• Business Essentials
  • Leadership & Management
  • Credential of Leadership, Impact, and Management in Business (CLIMB)
  • Entrepreneurship & Innovation
  • Digital Transformation
  • Finance & Accounting
  • Business in Society
  • For Organizations
  • Support Portal
  • Media Coverage
  • Founding Donors
  • Leadership Team

article on problem solving

  • Harvard Business School →
  • HBS Online →
  • Business Insights →

Business Insights

Harvard Business School Online's Business Insights Blog provides the career insights you need to achieve your goals and gain confidence in your business skills.

  • Career Development
  • Communication
  • Decision-Making
  • Earning Your MBA
  • Negotiation
  • News & Events
  • Productivity
  • Staff Spotlight
  • Student Profiles
  • Work-Life Balance
  • AI Essentials for Business
  • Alternative Investments
  • Business Analytics
  • Business Strategy
  • Business and Climate Change
  • Design Thinking and Innovation
  • Digital Marketing Strategy
  • Disruptive Strategy
  • Economics for Managers
  • Entrepreneurship Essentials
  • Financial Accounting
  • Global Business
  • Launching Tech Ventures
  • Leadership Principles
  • Leadership, Ethics, and Corporate Accountability
  • Leading Change and Organizational Renewal
  • Leading with Finance
  • Management Essentials
  • Negotiation Mastery
  • Organizational Leadership
  • Power and Influence for Positive Impact
  • Strategy Execution
  • Sustainable Business Strategy
  • Sustainable Investing
  • Winning with Digital Platforms

What Is Creative Problem-Solving & Why Is It Important?

Business team using creative problem-solving

  • 01 Feb 2022

One of the biggest hindrances to innovation is complacency—it can be more comfortable to do what you know than venture into the unknown. Business leaders can overcome this barrier by mobilizing creative team members and providing space to innovate.

There are several tools you can use to encourage creativity in the workplace. Creative problem-solving is one of them, which facilitates the development of innovative solutions to difficult problems.

Here’s an overview of creative problem-solving and why it’s important in business.

Access your free e-book today.

What Is Creative Problem-Solving?

Research is necessary when solving a problem. But there are situations where a problem’s specific cause is difficult to pinpoint. This can occur when there’s not enough time to narrow down the problem’s source or there are differing opinions about its root cause.

In such cases, you can use creative problem-solving , which allows you to explore potential solutions regardless of whether a problem has been defined.

Creative problem-solving is less structured than other innovation processes and encourages exploring open-ended solutions. It also focuses on developing new perspectives and fostering creativity in the workplace . Its benefits include:

  • Finding creative solutions to complex problems : User research can insufficiently illustrate a situation’s complexity. While other innovation processes rely on this information, creative problem-solving can yield solutions without it.
  • Adapting to change : Business is constantly changing, and business leaders need to adapt. Creative problem-solving helps overcome unforeseen challenges and find solutions to unconventional problems.
  • Fueling innovation and growth : In addition to solutions, creative problem-solving can spark innovative ideas that drive company growth. These ideas can lead to new product lines, services, or a modified operations structure that improves efficiency.

Design Thinking and Innovation | Uncover creative solutions to your business problems | Learn More

Creative problem-solving is traditionally based on the following key principles :

1. Balance Divergent and Convergent Thinking

Creative problem-solving uses two primary tools to find solutions: divergence and convergence. Divergence generates ideas in response to a problem, while convergence narrows them down to a shortlist. It balances these two practices and turns ideas into concrete solutions.

2. Reframe Problems as Questions

By framing problems as questions, you shift from focusing on obstacles to solutions. This provides the freedom to brainstorm potential ideas.

3. Defer Judgment of Ideas

When brainstorming, it can be natural to reject or accept ideas right away. Yet, immediate judgments interfere with the idea generation process. Even ideas that seem implausible can turn into outstanding innovations upon further exploration and development.

4. Focus on "Yes, And" Instead of "No, But"

Using negative words like "no" discourages creative thinking. Instead, use positive language to build and maintain an environment that fosters the development of creative and innovative ideas.

Creative Problem-Solving and Design Thinking

Whereas creative problem-solving facilitates developing innovative ideas through a less structured workflow, design thinking takes a far more organized approach.

Design thinking is a human-centered, solutions-based process that fosters the ideation and development of solutions. In the online course Design Thinking and Innovation , Harvard Business School Dean Srikant Datar leverages a four-phase framework to explain design thinking.

The four stages are:

The four stages of design thinking: clarify, ideate, develop, and implement

  • Clarify: The clarification stage allows you to empathize with the user and identify problems. Observations and insights are informed by thorough research. Findings are then reframed as problem statements or questions.
  • Ideate: Ideation is the process of coming up with innovative ideas. The divergence of ideas involved with creative problem-solving is a major focus.
  • Develop: In the development stage, ideas evolve into experiments and tests. Ideas converge and are explored through prototyping and open critique.
  • Implement: Implementation involves continuing to test and experiment to refine the solution and encourage its adoption.

Creative problem-solving primarily operates in the ideate phase of design thinking but can be applied to others. This is because design thinking is an iterative process that moves between the stages as ideas are generated and pursued. This is normal and encouraged, as innovation requires exploring multiple ideas.

Creative Problem-Solving Tools

While there are many useful tools in the creative problem-solving process, here are three you should know:

Creating a Problem Story

One way to innovate is by creating a story about a problem to understand how it affects users and what solutions best fit their needs. Here are the steps you need to take to use this tool properly.

1. Identify a UDP

Create a problem story to identify the undesired phenomena (UDP). For example, consider a company that produces printers that overheat. In this case, the UDP is "our printers overheat."

2. Move Forward in Time

To move forward in time, ask: “Why is this a problem?” For example, minor damage could be one result of the machines overheating. In more extreme cases, printers may catch fire. Don't be afraid to create multiple problem stories if you think of more than one UDP.

3. Move Backward in Time

To move backward in time, ask: “What caused this UDP?” If you can't identify the root problem, think about what typically causes the UDP to occur. For the overheating printers, overuse could be a cause.

Following the three-step framework above helps illustrate a clear problem story:

  • The printer is overused.
  • The printer overheats.
  • The printer breaks down.

You can extend the problem story in either direction if you think of additional cause-and-effect relationships.

4. Break the Chains

By this point, you’ll have multiple UDP storylines. Take two that are similar and focus on breaking the chains connecting them. This can be accomplished through inversion or neutralization.

  • Inversion: Inversion changes the relationship between two UDPs so the cause is the same but the effect is the opposite. For example, if the UDP is "the more X happens, the more likely Y is to happen," inversion changes the equation to "the more X happens, the less likely Y is to happen." Using the printer example, inversion would consider: "What if the more a printer is used, the less likely it’s going to overheat?" Innovation requires an open mind. Just because a solution initially seems unlikely doesn't mean it can't be pursued further or spark additional ideas.
  • Neutralization: Neutralization completely eliminates the cause-and-effect relationship between X and Y. This changes the above equation to "the more or less X happens has no effect on Y." In the case of the printers, neutralization would rephrase the relationship to "the more or less a printer is used has no effect on whether it overheats."

Even if creating a problem story doesn't provide a solution, it can offer useful context to users’ problems and additional ideas to be explored. Given that divergence is one of the fundamental practices of creative problem-solving, it’s a good idea to incorporate it into each tool you use.

Brainstorming

Brainstorming is a tool that can be highly effective when guided by the iterative qualities of the design thinking process. It involves openly discussing and debating ideas and topics in a group setting. This facilitates idea generation and exploration as different team members consider the same concept from multiple perspectives.

Hosting brainstorming sessions can result in problems, such as groupthink or social loafing. To combat this, leverage a three-step brainstorming method involving divergence and convergence :

  • Have each group member come up with as many ideas as possible and write them down to ensure the brainstorming session is productive.
  • Continue the divergence of ideas by collectively sharing and exploring each idea as a group. The goal is to create a setting where new ideas are inspired by open discussion.
  • Begin the convergence of ideas by narrowing them down to a few explorable options. There’s no "right number of ideas." Don't be afraid to consider exploring all of them, as long as you have the resources to do so.

Alternate Worlds

The alternate worlds tool is an empathetic approach to creative problem-solving. It encourages you to consider how someone in another world would approach your situation.

For example, if you’re concerned that the printers you produce overheat and catch fire, consider how a different industry would approach the problem. How would an automotive expert solve it? How would a firefighter?

Be creative as you consider and research alternate worlds. The purpose is not to nail down a solution right away but to continue the ideation process through diverging and exploring ideas.

Which HBS Online Entrepreneurship and Innovation Course is Right for You? | Download Your Free Flowchart

Continue Developing Your Skills

Whether you’re an entrepreneur, marketer, or business leader, learning the ropes of design thinking can be an effective way to build your skills and foster creativity and innovation in any setting.

If you're ready to develop your design thinking and creative problem-solving skills, explore Design Thinking and Innovation , one of our online entrepreneurship and innovation courses. If you aren't sure which course is the right fit, download our free course flowchart to determine which best aligns with your goals.

article on problem solving

About the Author

  • Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Best Family Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Guided Meditations
  • Verywell Mind Insights
  • 2024 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

Problem-Solving Strategies and Obstacles

Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

article on problem solving

Sean is a fact-checker and researcher with experience in sociology, field research, and data analytics.

article on problem solving

JGI / Jamie Grill / Getty Images

  • Application
  • Improvement

From deciding what to eat for dinner to considering whether it's the right time to buy a house, problem-solving is a large part of our daily lives. Learn some of the problem-solving strategies that exist and how to use them in real life, along with ways to overcome obstacles that are making it harder to resolve the issues you face.

What Is Problem-Solving?

In cognitive psychology , the term 'problem-solving' refers to the mental process that people go through to discover, analyze, and solve problems.

A problem exists when there is a goal that we want to achieve but the process by which we will achieve it is not obvious to us. Put another way, there is something that we want to occur in our life, yet we are not immediately certain how to make it happen.

Maybe you want a better relationship with your spouse or another family member but you're not sure how to improve it. Or you want to start a business but are unsure what steps to take. Problem-solving helps you figure out how to achieve these desires.

The problem-solving process involves:

  • Discovery of the problem
  • Deciding to tackle the issue
  • Seeking to understand the problem more fully
  • Researching available options or solutions
  • Taking action to resolve the issue

Before problem-solving can occur, it is important to first understand the exact nature of the problem itself. If your understanding of the issue is faulty, your attempts to resolve it will also be incorrect or flawed.

Problem-Solving Mental Processes

Several mental processes are at work during problem-solving. Among them are:

  • Perceptually recognizing the problem
  • Representing the problem in memory
  • Considering relevant information that applies to the problem
  • Identifying different aspects of the problem
  • Labeling and describing the problem

Problem-Solving Strategies

There are many ways to go about solving a problem. Some of these strategies might be used on their own, or you may decide to employ multiple approaches when working to figure out and fix a problem.

An algorithm is a step-by-step procedure that, by following certain "rules" produces a solution. Algorithms are commonly used in mathematics to solve division or multiplication problems. But they can be used in other fields as well.

In psychology, algorithms can be used to help identify individuals with a greater risk of mental health issues. For instance, research suggests that certain algorithms might help us recognize children with an elevated risk of suicide or self-harm.

One benefit of algorithms is that they guarantee an accurate answer. However, they aren't always the best approach to problem-solving, in part because detecting patterns can be incredibly time-consuming.

There are also concerns when machine learning is involved—also known as artificial intelligence (AI)—such as whether they can accurately predict human behaviors.

Heuristics are shortcut strategies that people can use to solve a problem at hand. These "rule of thumb" approaches allow you to simplify complex problems, reducing the total number of possible solutions to a more manageable set.

If you find yourself sitting in a traffic jam, for example, you may quickly consider other routes, taking one to get moving once again. When shopping for a new car, you might think back to a prior experience when negotiating got you a lower price, then employ the same tactics.

While heuristics may be helpful when facing smaller issues, major decisions shouldn't necessarily be made using a shortcut approach. Heuristics also don't guarantee an effective solution, such as when trying to drive around a traffic jam only to find yourself on an equally crowded route.

Trial and Error

A trial-and-error approach to problem-solving involves trying a number of potential solutions to a particular issue, then ruling out those that do not work. If you're not sure whether to buy a shirt in blue or green, for instance, you may try on each before deciding which one to purchase.

This can be a good strategy to use if you have a limited number of solutions available. But if there are many different choices available, narrowing down the possible options using another problem-solving technique can be helpful before attempting trial and error.

In some cases, the solution to a problem can appear as a sudden insight. You are facing an issue in a relationship or your career when, out of nowhere, the solution appears in your mind and you know exactly what to do.

Insight can occur when the problem in front of you is similar to an issue that you've dealt with in the past. Although, you may not recognize what is occurring since the underlying mental processes that lead to insight often happen outside of conscious awareness .

Research indicates that insight is most likely to occur during times when you are alone—such as when going on a walk by yourself, when you're in the shower, or when lying in bed after waking up.

How to Apply Problem-Solving Strategies in Real Life

If you're facing a problem, you can implement one or more of these strategies to find a potential solution. Here's how to use them in real life:

  • Create a flow chart . If you have time, you can take advantage of the algorithm approach to problem-solving by sitting down and making a flow chart of each potential solution, its consequences, and what happens next.
  • Recall your past experiences . When a problem needs to be solved fairly quickly, heuristics may be a better approach. Think back to when you faced a similar issue, then use your knowledge and experience to choose the best option possible.
  • Start trying potential solutions . If your options are limited, start trying them one by one to see which solution is best for achieving your desired goal. If a particular solution doesn't work, move on to the next.
  • Take some time alone . Since insight is often achieved when you're alone, carve out time to be by yourself for a while. The answer to your problem may come to you, seemingly out of the blue, if you spend some time away from others.

Obstacles to Problem-Solving

Problem-solving is not a flawless process as there are a number of obstacles that can interfere with our ability to solve a problem quickly and efficiently. These obstacles include:

  • Assumptions: When dealing with a problem, people can make assumptions about the constraints and obstacles that prevent certain solutions. Thus, they may not even try some potential options.
  • Functional fixedness : This term refers to the tendency to view problems only in their customary manner. Functional fixedness prevents people from fully seeing all of the different options that might be available to find a solution.
  • Irrelevant or misleading information: When trying to solve a problem, it's important to distinguish between information that is relevant to the issue and irrelevant data that can lead to faulty solutions. The more complex the problem, the easier it is to focus on misleading or irrelevant information.
  • Mental set: A mental set is a tendency to only use solutions that have worked in the past rather than looking for alternative ideas. A mental set can work as a heuristic, making it a useful problem-solving tool. However, mental sets can also lead to inflexibility, making it more difficult to find effective solutions.

How to Improve Your Problem-Solving Skills

In the end, if your goal is to become a better problem-solver, it's helpful to remember that this is a process. Thus, if you want to improve your problem-solving skills, following these steps can help lead you to your solution:

  • Recognize that a problem exists . If you are facing a problem, there are generally signs. For instance, if you have a mental illness , you may experience excessive fear or sadness, mood changes, and changes in sleeping or eating habits. Recognizing these signs can help you realize that an issue exists.
  • Decide to solve the problem . Make a conscious decision to solve the issue at hand. Commit to yourself that you will go through the steps necessary to find a solution.
  • Seek to fully understand the issue . Analyze the problem you face, looking at it from all sides. If your problem is relationship-related, for instance, ask yourself how the other person may be interpreting the issue. You might also consider how your actions might be contributing to the situation.
  • Research potential options . Using the problem-solving strategies mentioned, research potential solutions. Make a list of options, then consider each one individually. What are some pros and cons of taking the available routes? What would you need to do to make them happen?
  • Take action . Select the best solution possible and take action. Action is one of the steps required for change . So, go through the motions needed to resolve the issue.
  • Try another option, if needed . If the solution you chose didn't work, don't give up. Either go through the problem-solving process again or simply try another option.

You can find a way to solve your problems as long as you keep working toward this goal—even if the best solution is simply to let go because no other good solution exists.

Sarathy V. Real world problem-solving .  Front Hum Neurosci . 2018;12:261. doi:10.3389/fnhum.2018.00261

Dunbar K. Problem solving . A Companion to Cognitive Science . 2017. doi:10.1002/9781405164535.ch20

Stewart SL, Celebre A, Hirdes JP, Poss JW. Risk of suicide and self-harm in kids: The development of an algorithm to identify high-risk individuals within the children's mental health system . Child Psychiat Human Develop . 2020;51:913-924. doi:10.1007/s10578-020-00968-9

Rosenbusch H, Soldner F, Evans AM, Zeelenberg M. Supervised machine learning methods in psychology: A practical introduction with annotated R code . Soc Personal Psychol Compass . 2021;15(2):e12579. doi:10.1111/spc3.12579

Mishra S. Decision-making under risk: Integrating perspectives from biology, economics, and psychology . Personal Soc Psychol Rev . 2014;18(3):280-307. doi:10.1177/1088868314530517

Csikszentmihalyi M, Sawyer K. Creative insight: The social dimension of a solitary moment . In: The Systems Model of Creativity . 2015:73-98. doi:10.1007/978-94-017-9085-7_7

Chrysikou EG, Motyka K, Nigro C, Yang SI, Thompson-Schill SL. Functional fixedness in creative thinking tasks depends on stimulus modality .  Psychol Aesthet Creat Arts . 2016;10(4):425‐435. doi:10.1037/aca0000050

Huang F, Tang S, Hu Z. Unconditional perseveration of the short-term mental set in chunk decomposition .  Front Psychol . 2018;9:2568. doi:10.3389/fpsyg.2018.02568

National Alliance on Mental Illness. Warning signs and symptoms .

Mayer RE. Thinking, problem solving, cognition, 2nd ed .

