undergraduate health science students. Advances in Health Science Education , 18 , 963–973.

Lundin, M., Bergviken Rensfeldt, A., Hillman, T., Lantz-Andersson, A., & Peterson, L. (2018). Higher education dominance and siloed knowledge: a systematic review of flipped classroom research. International Journal of Educational Technology in Higher Education , 15 (1).

Macon, D. K. (2011). Student satisfaction with online courses versus traditional courses: A meta-analysis . Disssertation: Northcentral University, CA.

Mann, J., & Henneberry, S. (2012). What characteristics of college students influence their decisions to select online courses? Online Journal of Distance Learning Administration , 15 (5), 1–14.

Mansbach, J., & Austin, A. E. (2018). Nuanced perspectives about online teaching: Mid-career senior faculty voices reflecting on academic work in the digital age. Innovative Higher Education , 43 (4), 257–272.

Marks, R. B., Sibley, S. D., & Arbaugh, J. B. (2005). A structural equation model of predictors for effective online learning. Journal of Management Education , 29 (4), 531–563.

Martin, F., Wang, C., & Sadaf, A. (2018). Student perception of facilitation strategies that enhance instructor presence, connectedness, engagement and learning in online courses. Internet and Higher Education , 37 , 52–65.

Maycock, K. W. (2019). Chalk and talk versus flipped learning: A case study. Journal of Computer Assisted Learning , 35 , 121–126.

McGivney-Burelle, J. (2013). Flipping Calculus. PRIMUS Problems, Resources, and Issues in Mathematics Undergraduate . Studies , 23 (5), 477–486.

Mohammadi, H. (2015). Investigating users’ perspectives on e-learning: An integration of TAM and IS success model. Computers in Human Behavior , 45 , 359–374.

Nair, S. S., Tay, L. Y., & Koh, J. H. L. (2013). Students’ motivation and teachers’ teaching practices towards the use of blogs for writing of online journals. Educational Media International , 50 (2), 108–119.

Nguyen, T. (2015). The effectiveness of online learning: Beyond no significant difference and future horizons. MERLOT Journal of Online Learning and Teaching , 11 (2), 309–319.

Ni, A. Y. (2013). Comparing the effectiveness of classroom and online learning: Teaching research methods. Journal of Public Affairs Education , 19 (2), 199–215.

Nouri, J. (2016). The flipped classroom: For active, effective and increased learning – Especially for low achievers. International Journal of Educational Technology in Higher Education , 13 , #33.

O’Neill, D. K., & Sai, T. H. (2014). Why not? Examining college students’ reasons for avoiding an online course. Higher Education , 68 (1), 1–14.

O'Flaherty, J., & Phillips, C. (2015). The use of flipped classrooms in higher education: A scoping review. The Internet and Higher Education , 25 , 85–95.

Open & Distant Learning Quality Council (2012). ODLQC standards . England: Author https://www.odlqc.org.uk/odlqc-standards .

Ortagus, J. C. (2017). From the periphery to prominence: An examination of the changing profile of online students in American higher education. Internet and Higher Education , 32 , 47–57.

Otter, R. R., Seipel, S., Graef, T., Alexander, B., Boraiko, C., Gray, J., … Sadler, K. (2013). Comparing student and faculty perceptions of online and traditional courses. Internet and Higher Education , 19 , 27–35.

Paechter, M., Maier, B., & Macher, D. (2010). Online or face-to-face? Students’ experiences and preferences in e-learning. Internet and Higher Education , 13 , 292–329.

Prinsloo, P. (2016). (re)considering distance education: Exploring its relevance, sustainability and value contribution. Distance Education , 37 (2), 139–145.

Quality Matters (2018). Specific review standards from the QM higher Education rubric , (6th ed., ). MD: MarylandOnline.

Richardson, J. C., Maeda, Y., Lv, J., & Caskurlu, S. (2017). Social presence in relation to students’ satisfaction and learning in the online environment: A meta-analysis. Computers in Human Behavior , 71 , 402–417.

Rockhart, J. F., & Bullen, C. V. (1981). A primer on critical success factors . Cambridge: Center for Information Systems Research, Massachusetts Institute of Technology.

Rourke, L., & Kanuka, H. (2009). Learning in Communities of Inquiry: A Review of the Literature. The Journal of Distance Education / Revue de l'ducation Distance , 23 (1), 19–48 Athabasca University Press. Retrieved August 2, 2020 from https://www.learntechlib.org/p/105542/ .

Sebastianelli, R., Swift, C., & Tamimi, N. (2015). Factors affecting perceived learning, satisfaction, and quality in the online MBA: A structural equation modeling approach. Journal of Education for Business , 90 (6), 296–305.

Shen, D., Cho, M.-H., Tsai, C.-L., & Marra, R. (2013). Unpacking online learning experiences: Online learning self-efficacy and learning satisfaction. Internet and Higher Education , 19 , 10–17.

Sitzmann, T., Kraiger, K., Stewart, D., & Wisher, R. (2006). The comparative effectiveness of web-based and classroom instruction: A meta-analysis. Personnel Psychology , 59 (3), 623–664.

So, H. J., & Brush, T. A. (2008). Student perceptions of collaborative learning, social presence and satisfaction in a blended learning environment: Relationships and critical factors. Computers & Education , 51 (1), 318–336.

Song, L., Singleton, E. S., Hill, J. R., & Koh, M. H. (2004). Improving online learning: Student perceptions of useful and challenging characteristics. The Internet and Higher Education , 7 (1), 59–70.

Sun, P. C., Tsai, R. J., Finger, G., Chen, Y. Y., & Yeh, D. (2008). What drives a successful e-learning? An empirical investigation of the critical factors influencing learner satisfaction. Computers & Education , 50 (4), 1183–1202.

Takamine, K. (2017). Michelle D. miller: Minds online: Teaching effectively with technology. Higher Education , 73 , 789–791.

Tanner, J. R., Noser, T. C., & Totaro, M. W. (2009). Business faculty and undergraduate students’ perceptions of online learning: A comparative study. Journal of Information Systems Education , 20 (1), 29.

Tucker, B. (2012). The flipped classroom. Education Next , 12 (1), 82–83.

Van Wart, M., Ni, A., Ready, D., Shayo, C., & Court, J. (2020). Factors leading to online learner satisfaction. Business Educational Innovation Journal , 12 (1), 15–24.

Van Wart, M., Ni, A., Rose, L., McWeeney, T., & Worrell, R. A. (2019). Literature review and model of online teaching effectiveness integrating concerns for learning achievement, student satisfaction, faculty satisfaction, and institutional results. Pan-Pacific . Journal of Business Research , 10 (1), 1–22.

Ventura, A. C., & Moscoloni, N. (2015). Learning styles and disciplinary differences: A cross-sectional study of undergraduate students. International Journal of Learning and Teaching , 1 (2), 88–93.

Vlachopoulos, D., & Makri, A. (2017). The effect of games and simulations on higher education: A systematic literature review. International Journal of Educational Technology in Higher Education , 14 , #22.

Wang, Y., Huang, X., & Schunn, C. D. (2019). Redesigning flipped classrooms: A learning model and its effects on student perceptions. Higher Education , 78 , 711–728.

Wingo, N. P., Ivankova, N. V., & Moss, J. A. (2017). Faculty perceptions about teaching online: Exploring the literature using the technology acceptance model as an organizing framework. Online Learning , 21 (1), 15–35.

Xu, D., & Jaggars, S. S. (2014). Performance gaps between online and face-to-face courses: Differences across types of students and academic subject areas. Journal of Higher Education , 85 (5), 633–659.

Young, S. (2006). Student views of effective online teaching in higher education. American Journal of Distance Education , 20 (2), 65–77.

Zawacki-Richter, O., & Naidu, S. (2016). Mapping research trends from 35 years of publications in distance Education. Distance Education , 37 (3), 245–269.

Download references

Acknowledgements

No external funding/ NA.

Author information

Authors and affiliations.

Development for the JHB College of Business and Public Administration, 5500 University Parkway, San Bernardino, California, 92407, USA

Montgomery Van Wart, Anna Ni, Pamela Medina, Jesus Canelon, Melika Kordrostami, Jing Zhang & Yu Liu

You can also search for this author in PubMed   Google Scholar

Contributions

Equal. The author(s) read and approved the final manuscript.

Corresponding author

Correspondence to Montgomery Van Wart .

Ethics declarations

Competing interests.

We have no competing interests.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Cite this article.

Van Wart, M., Ni, A., Medina, P. et al. Integrating students’ perspectives about online learning: a hierarchy of factors. Int J Educ Technol High Educ 17 , 53 (2020). https://doi.org/10.1186/s41239-020-00229-8

Download citation

Received : 29 April 2020

Accepted : 30 July 2020

Published : 02 December 2020

DOI : https://doi.org/10.1186/s41239-020-00229-8

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Online education
  • Online teaching
  • Student perceptions
  • Online quality
  • Student presence

online learning research paper

A study of effectiveness of online learning

  • February 2021
  • Conference: National Confrence DYPIMS 2021

Vinita Tiwari at Balaji Institute of international business

  • Balaji Institute of international business

Abhay Tiwari

Abstract and Figures

: understanding of learning of concepts

Discover the world's research

  • 25+ million members
  • 160+ million publication pages
  • 2.3+ billion citations

Tuan Nguyen

  • Landra Rezabek
  • Dr Jyoti Agarwal
  • Recruit researchers
  • Join for free
  • Login Email Tip: Most researchers use their institutional email address as their ResearchGate login Password Forgot password? Keep me logged in Log in or Continue with Google Welcome back! Please log in. Email · Hint Tip: Most researchers use their institutional email address as their ResearchGate login Password Forgot password? Keep me logged in Log in or Continue with Google No account? Sign up

Please view the main text area of the page by skipping the main menu.

The page may not be displayed properly if the JavaScript is deactivated on your browser.

  • Entertainment

Online learning worse for concentration, eyes, but better for info access: Japan research

June 8, 2024 (Mainichi Japan)

Japanese version

online learning research paper

TOYAMA -- Compared to pen and paper, studying via digital devices makes it harder to concentrate and strains the eyes, but has its benefits as well, according to research results by a Japanese university team published last month.

The team from the University of Toyama reviewed the advantages and disadvantages of digital-based learning, which took off amid the coronavirus pandemic. At their university, online lectures were introduced in 2020 and paper printouts were ended. Even after in-person classes resumed, the number of students requiring printouts fell sharply.

The Department of Epidemiology and Health Policy's assistant professor Masaaki Yamada, who had been studying the dangers of internet addiction, and others in April 2022 distributed a questionnaire to 939 undergraduate students in the schools of medicine, nursing and pharmaceutical science. The students were asked about their ease of understanding, memory, concentration and eyestrain regarding both online and paper-based learning, and answers were received from 344 of them.

No difference was found regarding ease of understanding, but paper was considered the better medium in the other three aspects. About 75% of respondents selected "paper is better" while around 6% chose "digital is better" regarding both concentration and memory. Roughly 85% selected "digital is worse" when it comes to eyestrain.

According to Yamada, a number of studies comparing paper-based and digital learning have been published in Japan and internationally, all of which have reported large merits for the traditional format. However, this study also found positives for digital studies, such as for ease of access to information and the ability to learn through audio, three-dimensional structure and other things.

Yamada pointed out that based on the results, paper-based can be considered better than digital learning in terms of concentration and memory retention. However, since a large number of students reported eyestrain associated with online learning, he commented, "This is an important health finding. Severe nearsightedness can lead to glaucoma and other diseases that cause blindness in the future, so it is necessary to reduce eyestrain by not continuously looking at digital devices."

Concerning the advancement of information and communications technology-based learning at elementary and junior high schools across the country, Yamada added, "Learning methods which consider the merits and demerits of both paper(-based) and digital learning are desirable."

The results were published on May 29 in the British online peer-reviewed journal BMJ Open. The full paper can be read at https://bmjopen.bmj.com/content/14/5/e083344 .

(Japanese original by Ikuko Aoyama, Toyama Bureau)

Related Articles

  • Latest crop of Japan's English school textbooks dive deeper into digital learning
  • Classroom AI promises personalized learning, saved time for staff, students: Tokyo seminar

Also in The Mainichi

Latest articles.

This Oct. 12, 2018 file photo shows Tokyo Regional Immigration Service Bureau. (Mainichi)

More Articles

  • Go to Page Top

share this!