Schooler JW, Ohlsson S, Brooks K. Thoughts beyond words: When language overshadows insight. J Experiment Psychol: General . 1993;122:166-183. doi:10.1037/0096-3445.2.166

By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

loading

How it works

For Business

Join Mind Tools

Article • 7 min read

What Is Problem Solving?

Find a solution to any problem you face..

By the Mind Tools Content Team

article on problem solving

We all spend a lot of our time solving problems, both at work and in our personal lives.

Some problems are small, and we can quickly sort them out ourselves. But others are complex challenges that take collaboration, creativity, and a considerable amount of effort to solve.

At work, the types of problems we face depend largely on the organizations we're in and the jobs we do. A manager in a cleaning company, for example, might spend their day untangling staffing issues, resolving client complaints, and sorting out problems with equipment and supplies. An aircraft designer, on the other hand, might be grappling with a problem about aerodynamics, or trying to work out why a new safety feature isn't working. Meanwhile, a politician might be exploring solutions to racial injustice or climate change.

But whatever issues we face, there are some common ways to tackle them effectively. And we can all boost our confidence and ability to succeed by building a strong set of problem-solving skills.

Mind Tools offers a large collection of resources to help you do just that!

How Well Do You Solve Problems?

Start by taking an honest look at your existing skills. What's your current approach to solving problems, and how well is it working? Our quiz, How Good Is Your Problem Solving? lets you analyze your abilities, and signposts ways to address any areas of weakness.

Define Every Problem

The first step in solving a problem is understanding what that problem actually is. You need to be sure that you're dealing with the real problem – not its symptoms. For example, if performance in your department is substandard, you might think that the problem lies with the individuals submitting work. However, if you look a bit deeper, the real issue might be a general lack of training, or an unreasonable workload across the team.

Tools like 5 Whys , Appreciation and Root Cause Analysis get you asking the right questions, and help you to work through the layers of a problem to uncover what's really going on.

However, defining a problem doesn't mean deciding how to solve it straightaway. It's important to look at the issue from a variety of perspectives. If you commit yourself too early, you can end up with a short-sighted solution. The CATWOE checklist provides a powerful reminder to look at many elements that may contribute to the problem, keeping you open to a variety of possible solutions.

Understanding Complexity

As you define your problem, you'll often discover just how complicated it is. There are likely several interrelated issues involved. That's why it's important to have ways to visualize, simplify and make sense of this tangled mess!

Affinity Diagrams are great for organizing many different pieces of information into common themes, and for understanding the relationships between them.

Another popular tool is the Cause-and-Effect Diagram . To generate viable solutions, you need a solid understanding of what's causing the problem.

When your problem occurs within a business process, creating a Flow Chart , Swim Lane Diagram or a Systems Diagram will help you to see how various activities and inputs fit together. This may well highlight a missing element or bottleneck that's causing your problem.

Quite often, what seems to be a single problem turns out to be a whole series of problems. The Drill Down technique prompts you to split your problem into smaller, more manageable parts.

General Problem-Solving Tools

When you understand the problem in front of you, you’re ready to start solving it. With your definition to guide you, you can generate several possible solutions, choose the best one, then put it into action. That's the four-step approach at the heart of good problem solving.

There are various problem-solving styles to use. For example:

  • Constructive Controversy is a way of widening perspectives and energizing discussions.
  • Inductive Reasoning makes the most of people’s experiences and know-how, and can speed up solution finding.
  • Means-End Analysis can bring extra clarity to your thinking, and kick-start the process of implementing solutions.

Specific Problem-Solving Systems

Some particularly complicated or important problems call for a more comprehensive process. Again, Mind Tools has a range of approaches to try, including:

  • Simplex , which involves an eight-stage process: problem finding, fact finding, defining the problem, idea finding, selecting and evaluating, planning, selling the idea, and acting. These steps build upon the basic, four-step process described above, and they create a cycle of problem finding and solving that will continually improve your organization.
  • Appreciative Inquiry , which is a uniquely positive way of solving problems by examining what's working well in the areas surrounding them.
  • Soft Systems Methodology , which takes you through four stages to uncover more details about what's creating your problem, and then define actions that will improve the situation.

Further Problem-Solving Strategies

Good problem solving requires a number of other skills – all of which are covered by Mind Tools.

For example, we have a large section of resources to improve your Creativity , so that you come up with a range of possible solutions.

By strengthening your Decision Making , you'll be better at evaluating the options, selecting the best ones, then choosing how to implement them.

And our Project Management collection has valuable advice for strengthening the whole problem-solving process. The resources there will help you to make effective changes – and then keep them working long term.

Problems are an inescapable part of life, both in and out of work. So we can all benefit from having strong problem-solving skills.

It's important to understand your current approach to problem solving, and to know where and how to improve.

Define every problem you encounter – and understand its complexity, rather than trying to solve it too soon.

There's a range of general problem-solving approaches, helping you to generate possible answers, choose the best ones, and then implement your solution.

Some complicated or serious problems require more specific problem-solving systems, especially when they relate to business processes.

By boosting your creativity, decision-making and project-management skills, you’ll become even better at solving all the problems you face.

You've accessed 1 of your 2 free resources.

Get unlimited access

Discover more content

Simplex thinking.

8 Steps for Solving Complex Problems

Book Insights

Solving Tough Problems: An Open Way of Talking, Listening, and Creating New Realities

Adam Kahane (Foreword by Peter Senge)

Add comment

Comments (0)

Be the first to comment!

article on problem solving

Get 30% off your first year of Mind Tools

Great teams begin with empowered leaders. Our tools and resources offer the support to let you flourish into leadership. Join today!

Sign-up to our newsletter

Subscribing to the Mind Tools newsletter will keep you up-to-date with our latest updates and newest resources.

Subscribe now

Business Skills

Personal Development

Leadership and Management

Member Extras

Most Popular

Latest Updates

Article athqr54

Nine Ways to Get the Best From X (Twitter)

Article avprqp7

Take the Stress Out of Your Life

Mind Tools Store

About Mind Tools Content

Discover something new today

Eight classic mistakes interviewers make infographic.

Infographic Transcript

Infographic

How to Overcome Fear of Failure

Five tips to help you move forward

How Emotionally Intelligent Are You?

Boosting Your People Skills

Self-Assessment

What's Your Leadership Style?

Learn About the Strengths and Weaknesses of the Way You Like to Lead

Recommended for you

Round-robin brainstorming.

Allowing Everyone to Contribute

Business Operations and Process Management

Strategy Tools

Customer Service

Business Ethics and Values

Handling Information and Data

Project Management

Knowledge Management

Self-Development and Goal Setting

Time Management

Presentation Skills

Learning Skills

Career Skills

Communication Skills

Negotiation, Persuasion and Influence

Working With Others

Difficult Conversations

Creativity Tools

Self-Management

Work-Life Balance

Stress Management and Wellbeing

Coaching and Mentoring

Change Management

Team Management

Managing Conflict

Delegation and Empowerment

Performance Management

Leadership Skills

Developing Your Team

Talent Management

Problem Solving

Decision Making

Member Podcast

35 problem-solving techniques and methods for solving complex problems

Problem solving workshop

Design your next session with SessionLab

Join the 150,000+ facilitators 
using SessionLab.

Recommended Articles

A step-by-step guide to planning a workshop, how to create an unforgettable training session in 8 simple steps, 47 useful online tools for workshop planning and meeting facilitation.

All teams and organizations encounter challenges as they grow. There are problems that might occur for teams when it comes to miscommunication or resolving business-critical issues . You may face challenges around growth , design , user engagement, and even team culture and happiness. In short, problem-solving techniques should be part of every team’s skillset.

Problem-solving methods are primarily designed to help a group or team through a process of first identifying problems and challenges , ideating possible solutions , and then evaluating the most suitable .

Finding effective solutions to complex problems isn’t easy, but by using the right process and techniques, you can help your team be more efficient in the process.

So how do you develop strategies that are engaging, and empower your team to solve problems effectively?

In this blog post, we share a series of problem-solving tools you can use in your next workshop or team meeting. You’ll also find some tips for facilitating the process and how to enable others to solve complex problems.

Let’s get started! 

How do you identify problems?

How do you identify the right solution.

  • Tips for more effective problem-solving

Complete problem-solving methods

  • Problem-solving techniques to identify and analyze problems
  • Problem-solving techniques for developing solutions

Problem-solving warm-up activities

Closing activities for a problem-solving process.

Before you can move towards finding the right solution for a given problem, you first need to identify and define the problem you wish to solve. 

Here, you want to clearly articulate what the problem is and allow your group to do the same. Remember that everyone in a group is likely to have differing perspectives and alignment is necessary in order to help the group move forward. 

Identifying a problem accurately also requires that all members of a group are able to contribute their views in an open and safe manner. It can be scary for people to stand up and contribute, especially if the problems or challenges are emotive or personal in nature. Be sure to try and create a psychologically safe space for these kinds of discussions.

Remember that problem analysis and further discussion are also important. Not taking the time to fully analyze and discuss a challenge can result in the development of solutions that are not fit for purpose or do not address the underlying issue.

Successfully identifying and then analyzing a problem means facilitating a group through activities designed to help them clearly and honestly articulate their thoughts and produce usable insight.

With this data, you might then produce a problem statement that clearly describes the problem you wish to be addressed and also state the goal of any process you undertake to tackle this issue.  

Finding solutions is the end goal of any process. Complex organizational challenges can only be solved with an appropriate solution but discovering them requires using the right problem-solving tool.

After you’ve explored a problem and discussed ideas, you need to help a team discuss and choose the right solution. Consensus tools and methods such as those below help a group explore possible solutions before then voting for the best. They’re a great way to tap into the collective intelligence of the group for great results!

Remember that the process is often iterative. Great problem solvers often roadtest a viable solution in a measured way to see what works too. While you might not get the right solution on your first try, the methods below help teams land on the most likely to succeed solution while also holding space for improvement.

Every effective problem solving process begins with an agenda . A well-structured workshop is one of the best methods for successfully guiding a group from exploring a problem to implementing a solution.

In SessionLab, it’s easy to go from an idea to a complete agenda . Start by dragging and dropping your core problem solving activities into place . Add timings, breaks and necessary materials before sharing your agenda with your colleagues.

The resulting agenda will be your guide to an effective and productive problem solving session that will also help you stay organized on the day!

article on problem solving

Tips for more effective problem solving

Problem-solving activities are only one part of the puzzle. While a great method can help unlock your team’s ability to solve problems, without a thoughtful approach and strong facilitation the solutions may not be fit for purpose.

Let’s take a look at some problem-solving tips you can apply to any process to help it be a success!

Clearly define the problem

Jumping straight to solutions can be tempting, though without first clearly articulating a problem, the solution might not be the right one. Many of the problem-solving activities below include sections where the problem is explored and clearly defined before moving on.

This is a vital part of the problem-solving process and taking the time to fully define an issue can save time and effort later. A clear definition helps identify irrelevant information and it also ensures that your team sets off on the right track.

Don’t jump to conclusions

It’s easy for groups to exhibit cognitive bias or have preconceived ideas about both problems and potential solutions. Be sure to back up any problem statements or potential solutions with facts, research, and adequate forethought.

The best techniques ask participants to be methodical and challenge preconceived notions. Make sure you give the group enough time and space to collect relevant information and consider the problem in a new way. By approaching the process with a clear, rational mindset, you’ll often find that better solutions are more forthcoming.  

Try different approaches  

Problems come in all shapes and sizes and so too should the methods you use to solve them. If you find that one approach isn’t yielding results and your team isn’t finding different solutions, try mixing it up. You’ll be surprised at how using a new creative activity can unblock your team and generate great solutions.

Don’t take it personally 

Depending on the nature of your team or organizational problems, it’s easy for conversations to get heated. While it’s good for participants to be engaged in the discussions, ensure that emotions don’t run too high and that blame isn’t thrown around while finding solutions.

You’re all in it together, and even if your team or area is seeing problems, that isn’t necessarily a disparagement of you personally. Using facilitation skills to manage group dynamics is one effective method of helping conversations be more constructive.

Get the right people in the room

Your problem-solving method is often only as effective as the group using it. Getting the right people on the job and managing the number of people present is important too!

If the group is too small, you may not get enough different perspectives to effectively solve a problem. If the group is too large, you can go round and round during the ideation stages.

Creating the right group makeup is also important in ensuring you have the necessary expertise and skillset to both identify and follow up on potential solutions. Carefully consider who to include at each stage to help ensure your problem-solving method is followed and positioned for success.

Document everything

The best solutions can take refinement, iteration, and reflection to come out. Get into a habit of documenting your process in order to keep all the learnings from the session and to allow ideas to mature and develop. Many of the methods below involve the creation of documents or shared resources. Be sure to keep and share these so everyone can benefit from the work done!

Bring a facilitator 

Facilitation is all about making group processes easier. With a subject as potentially emotive and important as problem-solving, having an impartial third party in the form of a facilitator can make all the difference in finding great solutions and keeping the process moving. Consider bringing a facilitator to your problem-solving session to get better results and generate meaningful solutions!

Develop your problem-solving skills

It takes time and practice to be an effective problem solver. While some roles or participants might more naturally gravitate towards problem-solving, it can take development and planning to help everyone create better solutions.

You might develop a training program, run a problem-solving workshop or simply ask your team to practice using the techniques below. Check out our post on problem-solving skills to see how you and your group can develop the right mental process and be more resilient to issues too!

Design a great agenda

Workshops are a great format for solving problems. With the right approach, you can focus a group and help them find the solutions to their own problems. But designing a process can be time-consuming and finding the right activities can be difficult.

Check out our workshop planning guide to level-up your agenda design and start running more effective workshops. Need inspiration? Check out templates designed by expert facilitators to help you kickstart your process!

In this section, we’ll look at in-depth problem-solving methods that provide a complete end-to-end process for developing effective solutions. These will help guide your team from the discovery and definition of a problem through to delivering the right solution.

If you’re looking for an all-encompassing method or problem-solving model, these processes are a great place to start. They’ll ask your team to challenge preconceived ideas and adopt a mindset for solving problems more effectively.

  • Six Thinking Hats
  • Lightning Decision Jam
  • Problem Definition Process
  • Discovery & Action Dialogue
Design Sprint 2.0
  • Open Space Technology

1. Six Thinking Hats

Individual approaches to solving a problem can be very different based on what team or role an individual holds. It can be easy for existing biases or perspectives to find their way into the mix, or for internal politics to direct a conversation.

Six Thinking Hats is a classic method for identifying the problems that need to be solved and enables your team to consider them from different angles, whether that is by focusing on facts and data, creative solutions, or by considering why a particular solution might not work.

Like all problem-solving frameworks, Six Thinking Hats is effective at helping teams remove roadblocks from a conversation or discussion and come to terms with all the aspects necessary to solve complex problems.

2. Lightning Decision Jam

Featured courtesy of Jonathan Courtney of AJ&Smart Berlin, Lightning Decision Jam is one of those strategies that should be in every facilitation toolbox. Exploring problems and finding solutions is often creative in nature, though as with any creative process, there is the potential to lose focus and get lost.

Unstructured discussions might get you there in the end, but it’s much more effective to use a method that creates a clear process and team focus.

In Lightning Decision Jam, participants are invited to begin by writing challenges, concerns, or mistakes on post-its without discussing them before then being invited by the moderator to present them to the group.

From there, the team vote on which problems to solve and are guided through steps that will allow them to reframe those problems, create solutions and then decide what to execute on. 

By deciding the problems that need to be solved as a team before moving on, this group process is great for ensuring the whole team is aligned and can take ownership over the next stages. 

Lightning Decision Jam (LDJ)   #action   #decision making   #problem solving   #issue analysis   #innovation   #design   #remote-friendly   The problem with anything that requires creative thinking is that it’s easy to get lost—lose focus and fall into the trap of having useless, open-ended, unstructured discussions. Here’s the most effective solution I’ve found: Replace all open, unstructured discussion with a clear process. What to use this exercise for: Anything which requires a group of people to make decisions, solve problems or discuss challenges. It’s always good to frame an LDJ session with a broad topic, here are some examples: The conversion flow of our checkout Our internal design process How we organise events Keeping up with our competition Improving sales flow

3. Problem Definition Process

While problems can be complex, the problem-solving methods you use to identify and solve those problems can often be simple in design. 

By taking the time to truly identify and define a problem before asking the group to reframe the challenge as an opportunity, this method is a great way to enable change.

Begin by identifying a focus question and exploring the ways in which it manifests before splitting into five teams who will each consider the problem using a different method: escape, reversal, exaggeration, distortion or wishful. Teams develop a problem objective and create ideas in line with their method before then feeding them back to the group.

This method is great for enabling in-depth discussions while also creating space for finding creative solutions too!

Problem Definition   #problem solving   #idea generation   #creativity   #online   #remote-friendly   A problem solving technique to define a problem, challenge or opportunity and to generate ideas.

4. The 5 Whys 

Sometimes, a group needs to go further with their strategies and analyze the root cause at the heart of organizational issues. An RCA or root cause analysis is the process of identifying what is at the heart of business problems or recurring challenges. 

The 5 Whys is a simple and effective method of helping a group go find the root cause of any problem or challenge and conduct analysis that will deliver results. 

By beginning with the creation of a problem statement and going through five stages to refine it, The 5 Whys provides everything you need to truly discover the cause of an issue.

The 5 Whys   #hyperisland   #innovation   This simple and powerful method is useful for getting to the core of a problem or challenge. As the title suggests, the group defines a problems, then asks the question “why” five times, often using the resulting explanation as a starting point for creative problem solving.

5. World Cafe

World Cafe is a simple but powerful facilitation technique to help bigger groups to focus their energy and attention on solving complex problems.

World Cafe enables this approach by creating a relaxed atmosphere where participants are able to self-organize and explore topics relevant and important to them which are themed around a central problem-solving purpose. Create the right atmosphere by modeling your space after a cafe and after guiding the group through the method, let them take the lead!

Making problem-solving a part of your organization’s culture in the long term can be a difficult undertaking. More approachable formats like World Cafe can be especially effective in bringing people unfamiliar with workshops into the fold. 

World Cafe   #hyperisland   #innovation   #issue analysis   World Café is a simple yet powerful method, originated by Juanita Brown, for enabling meaningful conversations driven completely by participants and the topics that are relevant and important to them. Facilitators create a cafe-style space and provide simple guidelines. Participants then self-organize and explore a set of relevant topics or questions for conversation.

6. Discovery & Action Dialogue (DAD)

One of the best approaches is to create a safe space for a group to share and discover practices and behaviors that can help them find their own solutions.

With DAD, you can help a group choose which problems they wish to solve and which approaches they will take to do so. It’s great at helping remove resistance to change and can help get buy-in at every level too!

This process of enabling frontline ownership is great in ensuring follow-through and is one of the methods you will want in your toolbox as a facilitator.

Discovery & Action Dialogue (DAD)   #idea generation   #liberating structures   #action   #issue analysis   #remote-friendly   DADs make it easy for a group or community to discover practices and behaviors that enable some individuals (without access to special resources and facing the same constraints) to find better solutions than their peers to common problems. These are called positive deviant (PD) behaviors and practices. DADs make it possible for people in the group, unit, or community to discover by themselves these PD practices. DADs also create favorable conditions for stimulating participants’ creativity in spaces where they can feel safe to invent new and more effective practices. Resistance to change evaporates as participants are unleashed to choose freely which practices they will adopt or try and which problems they will tackle. DADs make it possible to achieve frontline ownership of solutions.

7. Design Sprint 2.0

Want to see how a team can solve big problems and move forward with prototyping and testing solutions in a few days? The Design Sprint 2.0 template from Jake Knapp, author of Sprint, is a complete agenda for a with proven results.

Developing the right agenda can involve difficult but necessary planning. Ensuring all the correct steps are followed can also be stressful or time-consuming depending on your level of experience.

Use this complete 4-day workshop template if you are finding there is no obvious solution to your challenge and want to focus your team around a specific problem that might require a shortcut to launching a minimum viable product or waiting for the organization-wide implementation of a solution.

8. Open space technology

Open space technology- developed by Harrison Owen – creates a space where large groups are invited to take ownership of their problem solving and lead individual sessions. Open space technology is a great format when you have a great deal of expertise and insight in the room and want to allow for different takes and approaches on a particular theme or problem you need to be solved.

Start by bringing your participants together to align around a central theme and focus their efforts. Explain the ground rules to help guide the problem-solving process and then invite members to identify any issue connecting to the central theme that they are interested in and are prepared to take responsibility for.

Once participants have decided on their approach to the core theme, they write their issue on a piece of paper, announce it to the group, pick a session time and place, and post the paper on the wall. As the wall fills up with sessions, the group is then invited to join the sessions that interest them the most and which they can contribute to, then you’re ready to begin!

Everyone joins the problem-solving group they’ve signed up to, record the discussion and if appropriate, findings can then be shared with the rest of the group afterward.

Open Space Technology   #action plan   #idea generation   #problem solving   #issue analysis   #large group   #online   #remote-friendly   Open Space is a methodology for large groups to create their agenda discerning important topics for discussion, suitable for conferences, community gatherings and whole system facilitation

Techniques to identify and analyze problems

Using a problem-solving method to help a team identify and analyze a problem can be a quick and effective addition to any workshop or meeting.

While further actions are always necessary, you can generate momentum and alignment easily, and these activities are a great place to get started.

We’ve put together this list of techniques to help you and your team with problem identification, analysis, and discussion that sets the foundation for developing effective solutions.

Let’s take a look!

  • The Creativity Dice
  • Fishbone Analysis
  • Problem Tree
  • SWOT Analysis
  • Agreement-Certainty Matrix
  • The Journalistic Six
  • LEGO Challenge
  • What, So What, Now What?
  • Journalists

Individual and group perspectives are incredibly important, but what happens if people are set in their minds and need a change of perspective in order to approach a problem more effectively?

Flip It is a method we love because it is both simple to understand and run, and allows groups to understand how their perspectives and biases are formed. 

Participants in Flip It are first invited to consider concerns, issues, or problems from a perspective of fear and write them on a flip chart. Then, the group is asked to consider those same issues from a perspective of hope and flip their understanding.  

No problem and solution is free from existing bias and by changing perspectives with Flip It, you can then develop a problem solving model quickly and effectively.

Flip It!   #gamestorming   #problem solving   #action   Often, a change in a problem or situation comes simply from a change in our perspectives. Flip It! is a quick game designed to show players that perspectives are made, not born.

10. The Creativity Dice

One of the most useful problem solving skills you can teach your team is of approaching challenges with creativity, flexibility, and openness. Games like The Creativity Dice allow teams to overcome the potential hurdle of too much linear thinking and approach the process with a sense of fun and speed. 

In The Creativity Dice, participants are organized around a topic and roll a dice to determine what they will work on for a period of 3 minutes at a time. They might roll a 3 and work on investigating factual information on the chosen topic. They might roll a 1 and work on identifying the specific goals, standards, or criteria for the session.

Encouraging rapid work and iteration while asking participants to be flexible are great skills to cultivate. Having a stage for idea incubation in this game is also important. Moments of pause can help ensure the ideas that are put forward are the most suitable. 

The Creativity Dice   #creativity   #problem solving   #thiagi   #issue analysis   Too much linear thinking is hazardous to creative problem solving. To be creative, you should approach the problem (or the opportunity) from different points of view. You should leave a thought hanging in mid-air and move to another. This skipping around prevents premature closure and lets your brain incubate one line of thought while you consciously pursue another.

11. Fishbone Analysis

Organizational or team challenges are rarely simple, and it’s important to remember that one problem can be an indication of something that goes deeper and may require further consideration to be solved.

Fishbone Analysis helps groups to dig deeper and understand the origins of a problem. It’s a great example of a root cause analysis method that is simple for everyone on a team to get their head around. 

Participants in this activity are asked to annotate a diagram of a fish, first adding the problem or issue to be worked on at the head of a fish before then brainstorming the root causes of the problem and adding them as bones on the fish. 

Using abstractions such as a diagram of a fish can really help a team break out of their regular thinking and develop a creative approach.

Fishbone Analysis   #problem solving   ##root cause analysis   #decision making   #online facilitation   A process to help identify and understand the origins of problems, issues or observations.

12. Problem Tree 

Encouraging visual thinking can be an essential part of many strategies. By simply reframing and clarifying problems, a group can move towards developing a problem solving model that works for them. 

In Problem Tree, groups are asked to first brainstorm a list of problems – these can be design problems, team problems or larger business problems – and then organize them into a hierarchy. The hierarchy could be from most important to least important or abstract to practical, though the key thing with problem solving games that involve this aspect is that your group has some way of managing and sorting all the issues that are raised.

Once you have a list of problems that need to be solved and have organized them accordingly, you’re then well-positioned for the next problem solving steps.

Problem tree   #define intentions   #create   #design   #issue analysis   A problem tree is a tool to clarify the hierarchy of problems addressed by the team within a design project; it represents high level problems or related sublevel problems.

13. SWOT Analysis

Chances are you’ve heard of the SWOT Analysis before. This problem-solving method focuses on identifying strengths, weaknesses, opportunities, and threats is a tried and tested method for both individuals and teams.

Start by creating a desired end state or outcome and bare this in mind – any process solving model is made more effective by knowing what you are moving towards. Create a quadrant made up of the four categories of a SWOT analysis and ask participants to generate ideas based on each of those quadrants.

Once you have those ideas assembled in their quadrants, cluster them together based on their affinity with other ideas. These clusters are then used to facilitate group conversations and move things forward. 

SWOT analysis   #gamestorming   #problem solving   #action   #meeting facilitation   The SWOT Analysis is a long-standing technique of looking at what we have, with respect to the desired end state, as well as what we could improve on. It gives us an opportunity to gauge approaching opportunities and dangers, and assess the seriousness of the conditions that affect our future. When we understand those conditions, we can influence what comes next.

14. Agreement-Certainty Matrix

Not every problem-solving approach is right for every challenge, and deciding on the right method for the challenge at hand is a key part of being an effective team.

The Agreement Certainty matrix helps teams align on the nature of the challenges facing them. By sorting problems from simple to chaotic, your team can understand what methods are suitable for each problem and what they can do to ensure effective results. 

If you are already using Liberating Structures techniques as part of your problem-solving strategy, the Agreement-Certainty Matrix can be an invaluable addition to your process. We’ve found it particularly if you are having issues with recurring problems in your organization and want to go deeper in understanding the root cause. 

Agreement-Certainty Matrix   #issue analysis   #liberating structures   #problem solving   You can help individuals or groups avoid the frequent mistake of trying to solve a problem with methods that are not adapted to the nature of their challenge. The combination of two questions makes it possible to easily sort challenges into four categories: simple, complicated, complex , and chaotic .  A problem is simple when it can be solved reliably with practices that are easy to duplicate.  It is complicated when experts are required to devise a sophisticated solution that will yield the desired results predictably.  A problem is complex when there are several valid ways to proceed but outcomes are not predictable in detail.  Chaotic is when the context is too turbulent to identify a path forward.  A loose analogy may be used to describe these differences: simple is like following a recipe, complicated like sending a rocket to the moon, complex like raising a child, and chaotic is like the game “Pin the Tail on the Donkey.”  The Liberating Structures Matching Matrix in Chapter 5 can be used as the first step to clarify the nature of a challenge and avoid the mismatches between problems and solutions that are frequently at the root of chronic, recurring problems.

Organizing and charting a team’s progress can be important in ensuring its success. SQUID (Sequential Question and Insight Diagram) is a great model that allows a team to effectively switch between giving questions and answers and develop the skills they need to stay on track throughout the process. 

Begin with two different colored sticky notes – one for questions and one for answers – and with your central topic (the head of the squid) on the board. Ask the group to first come up with a series of questions connected to their best guess of how to approach the topic. Ask the group to come up with answers to those questions, fix them to the board and connect them with a line. After some discussion, go back to question mode by responding to the generated answers or other points on the board.

It’s rewarding to see a diagram grow throughout the exercise, and a completed SQUID can provide a visual resource for future effort and as an example for other teams.

SQUID   #gamestorming   #project planning   #issue analysis   #problem solving   When exploring an information space, it’s important for a group to know where they are at any given time. By using SQUID, a group charts out the territory as they go and can navigate accordingly. SQUID stands for Sequential Question and Insight Diagram.

16. Speed Boat

To continue with our nautical theme, Speed Boat is a short and sweet activity that can help a team quickly identify what employees, clients or service users might have a problem with and analyze what might be standing in the way of achieving a solution.

Methods that allow for a group to make observations, have insights and obtain those eureka moments quickly are invaluable when trying to solve complex problems.

In Speed Boat, the approach is to first consider what anchors and challenges might be holding an organization (or boat) back. Bonus points if you are able to identify any sharks in the water and develop ideas that can also deal with competitors!   

Speed Boat   #gamestorming   #problem solving   #action   Speedboat is a short and sweet way to identify what your employees or clients don’t like about your product/service or what’s standing in the way of a desired goal.

17. The Journalistic Six

Some of the most effective ways of solving problems is by encouraging teams to be more inclusive and diverse in their thinking.

Based on the six key questions journalism students are taught to answer in articles and news stories, The Journalistic Six helps create teams to see the whole picture. By using who, what, when, where, why, and how to facilitate the conversation and encourage creative thinking, your team can make sure that the problem identification and problem analysis stages of the are covered exhaustively and thoughtfully. Reporter’s notebook and dictaphone optional.

The Journalistic Six – Who What When Where Why How   #idea generation   #issue analysis   #problem solving   #online   #creative thinking   #remote-friendly   A questioning method for generating, explaining, investigating ideas.

18. LEGO Challenge

Now for an activity that is a little out of the (toy) box. LEGO Serious Play is a facilitation methodology that can be used to improve creative thinking and problem-solving skills. 

The LEGO Challenge includes giving each member of the team an assignment that is hidden from the rest of the group while they create a structure without speaking.

What the LEGO challenge brings to the table is a fun working example of working with stakeholders who might not be on the same page to solve problems. Also, it’s LEGO! Who doesn’t love LEGO! 

LEGO Challenge   #hyperisland   #team   A team-building activity in which groups must work together to build a structure out of LEGO, but each individual has a secret “assignment” which makes the collaborative process more challenging. It emphasizes group communication, leadership dynamics, conflict, cooperation, patience and problem solving strategy.

19. What, So What, Now What?

If not carefully managed, the problem identification and problem analysis stages of the problem-solving process can actually create more problems and misunderstandings.

The What, So What, Now What? problem-solving activity is designed to help collect insights and move forward while also eliminating the possibility of disagreement when it comes to identifying, clarifying, and analyzing organizational or work problems. 

Facilitation is all about bringing groups together so that might work on a shared goal and the best problem-solving strategies ensure that teams are aligned in purpose, if not initially in opinion or insight.

Throughout the three steps of this game, you give everyone on a team to reflect on a problem by asking what happened, why it is important, and what actions should then be taken. 

This can be a great activity for bringing our individual perceptions about a problem or challenge and contextualizing it in a larger group setting. This is one of the most important problem-solving skills you can bring to your organization.

W³ – What, So What, Now What?   #issue analysis   #innovation   #liberating structures   You can help groups reflect on a shared experience in a way that builds understanding and spurs coordinated action while avoiding unproductive conflict. It is possible for every voice to be heard while simultaneously sifting for insights and shaping new direction. Progressing in stages makes this practical—from collecting facts about What Happened to making sense of these facts with So What and finally to what actions logically follow with Now What . The shared progression eliminates most of the misunderstandings that otherwise fuel disagreements about what to do. Voila!

20. Journalists  

Problem analysis can be one of the most important and decisive stages of all problem-solving tools. Sometimes, a team can become bogged down in the details and are unable to move forward.

Journalists is an activity that can avoid a group from getting stuck in the problem identification or problem analysis stages of the process.

In Journalists, the group is invited to draft the front page of a fictional newspaper and figure out what stories deserve to be on the cover and what headlines those stories will have. By reframing how your problems and challenges are approached, you can help a team move productively through the process and be better prepared for the steps to follow.

Journalists   #vision   #big picture   #issue analysis   #remote-friendly   This is an exercise to use when the group gets stuck in details and struggles to see the big picture. Also good for defining a vision.

Problem-solving techniques for developing solutions 

The success of any problem-solving process can be measured by the solutions it produces. After you’ve defined the issue, explored existing ideas, and ideated, it’s time to narrow down to the correct solution.

Use these problem-solving techniques when you want to help your team find consensus, compare possible solutions, and move towards taking action on a particular problem.

  • Improved Solutions
  • Four-Step Sketch
  • 15% Solutions
  • How-Now-Wow matrix
  • Impact Effort Matrix

21. Mindspin  

Brainstorming is part of the bread and butter of the problem-solving process and all problem-solving strategies benefit from getting ideas out and challenging a team to generate solutions quickly. 

With Mindspin, participants are encouraged not only to generate ideas but to do so under time constraints and by slamming down cards and passing them on. By doing multiple rounds, your team can begin with a free generation of possible solutions before moving on to developing those solutions and encouraging further ideation. 

This is one of our favorite problem-solving activities and can be great for keeping the energy up throughout the workshop. Remember the importance of helping people become engaged in the process – energizing problem-solving techniques like Mindspin can help ensure your team stays engaged and happy, even when the problems they’re coming together to solve are complex. 

MindSpin   #teampedia   #idea generation   #problem solving   #action   A fast and loud method to enhance brainstorming within a team. Since this activity has more than round ideas that are repetitive can be ruled out leaving more creative and innovative answers to the challenge.

22. Improved Solutions

After a team has successfully identified a problem and come up with a few solutions, it can be tempting to call the work of the problem-solving process complete. That said, the first solution is not necessarily the best, and by including a further review and reflection activity into your problem-solving model, you can ensure your group reaches the best possible result. 

One of a number of problem-solving games from Thiagi Group, Improved Solutions helps you go the extra mile and develop suggested solutions with close consideration and peer review. By supporting the discussion of several problems at once and by shifting team roles throughout, this problem-solving technique is a dynamic way of finding the best solution. 

Improved Solutions   #creativity   #thiagi   #problem solving   #action   #team   You can improve any solution by objectively reviewing its strengths and weaknesses and making suitable adjustments. In this creativity framegame, you improve the solutions to several problems. To maintain objective detachment, you deal with a different problem during each of six rounds and assume different roles (problem owner, consultant, basher, booster, enhancer, and evaluator) during each round. At the conclusion of the activity, each player ends up with two solutions to her problem.

23. Four Step Sketch

Creative thinking and visual ideation does not need to be confined to the opening stages of your problem-solving strategies. Exercises that include sketching and prototyping on paper can be effective at the solution finding and development stage of the process, and can be great for keeping a team engaged. 

By going from simple notes to a crazy 8s round that involves rapidly sketching 8 variations on their ideas before then producing a final solution sketch, the group is able to iterate quickly and visually. Problem-solving techniques like Four-Step Sketch are great if you have a group of different thinkers and want to change things up from a more textual or discussion-based approach.