June 7, 2024

This article has been reviewed according to Science X's editorial process and policies . Editors have highlighted the following attributes while ensuring the content's credibility:

fact-checked

trusted source

Study shows online professional education works for complex topics

by Katherine Egan Bennett, University of Texas at Arlington

Online professional education works for complex topics

Online education is effective for teaching complicated topics like quantum information science (QIS) to high school science educators, according to a new paper by University of Texas at Arlington researchers published in The Physics Teacher .

"COVID-19 forced educators to adjust their educational best practices to an unfamiliar virtual classroom, and professional development was no different," said Karen Jo Matsler, assistant professor in practice for UTeach at UTA and lead author on the study.

Ramon Lopez, professor of physics, was coprincipal investigator on the project. Chandralekha Singh from the University of Pittsburgh was a co-author.

QIS is a new field of science and technology that combines physical science, math, computer science and engineering, and it is key to everyday items like cellphones and solar technology. However, most high schools don't teach the subject , preventing students from acquiring the skills they need to pursue lucrative jobs.

As part of a $1 million grant from the National Science Foundation in 2021, Matsler and her colleagues aimed to teach QIS to high school science teachers, who could then bring this newly acquired knowledge to their classrooms.

"However, the pandemic made us scrap our original plans for in-person training to an online environment," Matsler said. "We knew that teaching QIS online would be challenging, but we were pleasantly surprised how well it worked."

Matsler, Lopez and the team found that what worked best for teaching QIS online was sending participants some of the material in advance to allow them to become familiar with the topics. Then during the sessions, the educators used Zoom—with features such as chat, polling and breakout rooms—to keep the individuals engaged in learning. They also led activities where the learners had a chance to practice teaching the material, another technique that helped individuals stay engaged.

To avoid cognitive overload, the team found main discussions needed to be kept at 15 to 30 minutes, each with breakout sessions lasting five to seven minutes, with a total session time of about 90 to 120 minutes.

"This gave participants ample opportunities to discuss the quantum concepts in small groups varying from two to six participants," Matsler said. "During these small discussions, leaders rotated in and out of the rooms to check on the participants, clarify instructions and answer questions."

The instructors also recommend "icebreaker" activities to increase community engagement in virtual learning.

"These icebreaker activities can easily be used to engage students, take attendance and gauge how much the individuals know about the upcoming subject lesson," Matsler said. "A key element to all of this online learning is making sure the learners feel they are in a safe community to learn and exchange ideas."

The team also found that short, relevant videos helped teach complicated topics. They recommend keeping the chat function operational during videos to allow participants to ask questions and stay engaged.

"Ideally, QIS is taught in a classroom with hands-on activities to allow learners to see and touch how things like maglev trains and quantum levitation work," Matsler said.

"However, our experiences show that embedding appropriate pedagogy and content with online learning can be effective at teaching these topics. Understanding there is an effective virtual option is important as the country ramps up its efforts to accelerate quantum research and development to stay competitive with other countries in this field."

Provided by University of Texas at Arlington

Explore further

Feedback to editors

online learning research paper

High-precision measurements challenge our understanding of Cepheids

2 hours ago

online learning research paper

Sweaty cattle may boost food security in a warming world

12 hours ago

online learning research paper

Watery planets orbiting dead stars may be good candidates for studying life—if they can survive long enough

online learning research paper

Physicists report optical analog of Kármán vortex street

13 hours ago

online learning research paper

Engineered plants produce human milk sugars that could lead to healthier baby formula

14 hours ago

online learning research paper

New method enables fast crystal structure analysis of intrinsically disordered proteins

15 hours ago

online learning research paper

Scientists unravel drivers of the global zinc cycle in our oceans, with implications for a changing climate

online learning research paper

Study finds yuck factor counteracts sustainable laundry habits

online learning research paper

Research reveals plant pathogens repurpose phage elements for bacterial warfare

online learning research paper

Permanent gene edits to tardigrades help shed light on their amazing resilience

Relevant physicsforums posts, how is physics taught without calculus.

16 hours ago

Is "College Algebra" really just high school "Algebra II"?

Jun 12, 2024

UK School Physics Exam from 1967

May 27, 2024

Physics education is 60 years out of date

May 16, 2024

Plagiarism & ChatGPT: Is Cheating with AI the New Normal?

May 13, 2024

Physics Instructor Minimum Education to Teach Community College

May 11, 2024

More from STEM Educators and Teaching

Related Stories

online learning research paper

Quantum information science is rarely taught in high school—here's why that matters

Sep 11, 2023

online learning research paper

Virtual training may be an effective, cost-efficient option for child educators

online learning research paper

AI can teach math teachers how to improve student skills

Dec 8, 2023

online learning research paper

New approach to teaching computer science could broaden the subject's appeal

May 23, 2023

online learning research paper

Research demonstrates early field-experiences for student teachers is a plus—even online

Sep 21, 2020

online learning research paper

Studies recommend increased research into achievement, engagement to raise student math scores

Feb 15, 2024

Recommended for you

online learning research paper

Study reveals complex dynamics of philanthropic funding for US science

Jun 10, 2024

online learning research paper

First-generation medical students face unique challenges and need more targeted support, say researchers

online learning research paper

Investigation reveals varied impact of preschool programs on long-term school success

May 2, 2024

online learning research paper

Training of brain processes makes reading more efficient

Apr 18, 2024

online learning research paper

Researchers find lower grades given to students with surnames that come later in alphabetical order

Apr 17, 2024

online learning research paper

Earth, the sun and a bike wheel: Why your high-school textbook was wrong about the shape of Earth's orbit

Apr 8, 2024

Let us know if there is a problem with our content

Use this form if you have come across a typo, inaccuracy or would like to send an edit request for the content on this page. For general inquiries, please use our contact form . For general feedback, use the public comments section below (please adhere to guidelines ).

Please select the most appropriate category to facilitate processing of your request

Thank you for taking time to provide your feedback to the editors.

Your feedback is important to us. However, we do not guarantee individual replies due to the high volume of messages.

E-mail the story

Your email address is used only to let the recipient know who sent the email. Neither your address nor the recipient's address will be used for any other purpose. The information you enter will appear in your e-mail message and is not retained by Phys.org in any form.

Newsletter sign up

Get weekly and/or daily updates delivered to your inbox. You can unsubscribe at any time and we'll never share your details to third parties.

More information Privacy policy

Donate and enjoy an ad-free experience

We keep our content available to everyone. Consider supporting Science X's mission by getting a premium account.

E-mail newsletter

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Elsevier - PMC COVID-19 Collection

Logo of pheelsevier

A systematic review of research on online teaching and learning from 2009 to 2018

Associated data.

Systematic reviews were conducted in the nineties and early 2000's on online learning research. However, there is no review examining the broader aspect of research themes in online learning in the last decade. This systematic review addresses this gap by examining 619 research articles on online learning published in twelve journals in the last decade. These studies were examined for publication trends and patterns, research themes, research methods, and research settings and compared with the research themes from the previous decades. While there has been a slight decrease in the number of studies on online learning in 2015 and 2016, it has then continued to increase in 2017 and 2018. The majority of the studies were quantitative in nature and were examined in higher education. Online learning research was categorized into twelve themes and a framework across learner, course and instructor, and organizational levels was developed. Online learner characteristics and online engagement were examined in a high number of studies and were consistent with three of the prior systematic reviews. However, there is still a need for more research on organization level topics such as leadership, policy, and management and access, culture, equity, inclusion, and ethics and also on online instructor characteristics.

  • • Twelve online learning research themes were identified in 2009–2018.
  • • A framework with learner, course and instructor, and organizational levels was used.
  • • Online learner characteristics and engagement were the mostly examined themes.
  • • The majority of the studies used quantitative research methods and in higher education.
  • • There is a need for more research on organization level topics.

1. Introduction

Online learning has been on the increase in the last two decades. In the United States, though higher education enrollment has declined, online learning enrollment in public institutions has continued to increase ( Allen & Seaman, 2017 ), and so has the research on online learning. There have been review studies conducted on specific areas on online learning such as innovations in online learning strategies ( Davis et al., 2018 ), empirical MOOC literature ( Liyanagunawardena et al., 2013 ; Veletsianos & Shepherdson, 2016 ; Zhu et al., 2018 ), quality in online education ( Esfijani, 2018 ), accessibility in online higher education ( Lee, 2017 ), synchronous online learning ( Martin et al., 2017 ), K-12 preparation for online teaching ( Moore-Adams et al., 2016 ), polychronicity in online learning ( Capdeferro et al., 2014 ), meaningful learning research in elearning and online learning environments ( Tsai, Shen, & Chiang, 2013 ), problem-based learning in elearning and online learning environments ( Tsai & Chiang, 2013 ), asynchronous online discussions ( Thomas, 2013 ), self-regulated learning in online learning environments ( Tsai, Shen, & Fan, 2013 ), game-based learning in online learning environments ( Tsai & Fan, 2013 ), and online course dropout ( Lee & Choi, 2011 ). While there have been review studies conducted on specific online learning topics, very few studies have been conducted on the broader aspect of online learning examining research themes.

2. Systematic Reviews of Distance Education and Online Learning Research

Distance education has evolved from offline to online settings with the access to internet and COVID-19 has made online learning the common delivery method across the world. Tallent-Runnels et al. (2006) reviewed research late 1990's to early 2000's, Berge and Mrozowski (2001) reviewed research 1990 to 1999, and Zawacki-Richter et al. (2009) reviewed research in 2000–2008 on distance education and online learning. Table 1 shows the research themes from previous systematic reviews on online learning research. There are some themes that re-occur in the various reviews, and there are also new themes that emerge. Though there have been reviews conducted in the nineties and early 2000's, there is no review examining the broader aspect of research themes in online learning in the last decade. Hence, the need for this systematic review which informs the research themes in online learning from 2009 to 2018. In the following sections, we review these systematic review studies in detail.

Comparison of online learning research themes from previous studies.

1990–1999 ( )1993–2004 ( )2000–2008 (Zawacki-Richter et al.,
2009)
Most Number of Studies
Lowest Number of Studies

2.1. Distance education research themes, 1990 to 1999 ( Berge & Mrozowski, 2001 )

Berge and Mrozowski (2001) reviewed 890 research articles and dissertation abstracts on distance education from 1990 to 1999. The four distance education journals chosen by the authors to represent distance education included, American Journal of Distance Education, Distance Education, Open Learning, and the Journal of Distance Education. This review overlapped in the dates of the Tallent-Runnels et al. (2006) study. Berge and Mrozowski (2001) categorized the articles according to Sherry's (1996) ten themes of research issues in distance education: redefining roles of instructor and students, technologies used, issues of design, strategies to stimulate learning, learner characteristics and support, issues related to operating and policies and administration, access and equity, and costs and benefits.

In the Berge and Mrozowski (2001) study, more than 100 studies focused on each of the three themes: (1) design issues, (2) learner characteristics, and (3) strategies to increase interactivity and active learning. By design issues, the authors focused on instructional systems design and focused on topics such as content requirement, technical constraints, interactivity, and feedback. The next theme, strategies to increase interactivity and active learning, were closely related to design issues and focused on students’ modes of learning. Learner characteristics focused on accommodating various learning styles through customized instructional theory. Less than 50 studies focused on the three least examined themes: (1) cost-benefit tradeoffs, (2) equity and accessibility, and (3) learner support. Cost-benefit trade-offs focused on the implementation costs of distance education based on school characteristics. Equity and accessibility focused on the equity of access to distance education systems. Learner support included topics such as teacher to teacher support as well as teacher to student support.

2.2. Online learning research themes, 1993 to 2004 ( Tallent-Runnels et al., 2006 )

Tallent-Runnels et al. (2006) reviewed research on online instruction from 1993 to 2004. They reviewed 76 articles focused on online learning by searching five databases, ERIC, PsycINFO, ContentFirst, Education Abstracts, and WilsonSelect. Tallent-Runnels et al. (2006) categorized research into four themes, (1) course environment, (2) learners' outcomes, (3) learners’ characteristics, and (4) institutional and administrative factors. The first theme that the authors describe as course environment ( n  = 41, 53.9%) is an overarching theme that includes classroom culture, structural assistance, success factors, online interaction, and evaluation.