Four-Step Sketch   #design sprint   #innovation   #idea generation   #remote-friendly   The four-step sketch is an exercise that helps people to create well-formed concepts through a structured process that includes: Review key information Start design work on paper,  Consider multiple variations , Create a detailed solution . This exercise is preceded by a set of other activities allowing the group to clarify the challenge they want to solve. See how the Four Step Sketch exercise fits into a Design Sprint

24. 15% Solutions

Some problems are simpler than others and with the right problem-solving activities, you can empower people to take immediate actions that can help create organizational change. 

Part of the liberating structures toolkit, 15% solutions is a problem-solving technique that focuses on finding and implementing solutions quickly. A process of iterating and making small changes quickly can help generate momentum and an appetite for solving complex problems.

Problem-solving strategies can live and die on whether people are onboard. Getting some quick wins is a great way of getting people behind the process.   

It can be extremely empowering for a team to realize that problem-solving techniques can be deployed quickly and easily and delineate between things they can positively impact and those things they cannot change. 

15% Solutions   #action   #liberating structures   #remote-friendly   You can reveal the actions, however small, that everyone can do immediately. At a minimum, these will create momentum, and that may make a BIG difference.  15% Solutions show that there is no reason to wait around, feel powerless, or fearful. They help people pick it up a level. They get individuals and the group to focus on what is within their discretion instead of what they cannot change.  With a very simple question, you can flip the conversation to what can be done and find solutions to big problems that are often distributed widely in places not known in advance. Shifting a few grains of sand may trigger a landslide and change the whole landscape.

25. How-Now-Wow Matrix

The problem-solving process is often creative, as complex problems usually require a change of thinking and creative response in order to find the best solutions. While it’s common for the first stages to encourage creative thinking, groups can often gravitate to familiar solutions when it comes to the end of the process. 

When selecting solutions, you don’t want to lose your creative energy! The How-Now-Wow Matrix from Gamestorming is a great problem-solving activity that enables a group to stay creative and think out of the box when it comes to selecting the right solution for a given problem.

Problem-solving techniques that encourage creative thinking and the ideation and selection of new solutions can be the most effective in organisational change. Give the How-Now-Wow Matrix a go, and not just for how pleasant it is to say out loud. 

How-Now-Wow Matrix   #gamestorming   #idea generation   #remote-friendly   When people want to develop new ideas, they most often think out of the box in the brainstorming or divergent phase. However, when it comes to convergence, people often end up picking ideas that are most familiar to them. This is called a ‘creative paradox’ or a ‘creadox’. The How-Now-Wow matrix is an idea selection tool that breaks the creadox by forcing people to weigh each idea on 2 parameters.

26. Impact and Effort Matrix

All problem-solving techniques hope to not only find solutions to a given problem or challenge but to find the best solution. When it comes to finding a solution, groups are invited to put on their decision-making hats and really think about how a proposed idea would work in practice. 

The Impact and Effort Matrix is one of the problem-solving techniques that fall into this camp, empowering participants to first generate ideas and then categorize them into a 2×2 matrix based on impact and effort.

Activities that invite critical thinking while remaining simple are invaluable. Use the Impact and Effort Matrix to move from ideation and towards evaluating potential solutions before then committing to them. 

Impact and Effort Matrix   #gamestorming   #decision making   #action   #remote-friendly   In this decision-making exercise, possible actions are mapped based on two factors: effort required to implement and potential impact. Categorizing ideas along these lines is a useful technique in decision making, as it obliges contributors to balance and evaluate suggested actions before committing to them.

27. Dotmocracy

If you’ve followed each of the problem-solving steps with your group successfully, you should move towards the end of your process with heaps of possible solutions developed with a specific problem in mind. But how do you help a group go from ideation to putting a solution into action? 

Dotmocracy – or Dot Voting -is a tried and tested method of helping a team in the problem-solving process make decisions and put actions in place with a degree of oversight and consensus. 

One of the problem-solving techniques that should be in every facilitator’s toolbox, Dot Voting is fast and effective and can help identify the most popular and best solutions and help bring a group to a decision effectively. 

Dotmocracy   #action   #decision making   #group prioritization   #hyperisland   #remote-friendly   Dotmocracy is a simple method for group prioritization or decision-making. It is not an activity on its own, but a method to use in processes where prioritization or decision-making is the aim. The method supports a group to quickly see which options are most popular or relevant. The options or ideas are written on post-its and stuck up on a wall for the whole group to see. Each person votes for the options they think are the strongest, and that information is used to inform a decision.

All facilitators know that warm-ups and icebreakers are useful for any workshop or group process. Problem-solving workshops are no different.

Use these problem-solving techniques to warm up a group and prepare them for the rest of the process. Activating your group by tapping into some of the top problem-solving skills can be one of the best ways to see great outcomes from your session.

  • Check-in/Check-out
  • Doodling Together
  • Show and Tell
  • Constellations
  • Draw a Tree

28. Check-in / Check-out

Solid processes are planned from beginning to end, and the best facilitators know that setting the tone and establishing a safe, open environment can be integral to a successful problem-solving process.

Check-in / Check-out is a great way to begin and/or bookend a problem-solving workshop. Checking in to a session emphasizes that everyone will be seen, heard, and expected to contribute. 

If you are running a series of meetings, setting a consistent pattern of checking in and checking out can really help your team get into a groove. We recommend this opening-closing activity for small to medium-sized groups though it can work with large groups if they’re disciplined!

Check-in / Check-out   #team   #opening   #closing   #hyperisland   #remote-friendly   Either checking-in or checking-out is a simple way for a team to open or close a process, symbolically and in a collaborative way. Checking-in/out invites each member in a group to be present, seen and heard, and to express a reflection or a feeling. Checking-in emphasizes presence, focus and group commitment; checking-out emphasizes reflection and symbolic closure.

29. Doodling Together  

Thinking creatively and not being afraid to make suggestions are important problem-solving skills for any group or team, and warming up by encouraging these behaviors is a great way to start. 

Doodling Together is one of our favorite creative ice breaker games – it’s quick, effective, and fun and can make all following problem-solving steps easier by encouraging a group to collaborate visually. By passing cards and adding additional items as they go, the workshop group gets into a groove of co-creation and idea development that is crucial to finding solutions to problems. 

Doodling Together   #collaboration   #creativity   #teamwork   #fun   #team   #visual methods   #energiser   #icebreaker   #remote-friendly   Create wild, weird and often funny postcards together & establish a group’s creative confidence.

30. Show and Tell

You might remember some version of Show and Tell from being a kid in school and it’s a great problem-solving activity to kick off a session.

Asking participants to prepare a little something before a workshop by bringing an object for show and tell can help them warm up before the session has even begun! Games that include a physical object can also help encourage early engagement before moving onto more big-picture thinking.

By asking your participants to tell stories about why they chose to bring a particular item to the group, you can help teams see things from new perspectives and see both differences and similarities in the way they approach a topic. Great groundwork for approaching a problem-solving process as a team! 

Show and Tell   #gamestorming   #action   #opening   #meeting facilitation   Show and Tell taps into the power of metaphors to reveal players’ underlying assumptions and associations around a topic The aim of the game is to get a deeper understanding of stakeholders’ perspectives on anything—a new project, an organizational restructuring, a shift in the company’s vision or team dynamic.

31. Constellations

Who doesn’t love stars? Constellations is a great warm-up activity for any workshop as it gets people up off their feet, energized, and ready to engage in new ways with established topics. It’s also great for showing existing beliefs, biases, and patterns that can come into play as part of your session.

Using warm-up games that help build trust and connection while also allowing for non-verbal responses can be great for easing people into the problem-solving process and encouraging engagement from everyone in the group. Constellations is great in large spaces that allow for movement and is definitely a practical exercise to allow the group to see patterns that are otherwise invisible. 

Constellations   #trust   #connection   #opening   #coaching   #patterns   #system   Individuals express their response to a statement or idea by standing closer or further from a central object. Used with teams to reveal system, hidden patterns, perspectives.

32. Draw a Tree

Problem-solving games that help raise group awareness through a central, unifying metaphor can be effective ways to warm-up a group in any problem-solving model.

Draw a Tree is a simple warm-up activity you can use in any group and which can provide a quick jolt of energy. Start by asking your participants to draw a tree in just 45 seconds – they can choose whether it will be abstract or realistic. 

Once the timer is up, ask the group how many people included the roots of the tree and use this as a means to discuss how we can ignore important parts of any system simply because they are not visible.

All problem-solving strategies are made more effective by thinking of problems critically and by exposing things that may not normally come to light. Warm-up games like Draw a Tree are great in that they quickly demonstrate some key problem-solving skills in an accessible and effective way.

Draw a Tree   #thiagi   #opening   #perspectives   #remote-friendly   With this game you can raise awarness about being more mindful, and aware of the environment we live in.

Each step of the problem-solving workshop benefits from an intelligent deployment of activities, games, and techniques. Bringing your session to an effective close helps ensure that solutions are followed through on and that you also celebrate what has been achieved.

Here are some problem-solving activities you can use to effectively close a workshop or meeting and ensure the great work you’ve done can continue afterward.

  • One Breath Feedback
  • Who What When Matrix
  • Response Cards

How do I conclude a problem-solving process?

All good things must come to an end. With the bulk of the work done, it can be tempting to conclude your workshop swiftly and without a moment to debrief and align. This can be problematic in that it doesn’t allow your team to fully process the results or reflect on the process.

At the end of an effective session, your team will have gone through a process that, while productive, can be exhausting. It’s important to give your group a moment to take a breath, ensure that they are clear on future actions, and provide short feedback before leaving the space. 

The primary purpose of any problem-solving method is to generate solutions and then implement them. Be sure to take the opportunity to ensure everyone is aligned and ready to effectively implement the solutions you produced in the workshop.

Remember that every process can be improved and by giving a short moment to collect feedback in the session, you can further refine your problem-solving methods and see further success in the future too.

33. One Breath Feedback

Maintaining attention and focus during the closing stages of a problem-solving workshop can be tricky and so being concise when giving feedback can be important. It’s easy to incur “death by feedback” should some team members go on for too long sharing their perspectives in a quick feedback round. 

One Breath Feedback is a great closing activity for workshops. You give everyone an opportunity to provide feedback on what they’ve done but only in the space of a single breath. This keeps feedback short and to the point and means that everyone is encouraged to provide the most important piece of feedback to them. 

One breath feedback   #closing   #feedback   #action   This is a feedback round in just one breath that excels in maintaining attention: each participants is able to speak during just one breath … for most people that’s around 20 to 25 seconds … unless of course you’ve been a deep sea diver in which case you’ll be able to do it for longer.

34. Who What When Matrix 

Matrices feature as part of many effective problem-solving strategies and with good reason. They are easily recognizable, simple to use, and generate results.

The Who What When Matrix is a great tool to use when closing your problem-solving session by attributing a who, what and when to the actions and solutions you have decided upon. The resulting matrix is a simple, easy-to-follow way of ensuring your team can move forward. 

Great solutions can’t be enacted without action and ownership. Your problem-solving process should include a stage for allocating tasks to individuals or teams and creating a realistic timeframe for those solutions to be implemented or checked out. Use this method to keep the solution implementation process clear and simple for all involved. 

Who/What/When Matrix   #gamestorming   #action   #project planning   With Who/What/When matrix, you can connect people with clear actions they have defined and have committed to.

35. Response cards

Group discussion can comprise the bulk of most problem-solving activities and by the end of the process, you might find that your team is talked out! 

Providing a means for your team to give feedback with short written notes can ensure everyone is head and can contribute without the need to stand up and talk. Depending on the needs of the group, giving an alternative can help ensure everyone can contribute to your problem-solving model in the way that makes the most sense for them.

Response Cards is a great way to close a workshop if you are looking for a gentle warm-down and want to get some swift discussion around some of the feedback that is raised. 

Response Cards   #debriefing   #closing   #structured sharing   #questions and answers   #thiagi   #action   It can be hard to involve everyone during a closing of a session. Some might stay in the background or get unheard because of louder participants. However, with the use of Response Cards, everyone will be involved in providing feedback or clarify questions at the end of a session.

Save time and effort discovering the right solutions

A structured problem solving process is a surefire way of solving tough problems, discovering creative solutions and driving organizational change. But how can you design for successful outcomes?

With SessionLab, it’s easy to design engaging workshops that deliver results. Drag, drop and reorder blocks  to build your agenda. When you make changes or update your agenda, your session  timing   adjusts automatically , saving you time on manual adjustments.

Collaborating with stakeholders or clients? Share your agenda with a single click and collaborate in real-time. No more sending documents back and forth over email.

Explore  how to use SessionLab  to design effective problem solving workshops or  watch this five minute video  to see the planner in action!

article on problem solving

Over to you

The problem-solving process can often be as complicated and multifaceted as the problems they are set-up to solve. With the right problem-solving techniques and a mix of creative exercises designed to guide discussion and generate purposeful ideas, we hope we’ve given you the tools to find the best solutions as simply and easily as possible.

Is there a problem-solving technique that you are missing here? Do you have a favorite activity or method you use when facilitating? Let us know in the comments below, we’d love to hear from you! 

' src=

thank you very much for these excellent techniques

' src=

Certainly wonderful article, very detailed. Shared!

' src=

Your list of techniques for problem solving can be helpfully extended by adding TRIZ to the list of techniques. TRIZ has 40 problem solving techniques derived from methods inventros and patent holders used to get new patents. About 10-12 are general approaches. many organization sponsor classes in TRIZ that are used to solve business problems or general organiztational problems. You can take a look at TRIZ and dwonload a free internet booklet to see if you feel it shound be included per your selection process.

Leave a Comment Cancel reply

Your email address will not be published. Required fields are marked *

cycle of workshop planning steps

Going from a mere idea to a workshop that delivers results for your clients can feel like a daunting task. In this piece, we will shine a light on all the work behind the scenes and help you learn how to plan a workshop from start to finish. On a good day, facilitation can feel like effortless magic, but that is mostly the result of backstage work, foresight, and a lot of careful planning. Read on to learn a step-by-step approach to breaking the process of planning a workshop into small, manageable chunks.  The flow starts with the first meeting with a client to define the purposes of a workshop.…

article on problem solving

How does learning work? A clever 9-year-old once told me: “I know I am learning something new when I am surprised.” The science of adult learning tells us that, in order to learn new skills (which, unsurprisingly, is harder for adults to do than kids) grown-ups need to first get into a specific headspace.  In a business, this approach is often employed in a training session where employees learn new skills or work on professional development. But how do you ensure your training is effective? In this guide, we'll explore how to create an effective training session plan and run engaging training sessions. As team leader, project manager, or consultant,…

article on problem solving

Effective online tools are a necessity for smooth and engaging virtual workshops and meetings. But how do you choose the right ones? Do you sometimes feel that the good old pen and paper or MS Office toolkit and email leaves you struggling to stay on top of managing and delivering your workshop? Fortunately, there are plenty of online tools to make your life easier when you need to facilitate a meeting and lead workshops. In this post, we’ll share our favorite online tools you can use to make your job as a facilitator easier. In fact, there are plenty of free online workshop tools and meeting facilitation software you can…

Design your next workshop with SessionLab

Join the 150,000 facilitators using SessionLab

Sign up for free

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • My Account Login
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • Review Article
  • Open access
  • Published: 11 January 2023

The effectiveness of collaborative problem solving in promoting students’ critical thinking: A meta-analysis based on empirical literature

  • Enwei Xu   ORCID: orcid.org/0000-0001-6424-8169 1 ,
  • Wei Wang 1 &
  • Qingxia Wang 1  

Humanities and Social Sciences Communications volume  10 , Article number:  16 ( 2023 ) Cite this article

15k Accesses

15 Citations

3 Altmetric

Metrics details

  • Science, technology and society

Collaborative problem-solving has been widely embraced in the classroom instruction of critical thinking, which is regarded as the core of curriculum reform based on key competencies in the field of education as well as a key competence for learners in the 21st century. However, the effectiveness of collaborative problem-solving in promoting students’ critical thinking remains uncertain. This current research presents the major findings of a meta-analysis of 36 pieces of the literature revealed in worldwide educational periodicals during the 21st century to identify the effectiveness of collaborative problem-solving in promoting students’ critical thinking and to determine, based on evidence, whether and to what extent collaborative problem solving can result in a rise or decrease in critical thinking. The findings show that (1) collaborative problem solving is an effective teaching approach to foster students’ critical thinking, with a significant overall effect size (ES = 0.82, z  = 12.78, P  < 0.01, 95% CI [0.69, 0.95]); (2) in respect to the dimensions of critical thinking, collaborative problem solving can significantly and successfully enhance students’ attitudinal tendencies (ES = 1.17, z  = 7.62, P  < 0.01, 95% CI[0.87, 1.47]); nevertheless, it falls short in terms of improving students’ cognitive skills, having only an upper-middle impact (ES = 0.70, z  = 11.55, P  < 0.01, 95% CI[0.58, 0.82]); and (3) the teaching type (chi 2  = 7.20, P  < 0.05), intervention duration (chi 2  = 12.18, P  < 0.01), subject area (chi 2  = 13.36, P  < 0.05), group size (chi 2  = 8.77, P  < 0.05), and learning scaffold (chi 2  = 9.03, P  < 0.01) all have an impact on critical thinking, and they can be viewed as important moderating factors that affect how critical thinking develops. On the basis of these results, recommendations are made for further study and instruction to better support students’ critical thinking in the context of collaborative problem-solving.

Similar content being viewed by others

article on problem solving

Fostering twenty-first century skills among primary school students through math project-based learning

article on problem solving

A meta-analysis to gauge the impact of pedagogies employed in mixed-ability high school biology classrooms

article on problem solving

A guide to critical thinking: implications for dental education

Introduction.

Although critical thinking has a long history in research, the concept of critical thinking, which is regarded as an essential competence for learners in the 21st century, has recently attracted more attention from researchers and teaching practitioners (National Research Council, 2012 ). Critical thinking should be the core of curriculum reform based on key competencies in the field of education (Peng and Deng, 2017 ) because students with critical thinking can not only understand the meaning of knowledge but also effectively solve practical problems in real life even after knowledge is forgotten (Kek and Huijser, 2011 ). The definition of critical thinking is not universal (Ennis, 1989 ; Castle, 2009 ; Niu et al., 2013 ). In general, the definition of critical thinking is a self-aware and self-regulated thought process (Facione, 1990 ; Niu et al., 2013 ). It refers to the cognitive skills needed to interpret, analyze, synthesize, reason, and evaluate information as well as the attitudinal tendency to apply these abilities (Halpern, 2001 ). The view that critical thinking can be taught and learned through curriculum teaching has been widely supported by many researchers (e.g., Kuncel, 2011 ; Leng and Lu, 2020 ), leading to educators’ efforts to foster it among students. In the field of teaching practice, there are three types of courses for teaching critical thinking (Ennis, 1989 ). The first is an independent curriculum in which critical thinking is taught and cultivated without involving the knowledge of specific disciplines; the second is an integrated curriculum in which critical thinking is integrated into the teaching of other disciplines as a clear teaching goal; and the third is a mixed curriculum in which critical thinking is taught in parallel to the teaching of other disciplines for mixed teaching training. Furthermore, numerous measuring tools have been developed by researchers and educators to measure critical thinking in the context of teaching practice. These include standardized measurement tools, such as WGCTA, CCTST, CCTT, and CCTDI, which have been verified by repeated experiments and are considered effective and reliable by international scholars (Facione and Facione, 1992 ). In short, descriptions of critical thinking, including its two dimensions of attitudinal tendency and cognitive skills, different types of teaching courses, and standardized measurement tools provide a complex normative framework for understanding, teaching, and evaluating critical thinking.

Cultivating critical thinking in curriculum teaching can start with a problem, and one of the most popular critical thinking instructional approaches is problem-based learning (Liu et al., 2020 ). Duch et al. ( 2001 ) noted that problem-based learning in group collaboration is progressive active learning, which can improve students’ critical thinking and problem-solving skills. Collaborative problem-solving is the organic integration of collaborative learning and problem-based learning, which takes learners as the center of the learning process and uses problems with poor structure in real-world situations as the starting point for the learning process (Liang et al., 2017 ). Students learn the knowledge needed to solve problems in a collaborative group, reach a consensus on problems in the field, and form solutions through social cooperation methods, such as dialogue, interpretation, questioning, debate, negotiation, and reflection, thus promoting the development of learners’ domain knowledge and critical thinking (Cindy, 2004 ; Liang et al., 2017 ).

Collaborative problem-solving has been widely used in the teaching practice of critical thinking, and several studies have attempted to conduct a systematic review and meta-analysis of the empirical literature on critical thinking from various perspectives. However, little attention has been paid to the impact of collaborative problem-solving on critical thinking. Therefore, the best approach for developing and enhancing critical thinking throughout collaborative problem-solving is to examine how to implement critical thinking instruction; however, this issue is still unexplored, which means that many teachers are incapable of better instructing critical thinking (Leng and Lu, 2020 ; Niu et al., 2013 ). For example, Huber ( 2016 ) provided the meta-analysis findings of 71 publications on gaining critical thinking over various time frames in college with the aim of determining whether critical thinking was truly teachable. These authors found that learners significantly improve their critical thinking while in college and that critical thinking differs with factors such as teaching strategies, intervention duration, subject area, and teaching type. The usefulness of collaborative problem-solving in fostering students’ critical thinking, however, was not determined by this study, nor did it reveal whether there existed significant variations among the different elements. A meta-analysis of 31 pieces of educational literature was conducted by Liu et al. ( 2020 ) to assess the impact of problem-solving on college students’ critical thinking. These authors found that problem-solving could promote the development of critical thinking among college students and proposed establishing a reasonable group structure for problem-solving in a follow-up study to improve students’ critical thinking. Additionally, previous empirical studies have reached inconclusive and even contradictory conclusions about whether and to what extent collaborative problem-solving increases or decreases critical thinking levels. As an illustration, Yang et al. ( 2008 ) carried out an experiment on the integrated curriculum teaching of college students based on a web bulletin board with the goal of fostering participants’ critical thinking in the context of collaborative problem-solving. These authors’ research revealed that through sharing, debating, examining, and reflecting on various experiences and ideas, collaborative problem-solving can considerably enhance students’ critical thinking in real-life problem situations. In contrast, collaborative problem-solving had a positive impact on learners’ interaction and could improve learning interest and motivation but could not significantly improve students’ critical thinking when compared to traditional classroom teaching, according to research by Naber and Wyatt ( 2014 ) and Sendag and Odabasi ( 2009 ) on undergraduate and high school students, respectively.

The above studies show that there is inconsistency regarding the effectiveness of collaborative problem-solving in promoting students’ critical thinking. Therefore, it is essential to conduct a thorough and trustworthy review to detect and decide whether and to what degree collaborative problem-solving can result in a rise or decrease in critical thinking. Meta-analysis is a quantitative analysis approach that is utilized to examine quantitative data from various separate studies that are all focused on the same research topic. This approach characterizes the effectiveness of its impact by averaging the effect sizes of numerous qualitative studies in an effort to reduce the uncertainty brought on by independent research and produce more conclusive findings (Lipsey and Wilson, 2001 ).

This paper used a meta-analytic approach and carried out a meta-analysis to examine the effectiveness of collaborative problem-solving in promoting students’ critical thinking in order to make a contribution to both research and practice. The following research questions were addressed by this meta-analysis:

What is the overall effect size of collaborative problem-solving in promoting students’ critical thinking and its impact on the two dimensions of critical thinking (i.e., attitudinal tendency and cognitive skills)?

How are the disparities between the study conclusions impacted by various moderating variables if the impacts of various experimental designs in the included studies are heterogeneous?

This research followed the strict procedures (e.g., database searching, identification, screening, eligibility, merging, duplicate removal, and analysis of included studies) of Cooper’s ( 2010 ) proposed meta-analysis approach for examining quantitative data from various separate studies that are all focused on the same research topic. The relevant empirical research that appeared in worldwide educational periodicals within the 21st century was subjected to this meta-analysis using Rev-Man 5.4. The consistency of the data extracted separately by two researchers was tested using Cohen’s kappa coefficient, and a publication bias test and a heterogeneity test were run on the sample data to ascertain the quality of this meta-analysis.

Data sources and search strategies

There were three stages to the data collection process for this meta-analysis, as shown in Fig. 1 , which shows the number of articles included and eliminated during the selection process based on the statement and study eligibility criteria.

figure 1

This flowchart shows the number of records identified, included and excluded in the article.

First, the databases used to systematically search for relevant articles were the journal papers of the Web of Science Core Collection and the Chinese Core source journal, as well as the Chinese Social Science Citation Index (CSSCI) source journal papers included in CNKI. These databases were selected because they are credible platforms that are sources of scholarly and peer-reviewed information with advanced search tools and contain literature relevant to the subject of our topic from reliable researchers and experts. The search string with the Boolean operator used in the Web of Science was “TS = (((“critical thinking” or “ct” and “pretest” or “posttest”) or (“critical thinking” or “ct” and “control group” or “quasi experiment” or “experiment”)) and (“collaboration” or “collaborative learning” or “CSCL”) and (“problem solving” or “problem-based learning” or “PBL”))”. The research area was “Education Educational Research”, and the search period was “January 1, 2000, to December 30, 2021”. A total of 412 papers were obtained. The search string with the Boolean operator used in the CNKI was “SU = (‘critical thinking’*‘collaboration’ + ‘critical thinking’*‘collaborative learning’ + ‘critical thinking’*‘CSCL’ + ‘critical thinking’*‘problem solving’ + ‘critical thinking’*‘problem-based learning’ + ‘critical thinking’*‘PBL’ + ‘critical thinking’*‘problem oriented’) AND FT = (‘experiment’ + ‘quasi experiment’ + ‘pretest’ + ‘posttest’ + ‘empirical study’)” (translated into Chinese when searching). A total of 56 studies were found throughout the search period of “January 2000 to December 2021”. From the databases, all duplicates and retractions were eliminated before exporting the references into Endnote, a program for managing bibliographic references. In all, 466 studies were found.

Second, the studies that matched the inclusion and exclusion criteria for the meta-analysis were chosen by two researchers after they had reviewed the abstracts and titles of the gathered articles, yielding a total of 126 studies.

Third, two researchers thoroughly reviewed each included article’s whole text in accordance with the inclusion and exclusion criteria. Meanwhile, a snowball search was performed using the references and citations of the included articles to ensure complete coverage of the articles. Ultimately, 36 articles were kept.

Two researchers worked together to carry out this entire process, and a consensus rate of almost 94.7% was reached after discussion and negotiation to clarify any emerging differences.

Eligibility criteria

Since not all the retrieved studies matched the criteria for this meta-analysis, eligibility criteria for both inclusion and exclusion were developed as follows:

The publication language of the included studies was limited to English and Chinese, and the full text could be obtained. Articles that did not meet the publication language and articles not published between 2000 and 2021 were excluded.

The research design of the included studies must be empirical and quantitative studies that can assess the effect of collaborative problem-solving on the development of critical thinking. Articles that could not identify the causal mechanisms by which collaborative problem-solving affects critical thinking, such as review articles and theoretical articles, were excluded.

The research method of the included studies must feature a randomized control experiment or a quasi-experiment, or a natural experiment, which have a higher degree of internal validity with strong experimental designs and can all plausibly provide evidence that critical thinking and collaborative problem-solving are causally related. Articles with non-experimental research methods, such as purely correlational or observational studies, were excluded.

The participants of the included studies were only students in school, including K-12 students and college students. Articles in which the participants were non-school students, such as social workers or adult learners, were excluded.

The research results of the included studies must mention definite signs that may be utilized to gauge critical thinking’s impact (e.g., sample size, mean value, or standard deviation). Articles that lacked specific measurement indicators for critical thinking and could not calculate the effect size were excluded.

Data coding design

In order to perform a meta-analysis, it is necessary to collect the most important information from the articles, codify that information’s properties, and convert descriptive data into quantitative data. Therefore, this study designed a data coding template (see Table 1 ). Ultimately, 16 coding fields were retained.

The designed data-coding template consisted of three pieces of information. Basic information about the papers was included in the descriptive information: the publishing year, author, serial number, and title of the paper.

The variable information for the experimental design had three variables: the independent variable (instruction method), the dependent variable (critical thinking), and the moderating variable (learning stage, teaching type, intervention duration, learning scaffold, group size, measuring tool, and subject area). Depending on the topic of this study, the intervention strategy, as the independent variable, was coded into collaborative and non-collaborative problem-solving. The dependent variable, critical thinking, was coded as a cognitive skill and an attitudinal tendency. And seven moderating variables were created by grouping and combining the experimental design variables discovered within the 36 studies (see Table 1 ), where learning stages were encoded as higher education, high school, middle school, and primary school or lower; teaching types were encoded as mixed courses, integrated courses, and independent courses; intervention durations were encoded as 0–1 weeks, 1–4 weeks, 4–12 weeks, and more than 12 weeks; group sizes were encoded as 2–3 persons, 4–6 persons, 7–10 persons, and more than 10 persons; learning scaffolds were encoded as teacher-supported learning scaffold, technique-supported learning scaffold, and resource-supported learning scaffold; measuring tools were encoded as standardized measurement tools (e.g., WGCTA, CCTT, CCTST, and CCTDI) and self-adapting measurement tools (e.g., modified or made by researchers); and subject areas were encoded according to the specific subjects used in the 36 included studies.

The data information contained three metrics for measuring critical thinking: sample size, average value, and standard deviation. It is vital to remember that studies with various experimental designs frequently adopt various formulas to determine the effect size. And this paper used Morris’ proposed standardized mean difference (SMD) calculation formula ( 2008 , p. 369; see Supplementary Table S3 ).

Procedure for extracting and coding data

According to the data coding template (see Table 1 ), the 36 papers’ information was retrieved by two researchers, who then entered them into Excel (see Supplementary Table S1 ). The results of each study were extracted separately in the data extraction procedure if an article contained numerous studies on critical thinking, or if a study assessed different critical thinking dimensions. For instance, Tiwari et al. ( 2010 ) used four time points, which were viewed as numerous different studies, to examine the outcomes of critical thinking, and Chen ( 2013 ) included the two outcome variables of attitudinal tendency and cognitive skills, which were regarded as two studies. After discussion and negotiation during data extraction, the two researchers’ consistency test coefficients were roughly 93.27%. Supplementary Table S2 details the key characteristics of the 36 included articles with 79 effect quantities, including descriptive information (e.g., the publishing year, author, serial number, and title of the paper), variable information (e.g., independent variables, dependent variables, and moderating variables), and data information (e.g., mean values, standard deviations, and sample size). Following that, testing for publication bias and heterogeneity was done on the sample data using the Rev-Man 5.4 software, and then the test results were used to conduct a meta-analysis.

Publication bias test

When the sample of studies included in a meta-analysis does not accurately reflect the general status of research on the relevant subject, publication bias is said to be exhibited in this research. The reliability and accuracy of the meta-analysis may be impacted by publication bias. Due to this, the meta-analysis needs to check the sample data for publication bias (Stewart et al., 2006 ). A popular method to check for publication bias is the funnel plot; and it is unlikely that there will be publishing bias when the data are equally dispersed on either side of the average effect size and targeted within the higher region. The data are equally dispersed within the higher portion of the efficient zone, consistent with the funnel plot connected with this analysis (see Fig. 2 ), indicating that publication bias is unlikely in this situation.

figure 2

This funnel plot shows the result of publication bias of 79 effect quantities across 36 studies.

Heterogeneity test

To select the appropriate effect models for the meta-analysis, one might use the results of a heterogeneity test on the data effect sizes. In a meta-analysis, it is common practice to gauge the degree of data heterogeneity using the I 2 value, and I 2  ≥ 50% is typically understood to denote medium-high heterogeneity, which calls for the adoption of a random effect model; if not, a fixed effect model ought to be applied (Lipsey and Wilson, 2001 ). The findings of the heterogeneity test in this paper (see Table 2 ) revealed that I 2 was 86% and displayed significant heterogeneity ( P  < 0.01). To ensure accuracy and reliability, the overall effect size ought to be calculated utilizing the random effect model.

The analysis of the overall effect size

This meta-analysis utilized a random effect model to examine 79 effect quantities from 36 studies after eliminating heterogeneity. In accordance with Cohen’s criterion (Cohen, 1992 ), it is abundantly clear from the analysis results, which are shown in the forest plot of the overall effect (see Fig. 3 ), that the cumulative impact size of cooperative problem-solving is 0.82, which is statistically significant ( z  = 12.78, P  < 0.01, 95% CI [0.69, 0.95]), and can encourage learners to practice critical thinking.

figure 3

This forest plot shows the analysis result of the overall effect size across 36 studies.

In addition, this study examined two distinct dimensions of critical thinking to better understand the precise contributions that collaborative problem-solving makes to the growth of critical thinking. The findings (see Table 3 ) indicate that collaborative problem-solving improves cognitive skills (ES = 0.70) and attitudinal tendency (ES = 1.17), with significant intergroup differences (chi 2  = 7.95, P  < 0.01). Although collaborative problem-solving improves both dimensions of critical thinking, it is essential to point out that the improvements in students’ attitudinal tendency are much more pronounced and have a significant comprehensive effect (ES = 1.17, z  = 7.62, P  < 0.01, 95% CI [0.87, 1.47]), whereas gains in learners’ cognitive skill are slightly improved and are just above average. (ES = 0.70, z  = 11.55, P  < 0.01, 95% CI [0.58, 0.82]).

The analysis of moderator effect size

The whole forest plot’s 79 effect quantities underwent a two-tailed test, which revealed significant heterogeneity ( I 2  = 86%, z  = 12.78, P  < 0.01), indicating differences between various effect sizes that may have been influenced by moderating factors other than sampling error. Therefore, exploring possible moderating factors that might produce considerable heterogeneity was done using subgroup analysis, such as the learning stage, learning scaffold, teaching type, group size, duration of the intervention, measuring tool, and the subject area included in the 36 experimental designs, in order to further explore the key factors that influence critical thinking. The findings (see Table 4 ) indicate that various moderating factors have advantageous effects on critical thinking. In this situation, the subject area (chi 2  = 13.36, P  < 0.05), group size (chi 2  = 8.77, P  < 0.05), intervention duration (chi 2  = 12.18, P  < 0.01), learning scaffold (chi 2  = 9.03, P  < 0.01), and teaching type (chi 2  = 7.20, P  < 0.05) are all significant moderators that can be applied to support the cultivation of critical thinking. However, since the learning stage and the measuring tools did not significantly differ among intergroup (chi 2  = 3.15, P  = 0.21 > 0.05, and chi 2  = 0.08, P  = 0.78 > 0.05), we are unable to explain why these two factors are crucial in supporting the cultivation of critical thinking in the context of collaborative problem-solving. These are the precise outcomes, as follows:

Various learning stages influenced critical thinking positively, without significant intergroup differences (chi 2  = 3.15, P  = 0.21 > 0.05). High school was first on the list of effect sizes (ES = 1.36, P  < 0.01), then higher education (ES = 0.78, P  < 0.01), and middle school (ES = 0.73, P  < 0.01). These results show that, despite the learning stage’s beneficial influence on cultivating learners’ critical thinking, we are unable to explain why it is essential for cultivating critical thinking in the context of collaborative problem-solving.