Tallent-Runnels et al. (2006) for their second theme found that studies focused on questions involving the process of teaching and learning and methods to explore cognitive and affective learner outcomes ( n  = 29, 38.2%). The authors stated that they found the research designs flawed and lacked rigor. However, the literature comparing traditional and online classrooms found both delivery systems to be adequate. Another research theme focused on learners’ characteristics ( n  = 12, 15.8%) and the synergy of learners, design of the online course, and system of delivery. Research findings revealed that online learners were mainly non-traditional, Caucasian, had different learning styles, and were highly motivated to learn. The final theme that they reported was institutional and administrative factors (n  = 13, 17.1%) on online learning. Their findings revealed that there was a lack of scholarly research in this area and most institutions did not have formal policies in place for course development as well as faculty and student support in training and evaluation. Their research confirmed that when universities offered online courses, it improved student enrollment numbers.

2.3. Distance education research themes 2000 to 2008 ( Zawacki-Richter et al., 2009 )

Zawacki-Richter et al. (2009) reviewed 695 articles on distance education from 2000 to 2008 using the Delphi method for consensus in identifying areas and classified the literature from five prominent journals. The five journals selected due to their wide scope in research in distance education included Open Learning, Distance Education, American Journal of Distance Education, the Journal of Distance Education, and the International Review of Research in Open and Distributed Learning. The reviewers examined the main focus of research and identified gaps in distance education research in this review.

Zawacki-Richter et al. (2009) classified the studies into macro, meso and micro levels focusing on 15 areas of research. The five areas of the macro-level addressed: (1) access, equity and ethics to deliver distance education for developing nations and the role of various technologies to narrow the digital divide, (2) teaching and learning drivers, markets, and professional development in the global context, (3) distance delivery systems and institutional partnerships and programs and impact of hybrid modes of delivery, (4) theoretical frameworks and models for instruction, knowledge building, and learner interactions in distance education practice, and (5) the types of preferred research methodologies. The meso-level focused on seven areas that involve: (1) management and organization for sustaining distance education programs, (2) examining financial aspects of developing and implementing online programs, (3) the challenges and benefits of new technologies for teaching and learning, (4) incentives to innovate, (5) professional development and support for faculty, (6) learner support services, and (7) issues involving quality standards and the impact on student enrollment and retention. The micro-level focused on three areas: (1) instructional design and pedagogical approaches, (2) culturally appropriate materials, interaction, communication, and collaboration among a community of learners, and (3) focus on characteristics of adult learners, socio-economic backgrounds, learning preferences, and dispositions.

The top three research themes in this review by Zawacki-Richter et al. (2009) were interaction and communities of learning ( n  = 122, 17.6%), instructional design ( n  = 121, 17.4%) and learner characteristics ( n  = 113, 16.3%). The lowest number of studies (less than 3%) were found in studies examining the following research themes, management and organization ( n  = 18), research methods in DE and knowledge transfer ( n  = 13), globalization of education and cross-cultural aspects ( n  = 13), innovation and change ( n  = 13), and costs and benefits ( n  = 12).

2.4. Online learning research themes

These three systematic reviews provide a broad understanding of distance education and online learning research themes from 1990 to 2008. However, there is an increase in the number of research studies on online learning in this decade and there is a need to identify recent research themes examined. Based on the previous systematic reviews ( Berge & Mrozowski, 2001 ; Hung, 2012 ; Tallent-Runnels et al., 2006 ; Zawacki-Richter et al., 2009 ), online learning research in this study is grouped into twelve different research themes which include Learner characteristics, Instructor characteristics, Course or program design and development, Course Facilitation, Engagement, Course Assessment, Course Technologies, Access, Culture, Equity, Inclusion, and Ethics, Leadership, Policy and Management, Instructor and Learner Support, and Learner Outcomes. Table 2 below describes each of the research themes and using these themes, a framework is derived in Fig. 1 .

Research themes in online learning.

Research ThemeDescription
1Learner CharacteristicsFocuses on understanding the learner characteristics and how online learning can be designed and delivered to meet their needs. Online learner characteristics can be broadly categorized into demographic characteristics, academic characteristics, cognitive characteristics, affective, self-regulation, and motivational characteristics.
2Learner OutcomesLearner outcomes are statements that specify what the learner will achieve at the end of the course or program. Examining learner outcomes such as success, retention, and dropouts are critical in online courses.
3EngagementEngaging the learner in the online course is vitally important as they are separated from the instructor and peers in the online setting. Engagement is examined through the lens of interaction, participation, community, collaboration, communication, involvement and presence.
4Course or Program Design and DevelopmentCourse design and development is critical in online learning as it engages and assists the students in achieving the learner outcomes. Several models and processes are used to develop the online course, employing different design elements to meet student needs.
5Course FacilitationThe delivery or facilitation of the course is as important as course design. Facilitation strategies used in delivery of the course such as in communication and modeling practices are examined in course facilitation.
6Course AssessmentCourse Assessments are adapted and delivered in an online setting. Formative assessments, peer assessments, differentiated assessments, learner choice in assessments, feedback system, online proctoring, plagiarism in online learning, and alternate assessments such as eportfolios are examined.
7Evaluation and Quality AssuranceEvaluation is making a judgment either on the process, the product or a program either during or at the end. There is a need for research on evaluation and quality in the online courses. This has been examined through course evaluations, surveys, analytics, social networks, and pedagogical assessments. Quality assessment rubrics such as Quality Matters have also been researched.
8Course TechnologiesA number of online course technologies such as learning management systems, online textbooks, online audio and video tools, collaborative tools, social networks to build online community have been the focus of research.
9Instructor CharacteristicsWith the increase in online courses, there has also been an increase in the number of instructors teaching online courses. Instructor characteristics can be examined through their experience, satisfaction, and roles in online teaching.
10Institutional SupportThe support for online learning is examined both as learner support and instructor support. Online students need support to be successful online learners and this could include social, academic, and cognitive forms of support. Online instructors need support in terms of pedagogy and technology to be successful online instructors.
11Access, Culture, Equity, Inclusion, and EthicsCross-cultural online learning is gaining importance along with access in global settings. In addition, providing inclusive opportunities for all learners and in ethical ways is being examined.
12Leadership, Policy and ManagementLeadership support is essential for success of online learning. Leaders perspectives, challenges and strategies used are examined. Policies and governance related research are also being studied.

Fig. 1

Online learning research themes framework.

The collection of research themes is presented as a framework in Fig. 1 . The themes are organized by domain or level to underscore the nested relationship that exists. As evidenced by the assortment of themes, research can focus on any domain of delivery or associated context. The “Learner” domain captures characteristics and outcomes related to learners and their interaction within the courses. The “Course and Instructor” domain captures elements about the broader design of the course and facilitation by the instructor, and the “Organizational” domain acknowledges the contextual influences on the course. It is important to note as well that due to the nesting, research themes can cross domains. For example, the broader cultural context may be studied as it pertains to course design and development, and institutional support can include both learner support and instructor support. Likewise, engagement research can involve instructors as well as learners.

In this introduction section, we have reviewed three systematic reviews on online learning research ( Berge & Mrozowski, 2001 ; Tallent-Runnels et al., 2006 ; Zawacki-Richter et al., 2009 ). Based on these reviews and other research, we have derived twelve themes to develop an online learning research framework which is nested in three levels: learner, course and instructor, and organization.

2.5. Purpose of this research

In two out of the three previous reviews, design, learner characteristics and interaction were examined in the highest number of studies. On the other hand, cost-benefit tradeoffs, equity and accessibility, institutional and administrative factors, and globalization and cross-cultural aspects were examined in the least number of studies. One explanation for this may be that it is a function of nesting, noting that studies falling in the Organizational and Course levels may encompass several courses or many more participants within courses. However, while some research themes re-occur, there are also variations in some themes across time, suggesting the importance of research themes rise and fall over time. Thus, a critical examination of the trends in themes is helpful for understanding where research is needed most. Also, since there is no recent study examining online learning research themes in the last decade, this study strives to address that gap by focusing on recent research themes found in the literature, and also reviewing research methods and settings. Notably, one goal is to also compare findings from this decade to the previous review studies. Overall, the purpose of this study is to examine publication trends in online learning research taking place during the last ten years and compare it with the previous themes identified in other review studies. Due to the continued growth of online learning research into new contexts and among new researchers, we also examine the research methods and settings found in the studies of this review.

The following research questions are addressed in this study.

  • 1. What percentage of the population of articles published in the journals reviewed from 2009 to 2018 were related to online learning and empirical?
  • 2. What is the frequency of online learning research themes in the empirical online learning articles of journals reviewed from 2009 to 2018?
  • 3. What is the frequency of research methods and settings that researchers employed in the empirical online learning articles of the journals reviewed from 2009 to 2018?

This five-step systematic review process described in the U.S. Department of Education, Institute of Education Sciences, What Works Clearinghouse Procedures and Standards Handbook, Version 4.0 ( 2017 ) was used in this systematic review: (a) developing the review protocol, (b) identifying relevant literature, (c) screening studies, (d) reviewing articles, and (e) reporting findings.

3.1. Data sources and search strategies

The Education Research Complete database was searched using the keywords below for published articles between the years 2009 and 2018 using both the Title and Keyword function for the following search terms.

“online learning" OR "online teaching" OR "online program" OR "online course" OR “online education”

3.2. Inclusion/exclusion criteria

The initial search of online learning research among journals in the database resulted in more than 3000 possible articles. Therefore, we limited our search to select journals that focus on publishing peer-reviewed online learning and educational research. Our aim was to capture the journals that published the most articles in online learning. However, we also wanted to incorporate the concept of rigor, so we used expert perception to identify 12 peer-reviewed journals that publish high-quality online learning research. Dissertations and conference proceedings were excluded. To be included in this systematic review, each study had to meet the screening criteria as described in Table 3 . A research study was excluded if it did not meet all of the criteria to be included.

Inclusion/Exclusion criteria.

CriteriaInclusionExclusion
Focus of the articleOnline learningArticles that did not focus on online learning
Journals PublishedTwelve identified journalsJournals outside of the 12 journals
Publication date2009 to 2018Prior to 2009 and after 2018
Publication typeScholarly articles of original research from peer reviewed journalsBook chapters, technical reports, dissertations, or proceedings
Research Method and ResultsThere was an identifiable method and results section describing how the study was conducted and included the findings. Quantitative and qualitative methods were included.Reviews of other articles, opinion, or discussion papers that do not include a discussion of the procedures of the study or analysis of data such as product reviews or conceptual articles.
LanguageJournal article was written in EnglishOther languages were not included

3.3. Process flow selection of articles

Fig. 2 shows the process flow involved in the selection of articles. The search in the database Education Research Complete yielded an initial sample of 3332 articles. Targeting the 12 journals removed 2579 articles. After reviewing the abstracts, we removed 134 articles based on the inclusion/exclusion criteria. The final sample, consisting of 619 articles, was entered into the computer software MAXQDA ( VERBI Software, 2019 ) for coding.

Fig. 2

Flowchart of online learning research selection.

3.4. Developing review protocol

A review protocol was designed as a codebook in MAXQDA ( VERBI Software, 2019 ) by the three researchers. The codebook was developed based on findings from the previous review studies and from the initial screening of the articles in this review. The codebook included 12 research themes listed earlier in Table 2 (Learner characteristics, Instructor characteristics, Course or program design and development, Course Facilitation, Engagement, Course Assessment, Course Technologies, Access, Culture, Equity, Inclusion, and Ethics, Leadership, Policy and Management, Instructor and Learner Support, and Learner Outcomes), four research settings (higher education, continuing education, K-12, corporate/military), and three research designs (quantitative, qualitative and mixed methods). Fig. 3 below is a screenshot of MAXQDA used for the coding process.

Fig. 3

Codebook from MAXQDA.

3.5. Data coding

Research articles were coded by two researchers in MAXQDA. Two researchers independently coded 10% of the articles and then discussed and updated the coding framework. The second author who was a doctoral student coded the remaining studies. The researchers met bi-weekly to address coding questions that emerged. After the first phase of coding, we found that more than 100 studies fell into each of the categories of Learner Characteristics or Engagement, so we decided to pursue a second phase of coding and reexamine the two themes. Learner Characteristics were classified into the subthemes of Academic, Affective, Motivational, Self-regulation, Cognitive, and Demographic Characteristics. Engagement was classified into the subthemes of Collaborating, Communication, Community, Involvement, Interaction, Participation, and Presence.

3.6. Data analysis

Frequency tables were generated for each of the variables so that outliers could be examined and narrative data could be collapsed into categories. Once cleaned and collapsed into a reasonable number of categories, descriptive statistics were used to describe each of the coded elements. We first present the frequencies of publications related to online learning in the 12 journals. The total number of articles for each journal (collectively, the population) was hand-counted from journal websites, excluding editorials and book reviews. The publication trend of online learning research was also depicted from 2009 to 2018. Then, the descriptive information of the 12 themes, including the subthemes of Learner Characteristics and Engagement were provided. Finally, research themes by research settings and methodology were elaborated.

4.1. Publication trends on online learning

Publication patterns of the 619 articles reviewed from the 12 journals are presented in Table 4 . International Review of Research in Open and Distributed Learning had the highest number of publications in this review. Overall, about 8% of the articles appearing in these twelve journals consisted of online learning publications; however, several journals had concentrations of online learning articles totaling more than 20%.

Empirical online learning research articles by journal, 2009–2018.

Journal NameFrequency of Empirical Online Learning ResearchPercent of SamplePercent of Journal's Total Articles
International Review of Research in Open and Distributed Learning15224.4022.55
Internet & Higher Education8413.4826.58
Computers & Education7512.0418.84
Online Learning7211.563.25
Distance Education6410.2725.10
Journal of Online Learning & Teaching396.2611.71
Journal of Educational Technology & Society365.783.63
Quarterly Review of Distance Education243.854.71
American Journal of Distance Education213.379.17
British Journal of Educational Technology193.051.93
Educational Technology Research & Development193.0510.80
Australasian Journal of Educational Technology142.252.31
Total619100.08.06

Note . Journal's Total Article count excludes reviews and editorials.

The publication trend of online learning research is depicted in Fig. 4 . When disaggregated by year, the total frequency of publications shows an increasing trend. Online learning articles increased throughout the decade and hit a relative maximum in 2014. The greatest number of online learning articles ( n  = 86) occurred most recently, in 2018.

Fig. 4

Online learning publication trends by year.

4.2. Online learning research themes that appeared in the selected articles

The publications were categorized into the twelve research themes identified in Fig. 1 . The frequency counts and percentages of the research themes are provided in Table 5 below. A majority of the research is categorized into the Learner domain. The fewest number of articles appears in the Organization domain.

Research themes in the online learning publications from 2009 to 2018.

Research ThemesFrequencyPercentage
Engagement17928.92
Learner Characteristics13421.65
Learner Outcome325.17
Evaluation and Quality Assurance386.14
Course Technologies355.65
Course Facilitation345.49
Course Assessment304.85
Course Design and Development274.36
Instructor Characteristics213.39
Institutional Support335.33
Access, Culture, Equity, Inclusion, and Ethics294.68
Leadership, Policy, and Management274.36

The specific themes of Engagement ( n  = 179, 28.92%) and Learner Characteristics ( n  = 134, 21.65%) were most often examined in publications. These two themes were further coded to identify sub-themes, which are described in the next two sections. Publications focusing on Instructor Characteristics ( n  = 21, 3.39%) were least common in the dataset.

4.2.1. Research on engagement

The largest number of studies was on engagement in online learning, which in the online learning literature is referred to and examined through different terms. Hence, we explore this category in more detail. In this review, we categorized the articles into seven different sub-themes as examined through different lenses including presence, interaction, community, participation, collaboration, involvement, and communication. We use the term “involvement” as one of the terms since researchers sometimes broadly used the term engagement to describe their work without further description. Table 6 below provides the description, frequency, and percentages of the various studies related to engagement.

Research sub-themes on engagement.

DescriptionFrequencyPercentage
PresenceLearning experience through social, cognitive, and teaching presence.508.08
InteractionProcess of interacting with peers, instructor, or content that results in learners understanding or behavior436.95
CommunitySense of belonging within a group254.04
ParticipationProcess of being actively involved213.39
CollaborationWorking with someone to create something172.75
InvolvementInvolvement in learning. This includes articles that focused broadly on engagement of learners.142.26
CommunicationProcess of exchanging information with the intent to share information91.45

In the sections below, we provide several examples of the different engagement sub-themes that were studied within the larger engagement theme.

Presence. This sub-theme was the most researched in engagement. With the development of the community of inquiry framework most of the studies in this subtheme examined social presence ( Akcaoglu & Lee, 2016 ; Phirangee & Malec, 2017 ; Wei et al., 2012 ), teaching presence ( Orcutt & Dringus, 2017 ; Preisman, 2014 ; Wisneski et al., 2015 ) and cognitive presence ( Archibald, 2010 ; Olesova et al., 2016 ).

Interaction . This was the second most studied theme under engagement. Researchers examined increasing interpersonal interactions ( Cung et al., 2018 ), learner-learner interactions ( Phirangee, 2016 ; Shackelford & Maxwell, 2012 ; Tawfik et al., 2018 ), peer-peer interaction ( Comer et al., 2014 ), learner-instructor interaction ( Kuo et al., 2014 ), learner-content interaction ( Zimmerman, 2012 ), interaction through peer mentoring ( Ruane & Koku, 2014 ), interaction and community building ( Thormann & Fidalgo, 2014 ), and interaction in discussions ( Ruane & Lee, 2016 ; Tibi, 2018 ).

Community. Researchers examined building community in online courses ( Berry, 2017 ), supporting a sense of community ( Jiang, 2017 ), building an online learning community of practice ( Cho, 2016 ), building an academic community ( Glazer & Wanstreet, 2011 ; Nye, 2015 ; Overbaugh & Nickel, 2011 ), and examining connectedness and rapport in an online community ( Bolliger & Inan, 2012 ; Murphy & Rodríguez-Manzanares, 2012 ; Slagter van Tryon & Bishop, 2012 ).

Participation. Researchers examined engagement through participation in a number of studies. Some of the topics include, participation patterns in online discussion ( Marbouti & Wise, 2016 ; Wise et al., 2012 ), participation in MOOCs ( Ahn et al., 2013 ; Saadatmand & Kumpulainen, 2014 ), features that influence students’ online participation ( Rye & Støkken, 2012 ) and active participation.

Collaboration. Researchers examined engagement through collaborative learning. Specific studies focused on cross-cultural collaboration ( Kumi-Yeboah, 2018 ; Yang et al., 2014 ), how virtual teams collaborate ( Verstegen et al., 2018 ), types of collaboration teams ( Wicks et al., 2015 ), tools for collaboration ( Boling et al., 2014 ), and support for collaboration ( Kopp et al., 2012 ).

Involvement. Researchers examined engaging learners through involvement in various learning activities ( Cundell & Sheepy, 2018 ), student engagement through various measures ( Dixson, 2015 ), how instructors included engagement to involve students in learning ( O'Shea et al., 2015 ), different strategies to engage the learner ( Amador & Mederer, 2013 ), and designed emotionally engaging online environments ( Koseoglu & Doering, 2011 ).

Communication. Researchers examined communication in online learning in studies using social network analysis ( Ergün & Usluel, 2016 ), using informal communication tools such as Facebook for class discussion ( Kent, 2013 ), and using various modes of communication ( Cunningham et al., 2010 ; Rowe, 2016 ). Studies have also focused on both asynchronous and synchronous aspects of communication ( Swaggerty & Broemmel, 2017 ; Yamagata-Lynch, 2014 ).

4.2.2. Research on learner characteristics

The second largest theme was learner characteristics. In this review, we explore this further to identify several aspects of learner characteristics. In this review, we categorized the learner characteristics into self-regulation characteristics, motivational characteristics, academic characteristics, affective characteristics, cognitive characteristics, and demographic characteristics. Table 7 provides the number of studies and percentages examining the various learner characteristics.

Research sub-themes on learner characteristics.

Learner CharacteristicsDescriptionFrequencyPercentage
Self-regulation CharacteristicsInvolves controlling learner's behavior, emotions, and thoughts to achieve specific learning and performance goals548.72
Motivational CharacteristicsLearners goal-directed activity instigated and sustained such as beliefs, and behavioral change233.72
Academic CharacteristicsEducation characteristics such as educational type and educational level193.07
Affective CharacteristicsLearner characteristics that describe learners' feelings or emotions such as satisfaction172.75
Cognitive CharacteristicsLearner characteristics related to cognitive elements such as attention, memory, and intellect (e.g., learning strategies, learning skills, etc.)142.26
Demographic CharacteristicsLearner characteristics that relate to information as age, gender, language, social economic status, and cultural background.71.13

Online learning has elements that are different from the traditional face-to-face classroom and so the characteristics of the online learners are also different. Yukselturk and Top (2013) categorized online learner profile into ten aspects: gender, age, work status, self-efficacy, online readiness, self-regulation, participation in discussion list, participation in chat sessions, satisfaction, and achievement. Their categorization shows that there are differences in online learner characteristics in these aspects when compared to learners in other settings. Some of the other aspects such as participation and achievement as discussed by Yukselturk and Top (2013) are discussed in different research themes in this study. The sections below provide examples of the learner characteristics sub-themes that were studied.

Self-regulation. Several researchers have examined self-regulation in online learning. They found that successful online learners are academically motivated ( Artino & Stephens, 2009 ), have academic self-efficacy ( Cho & Shen, 2013 ), have grit and intention to succeed ( Wang & Baker, 2018 ), have time management and elaboration strategies ( Broadbent, 2017 ), set goals and revisit course content ( Kizilcec et al., 2017 ), and persist ( Glazer & Murphy, 2015 ). Researchers found a positive relationship between learner's self-regulation and interaction ( Delen et al., 2014 ) and self-regulation and communication and collaboration ( Barnard et al., 2009 ).

Motivation. Researchers focused on motivation of online learners including different motivation levels of online learners ( Li & Tsai, 2017 ), what motivated online learners ( Chaiprasurt & Esichaikul, 2013 ), differences in motivation of online learners ( Hartnett et al., 2011 ), and motivation when compared to face to face learners ( Paechter & Maier, 2010 ). Harnett et al. (2011) found that online learner motivation was complex, multifaceted, and sensitive to situational conditions.

Academic. Several researchers have focused on academic aspects for online learner characteristics. Readiness for online learning has been examined as an academic factor by several researchers ( Buzdar et al., 2016 ; Dray et al., 2011 ; Wladis & Samuels, 2016 ; Yu, 2018 ) specifically focusing on creating and validating measures to examine online learner readiness including examining students emotional intelligence as a measure of student readiness for online learning. Researchers have also examined other academic factors such as academic standing ( Bradford & Wyatt, 2010 ), course level factors ( Wladis et al., 2014 ) and academic skills in online courses ( Shea & Bidjerano, 2014 ).

Affective. Anderson and Bourke (2013) describe affective characteristics through which learners express feelings or emotions. Several research studies focused on the affective characteristics of online learners. Learner satisfaction for online learning has been examined by several researchers ( Cole et al., 2014 ; Dziuban et al., 2015 ; Kuo et al., 2013 ; Lee, 2014a ) along with examining student emotions towards online assessment ( Kim et al., 2014 ).

Cognitive. Researchers have also examined cognitive aspects of learner characteristics including meta-cognitive skills, cognitive variables, higher-order thinking, cognitive density, and critical thinking ( Chen & Wu, 2012 ; Lee, 2014b ). Lee (2014b) examined the relationship between cognitive presence density and higher-order thinking skills. Chen and Wu (2012) examined the relationship between cognitive and motivational variables in an online system for secondary physical education.

Demographic. Researchers have examined various demographic factors in online learning. Several researchers have examined gender differences in online learning ( Bayeck et al., 2018 ; Lowes et al., 2016 ; Yukselturk & Bulut, 2009 ), ethnicity, age ( Ke & Kwak, 2013 ), and minority status ( Yeboah & Smith, 2016 ) of online learners.

4.2.3. Less frequently studied research themes

While engagement and learner characteristics were studied the most, other themes were less often studied in the literature and are presented here, according to size, with general descriptions of the types of research examined for each.

Evaluation and Quality Assurance. There were 38 studies (6.14%) published in the theme of evaluation and quality assurance. Some of the studies in this theme focused on course quality standards, using quality matters to evaluate quality, using the CIPP model for evaluation, online learning system evaluation, and course and program evaluations.

Course Technologies. There were 35 studies (5.65%) published in the course technologies theme. Some of the studies examined specific technologies such as Edmodo, YouTube, Web 2.0 tools, wikis, Twitter, WebCT, Screencasts, and Web conferencing systems in the online learning context.

Course Facilitation. There were 34 studies (5.49%) published in the course facilitation theme. Some of the studies in this theme examined facilitation strategies and methods, experiences of online facilitators, and online teaching methods.

Institutional Support. There were 33 studies (5.33%) published in the institutional support theme which included support for both the instructor and learner. Some of the studies on instructor support focused on training new online instructors, mentoring programs for faculty, professional development resources for faculty, online adjunct faculty training, and institutional support for online instructors. Studies on learner support focused on learning resources for online students, cognitive and social support for online learners, and help systems for online learner support.