Different teaching types had varying degrees of positive impact on critical thinking, with significant intergroup differences (chi 2  = 7.20, P  < 0.05). The effect size was ranked as follows: mixed courses (ES = 1.34, P  < 0.01), integrated courses (ES = 0.81, P  < 0.01), and independent courses (ES = 0.27, P  < 0.01). These results indicate that the most effective approach to cultivate critical thinking utilizing collaborative problem solving is through the teaching type of mixed courses.

Various intervention durations significantly improved critical thinking, and there were significant intergroup differences (chi 2  = 12.18, P  < 0.01). The effect sizes related to this variable showed a tendency to increase with longer intervention durations. The improvement in critical thinking reached a significant level (ES = 0.85, P  < 0.01) after more than 12 weeks of training. These findings indicate that the intervention duration and critical thinking’s impact are positively correlated, with a longer intervention duration having a greater effect.

Different learning scaffolds influenced critical thinking positively, with significant intergroup differences (chi 2  = 9.03, P  < 0.01). The resource-supported learning scaffold (ES = 0.69, P  < 0.01) acquired a medium-to-higher level of impact, the technique-supported learning scaffold (ES = 0.63, P  < 0.01) also attained a medium-to-higher level of impact, and the teacher-supported learning scaffold (ES = 0.92, P  < 0.01) displayed a high level of significant impact. These results show that the learning scaffold with teacher support has the greatest impact on cultivating critical thinking.

Various group sizes influenced critical thinking positively, and the intergroup differences were statistically significant (chi 2  = 8.77, P  < 0.05). Critical thinking showed a general declining trend with increasing group size. The overall effect size of 2–3 people in this situation was the biggest (ES = 0.99, P  < 0.01), and when the group size was greater than 7 people, the improvement in critical thinking was at the lower-middle level (ES < 0.5, P  < 0.01). These results show that the impact on critical thinking is positively connected with group size, and as group size grows, so does the overall impact.

Various measuring tools influenced critical thinking positively, with significant intergroup differences (chi 2  = 0.08, P  = 0.78 > 0.05). In this situation, the self-adapting measurement tools obtained an upper-medium level of effect (ES = 0.78), whereas the complete effect size of the standardized measurement tools was the largest, achieving a significant level of effect (ES = 0.84, P  < 0.01). These results show that, despite the beneficial influence of the measuring tool on cultivating critical thinking, we are unable to explain why it is crucial in fostering the growth of critical thinking by utilizing the approach of collaborative problem-solving.

Different subject areas had a greater impact on critical thinking, and the intergroup differences were statistically significant (chi 2  = 13.36, P  < 0.05). Mathematics had the greatest overall impact, achieving a significant level of effect (ES = 1.68, P  < 0.01), followed by science (ES = 1.25, P  < 0.01) and medical science (ES = 0.87, P  < 0.01), both of which also achieved a significant level of effect. Programming technology was the least effective (ES = 0.39, P  < 0.01), only having a medium-low degree of effect compared to education (ES = 0.72, P  < 0.01) and other fields (such as language, art, and social sciences) (ES = 0.58, P  < 0.01). These results suggest that scientific fields (e.g., mathematics, science) may be the most effective subject areas for cultivating critical thinking utilizing the approach of collaborative problem-solving.

The effectiveness of collaborative problem solving with regard to teaching critical thinking

According to this meta-analysis, using collaborative problem-solving as an intervention strategy in critical thinking teaching has a considerable amount of impact on cultivating learners’ critical thinking as a whole and has a favorable promotional effect on the two dimensions of critical thinking. According to certain studies, collaborative problem solving, the most frequently used critical thinking teaching strategy in curriculum instruction can considerably enhance students’ critical thinking (e.g., Liang et al., 2017 ; Liu et al., 2020 ; Cindy, 2004 ). This meta-analysis provides convergent data support for the above research views. Thus, the findings of this meta-analysis not only effectively address the first research query regarding the overall effect of cultivating critical thinking and its impact on the two dimensions of critical thinking (i.e., attitudinal tendency and cognitive skills) utilizing the approach of collaborative problem-solving, but also enhance our confidence in cultivating critical thinking by using collaborative problem-solving intervention approach in the context of classroom teaching.

Furthermore, the associated improvements in attitudinal tendency are much stronger, but the corresponding improvements in cognitive skill are only marginally better. According to certain studies, cognitive skill differs from the attitudinal tendency in classroom instruction; the cultivation and development of the former as a key ability is a process of gradual accumulation, while the latter as an attitude is affected by the context of the teaching situation (e.g., a novel and exciting teaching approach, challenging and rewarding tasks) (Halpern, 2001 ; Wei and Hong, 2022 ). Collaborative problem-solving as a teaching approach is exciting and interesting, as well as rewarding and challenging; because it takes the learners as the focus and examines problems with poor structure in real situations, and it can inspire students to fully realize their potential for problem-solving, which will significantly improve their attitudinal tendency toward solving problems (Liu et al., 2020 ). Similar to how collaborative problem-solving influences attitudinal tendency, attitudinal tendency impacts cognitive skill when attempting to solve a problem (Liu et al., 2020 ; Zhang et al., 2022 ), and stronger attitudinal tendencies are associated with improved learning achievement and cognitive ability in students (Sison, 2008 ; Zhang et al., 2022 ). It can be seen that the two specific dimensions of critical thinking as well as critical thinking as a whole are affected by collaborative problem-solving, and this study illuminates the nuanced links between cognitive skills and attitudinal tendencies with regard to these two dimensions of critical thinking. To fully develop students’ capacity for critical thinking, future empirical research should pay closer attention to cognitive skills.

The moderating effects of collaborative problem solving with regard to teaching critical thinking

In order to further explore the key factors that influence critical thinking, exploring possible moderating effects that might produce considerable heterogeneity was done using subgroup analysis. The findings show that the moderating factors, such as the teaching type, learning stage, group size, learning scaffold, duration of the intervention, measuring tool, and the subject area included in the 36 experimental designs, could all support the cultivation of collaborative problem-solving in critical thinking. Among them, the effect size differences between the learning stage and measuring tool are not significant, which does not explain why these two factors are crucial in supporting the cultivation of critical thinking utilizing the approach of collaborative problem-solving.

In terms of the learning stage, various learning stages influenced critical thinking positively without significant intergroup differences, indicating that we are unable to explain why it is crucial in fostering the growth of critical thinking.

Although high education accounts for 70.89% of all empirical studies performed by researchers, high school may be the appropriate learning stage to foster students’ critical thinking by utilizing the approach of collaborative problem-solving since it has the largest overall effect size. This phenomenon may be related to student’s cognitive development, which needs to be further studied in follow-up research.

With regard to teaching type, mixed course teaching may be the best teaching method to cultivate students’ critical thinking. Relevant studies have shown that in the actual teaching process if students are trained in thinking methods alone, the methods they learn are isolated and divorced from subject knowledge, which is not conducive to their transfer of thinking methods; therefore, if students’ thinking is trained only in subject teaching without systematic method training, it is challenging to apply to real-world circumstances (Ruggiero, 2012 ; Hu and Liu, 2015 ). Teaching critical thinking as mixed course teaching in parallel to other subject teachings can achieve the best effect on learners’ critical thinking, and explicit critical thinking instruction is more effective than less explicit critical thinking instruction (Bensley and Spero, 2014 ).

In terms of the intervention duration, with longer intervention times, the overall effect size shows an upward tendency. Thus, the intervention duration and critical thinking’s impact are positively correlated. Critical thinking, as a key competency for students in the 21st century, is difficult to get a meaningful improvement in a brief intervention duration. Instead, it could be developed over a lengthy period of time through consistent teaching and the progressive accumulation of knowledge (Halpern, 2001 ; Hu and Liu, 2015 ). Therefore, future empirical studies ought to take these restrictions into account throughout a longer period of critical thinking instruction.

With regard to group size, a group size of 2–3 persons has the highest effect size, and the comprehensive effect size decreases with increasing group size in general. This outcome is in line with some research findings; as an example, a group composed of two to four members is most appropriate for collaborative learning (Schellens and Valcke, 2006 ). However, the meta-analysis results also indicate that once the group size exceeds 7 people, small groups cannot produce better interaction and performance than large groups. This may be because the learning scaffolds of technique support, resource support, and teacher support improve the frequency and effectiveness of interaction among group members, and a collaborative group with more members may increase the diversity of views, which is helpful to cultivate critical thinking utilizing the approach of collaborative problem-solving.

With regard to the learning scaffold, the three different kinds of learning scaffolds can all enhance critical thinking. Among them, the teacher-supported learning scaffold has the largest overall effect size, demonstrating the interdependence of effective learning scaffolds and collaborative problem-solving. This outcome is in line with some research findings; as an example, a successful strategy is to encourage learners to collaborate, come up with solutions, and develop critical thinking skills by using learning scaffolds (Reiser, 2004 ; Xu et al., 2022 ); learning scaffolds can lower task complexity and unpleasant feelings while also enticing students to engage in learning activities (Wood et al., 2006 ); learning scaffolds are designed to assist students in using learning approaches more successfully to adapt the collaborative problem-solving process, and the teacher-supported learning scaffolds have the greatest influence on critical thinking in this process because they are more targeted, informative, and timely (Xu et al., 2022 ).

With respect to the measuring tool, despite the fact that standardized measurement tools (such as the WGCTA, CCTT, and CCTST) have been acknowledged as trustworthy and effective by worldwide experts, only 54.43% of the research included in this meta-analysis adopted them for assessment, and the results indicated no intergroup differences. These results suggest that not all teaching circumstances are appropriate for measuring critical thinking using standardized measurement tools. “The measuring tools for measuring thinking ability have limits in assessing learners in educational situations and should be adapted appropriately to accurately assess the changes in learners’ critical thinking.”, according to Simpson and Courtney ( 2002 , p. 91). As a result, in order to more fully and precisely gauge how learners’ critical thinking has evolved, we must properly modify standardized measuring tools based on collaborative problem-solving learning contexts.

With regard to the subject area, the comprehensive effect size of science departments (e.g., mathematics, science, medical science) is larger than that of language arts and social sciences. Some recent international education reforms have noted that critical thinking is a basic part of scientific literacy. Students with scientific literacy can prove the rationality of their judgment according to accurate evidence and reasonable standards when they face challenges or poorly structured problems (Kyndt et al., 2013 ), which makes critical thinking crucial for developing scientific understanding and applying this understanding to practical problem solving for problems related to science, technology, and society (Yore et al., 2007 ).

Suggestions for critical thinking teaching

Other than those stated in the discussion above, the following suggestions are offered for critical thinking instruction utilizing the approach of collaborative problem-solving.

First, teachers should put a special emphasis on the two core elements, which are collaboration and problem-solving, to design real problems based on collaborative situations. This meta-analysis provides evidence to support the view that collaborative problem-solving has a strong synergistic effect on promoting students’ critical thinking. Asking questions about real situations and allowing learners to take part in critical discussions on real problems during class instruction are key ways to teach critical thinking rather than simply reading speculative articles without practice (Mulnix, 2012 ). Furthermore, the improvement of students’ critical thinking is realized through cognitive conflict with other learners in the problem situation (Yang et al., 2008 ). Consequently, it is essential for teachers to put a special emphasis on the two core elements, which are collaboration and problem-solving, and design real problems and encourage students to discuss, negotiate, and argue based on collaborative problem-solving situations.

Second, teachers should design and implement mixed courses to cultivate learners’ critical thinking, utilizing the approach of collaborative problem-solving. Critical thinking can be taught through curriculum instruction (Kuncel, 2011 ; Leng and Lu, 2020 ), with the goal of cultivating learners’ critical thinking for flexible transfer and application in real problem-solving situations. This meta-analysis shows that mixed course teaching has a highly substantial impact on the cultivation and promotion of learners’ critical thinking. Therefore, teachers should design and implement mixed course teaching with real collaborative problem-solving situations in combination with the knowledge content of specific disciplines in conventional teaching, teach methods and strategies of critical thinking based on poorly structured problems to help students master critical thinking, and provide practical activities in which students can interact with each other to develop knowledge construction and critical thinking utilizing the approach of collaborative problem-solving.

Third, teachers should be more trained in critical thinking, particularly preservice teachers, and they also should be conscious of the ways in which teachers’ support for learning scaffolds can promote critical thinking. The learning scaffold supported by teachers had the greatest impact on learners’ critical thinking, in addition to being more directive, targeted, and timely (Wood et al., 2006 ). Critical thinking can only be effectively taught when teachers recognize the significance of critical thinking for students’ growth and use the proper approaches while designing instructional activities (Forawi, 2016 ). Therefore, with the intention of enabling teachers to create learning scaffolds to cultivate learners’ critical thinking utilizing the approach of collaborative problem solving, it is essential to concentrate on the teacher-supported learning scaffolds and enhance the instruction for teaching critical thinking to teachers, especially preservice teachers.

Implications and limitations

There are certain limitations in this meta-analysis, but future research can correct them. First, the search languages were restricted to English and Chinese, so it is possible that pertinent studies that were written in other languages were overlooked, resulting in an inadequate number of articles for review. Second, these data provided by the included studies are partially missing, such as whether teachers were trained in the theory and practice of critical thinking, the average age and gender of learners, and the differences in critical thinking among learners of various ages and genders. Third, as is typical for review articles, more studies were released while this meta-analysis was being done; therefore, it had a time limit. With the development of relevant research, future studies focusing on these issues are highly relevant and needed.

Conclusions

The subject of the magnitude of collaborative problem-solving’s impact on fostering students’ critical thinking, which received scant attention from other studies, was successfully addressed by this study. The question of the effectiveness of collaborative problem-solving in promoting students’ critical thinking was addressed in this study, which addressed a topic that had gotten little attention in earlier research. The following conclusions can be made:

Regarding the results obtained, collaborative problem solving is an effective teaching approach to foster learners’ critical thinking, with a significant overall effect size (ES = 0.82, z  = 12.78, P  < 0.01, 95% CI [0.69, 0.95]). With respect to the dimensions of critical thinking, collaborative problem-solving can significantly and effectively improve students’ attitudinal tendency, and the comprehensive effect is significant (ES = 1.17, z  = 7.62, P  < 0.01, 95% CI [0.87, 1.47]); nevertheless, it falls short in terms of improving students’ cognitive skills, having only an upper-middle impact (ES = 0.70, z  = 11.55, P  < 0.01, 95% CI [0.58, 0.82]).

As demonstrated by both the results and the discussion, there are varying degrees of beneficial effects on students’ critical thinking from all seven moderating factors, which were found across 36 studies. In this context, the teaching type (chi 2  = 7.20, P  < 0.05), intervention duration (chi 2  = 12.18, P  < 0.01), subject area (chi 2  = 13.36, P  < 0.05), group size (chi 2  = 8.77, P  < 0.05), and learning scaffold (chi 2  = 9.03, P  < 0.01) all have a positive impact on critical thinking, and they can be viewed as important moderating factors that affect how critical thinking develops. Since the learning stage (chi 2  = 3.15, P  = 0.21 > 0.05) and measuring tools (chi 2  = 0.08, P  = 0.78 > 0.05) did not demonstrate any significant intergroup differences, we are unable to explain why these two factors are crucial in supporting the cultivation of critical thinking in the context of collaborative problem-solving.

Data availability

All data generated or analyzed during this study are included within the article and its supplementary information files, and the supplementary information files are available in the Dataverse repository: https://doi.org/10.7910/DVN/IPFJO6 .