Learner Outcome. There were 32 studies (5.17%) published in the learner outcome theme. Some of the studies that were examined in this theme focused on online learner enrollment, completion, learner dropout, retention, and learner success.

Course Assessment. There were 30 studies (4.85%) published in the course assessment theme. Some of the studies in the course assessment theme examined online exams, peer assessment and peer feedback, proctoring in online exams, and alternative assessments such as eportfolio.

Access, Culture, Equity, Inclusion, and Ethics. There were 29 studies (4.68%) published in the access, culture, equity, inclusion, and ethics theme. Some of the studies in this theme examined online learning across cultures, multi-cultural effectiveness, multi-access, and cultural diversity in online learning.

Leadership, Policy, and Management. There were 27 studies (4.36%) published in the leadership, policy, and management theme. Some of the studies on leadership, policy, and management focused on online learning leaders, stakeholders, strategies for online learning leadership, resource requirements, university policies for online course policies, governance, course ownership, and faculty incentives for online teaching.

Course Design and Development. There were 27 studies (4.36%) published in the course design and development theme. Some of the studies examined in this theme focused on design elements, design issues, design process, design competencies, design considerations, and instructional design in online courses.

Instructor Characteristics. There were 21 studies (3.39%) published in the instructor characteristics theme. Some of the studies in this theme were on motivation and experiences of online instructors, ability to perform online teaching duties, roles of online instructors, and adjunct versus full-time online instructors.

4.3. Research settings and methodology used in the studies

The research methods used in the studies were classified into quantitative, qualitative, and mixed methods ( Harwell, 2012 , pp. 147–163). The research setting was categorized into higher education, continuing education, K-12, and corporate/military. As shown in Table A in the appendix, the vast majority of the publications used higher education as the research setting ( n  = 509, 67.6%). Table B in the appendix shows that approximately half of the studies adopted the quantitative method ( n  = 324, 43.03%), followed by the qualitative method ( n  = 200, 26.56%). Mixed methods account for the smallest portion ( n  = 95, 12.62%).

Table A shows that the patterns of the four research settings were approximately consistent across the 12 themes except for the theme of Leaner Outcome and Institutional Support. Continuing education had a higher relative frequency in Learner Outcome (0.28) and K-12 had a higher relative frequency in Institutional Support (0.33) compared to the frequencies they had in the total themes (0.09 and 0.08 respectively). Table B in the appendix shows that the distribution of the three methods were not consistent across the 12 themes. While quantitative studies and qualitative studies were roughly evenly distributed in Engagement, they had a large discrepancy in Learner Characteristics. There were 100 quantitative studies; however, only 18 qualitative studies published in the theme of Learner Characteristics.

In summary, around 8% of the articles published in the 12 journals focus on online learning. Online learning publications showed a tendency of increase on the whole in the past decade, albeit fluctuated, with the greatest number occurring in 2018. Among the 12 research themes related to online learning, the themes of Engagement and Learner Characteristics were studied the most and the theme of Instructor Characteristics was studied the least. Most studies were conducted in the higher education setting and approximately half of the studies used the quantitative method. Looking at the 12 themes by setting and method, we found that the patterns of the themes by setting or by method were not consistent across the 12 themes.

The quality of our findings was ensured by scientific and thorough searches and coding consistency. The selection of the 12 journals provides evidence of the representativeness and quality of primary studies. In the coding process, any difficulties and questions were resolved by consultations with the research team at bi-weekly meetings, which ensures the intra-rater and interrater reliability of coding. All these approaches guarantee the transparency and replicability of the process and the quality of our results.

5. Discussion

This review enabled us to identify the online learning research themes examined from 2009 to 2018. In the section below, we review the most studied research themes, engagement and learner characteristics along with implications, limitations, and directions for future research.

5.1. Most studied research themes

Three out of the four systematic reviews informing the design of the present study found that online learner characteristics and online engagement were examined in a high number of studies. In this review, about half of the studies reviewed (50.57%) focused on online learner characteristics or online engagement. This shows the continued importance of these two themes. In the Tallent-Runnels et al.’s (2006) study, the learner characteristics theme was identified as least studied for which they state that researchers are beginning to investigate learner characteristics in the early days of online learning.

One of the differences found in this review is that course design and development was examined in the least number of studies in this review compared to two prior systematic reviews ( Berge & Mrozowski, 2001 ; Zawacki-Richter et al., 2009 ). Zawacki-Richter et al. did not use a keyword search but reviewed all the articles in five different distance education journals. Berge and Mrozowski (2001) included a research theme called design issues to include all aspects of instructional systems design in distance education journals. In our study, in addition to course design and development, we also had focused themes on learner outcomes, course facilitation, course assessment and course evaluation. These are all instructional design focused topics and since we had multiple themes focusing on instructional design topics, the course design and development category might have resulted in fewer studies. There is still a need for more studies to focus on online course design and development.

5.2. Least frequently studied research themes

Three out of the four systematic reviews discussed in the opening of this study found management and organization factors to be least studied. In this review, Leadership, Policy, and Management was studied among 4.36% of the studies and Access, Culture, Equity, Inclusion, and Ethics was studied among 4.68% of the studies in the organizational level. The theme on Equity and accessibility was also found to be the least studied theme in the Berge and Mrozowski (2001) study. In addition, instructor characteristics was the least examined research theme among the twelve themes studied in this review. Only 3.39% of the studies were on instructor characteristics. While there were some studies examining instructor motivation and experiences, instructor ability to teach online, online instructor roles, and adjunct versus full-time online instructors, there is still a need to examine topics focused on instructors and online teaching. This theme was not included in the prior reviews as the focus was more on the learner and the course but not on the instructor. While it is helpful to see research evolving on instructor focused topics, there is still a need for more research on the online instructor.

5.3. Comparing research themes from current study to previous studies

The research themes from this review were compared with research themes from previous systematic reviews, which targeted prior decades. Table 8 shows the comparison.

Comparison of most and least studied online learning research themes from current to previous reviews.

Level1990–1999 ( )1993–2004 ( )2000–2008 ( )2009–2018 (Current Study)
Learner CharacteristicsLXXX
Engagement and InteractionLXXX
Design Issues/Instructional DesignCXX
Course Environment
Learner Outcomes
C
L
X
X
Learner SupportLX
Equity and AccessibilityOXX
Institutional& Administrative FactorsOXX
Management and OrganizationOXX
Cost-BenefitOX

L = Learner, C=Course O=Organization.

5.4. Need for more studies on organizational level themes of online learning

In this review there is a greater concentration of studies focused on Learner domain topics, and reduced attention to broader more encompassing research themes that fall into the Course and Organization domains. There is a need for organizational level topics such as Access, Culture, Equity, Inclusion and Ethics, and Leadership, Policy and Management to be researched on within the context of online learning. Examination of access, culture, equity, inclusion and ethics is very important to support diverse online learners, particularly with the rapid expansion of online learning across all educational levels. This was also least studied based on Berge and Mrozowski (2001) systematic review.

The topics on leadership, policy and management were least studied both in this review and also in the Tallent-Runnels et al. (2006) and Zawacki-Richter et al. (2009) study. Tallent-Runnels categorized institutional and administrative aspects into institutional policies, institutional support, and enrollment effects. While we included support as a separate category, in this study leadership, policy and management were combined. There is still a need for research on leadership of those who manage online learning, policies for online education, and managing online programs. In the Zawacki-Richter et al. (2009) study, only a few studies examined management and organization focused topics. They also found management and organization to be strongly correlated with costs and benefits. In our study, costs and benefits were collectively included as an aspect of management and organization and not as a theme by itself. These studies will provide research-based evidence for online education administrators.

6. Limitations

As with any systematic review, there are limitations to the scope of the review. The search is limited to twelve journals in the field that typically include research on online learning. These manuscripts were identified by searching the Education Research Complete database which focuses on education students, professionals, and policymakers. Other discipline-specific journals as well as dissertations and proceedings were not included due to the volume of articles. Also, the search was performed using five search terms “online learning" OR "online teaching" OR "online program" OR "online course" OR “online education” in title and keyword. If authors did not include these terms, their respective work may have been excluded from this review even if it focused on online learning. While these terms are commonly used in North America, it may not be commonly used in other parts of the world. Additional studies may exist outside this scope.

The search strategy also affected how we presented results and introduced limitations regarding generalization. We identified that only 8% of the articles published in these journals were related to online learning; however, given the use of search terms to identify articles within select journals it was not feasible to identify the total number of research-based articles in the population. Furthermore, our review focused on the topics and general methods of research and did not systematically consider the quality of the published research. Lastly, some journals may have preferences for publishing studies on a particular topic or that use a particular method (e.g., quantitative methods), which introduces possible selection and publication biases which may skew the interpretation of results due to over/under representation. Future studies are recommended to include more journals to minimize the selection bias and obtain a more representative sample.

Certain limitations can be attributed to the coding process. Overall, the coding process for this review worked well for most articles, as each tended to have an individual or dominant focus as described in the abstracts, though several did mention other categories which likely were simultaneously considered to a lesser degree. However, in some cases, a dominant theme was not as apparent and an effort to create mutually exclusive groups for clearer interpretation the coders were occasionally forced to choose between two categories. To facilitate this coding, the full-texts were used to identify a study focus through a consensus seeking discussion among all authors. Likewise, some studies focused on topics that we have associated with a particular domain, but the design of the study may have promoted an aggregated examination or integrated factors from multiple domains (e.g., engagement). Due to our reliance on author descriptions, the impact of construct validity is likely a concern that requires additional exploration. Our final grouping of codes may not have aligned with the original author's description in the abstract. Additionally, coding of broader constructs which disproportionately occur in the Learner domain, such as learner outcomes, learner characteristics, and engagement, likely introduced bias towards these codes when considering studies that involved multiple domains. Additional refinement to explore the intersection of domains within studies is needed.

7. Implications and future research

One of the strengths of this review is the research categories we have identified. We hope these categories will support future researchers and identify areas and levels of need for future research. Overall, there is some agreement on research themes on online learning research among previous reviews and this one, at the same time there are some contradicting findings. We hope the most-researched themes and least-researched themes provide authors a direction on the importance of research and areas of need to focus on.

The leading themes found in this review is online engagement research. However, presentation of this research was inconsistent, and often lacked specificity. This is not unique to online environments, but the nuances of defining engagement in an online environment are unique and therefore need further investigation and clarification. This review points to seven distinct classifications of online engagement. Further research on engagement should indicate which type of engagement is sought. This level of specificity is necessary to establish instruments for measuring engagement and ultimately testing frameworks for classifying engagement and promoting it in online environments. Also, it might be of importance to examine the relationship between these seven sub-themes of engagement.

Additionally, this review highlights growing attention to learner characteristics, which constitutes a shift in focus away from instructional characteristics and course design. Although this is consistent with the focus on engagement, the role of the instructor, and course design with respect to these outcomes remains important. Results of the learner characteristics and engagement research paired with course design will have important ramifications for the use of teaching and learning professionals who support instruction. Additionally, the review also points to a concentration of research in the area of higher education. With an immediate and growing emphasis on online learning in K-12 and corporate settings, there is a critical need for further investigation in these settings.

Lastly, because the present review did not focus on the overall effect of interventions, opportunities exist for dedicated meta-analyses. Particular attention to research on engagement and learner characteristics as well as how these vary by study design and outcomes would be logical additions to the research literature.

8. Conclusion

This systematic review builds upon three previous reviews which tackled the topic of online learning between 1990 and 2010 by extending the timeframe to consider the most recent set of published research. Covering the most recent decade, our review of 619 articles from 12 leading online learning journal points to a more concentrated focus on the learner domain including engagement and learner characteristics, with more limited attention to topics pertaining to the classroom or organizational level. The review highlights an opportunity for the field to clarify terminology concerning online learning research, particularly in the areas of learner outcomes where there is a tendency to classify research more generally (e.g., engagement). Using this sample of published literature, we provide a possible taxonomy for categorizing this research using subcategories. The field could benefit from a broader conversation about how these categories can shape a comprehensive framework for online learning research. Such efforts will enable the field to effectively prioritize research aims over time and synthesize effects.

Credit author statement

Florence Martin: Conceptualization; Writing - original draft, Writing - review & editing Preparation, Supervision, Project administration. Ting Sun: Methodology, Formal analysis, Writing - original draft, Writing - review & editing. Carl Westine: Methodology, Formal analysis, Writing - original draft, Writing - review & editing, Supervision

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

1 Includes articles that are cited in this manuscript and also included in the systematic review. The entire list of 619 articles used in the systematic review can be obtained by emailing the authors.*

Appendix B Supplementary data to this article can be found online at https://doi.org/10.1016/j.compedu.2020.104009 .

Appendix A. 

Research Themes by the Settings in the Online Learning Publications

Research ThemeHigher Ed (  = 506)Continuing Education (  = 58)K-12 (  = 53)Corporate/Military (  = 3)
Engagement15315120
Presence46230
Interaction35440
Community19240
Participation16500
Collaboration16100
Involvement13010
Communication8100
Learner Characteristics1061891
Self-regulation Characteristics43920
Motivation Characteristics18320
Academic Characteristics17020
Affective Characteristics12311
Cognitive Characteristics11120
Demographic Characteristics5200
Evaluation and Quality Assurance33320
Course Technologies33200
Course Facilitation30310
Institutional Support24081
Learner Outcome24710
Course Assessment23250
Access, Culture, Equity, Inclusion and Ethics26120
Leadership, Policy and Management17550
Course Design and Development21141
Instructor Characteristics16140

Research Themes by the Methodology in the Online Learning Publications

Research ThemeMixed Method (  = 95)Quantitative (  = 324)Qualitative (  = 200)
Engagement327869
Presence112514
Interaction92014
Community2914
Participation687
Collaboration2510
Involvement266
Communication054
Learner Characteristics1610018
Self-regulation Characteristics5436
Motivation Characteristics4154
Academic Characteristics1153
Affective Characteristics2123
Cognitive Characteristics482
Demographic Characteristics160
Evaluation and Quality Assurance52211
Course Technologies42011
Course Facilitation71413
Institutional Support12912
Learner Outcome3236
Course Assessment5205
Access, Culture, Equity, Inclusion & Ethics31313
Leadership, Policy and Management5913
Course Design and Development2817
Instructor Characteristics1812

Appendix B. Supplementary data

The following are the Supplementary data to this article:

References 1

  • Ahn J., Butler B.S., Alam A., Webster S.A. Learner participation and engagement in open online courses: Insights from the Peer 2 Peer University. MERLOT Journal of Online Learning and Teaching. 2013; 9 (2):160–171. * [ Google Scholar ]
  • Akcaoglu M., Lee E. Increasing social presence in online learning through small group discussions. International Review of Research in Open and Distance Learning. 2016; 17 (3) * [ Google Scholar ]
  • Allen I.E., Seaman J. Babson survey research group; 2017. Digital compass learning: Distance education enrollment Report 2017. [ Google Scholar ]
  • Amador J.A., Mederer H. Migrating successful student engagement strategies online: Opportunities and challenges using jigsaw groups and problem-based learning. Journal of Online Learning and Teaching. 2013; 9 (1):89. * [ Google Scholar ]
  • Anderson L.W., Bourke S.F. Routledge; 2013. Assessing affective characteristics in the schools. [ Google Scholar ]
  • Archibald D. Fostering the development of cognitive presence: Initial findings using the community of inquiry survey instrument. The Internet and Higher Education. 2010; 13 (1–2):73–74. * [ Google Scholar ]
  • Artino A.R., Jr., Stephens J.M. Academic motivation and self-regulation: A comparative analysis of undergraduate and graduate students learning online. The Internet and Higher Education. 2009; 12 (3–4):146–151. [ Google Scholar ]
  • Barnard L., Lan W.Y., To Y.M., Paton V.O., Lai S.L. Measuring self-regulation in online and blended learning environments. Internet and Higher Education. 2009; 12 (1):1–6. * [ Google Scholar ]
  • Bayeck R.Y., Hristova A., Jablokow K.W., Bonafini F. Exploring the relevance of single‐gender group formation: What we learn from a massive open online course (MOOC) British Journal of Educational Technology. 2018; 49 (1):88–100. * [ Google Scholar ]
  • Berge Z., Mrozowski S. Review of research in distance education, 1990 to 1999. American Journal of Distance Education. 2001; 15 (3):5–19. doi: 10.1080/08923640109527090. [ CrossRef ] [ Google Scholar ]
  • Berry S. Building community in online doctoral classrooms: Instructor practices that support community. Online Learning. 2017; 21 (2):n2. * [ Google Scholar ]
  • Boling E.C., Holan E., Horbatt B., Hough M., Jean-Louis J., Khurana C., Spiezio C. Using online tools for communication and collaboration: Understanding educators' experiences in an online course. The Internet and Higher Education. 2014; 23 :48–55. * [ Google Scholar ]
  • Bolliger D.U., Inan F.A. Development and validation of the online student connectedness survey (OSCS) International Review of Research in Open and Distance Learning. 2012; 13 (3):41–65. * [ Google Scholar ]
  • Bradford G., Wyatt S. Online learning and student satisfaction: Academic standing, ethnicity and their influence on facilitated learning, engagement, and information fluency. The Internet and Higher Education. 2010; 13 (3):108–114. * [ Google Scholar ]
  • Broadbent J. Comparing online and blended learner's self-regulated learning strategies and academic performance. The Internet and Higher Education. 2017; 33 :24–32. [ Google Scholar ]
  • Buzdar M., Ali A., Tariq R. Emotional intelligence as a determinant of readiness for online learning. International Review of Research in Open and Distance Learning. 2016; 17 (1) * [ Google Scholar ]
  • Capdeferro N., Romero M., Barberà E. Polychronicity: Review of the literature and a new configuration for the study of this hidden dimension of online learning. Distance Education. 2014; 35 (3):294–310. [ Google Scholar ]
  • Chaiprasurt C., Esichaikul V. Enhancing motivation in online courses with mobile communication tool support: A comparative study. International Review of Research in Open and Distance Learning. 2013; 14 (3):377–401. [ Google Scholar ]
  • Chen C.H., Wu I.C. The interplay between cognitive and motivational variables in a supportive online learning system for secondary physical education. Computers & Education. 2012; 58 (1):542–550. * [ Google Scholar ]
  • Cho H. Under co-construction: An online community of practice for bilingual pre-service teachers. Computers & Education. 2016; 92 :76–89. * [ Google Scholar ]
  • Cho M.H., Shen D. Self-regulation in online learning. Distance Education. 2013; 34 (3):290–301. [ Google Scholar ]
  • Cole M.T., Shelley D.J., Swartz L.B. Online instruction, e-learning, and student satisfaction: A three-year study. International Review of Research in Open and Distance Learning. 2014; 15 (6) * [ Google Scholar ]
  • Comer D.K., Clark C.R., Canelas D.A. Writing to learn and learning to write across the disciplines: Peer-to-peer writing in introductory-level MOOCs. International Review of Research in Open and Distance Learning. 2014; 15 (5):26–82. * [ Google Scholar ]
  • Cundell A., Sheepy E. Student perceptions of the most effective and engaging online learning activities in a blended graduate seminar. Online Learning. 2018; 22 (3):87–102. * [ Google Scholar ]
  • Cung B., Xu D., Eichhorn S. Increasing interpersonal interactions in an online course: Does increased instructor email activity and voluntary meeting time in a physical classroom facilitate student learning? Online Learning. 2018; 22 (3):193–215. [ Google Scholar ]
  • Cunningham U.M., Fägersten K.B., Holmsten E. Can you hear me, Hanoi?" Compensatory mechanisms employed in synchronous net-based English language learning. International Review of Research in Open and Distance Learning. 2010; 11 (1):161–177. [ Google Scholar ]
  • Davis D., Chen G., Hauff C., Houben G.J. Activating learning at scale: A review of innovations in online learning strategies. Computers & Education. 2018; 125 :327–344. [ Google Scholar ]
  • Delen E., Liew J., Willson V. Effects of interactivity and instructional scaffolding on learning: Self-regulation in online video-based environments. Computers & Education. 2014; 78 :312–320. [ Google Scholar ]
  • Dixson M.D. Measuring student engagement in the online course: The Online Student Engagement scale (OSE) Online Learning. 2015; 19 (4):n4. * [ Google Scholar ]
  • Dray B.J., Lowenthal P.R., Miszkiewicz M.J., Ruiz‐Primo M.A., Marczynski K. Developing an instrument to assess student readiness for online learning: A validation study. Distance Education. 2011; 32 (1):29–47. * [ Google Scholar ]
  • Dziuban C., Moskal P., Thompson J., Kramer L., DeCantis G., Hermsdorfer A. Student satisfaction with online learning: Is it a psychological contract? Online Learning. 2015; 19 (2):n2. * [ Google Scholar ]
  • Ergün E., Usluel Y.K. An analysis of density and degree-centrality according to the social networking structure formed in an online learning environment. Journal of Educational Technology & Society. 2016; 19 (4):34–46. * [ Google Scholar ]
  • Esfijani A. Measuring quality in online education: A meta-synthesis. American Journal of Distance Education. 2018; 32 (1):57–73. [ Google Scholar ]
  • Glazer H.R., Murphy J.A. Optimizing success: A model for persistence in online education. American Journal of Distance Education. 2015; 29 (2):135–144. [ Google Scholar ]
  • Glazer H.R., Wanstreet C.E. Connection to the academic community: Perceptions of students in online education. Quarterly Review of Distance Education. 2011; 12 (1):55. * [ Google Scholar ]
  • Hartnett M., George A.S., Dron J. Examining motivation in online distance learning environments: Complex, multifaceted and situation-dependent. International Review of Research in Open and Distance Learning. 2011; 12 (6):20–38. [ Google Scholar ]
  • Harwell M.R. 2012. Research design in qualitative/quantitative/mixed methods. Section III. Opportunities and challenges in designing and conducting inquiry. [ Google Scholar ]
  • Hung J.L. Trends of e‐learning research from 2000 to 2008: Use of text mining and bibliometrics. British Journal of Educational Technology. 2012; 43 (1):5–16. [ Google Scholar ]
  • Jiang W. Interdependence of roles, role rotation, and sense of community in an online course. Distance Education. 2017; 38 (1):84–105. [ Google Scholar ]
  • Ke F., Kwak D. Online learning across ethnicity and age: A study on learning interaction participation, perception, and learning satisfaction. Computers & Education. 2013; 61 :43–51. [ Google Scholar ]
  • Kent M. Changing the conversation: Facebook as a venue for online class discussion in higher education. MERLOT Journal of Online Learning and Teaching. 2013; 9 (4):546–565. * [ Google Scholar ]
  • Kim C., Park S.W., Cozart J. Affective and motivational factors of learning in online mathematics courses. British Journal of Educational Technology. 2014; 45 (1):171–185. [ Google Scholar ]
  • Kizilcec R.F., Pérez-Sanagustín M., Maldonado J.J. Self-regulated learning strategies predict learner behavior and goal attainment in Massive Open Online Courses. Computers & Education. 2017; 104 :18–33. [ Google Scholar ]
  • Kopp B., Matteucci M.C., Tomasetto C. E-tutorial support for collaborative online learning: An explorative study on experienced and inexperienced e-tutors. Computers & Education. 2012; 58 (1):12–20. [ Google Scholar ]
  • Koseoglu S., Doering A. Understanding complex ecologies: An investigation of student experiences in adventure learning programs. Distance Education. 2011; 32 (3):339–355. * [ Google Scholar ]
  • Kumi-Yeboah A. Designing a cross-cultural collaborative online learning framework for online instructors. Online Learning. 2018; 22 (4):181–201. * [ Google Scholar ]
  • Kuo Y.C., Walker A.E., Belland B.R., Schroder K.E. A predictive study of student satisfaction in online education programs. International Review of Research in Open and Distance Learning. 2013; 14 (1):16–39. * [ Google Scholar ]
  • Kuo Y.C., Walker A.E., Schroder K.E., Belland B.R. Interaction, Internet self-efficacy, and self-regulated learning as predictors of student satisfaction in online education courses. Internet and Higher Education. 2014; 20 :35–50. * [ Google Scholar ]
  • Lee J. An exploratory study of effective online learning: Assessing satisfaction levels of graduate students of mathematics education associated with human and design factors of an online course. International Review of Research in Open and Distance Learning. 2014; 15 (1) [ Google Scholar ]
  • Lee S.M. The relationships between higher order thinking skills, cognitive density, and social presence in online learning. The Internet and Higher Education. 2014; 21 :41–52. * [ Google Scholar ]
  • Lee K. Rethinking the accessibility of online higher education: A historical review. The Internet and Higher Education. 2017; 33 :15–23. [ Google Scholar ]
  • Lee Y., Choi J. A review of online course dropout research: Implications for practice and future research. Educational Technology Research & Development. 2011; 59 (5):593–618. [ Google Scholar ]
  • Li L.Y., Tsai C.C. Accessing online learning material: Quantitative behavior patterns and their effects on motivation and learning performance. Computers & Education. 2017; 114 :286–297. [ Google Scholar ]
  • Liyanagunawardena T., Adams A., Williams S. MOOCs: A systematic study of the published literature 2008-2012. International Review of Research in Open and Distance Learning. 2013; 14 (3):202–227. [ Google Scholar ]
  • Lowes S., Lin P., Kinghorn B.R. Gender differences in online high school courses. Online Learning. 2016; 20 (4):100–117. [ Google Scholar ]
  • Marbouti F., Wise A.F. Starburst: A new graphical interface to support purposeful attention to others' posts in online discussions. Educational Technology Research & Development. 2016; 64 (1):87–113. * [ Google Scholar ]
  • Martin F., Ahlgrim-Delzell L., Budhrani K. Systematic review of two decades (1995 to 2014) of research on synchronous online learning. American Journal of Distance Education. 2017; 31 (1):3–19. [ Google Scholar ]
  • Moore-Adams B.L., Jones W.M., Cohen J. Learning to teach online: A systematic review of the literature on K-12 teacher preparation for teaching online. Distance Education. 2016; 37 (3):333–348. [ Google Scholar ]
  • Murphy E., Rodríguez-Manzanares M.A. Rapport in distance education. International Review of Research in Open and Distance Learning. 2012; 13 (1):167–190. * [ Google Scholar ]
  • Nye A. Building an online academic learning community among undergraduate students. Distance Education. 2015; 36 (1):115–128. * [ Google Scholar ]
  • Olesova L., Slavin M., Lim J. Exploring the effect of scripted roles on cognitive presence in asynchronous online discussions. Online Learning. 2016; 20 (4):34–53. * [ Google Scholar ]
  • Orcutt J.M., Dringus L.P. Beyond being there: Practices that establish presence, engage students and influence intellectual curiosity in a structured online learning environment. Online Learning. 2017; 21 (3):15–35. * [ Google Scholar ]
  • Overbaugh R.C., Nickel C.E. A comparison of student satisfaction and value of academic community between blended and online sections of a university-level educational foundations course. The Internet and Higher Education. 2011; 14 (3):164–174. * [ Google Scholar ]
  • O'Shea S., Stone C., Delahunty J. “I ‘feel’like I am at university even though I am online.” Exploring how students narrate their engagement with higher education institutions in an online learning environment. Distance Education. 2015; 36 (1):41–58. * [ Google Scholar ]
  • Paechter M., Maier B. Online or face-to-face? Students' experiences and preferences in e-learning. Internet and Higher Education. 2010; 13 (4):292–297. [ Google Scholar ]
  • Phirangee K. Students' perceptions of learner-learner interactions that weaken a sense of community in an online learning environment. Online Learning. 2016; 20 (4):13–33. * [ Google Scholar ]
  • Phirangee K., Malec A. Othering in online learning: An examination of social presence, identity, and sense of community. Distance Education. 2017; 38 (2):160–172. * [ Google Scholar ]
  • Preisman K.A. Teaching presence in online education: From the instructor's point of view. Online Learning. 2014; 18 (3):n3. * [ Google Scholar ]
  • Rowe M. Developing graduate attributes in an open online course. British Journal of Educational Technology. 2016; 47 (5):873–882. * [ Google Scholar ]
  • Ruane R., Koku E.F. Social network analysis of undergraduate education student interaction in online peer mentoring settings. Journal of Online Learning and Teaching. 2014; 10 (4):577–589. * [ Google Scholar ]
  • Ruane R., Lee V.J. Analysis of discussion board interaction in an online peer mentoring site. Online Learning. 2016; 20 (4):79–99. * [ Google Scholar ]
  • Rye S.A., Støkken A.M. The implications of the local context in global virtual education. International Review of Research in Open and Distance Learning. 2012; 13 (1):191–206. * [ Google Scholar ]
  • Saadatmand M., Kumpulainen K. Participants' perceptions of learning and networking in connectivist MOOCs. Journal of Online Learning and Teaching. 2014; 10 (1):16. * [ Google Scholar ]
  • Shackelford J.L., Maxwell M. Sense of community in graduate online education: Contribution of learner to learner interaction. International Review of Research in Open and Distance Learning. 2012; 13 (4):228–249. * [ Google Scholar ]
  • Shea P., Bidjerano T. Does online learning impede degree completion? A national study of community college students. Computers & Education. 2014; 75 :103–111. * [ Google Scholar ]
  • Sherry L. Issues in distance learning. International Journal of Educational Telecommunications. 1996; 1 (4):337–365. [ Google Scholar ]
  • Slagter van Tryon P.J., Bishop M.J. Evaluating social connectedness online: The design and development of the social perceptions in learning contexts instrument. Distance Education. 2012; 33 (3):347–364. * [ Google Scholar ]
  • Swaggerty E.A., Broemmel A.D. Authenticity, relevance, and connectedness: Graduate students' learning preferences and experiences in an online reading education course. The Internet and Higher Education. 2017; 32 :80–86. * [ Google Scholar ]
  • Tallent-Runnels M.K., Thomas J.A., Lan W.Y., Cooper S., Ahern T.C., Shaw S.M., Liu X. Teaching courses online: A review of the research. Review of Educational Research. 2006; 76 (1):93–135. doi: 10.3102/00346543076001093. [ CrossRef ] [ Google Scholar ]
  • Tawfik A.A., Giabbanelli P.J., Hogan M., Msilu F., Gill A., York C.S. Effects of success v failure cases on learner-learner interaction. Computers & Education. 2018; 118 :120–132. [ Google Scholar ]
  • Thomas J. Exploring the use of asynchronous online discussion in health care education: A literature review. Computers & Education. 2013; 69 :199–215. [ Google Scholar ]
  • Thormann J., Fidalgo P. Guidelines for online course moderation and community building from a student's perspective. Journal of Online Learning and Teaching. 2014; 10 (3):374–388. * [ Google Scholar ]
  • Tibi M.H. Computer science students' attitudes towards the use of structured and unstructured discussion forums in fully online courses. Online Learning. 2018; 22 (1):93–106. * [ Google Scholar ]
  • Tsai C.W., Chiang Y.C. Research trends in problem‐based learning (pbl) research in e‐learning and online education environments: A review of publications in SSCI‐indexed journals from 2004 to 2012. British Journal of Educational Technology. 2013; 44 (6):E185–E190. [ Google Scholar ]
  • Tsai C.W., Fan Y.T. Research trends in game‐based learning research in online learning environments: A review of studies published in SSCI‐indexed journals from 2003 to 2012. British Journal of Educational Technology. 2013; 44 (5):E115–E119. [ Google Scholar ]
  • Tsai C.W., Shen P.D., Chiang Y.C. Research trends in meaningful learning research on e‐learning and online education environments: A review of studies published in SSCI‐indexed journals from 2003 to 2012. British Journal of Educational Technology. 2013; 44 (6):E179–E184. [ Google Scholar ]
  • Tsai C.W., Shen P.D., Fan Y.T. Research trends in self‐regulated learning research in online learning environments: A review of studies published in selected journals from 2003 to 2012. British Journal of Educational Technology. 2013; 44 (5):E107–E110. [ Google Scholar ]
  • U.S. Department of Education, Institute of Education Sciences . InstituteofEducationSciences; Washington,DC: 2017. What Works Clearinghouse procedures and standards handbook, version3.0. https://ies.ed.gov/ncee/wwc/Docs/referenceresources/wwc_procedures_v3_0_standards_handbook.pdf Retrievedfrom. [ Google Scholar ]
  • Veletsianos G., Shepherdson P. A systematic analysis and synthesis of the empirical MOOC literature published in 2013–2015. International Review of Research in Open and Distance Learning. 2016; 17 (2) [ Google Scholar ]
  • VERBI Software . 2019. MAXQDA 2020 online manual. Retrieved from maxqda. Com/help-max20/welcome [ Google Scholar ]
  • Verstegen D., Dailey-Hebert A., Fonteijn H., Clarebout G., Spruijt A. How do virtual teams collaborate in online learning tasks in a MOOC? International Review of Research in Open and Distance Learning. 2018; 19 (4) * [ Google Scholar ]
  • Wang Y., Baker R. Grit and intention: Why do learners complete MOOCs? International Review of Research in Open and Distance Learning. 2018; 19 (3) * [ Google Scholar ]
  • Wei C.W., Chen N.S., Kinshuk A model for social presence in online classrooms. Educational Technology Research & Development. 2012; 60 (3):529–545. * [ Google Scholar ]
  • Wicks D., Craft B.B., Lee D., Lumpe A., Henrikson R., Baliram N., Wicks K. An evaluation of low versus high collaboration in online learning. Online Learning. 2015; 19 (4):n4. * [ Google Scholar ]
  • Wise A.F., Perera N., Hsiao Y.T., Speer J., Marbouti F. Microanalytic case studies of individual participation patterns in an asynchronous online discussion in an undergraduate blended course. The Internet and Higher Education. 2012; 15 (2):108–117. * [ Google Scholar ]
  • Wisneski J.E., Ozogul G., Bichelmeyer B.A. Does teaching presence transfer between MBA teaching environments? A comparative investigation of instructional design practices associated with teaching presence. The Internet and Higher Education. 2015; 25 :18–27. * [ Google Scholar ]
  • Wladis C., Hachey A.C., Conway K. An investigation of course-level factors as predictors of online STEM course outcomes. Computers & Education. 2014; 77 :145–150. * [ Google Scholar ]
  • Wladis C., Samuels J. Do online readiness surveys do what they claim? Validity, reliability, and subsequent student enrollment decisions. Computers & Education. 2016; 98 :39–56. [ Google Scholar ]
  • Yamagata-Lynch L.C. Blending online asynchronous and synchronous learning. International Review of Research in Open and Distance Learning. 2014; 15 (2) * [ Google Scholar ]
  • Yang J., Kinshuk, Yu H., Chen S.J., Huang R. Strategies for smooth and effective cross-cultural online collaborative learning. Journal of Educational Technology & Society. 2014; 17 (3):208–221. * [ Google Scholar ]
  • Yeboah A.K., Smith P. Relationships between minority students online learning experiences and academic performance. Online Learning. 2016; 20 (4):n4. * [ Google Scholar ]
  • Yu T. Examining construct validity of the student online learning readiness (SOLR) instrument using confirmatory factor analysis. Online Learning. 2018; 22 (4):277–288. * [ Google Scholar ]
  • Yukselturk E., Bulut S. Gender differences in self-regulated online learning environment. Educational Technology & Society. 2009; 12 (3):12–22. [ Google Scholar ]
  • Yukselturk E., Top E. Exploring the link among entry characteristics, participation behaviors and course outcomes of online learners: An examination of learner profile using cluster analysis. British Journal of Educational Technology. 2013; 44 (5):716–728. [ Google Scholar ]
  • Zawacki-Richter O., Backer E., Vogt S. Review of distance education research (2000 to 2008): Analysis of research areas, methods, and authorship patterns. International Review of Research in Open and Distance Learning. 2009; 10 (6):30. doi: 10.19173/irrodl.v10i6.741. [ CrossRef ] [ Google Scholar ]
  • Zhu M., Sari A., Lee M.M. A systematic review of research methods and topics of the empirical MOOC literature (2014–2016) The Internet and Higher Education. 2018; 37 :31–39. [ Google Scholar ]
  • Zimmerman T.D. Exploring learner to content interaction as a success factor in online courses. International Review of Research in Open and Distance Learning. 2012; 13 (4):152–165. [ Google Scholar ]

Machine Learning Research at Apple

Introducing apple’s on-device and server foundation models.

At the 2024 Worldwide Developers Conference , we introduced Apple Intelligence, a personal intelligence system integrated deeply into iOS 18, iPadOS 18, and macOS Sequoia.

Apple Intelligence is comprised of multiple highly-capable generative models that are specialized for our users’ everyday tasks, and can adapt on the fly for their current activity. The foundation models built into Apple Intelligence have been fine-tuned for user experiences such as writing and refining text, prioritizing and summarizing notifications, creating playful images for conversations with family and friends, and taking in-app actions to simplify interactions across apps.

Recent research

Embedding pose graph, enabling 3d foundation model capabilities with a compact representation, efficient diffusion models without attention.

Explore all research

Research highlights

Personalizing health and fitness with hybrid modeling.