Bensley DA, Spero RA (2014) Improving critical thinking skills and meta-cognitive monitoring through direct infusion. Think Skills Creat 12:55–68. https://doi.org/10.1016/j.tsc.2014.02.001

Article   Google Scholar  

Castle A (2009) Defining and assessing critical thinking skills for student radiographers. Radiography 15(1):70–76. https://doi.org/10.1016/j.radi.2007.10.007

Chen XD (2013) An empirical study on the influence of PBL teaching model on critical thinking ability of non-English majors. J PLA Foreign Lang College 36 (04):68–72

Google Scholar  

Cohen A (1992) Antecedents of organizational commitment across occupational groups: a meta-analysis. J Organ Behav. https://doi.org/10.1002/job.4030130602

Cooper H (2010) Research synthesis and meta-analysis: a step-by-step approach, 4th edn. Sage, London, England

Cindy HS (2004) Problem-based learning: what and how do students learn? Educ Psychol Rev 51(1):31–39

Duch BJ, Gron SD, Allen DE (2001) The power of problem-based learning: a practical “how to” for teaching undergraduate courses in any discipline. Stylus Educ Sci 2:190–198

Ennis RH (1989) Critical thinking and subject specificity: clarification and needed research. Educ Res 18(3):4–10. https://doi.org/10.3102/0013189x018003004

Facione PA (1990) Critical thinking: a statement of expert consensus for purposes of educational assessment and instruction. Research findings and recommendations. Eric document reproduction service. https://eric.ed.gov/?id=ed315423

Facione PA, Facione NC (1992) The California Critical Thinking Dispositions Inventory (CCTDI) and the CCTDI test manual. California Academic Press, Millbrae, CA

Forawi SA (2016) Standard-based science education and critical thinking. Think Skills Creat 20:52–62. https://doi.org/10.1016/j.tsc.2016.02.005

Halpern DF (2001) Assessing the effectiveness of critical thinking instruction. J Gen Educ 50(4):270–286. https://doi.org/10.2307/27797889

Hu WP, Liu J (2015) Cultivation of pupils’ thinking ability: a five-year follow-up study. Psychol Behav Res 13(05):648–654. https://doi.org/10.3969/j.issn.1672-0628.2015.05.010

Huber K (2016) Does college teach critical thinking? A meta-analysis. Rev Educ Res 86(2):431–468. https://doi.org/10.3102/0034654315605917

Kek MYCA, Huijser H (2011) The power of problem-based learning in developing critical thinking skills: preparing students for tomorrow’s digital futures in today’s classrooms. High Educ Res Dev 30(3):329–341. https://doi.org/10.1080/07294360.2010.501074

Kuncel NR (2011) Measurement and meaning of critical thinking (Research report for the NRC 21st Century Skills Workshop). National Research Council, Washington, DC

Kyndt E, Raes E, Lismont B, Timmers F, Cascallar E, Dochy F (2013) A meta-analysis of the effects of face-to-face cooperative learning. Do recent studies falsify or verify earlier findings? Educ Res Rev 10(2):133–149. https://doi.org/10.1016/j.edurev.2013.02.002

Leng J, Lu XX (2020) Is critical thinking really teachable?—A meta-analysis based on 79 experimental or quasi experimental studies. Open Educ Res 26(06):110–118. https://doi.org/10.13966/j.cnki.kfjyyj.2020.06.011

Liang YZ, Zhu K, Zhao CL (2017) An empirical study on the depth of interaction promoted by collaborative problem solving learning activities. J E-educ Res 38(10):87–92. https://doi.org/10.13811/j.cnki.eer.2017.10.014

Lipsey M, Wilson D (2001) Practical meta-analysis. International Educational and Professional, London, pp. 92–160

Liu Z, Wu W, Jiang Q (2020) A study on the influence of problem based learning on college students’ critical thinking-based on a meta-analysis of 31 studies. Explor High Educ 03:43–49

Morris SB (2008) Estimating effect sizes from pretest-posttest-control group designs. Organ Res Methods 11(2):364–386. https://doi.org/10.1177/1094428106291059

Article   ADS   Google Scholar  

Mulnix JW (2012) Thinking critically about critical thinking. Educ Philos Theory 44(5):464–479. https://doi.org/10.1111/j.1469-5812.2010.00673.x

Naber J, Wyatt TH (2014) The effect of reflective writing interventions on the critical thinking skills and dispositions of baccalaureate nursing students. Nurse Educ Today 34(1):67–72. https://doi.org/10.1016/j.nedt.2013.04.002

National Research Council (2012) Education for life and work: developing transferable knowledge and skills in the 21st century. The National Academies Press, Washington, DC

Niu L, Behar HLS, Garvan CW (2013) Do instructional interventions influence college students’ critical thinking skills? A meta-analysis. Educ Res Rev 9(12):114–128. https://doi.org/10.1016/j.edurev.2012.12.002

Peng ZM, Deng L (2017) Towards the core of education reform: cultivating critical thinking skills as the core of skills in the 21st century. Res Educ Dev 24:57–63. https://doi.org/10.14121/j.cnki.1008-3855.2017.24.011

Reiser BJ (2004) Scaffolding complex learning: the mechanisms of structuring and problematizing student work. J Learn Sci 13(3):273–304. https://doi.org/10.1207/s15327809jls1303_2

Ruggiero VR (2012) The art of thinking: a guide to critical and creative thought, 4th edn. Harper Collins College Publishers, New York

Schellens T, Valcke M (2006) Fostering knowledge construction in university students through asynchronous discussion groups. Comput Educ 46(4):349–370. https://doi.org/10.1016/j.compedu.2004.07.010

Sendag S, Odabasi HF (2009) Effects of an online problem based learning course on content knowledge acquisition and critical thinking skills. Comput Educ 53(1):132–141. https://doi.org/10.1016/j.compedu.2009.01.008

Sison R (2008) Investigating Pair Programming in a Software Engineering Course in an Asian Setting. 2008 15th Asia-Pacific Software Engineering Conference, pp. 325–331. https://doi.org/10.1109/APSEC.2008.61

Simpson E, Courtney M (2002) Critical thinking in nursing education: literature review. Mary Courtney 8(2):89–98

Stewart L, Tierney J, Burdett S (2006) Do systematic reviews based on individual patient data offer a means of circumventing biases associated with trial publications? Publication bias in meta-analysis. John Wiley and Sons Inc, New York, pp. 261–286

Tiwari A, Lai P, So M, Yuen K (2010) A comparison of the effects of problem-based learning and lecturing on the development of students’ critical thinking. Med Educ 40(6):547–554. https://doi.org/10.1111/j.1365-2929.2006.02481.x

Wood D, Bruner JS, Ross G (2006) The role of tutoring in problem solving. J Child Psychol Psychiatry 17(2):89–100. https://doi.org/10.1111/j.1469-7610.1976.tb00381.x

Wei T, Hong S (2022) The meaning and realization of teachable critical thinking. Educ Theory Practice 10:51–57

Xu EW, Wang W, Wang QX (2022) A meta-analysis of the effectiveness of programming teaching in promoting K-12 students’ computational thinking. Educ Inf Technol. https://doi.org/10.1007/s10639-022-11445-2

Yang YC, Newby T, Bill R (2008) Facilitating interactions through structured web-based bulletin boards: a quasi-experimental study on promoting learners’ critical thinking skills. Comput Educ 50(4):1572–1585. https://doi.org/10.1016/j.compedu.2007.04.006

Yore LD, Pimm D, Tuan HL (2007) The literacy component of mathematical and scientific literacy. Int J Sci Math Educ 5(4):559–589. https://doi.org/10.1007/s10763-007-9089-4

Zhang T, Zhang S, Gao QQ, Wang JH (2022) Research on the development of learners’ critical thinking in online peer review. Audio Visual Educ Res 6:53–60. https://doi.org/10.13811/j.cnki.eer.2022.06.08

Download references

Acknowledgements

This research was supported by the graduate scientific research and innovation project of Xinjiang Uygur Autonomous Region named “Research on in-depth learning of high school information technology courses for the cultivation of computing thinking” (No. XJ2022G190) and the independent innovation fund project for doctoral students of the College of Educational Science of Xinjiang Normal University named “Research on project-based teaching of high school information technology courses from the perspective of discipline core literacy” (No. XJNUJKYA2003).

Author information

Authors and affiliations.

College of Educational Science, Xinjiang Normal University, 830017, Urumqi, Xinjiang, China

Enwei Xu, Wei Wang & Qingxia Wang

You can also search for this author in PubMed   Google Scholar

Corresponding authors

Correspondence to Enwei Xu or Wei Wang .

Ethics declarations

Competing interests.

The authors declare no competing interests.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Informed consent

Additional information.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary tables, rights and permissions.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Cite this article.

Xu, E., Wang, W. & Wang, Q. The effectiveness of collaborative problem solving in promoting students’ critical thinking: A meta-analysis based on empirical literature. Humanit Soc Sci Commun 10 , 16 (2023). https://doi.org/10.1057/s41599-023-01508-1

Download citation

Received : 07 August 2022

Accepted : 04 January 2023

Published : 11 January 2023

DOI : https://doi.org/10.1057/s41599-023-01508-1

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

This article is cited by

Impacts of online collaborative learning on students’ intercultural communication apprehension and intercultural communicative competence.

  • Hoa Thi Hoang Chau
  • Hung Phu Bui
  • Quynh Thi Huong Dinh

Education and Information Technologies (2024)

Exploring the effects of digital technology on deep learning: a meta-analysis

Sustainable electricity generation and farm-grid utilization from photovoltaic aquaculture: a bibliometric analysis.

  • A. A. Amusa
  • M. Alhassan

International Journal of Environmental Science and Technology (2024)

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

article on problem solving

Table of Contents

The problem-solving process, how to solve problems: 5 steps, train to solve problems with lean today, what is problem solving steps, techniques, & best practices explained.

What Is Problem Solving? Steps, Techniques, and Best Practices Explained

Problem solving is the art of identifying problems and implementing the best possible solutions. Revisiting your problem-solving skills may be the missing piece to leveraging the performance of your business, achieving Lean success, or unlocking your professional potential. 

Ask any colleague if they’re an effective problem-solver and their likely answer will be, “Of course! I solve problems every day.” 

Problem solving is part of most job descriptions, sure. But not everyone can do it consistently. 

Problem solving is the process of defining a problem, identifying its root cause, prioritizing and selecting potential solutions, and implementing the chosen solution.

There’s no one-size-fits-all problem-solving process. Often, it’s a unique methodology that aligns your short- and long-term objectives with the resources at your disposal. Nonetheless, many paradigms center problem solving as a pathway for achieving one’s goals faster and smarter. 

One example is the Six Sigma framework , which emphasizes eliminating errors and refining the customer experience, thereby improving business outcomes. Developed originally by Motorola, the Six Sigma process identifies problems from the perspective of customer satisfaction and improving product delivery. 

Lean management, a similar method, is about streamlining company processes over time so they become “leaner” while producing better outcomes. 

Trendy business management lingo aside, both of these frameworks teach us that investing in your problem solving process for personal and professional arenas will bring better productivity.

1. Precisely Identify Problems

As obvious as it seems, identifying the problem is the first step in the problem-solving process. Pinpointing a problem at the beginning of the process will guide your research, collaboration, and solutions in the right direction. 

At this stage, your task is to identify the scope and substance of the problem. Ask yourself a series of questions: 

  • What’s the problem? 
  • How many subsets of issues are underneath this problem? 
  • What subject areas, departments of work, or functions of business can best define this problem? 

Although some problems are naturally large in scope, precision is key. Write out the problems as statements in planning sheets . Should information or feedback during a later step alter the scope of your problem, revise the statements. 

Framing the problem at this stage will help you stay focused if distractions come up in later stages. Furthermore, how you frame a problem will aid your search for a solution. A strategy of building Lean success, for instance, will emphasize identifying and improving upon inefficient systems. 

2. Collect Information and Plan 

The second step is to collect information and plan the brainstorming process. This is another foundational step to road mapping your problem-solving process. Data, after all, is useful in identifying the scope and substance of your problems. 

Collecting information on the exact details of the problem, however, is done to narrow the brainstorming portion to help you evaluate the outcomes later. Don’t overwhelm yourself with unnecessary information — use the problem statements that you identified in step one as a north star in your research process. 

This stage should also include some planning. Ask yourself:

  • What parties will ultimately decide a solution? 
  • Whose voices and ideas should be heard in the brainstorming process? 
  • What resources are at your disposal for implementing a solution? 

Establish a plan and timeline for steps 3-5. 

3. Brainstorm Solutions

Brainstorming solutions is the bread and butter of the problem-solving process. At this stage, focus on generating creative ideas. As long as the solution directly addresses the problem statements and achieves your goals, don’t immediately rule it out. 

Moreover, solutions are rarely a one-step answer and are more like a roadmap with a set of actions. As you brainstorm ideas, map out these solutions visually and include any relevant factors such as costs involved, action steps, and involved parties. 

With Lean success in mind, stay focused on solutions that minimize waste and improve the flow of business ecosystems. 

Become a Quality Management Professional

  • 10% Growth In Jobs Of Quality Managers Profiles By 2025
  • 11% Revenue Growth For Organisations Improving Quality

Certified Lean Six Sigma Green Belt

  • 4 hands-on projects to perfect the skills learnt
  • 4 simulation test papers for self-assessment

Lean Six Sigma Expert

  • IASSC® Lean Six Sigma Green Belt and Black Belt certification
  • 13 Projects, 12 Simulation exams, 18 Case Studies & 114 PDUs

Here's what learners are saying regarding our programs:

Xueting Liu

Xueting Liu

Mechanical engineer student at sargents pty. ltd. ,.

A great training and proper exercise with step-by-step guide! I'll give a rating of 10 out of 10 for this training.

Abdus Salam

Abdus Salam

I have completed the Lean Six Sigma Expert Master’s Program from Simplilearn. And after the course, I could take up new projects and perform better. My average pay rate for a research position increased by 21%.

4. Decide and Implement

The most critical stage is selecting a solution. Easier said than done. Consider the criteria that has arisen in previous steps as you decide on a solution that meets your needs. 

Once you select a course of action, implement it. 

Practicing due diligence in earlier stages of the process will ensure that your chosen course of action has been evaluated from all angles. Often, efficient implementation requires us to act correctly and successfully the first time, rather than being hurried and sloppy. Further compilations will create more problems, bringing you back to step 1. 

5. Evaluate

Exercise humility and evaluate your solution honestly. Did you achieve the results you hoped for? What would you do differently next time? 

As some experts note, formulating feedback channels into your evaluation helps solidify future success. A framework like Lean success, for example, will use certain key performance indicators (KPIs) like quality, delivery success, reducing errors, and more. Establish metrics aligned with company goals to assess your solutions.

Master skills like measurement system analysis, lean principles, hypothesis testing, process analysis and DFSS tools with our Lean Six Sigma Green Belt Training Course . Sign-up today!

Become a quality expert with Simplilearn’s Lean Six Sigma Green Belt . This Lean Six Sigma certification program will help you gain key skills to excel in digital transformation projects while improving quality and ultimate business results.

In this course, you will learn about two critical operations management methodologies – Lean practices and Six Sigma to accelerate business improvement.

Our Quality Management Courses Duration And Fees

Explore our top Quality Management Courses and take the first step towards career success

Get Free Certifications with free video courses

Lean Management

Quality Management

Lean Management

PMP Basics

Project Management

Learn from industry experts with free masterclasses, digital marketing.

The Top 10 AI Tools You Need to Master Marketing in 2024

SEO vs. PPC: Which Digital Marketing Career Path Fits You Best in 2024?

Unlock Digital Marketing Career Success Secrets for 2024 with Purdue University

Recommended Reads

Introduction to Machine Learning: A Beginner's Guide

Webinar Wrap-up: Mastering Problem Solving: Career Tips for Digital Transformation Jobs

An Ultimate Guide That Helps You to Develop and Improve Problem Solving in Programming

Free eBook: 21 Resources to Find the Data You Need

ITIL Problem Workaround: A Leader’s Guide to Manage Problems

Your One-Stop Solution to Understand Coin Change Problem

Get Affiliated Certifications with Live Class programs

  • PMP, PMI, PMBOK, CAPM, PgMP, PfMP, ACP, PBA, RMP, SP, and OPM3 are registered marks of the Project Management Institute, Inc.

APS

The Process of Problem Solving

  • Editor's Choice
  • Experimental Psychology
  • Problem Solving

article on problem solving

In a 2013 article published in the Journal of Cognitive Psychology , Ngar Yin Louis Lee (Chinese University of Hong Kong) and APS William James Fellow Philip N. Johnson-Laird (Princeton University) examined the ways people develop strategies to solve related problems. In a series of three experiments, the researchers asked participants to solve series of matchstick problems.

In matchstick problems, participants are presented with an array of joined squares. Each square in the array is comprised of separate pieces. Participants are asked to remove a certain number of pieces from the array while still maintaining a specific number of intact squares. Matchstick problems are considered to be fairly sophisticated, as there is generally more than one solution, several different tactics can be used to complete the task, and the types of tactics that are appropriate can change depending on the configuration of the array.

Louis Lee and Johnson-Laird began by examining what influences the tactics people use when they are first confronted with the matchstick problem. They found that initial problem-solving tactics were constrained by perceptual features of the array, with participants solving symmetrical problems and problems with salient solutions faster. Participants frequently used tactics that involved symmetry and salience even when other solutions that did not involve these features existed.

To examine how problem solving develops over time, the researchers had participants solve a series of matchstick problems while verbalizing their problem-solving thought process. The findings from this second experiment showed that people tend to go through two different stages when solving a series of problems.

People begin their problem-solving process in a generative manner during which they explore various tactics — some successful and some not. Then they use their experience to narrow down their choices of tactics, focusing on those that are the most successful. The point at which people begin to rely on this newfound tactical knowledge to create their strategic moves indicates a shift into a more evaluative stage of problem solving.

In the third and last experiment, participants completed a set of matchstick problems that could be solved using similar tactics and then solved several problems that required the use of novel tactics.  The researchers found that participants often had trouble leaving their set of successful tactics behind and shifting to new strategies.

From the three studies, the researchers concluded that when people tackle a problem, their initial moves may be constrained by perceptual components of the problem. As they try out different tactics, they hone in and settle on the ones that are most efficient; however, this deduced knowledge can in turn come to constrain players’ generation of moves — something that can make it difficult to switch to new tactics when required.

These findings help expand our understanding of the role of reasoning and deduction in problem solving and of the processes involved in the shift from less to more effective problem-solving strategies.

Reference Louis Lee, N. Y., Johnson-Laird, P. N. (2013). Strategic changes in problem solving. Journal of Cognitive Psychology, 25 , 165–173. doi: 10.1080/20445911.2012.719021

' src=

good work for other researcher

APS regularly opens certain online articles for discussion on our website. Effective February 2021, you must be a logged-in APS member to post comments. By posting a comment, you agree to our Community Guidelines and the display of your profile information, including your name and affiliation. Any opinions, findings, conclusions, or recommendations present in article comments are those of the writers and do not necessarily reflect the views of APS or the article’s author. For more information, please see our Community Guidelines .

Please login with your APS account to comment.

article on problem solving

Careers Up Close: Joel Anderson on Gender and Sexual Prejudices, the Freedoms of Academic Research, and the Importance of Collaboration

Joel Anderson, a senior research fellow at both Australian Catholic University and La Trobe University, researches group processes, with a specific interest on prejudice, stigma, and stereotypes.

article on problem solving

Experimental Methods Are Not Neutral Tools

Ana Sofia Morais and Ralph Hertwig explain how experimental psychologists have painted too negative a picture of human rationality, and how their pessimism is rooted in a seemingly mundane detail: methodological choices. 

APS Fellows Elected to SEP

In addition, an APS Rising Star receives the society’s Early Investigator Award.