Recent research has explored clinical monitoring, cardiovascular events, and even clinical lab values from wearables data. As adoption increases, wearables data may become crucial in public health applications like disease monitoring and the design of epidemiological studies.

Enhancing Paragraph Generation with a Latent Language Diffusion Model

In the fast-evolving world of natural language processing (NLP), there is a strong demand for generating coherent and controlled text, as referenced in the work Toward Controlled Generation of Text. Traditional autoregressive models such as GPT, which have long been the industry standard, possess inherent limitations that sometimes manifest as repetitive and low-quality outputs, as seen in the work The Curious Case of Neural Text Degeneration. This is primarily due to a phenomenon known as "exposure bias," as seen in the work Scheduled Sampling for Sequence Prediction with Recurrent Neural Networks. This imperfection arises due to a mismatch between how these models are trained and their actual use during inference, often leading to error accumulation during text generation.

View all highlights

IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2024

Apple is sponsoring the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), which is taking place in person from June 17 to 21 in Seattle, Washington. CVPR is the annual computer vision event comprising the main conference and several co-located workshops and short courses. Below is the schedule of our sponsored workshops and events at CVPR 2024.

ACM Human-Computer Interaction conference (CHI) 2024

Apple is sponsoring the ACM Human-Computer Interaction Conference (CHI), which is taking place in person from May 11 to May 16, 2024 in Honolulu, Hawai'i.

View all events

Bottom banner

Discover opportunities in Machine Learning.

Our research in machine learning breaks new ground every day.

Work with us

Purdue Online Writing Lab Purdue OWL® College of Liberal Arts

Welcome to the Purdue Online Writing Lab

OWL logo

Welcome to the Purdue OWL

This page is brought to you by the OWL at Purdue University. When printing this page, you must include the entire legal notice.

Copyright ©1995-2018 by The Writing Lab & The OWL at Purdue and Purdue University. All rights reserved. This material may not be published, reproduced, broadcast, rewritten, or redistributed without permission. Use of this site constitutes acceptance of our terms and conditions of fair use.

The Online Writing Lab (the Purdue OWL) at Purdue University houses writing resources and instructional material, and we provide these as a free service at Purdue. Students, members of the community, and users worldwide will find information to assist with many writing projects. Teachers and trainers may use this material for in-class and out-of-class instruction.

The On-Campus and Online versions of Purdue OWL assist clients in their development as writers—no matter what their skill level—with on-campus consultations, online participation, and community engagement. The Purdue OWL serves the Purdue West Lafayette and Indianapolis campuses and coordinates with local literacy initiatives. The Purdue OWL offers global support through online reference materials and services.

Social Media

Facebook twitter.

Help | Advanced Search

Computer Science > Computation and Language

Title: gpt-4 technical report.

Abstract: We report the development of GPT-4, a large-scale, multimodal model which can accept image and text inputs and produce text outputs. While less capable than humans in many real-world scenarios, GPT-4 exhibits human-level performance on various professional and academic benchmarks, including passing a simulated bar exam with a score around the top 10% of test takers. GPT-4 is a Transformer-based model pre-trained to predict the next token in a document. The post-training alignment process results in improved performance on measures of factuality and adherence to desired behavior. A core component of this project was developing infrastructure and optimization methods that behave predictably across a wide range of scales. This allowed us to accurately predict some aspects of GPT-4's performance based on models trained with no more than 1/1,000th the compute of GPT-4.
Comments: 100 pages; updated authors list; fixed author names and added citation
Subjects: Computation and Language (cs.CL); Artificial Intelligence (cs.AI)
Cite as: [cs.CL]
  (or [cs.CL] for this version)
  Focus to learn more arXiv-issued DOI via DataCite

Submission history

Access paper:.

  • HTML (experimental)
  • Other Formats

References & Citations

  • Google Scholar
  • Semantic Scholar

9 blog links

Bibtex formatted citation.

BibSonomy logo

Bibliographic and Citation Tools

Code, data and media associated with this article, recommenders and search tools.

  • Institution

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs .

COMMENTS

  1. Online and face‐to‐face learning: Evidence from students' performance during the Covid‐19 pandemic

    Evaluation of evidence‐based practices in online learning: A meta‐analysis and review of online learning studies (Report No. ed‐04‐co‐0040 task 0006). U.S. Department of Education, Office of Planning, Evaluation, and Policy Development, Washington DC. ... As reported in 355 research reports, summaries and papers. North Carolina State ...

  2. (Pdf) Research on Online Learning

    This paper analyzes the difficulties faced by the students and teachers in online teaching learning process during the COVID-19 pandemic. Online learning is an alternative platform that replaced ...

  3. PDF Students' Perceptions towards the Quality of Online Education: A

    Yi Yang Linda F. Cornelius Mississippi State University. Abstract. How to ensure the quality of online learning in institutions of higher education has been a growing concern during the past several years. While several studies have focused on the perceptions of faculty and administrators, there has been a paucity of research conducted on ...

  4. Online education in the post-COVID era

    Metrics. The coronavirus pandemic has forced students and educators across all levels of education to rapidly adapt to online learning. The impact of this — and the developments required to make ...

  5. The effects of online education on academic success: A meta ...

    The purpose of this study is to analyze the effect of online education, which has been extensively used on student achievement since the beginning of the pandemic. In line with this purpose, a meta-analysis of the related studies focusing on the effect of online education on students' academic achievement in several countries between the years 2010 and 2021 was carried out. Furthermore, this ...

  6. Effectiveness of online and blended learning from schools: A systematic

    This systematic analysis examines effectiveness research on online and blended learning from schools, particularly relevant during the Covid-19 pandemic, and also educational games, computer-supported cooperative learning (CSCL) and computer-assisted instruction (CAI), largely used in schools but with potential for outside school.

  7. Journal of Online Learning Research (JOLR)

    The Journal of Online Learning Research (JOLR) is a peer-reviewed journal devoted to the theoretical, empirical, and pragmatic understanding of technologies and their impact on pedagogy and policy in primary and secondary (K-12) online and blended environments. Three issues are published annually. Each submitted manuscript goes through a ...

  8. Examining research on the impact of distance and online learning: A

    Distance learning has evolved over many generations into its newest form of what we commonly label as online learning. In this second-order meta-analysis, we analyze 19 first-order meta-analyses to examine the impact of distance learning and the special case of online learning on students' cognitive, affective and behavioral outcomes.

  9. A systematic review of research on online teaching and learning from

    1. Introduction. Online learning has been on the increase in the last two decades. In the United States, though higher education enrollment has declined, online learning enrollment in public institutions has continued to increase (Allen & Seaman, 2017), and so has the research on online learning.There have been review studies conducted on specific areas on online learning such as innovations ...

  10. Students' experience of online learning during the COVID‐19 pandemic: A

    Online learning has been widely adopted during the COVID-19 pandemic to ensure the continuation of K-12 education. Student success in K-12 online education is substantially lower than in conventional schools. Students experienced various difficulties related to the delivery of online learning. What this paper adds

  11. (PDF) The Effectiveness of Online Learning: Beyond No Significant

    Nashville, TN 3720 3 USA. t [email protected]. Abstract. The physical "brick and mortar" classroom is starting to lose its monopoly as the place of. learning. The Internet has made ...

  12. Online vs in-person learning in higher education: effects on student

    In research examining student outcomes in the context of online learning, the prevailing trend is the consistent observation that online learners often achieve less favorable results when compared ...

  13. Online Learning: Challenges and Solutions for Learners and Teachers

    The article presents some challenges faced by teachers and learners, supplemented with the recommendations to remove them. JEL Code: A20. The COVID-19 pandemic has led to an expansion in the demand for online teaching and learning across the globe. Online teaching and learning is attracting many students for enhanced learning experiences.

  14. Impact of online classes on the satisfaction and performance of

    The aim of the study is to identify the factors affecting students' satisfaction and performance regarding online classes during the pandemic period of COVID-19 and to establish the relationship between these variables. The study is quantitative in nature, and the data were collected from 544 respondents through online survey who were studying the business management (B.B.A or M.B.A) or ...

  15. Integrating students' perspectives about online learning: a hierarchy

    This article reports on a large-scale (n = 987), exploratory factor analysis study incorporating various concepts identified in the literature as critical success factors for online learning from the students' perspective, and then determines their hierarchical significance. Seven factors--Basic Online Modality, Instructional Support, Teaching Presence, Cognitive Presence, Online Social ...

  16. A Literature Review on Impact of COVID-19 Pandemic on Teaching and Learning

    This article aims to provide a comprehensive report on the impact of the COVID-19 pandemic on online teaching and learning of various papers and indicate the way forward. Introduction The global outbreak of the COVID-19 pandemic has spread worldwide, affecting almost all countries and territories.

  17. Learners' Satisfaction and Commitment Towards Online Learning During

    Online learning can be defined as the latest model of learning and the use of the Internet to access learning materials; to interact with the content, instructor and other learners; and to obtain support during the learning process, to acquire knowledge, construct personal meaning and grow from the learning experience (Martin et al., 2020).During the COVID-19 pandemic, the educational sectors ...

  18. [1802.02871] Online Learning: A Comprehensive Survey

    A survey of online machine learning algorithms and techniques, covering supervised, unsupervised and limited feedback scenarios. The survey provides basic ideas, key principles, categorization and open issues in online learning research.

  19. (PDF) A study of effectiveness of online learning

    1. 90% students have started the online mode of learning and 74% professors have started the. online mode of teaching, during this pandem ic. 2. 84 % of students understand the concepts taught to ...

  20. Students' online learning challenges during the pandemic and how they

    The students have been engaged in online learning for at least two terms in both synchronous and asynchronous modes. The students belonged to low- and middle-income groups but were equipped with the basic online learning equipment (e.g., computer, headset, speakers) and computer skills necessary for their participation in online classes.

  21. Online Learning and Self‐Regulation Strategies: Learning Guides Matter

    The objective of this course is, on the one hand, to familiarize students with the use of online learning and, on the other hand, to help them to start learning research methods. The student will thus have to learn to find the solution of a problem using research type form and learn how to design research papers in a structured manner.

  22. Online professional education works for complex topics

    FULL STORY. Online education is effective for teaching complicated topics like quantum information science (QIS) to high school science educators, according to a new paper by University of Texas ...

  23. Online learning worse for concentration, eyes, but better for info

    The students were asked about their ease of understanding, memory, concentration and eyestrain regarding both online and paper-based learning, and answers were received from 344 of them.

  24. Traditional Learning Compared to Online Learning During the COVID-19

    It was found that online learning provides easily accessible learning materials, saving time, effort, and money, improving technical and self-learning skills, taking the necessary safety measures and precautions, interaction without timidness, and getting higher academic grades (Al Zahrani et al., 2021).

  25. Study shows online professional education works for complex topics

    Credit: UT Arlington. Online education is effective for teaching complicated topics like quantum information science (QIS) to high school science educators, according to a new paper by University ...

  26. A systematic review of research on online teaching and learning from

    1. Introduction. Online learning has been on the increase in the last two decades. In the United States, though higher education enrollment has declined, online learning enrollment in public institutions has continued to increase (Allen & Seaman, 2017), and so has the research on online learning.There have been review studies conducted on specific areas on online learning such as innovations ...

  27. Overview

    At the 2024 Worldwide Developers Conference, we introduced Apple Intelligence, a personal intelligence system integrated deeply into iOS 18, iPadOS 18, and macOS Sequoia. Apple Intelligence is comprised of multiple highly-capable generative models that are specialized for our users' everyday tasks, and can adapt on the fly for their current ...

  28. Welcome to the Purdue Online Writing Lab

    The Online Writing Lab (the Purdue OWL) at Purdue University houses writing resources and instructional material, and we provide these as a free service at Purdue. Students, members of the community, and users worldwide will find information to assist with many writing projects. Teachers and trainers may use this material for in-class and out ...

  29. Online Learning: A Panacea in the Time of COVID-19 Crisis

    Research Methodology. The study is descriptive and tries to understand the importance of online learning in the period of a crisis and pandemics such as the Covid-19. The problems associated with online learning and possible solutions were also identified based on previous studies.

  30. [2303.08774] GPT-4 Technical Report

    We report the development of GPT-4, a large-scale, multimodal model which can accept image and text inputs and produce text outputs. While less capable than humans in many real-world scenarios, GPT-4 exhibits human-level performance on various professional and academic benchmarks, including passing a simulated bar exam with a score around the top 10% of test takers. GPT-4 is a Transformer ...