Privacy Overview

Articles on Problem solving

Displaying 1 - 20 of 27 articles.

article on problem solving

The surprising key to magpie intelligence: it’s not genetic

Lizzie Speechley , The University of Western Australia

article on problem solving

‘Smart drugs’ make you worse at solving complex problems, new study finds

Elizabeth Bowman , The University of Melbourne

article on problem solving

Lockdown schooling: research from around the world shows reasons to be hopeful

Nina Bergdahl , Stockholm University and Melissa Bond , University of South Australia

article on problem solving

Future engineers need to understand their work’s human impact – here’s how my classes prepare students to tackle problems like climate change

Gordon D. Hoople , University of San Diego

article on problem solving

Being good at maths might help you become great at sports – Emma Raducanu showed us why

Laurence Shaw , Nottingham Trent University

article on problem solving

Why students learn better when they move their bodies – instead of sitting still at their desks

Katie Headrick Taylor , University of Washington

article on problem solving

5 digital games that teach civics through play

Karen "Kat" Schrier , Marist College

article on problem solving

Is gaming good for kids?

John Velez , Indiana University

article on problem solving

Your coping and resilience strategies might need to shift as the COVID-19 crisis continues

Craig Polizzi , Binghamton University, State University of New York and Steven Jay Lynn , Binghamton University, State University of New York

article on problem solving

Feeling overwhelmed? Approach coronavirus as a challenge to be met, not a threat to be feared

Bethany Teachman , University of Virginia

article on problem solving

Collaborative problem solvers are made not born – here’s what you need to know

Stephen M. Fiore , University of Central Florida

article on problem solving

Customer service staff need to be problem solving not apologising

Jagdip Singh , Case Western Reserve University

article on problem solving

Stuck in the past: the UK needs to produce creative thinkers not exam-passing machines

Thusha Rajendran , Heriot-Watt University

article on problem solving

Distance learning: the five qualities student teachers need to succeed

Nhlanhla Mpofu , Sol Plaatje University

article on problem solving

Otter Tupperware party we threw reveals how animals copy each other to learn

Neeltje Boogert , University of Exeter

article on problem solving

Apps to keep kids thinking and learning even during school holidays

Craig Blewett , University of KwaZulu-Natal

article on problem solving

Schools will teach ‘soft skills’ from 2017, but assessing them presents a challenge

Bill Lucas , Victoria University

article on problem solving

Engineers don’t just build things, they can help save the world

Petr Matous , University of Sydney and Abbas El-Zein , University of Sydney

article on problem solving

Outdated exams are holding children back – not computers in the classroom

James Stanfield , Newcastle University and Angelika Strohmayer , Newcastle University

article on problem solving

Why students make silly mistakes in class (and what can be done)

Greg Ashman , UNSW Sydney

Related Topics

  • Engineering
  • Maths education
  • Organisation for Economic Co-operation and Development (OECD)
  • Remote learning

Top contributors

article on problem solving

Research group leader, principal investigator, and ATTRACT-fellow, University of Luxembourg

article on problem solving

Researcher, University of California, Berkeley

article on problem solving

Royal Society Dorothy Hodgkin Research Fellow, University of Exeter

article on problem solving

Research associate and doctoral candidate, University of Luxembourg

article on problem solving

Senior Lecturer in Computing and Communications, The Open University

article on problem solving

Senior Lecturer, The Open University

article on problem solving

Head of Learning Sciences Lab, National Institute of Education of Singapore

article on problem solving

Professor of Psychology and Educational Science, University of Luxembourg

article on problem solving

PhD candidate in Instructional Design, UNSW Sydney

article on problem solving

Professor of Cognition, Lancaster University

article on problem solving

Associate Professor in Education & Technology, University of KwaZulu-Natal

article on problem solving

Behavioural Ecologist, The University of Western Australia

article on problem solving

Lecturer, School of Education, Communication and Language Sciences, Newcastle University

article on problem solving

Doctoral Trainee in Digital Civics, Newcastle University

article on problem solving

Senior Lecturer in Education, Canterbury Christ Church University

  • X (Twitter)
  • Unfollow topic Follow topic

PERSPECTIVE article

Problem solving is embedded in context… so how do we measure it.

Katherine T. Rhodes

  • 1 Language Variation and Academic Success (LVAS) Lab, School of Education, University of California, Irvine, Irvine, CA, United States
  • 2 Science of Learning (SoL) Lab, School of Education, University of California, Irvine, Irvine, CA, United States
  • 3 Culture and Social Action Lab (CaSA), Department of Psychology, California State University, Fullerton, Fullerton, CA, United States

Problem solving encompasses the broad domain of human, goal-directed behaviors. Though we may attempt to measure problem solving using tightly controlled and decontextualized tasks, it is inextricably embedded in both reasoners’ experiences and their contexts. Without situating problem solvers, problem contexts, and our own experiential partialities as researchers, we risk intertwining the research of information relevance with our own confirmatory biases about people, environments, and ourselves. We review each of these ecological facets of information relevance in problem solving, and we suggest a framework to guide its measurement. We ground this framework with concrete examples of ecologically valid, culturally relevant measurement of problem solving.

1 Introduction

As of writing this perspective piece, there exist pockets of the world with ubiquitous internet, fingertip access to generative artificial intelligence, and engagement with global news and commerce, while other humans grapple more regularly with local subsistence farming, climate change, and family social relationships. These are abstracted points of comparison among the incredibly varied social and cultural contexts in which human reasoners must draw from information in their environments to notice problems that need resolution, find relevant information from which to make inferences, and execute problem solutions. This wide variance highlights the deep theoretical and practical challenges of characterizing and measuring problem solving as a pragmatically-grounded, cognitive construct.

In this perspective piece, we focus on measurement theory for gathering data on the complex cognition that governs humans’ everyday lives, focusing on problem solving in specific. Problem solving broadly encompasses human goal-directed behaviors ( Newell and Simon, 1972 ). Though problem solving may include a variety of goal structures in everyday living (from solving a mathematical problem in a formal educational setting to identifying the need for housework in one’s family context), it is often measured with highly abstracted tasks that attempt to decontextualize problems from the specific in favor of the universal ( Jukes et al., 2024 ).

We posit that measurement of problem solving with recognition of the deeply intertwined nature of reasoning with one’s context necessitates that we must center (a) the experiences and perceptions of the problem solver, (b) the context in which problem solving is being observed, and (c) the lens through which we as observers are interpreting problem solving. Each of these ecological facets influences our interpretations of problem-solving behavior, and each is socioculturally bound. Without situating problem solvers, problem contexts, and our own experiential partialities as researchers, we risk intertwining the research of information relevance with our own confirmatory biases about people, environments, and ourselves. We review each of these ecological facets of information relevance in problem solving, and we suggest a framework to guide ecologically valid, culturally relevant measurement.

2 Centering the relevant experiences and perceptions of the problem solver

We naturally use our problem-solving resources to attend to experientially relevant information, and thus, problem-solving tasks are socioculturally bound to problem solvers ( Oyserman, 2011 , 2016 ). Our measures of problem solving broadly reflect different attentional patterns that are based on prior developmental experiences which differ depending on socialization ( Newell and Simon, 1972 ; Ericsson et al., 1993 ). Broadly speaking, this means that the measurement of problem-solving tasks is closely tied to the particular experiences of problem solvers.

Consider, for example, the famous marshmallow experiment ( Mischel, 1961 ; Mischel and Metzner, 1962 ; Mischel and Ebbesen, 1970 ). In this lab-based experimental task, children are given a marshmallow and told that they may eat the treat immediately or wait an unspecified amount of time and receive additional marshmallows as a reward. Performance on the marshmallow task has typically been interpreted to indicate ability to delay gratification, (i.e., inhibitory control), and it has been linked to later academic performance, self-confidence, likelihood of subsequent substance abuse, and a variety of other outcomes ( Mischel et al., 1988 , 1989 ; Shoda et al., 1990 ; Ayduk et al., 2000 ). Thus, the researcher-identified problem of the marshmallow task is (1) the identification of the marshmallow as a reward, (2) the decision to engage in a desired goal-oriented behavior (waiting) to obtain the reward, and then (3) the execution of the desired goal-oriented behavior (engaging inhibitory control in order to wait).

However, some researchers have raised concerns about the interpretation of performance on the marshmallow task, in particular, questioning what we might reasonably infer about the relevant pieces of information that children use to execute decision-making about whether or not to wait. For example, Kidd et al. (2013) found evidence that children’s rational decision-making about the reliability of the experimental environment (and by implication, their prior experiences with reliable and unreliable environments) may also influence their decisions to delay gratification comparably to their individual differences in capacity for self-control.

Other researchers have noted that the “The Marshmallow Test” may simply be a culturally loaded problem-solving task with narrow expectations about children’s behavior and ways of solving the problem. For example, Yucatec Maya children are often engaged in real-life productive activities, are motivated to contribute, and allowed to take the initiative to solve problems they encounter ( Gaskins, 2020 ; Cervera-Montejano, 2022 ). When encountering novel problems, they are expected to be attentive and learn by observing others and not just by listening to verbal instructions ( Alcalá et al., 2021 ). However, when Gaskins tried to replicate this study with Yucatec Maya children, she found that none of the six children she tested earned the second marshmallow ( Gaskins and Alcalá, 2023 ). Two of them ate the treat, and four of them left the room. Gaskins attributes their marshmallow task performance differences to the cultural assumptions in the methodology, such as the expectation that children will obediently attend to and follow adult’s instructions. The children who left the room did not leave because they were tempted to eat the marshmallow – which assumes poor self-regulation – but they left because “they saw no ‘good reason’ to sit alone in a room for a long time doing nothing, rejecting the basic premise of the task.” (p. 8). Gaskins and Alcalá (2023) results illustrate that participants’ perceptions about adult authority, expectations for child compliance, and familiarity with verbal instructions are also relevant and often overlooked aspects of the marshmallow experiment.

The marshmallow task illustrates that the same contextual cues may be interpreted very differently by different experimental participants because prior experiences influence our expectations, beliefs, and ultimately, our mental representations of the problems we are solving. Lab-based problem-solving tasks like the marshmallow task have the advantages of being tightly controlled, but they are also decontextualized, adult-generated, and assume child compliance based on the lived experiences and rules familiar to White, middle-class children ( Jukes et al., 2024 ). Examining psychological constructs and tasks across contexts can help illuminate characteristics of problem-solving tasks that may be reflecting culturally-derived experiences and socialized expectations.

3 Centering the sociocultural context in which problem solving is being observed

The sociocultural context in which problem solving is being observed helps define the parameters of the problem being solved, which in turn influences the pieces of information that may be relevant to its effective solution. Consider, for example, the sociocultural norms that contextualize children’s helping behaviors in their homes and communities. Helping behaviors are also goal-oriented, problem-solving behaviors that are prosocial in nature – they require the identification of a social problem (the need for help to occur), the formulation of a solution (selecting the kind of help that will remedy the identified issue), and the execution of a solution (engaging in helping until a desired goal has been reached). In many Western, educated, industrialized, rich, and democratic (WEIRD) societies, children are viewed as the recipients of help rather than as independent, helpful agents in their communities ( Ochs and Izquierdo, 2009 ). However, in communities where children are socialized to provide substantial contributions to their families, taking the initiative to help with complex household tasks and to assist during community celebrations, the contextual expectations around problem solving might be quite different ( Rogoff, 1990 ; Chavajay and Rogoff, 2002 ).

During a visit to Yucatan, Alcalá (2023) observed how children are given extensive amounts of autonomy to decide how to spend their time, including helping with household work and engaging in unstructured play activities. In this context, children are expected to notice when there is a problem and act accordingly to find the appropriate solution ( Alcalá and Cervera, 2022 ). Mothers state that children need to learn to be autonomous because they might not always be with adults or others that can help them, and need to learn to solve the problems they encounter.

Alcalá et al. (2021) asked children why they help at home and the majority of them reported that they help because helping is a shared responsibility of all family members, they help because they like to help, or they help because they notice work that needs to be done. The cultural expectations to be attentive to their surroundings, to be autonomous and self-directed in choosing activities, and to notice work and problems in need of solution is key in how children in this community learn to solve problems. For example, children notice that there are some dirty dishes and will go and wash the dishes, or they might notice that the plants need to be watered.

The shared responsibility to help and solve problems, opens other opportunities for children to identify and solve problems in their communities. For example, children might notice or hear about a family member who is ill, and they volunteer to help with chores that would normally be done by the ailing adult as illustrated by “ Soledad ” (Chan Cah, age 10) “my mom’s foot hurt and that is why I help” ( Alcalá et al., 2021 , p.).

Furthermore, when asked what would happen if they do not help, about half of the participants responded in a way that reflected a community-minded way of solving problems. Children indicated that if they do not help, for example with washing the dishes, then the pile of dirty dishes will get bigger and then someone else would have to wash the dishes. Likewise, if a child does not help with the milpa (corn field) there might not be enough corn for the family.

In this context, where children are allowed to be present and observe almost all of the activities of the household and community, children are expected to become interested and notice when someone needs help ( López Fraire et al., 2024 ). Children are trusted enough to solve certain problems on their own, or know when to find help, as they are becoming competent members of their communities.

The sociocultural context helps to dictate what is a problem, who is affected by the consequences of the problem, and who is allowed, expected, and empowered to solve the problem. Importantly, the sociocultural context also determines the level at which problems exist - Not all problems belong to the individual as is often assumed in highly individualistic societies ( Oyserman et al., 2002 ; Arieli and Sagiv, 2018 ). In many problem-solving contexts across the world, problems, their consequences, and the responsibility for solving them belong to groups and communities of problem-solvers ( Lasker and Weiss, 2003 ).

4 Discussion

4.1 how do we measure problem solving: considering the lens of the research observer.

For many researchers, the measurement of problem solving may appear to be a primarily methodological issue at first glance ( Messick, 1981 ). We create tasks, observe individual differences in task performance, and assign interpretations for those differences. The measures are assumed to be objective, empirical, quantitative metrics of performance – Child X ate marshmallow Y after Z minutes of waiting, therefore failing to delay gratification with additional marshmallows (see Mischel et al., 1988 ). However, without the guidance of strong theoretical postulates about constructs, and without clear links between theoretical postulates and the measures designed to capture constructs of interest, we are asking our measures to do the work of specifying larger theoretical models ( Borsboom, 2005 ).

Our measures reflect our theoretical dispositions, and our theories reflect ourselves. The lens through which we generally interpret cognitive development is culturally misaligned with the majority of the world’s problem solvers and problem-solving contexts, and our measures of problem solving reflect that epistemological misalignment. As researchers who are primarily from Western, educated, industrialized, rich, and democratic societies, our lens for understanding and measuring human behavior is WEIRD ( Henrich et al., 2010 ). Problem solving is no exception and has traditionally been measured in WEIRD ways with WEIRD problem solvers, which can misrepresent developmental phenomena that may not replicate with children from other sociocultural backgrounds or lived contexts (e.g., for evidence of this in the above marshmallow task, see Watts et al., 2018 ). These traditional measures of problem solving do not account for potential sociocultural differences in information processing that can derive from the nature of the task requirements to the cultural context of how children should speak with adults. For problem solving measures, one must step back to consider that even the definition for what constitutes a problem that a participant has the authority to solve is cultural, with measures tending to be based on WEIRD researchers’ known context, which can lead to bias then in solution rates and participants’ engagements. Thus, it is unsurprising that children who are not from WEIRD communities or who are marginalized within WEIRD societies may perform differently on traditional measures of problem solving (see for example, Miller-Cotto et al., 2022 ).

If our aim is to capture problem solving in ways that have meaningful implications for the real world information processing, we need to measure problem solving in ways that are culturally relevant for broad populations of children. This aim is critical for problem-solving research, and it necessitates an epistemological (and possibly an ontological) recentering of our measurement of problem solving.

4.2 Framework for ecologically valid, culturally relevant measurement

There is a growing push to measure human problem solving “in context,” in ways that are ecologically valid (see for example Burgess et al., 2006 ; Miller and Scholnick, 2015 ); however, contextualized tasks can still evidence the same biases that create validity issues for traditional, abstract, decontextualized tasks. The field has a pressing need for a framework that helps researchers to evaluate problem-solving tasks in ways that consider their relevant features from the perspective of diverse learners. To support an evolution in the fields of reasoning and problem solving that better centers tasks and measurement on the abilities executed by reasoners in their everyday worlds, we propose a set of questions that researchers can ask when developing a task to better ensure relevance and alignment between test participants, researchers, and the interpretation of empirical data.

4.2.1 Understanding problem solvers’ relevant experiences

4.2.1.1 how are reasoners perceiving the problem.

✓ Assume that the problem solver’s solution is predicated on the kind of mental representation she has formed about the problem.

⃠ Avoid assuming that problem solvers perceive the same goal-structure, have the same mental representation of the problem, or have the same reasoning and approach to solving the problem. Problem solvers are NOT necessarily attending to the researchers’ desired matrix of information when thinking about the problem.

★ Forexample, Rhodes et al. (under review) research on the mathematical problem solving of African American children who use African American English dialect (AAE; a cultural dialect of American English) explored the types of errors that children make on various arithmetic problems as a function of both item formatting and the density of children’s AAE dialect usage. The very exploration of this research question runs counter to the assumption that word formatting and children’s home language would have no impact on African American children’s mental representations of problems and strategic approaches to solving them. Results suggested that children’s strategic errors occurred as a complex interaction between word problem formatting and children’s AAE dialect density, effectively challenging the assumption that word problems would elicit language neutral mental representations with African American children whose home and community language systems were linguistically distanced from them.

4.2.1.2 What does unexpected or “non-normative” task performance mean?

✓ Assume that divergence from a normative expectation is not necessarily indicative of pathology or lack of skill.

⃠ Avoid assuming that we manage attentional resources during problem solving in one, normative way. In particular, avoid the assumption that problem solving is maladaptive – instead, look for the adaptive response in the way that you interpret the problem solving.

★ Forexample, a child who does not concentrate fully on a problem solving task they have been given, but instead is also directing attention toward monitoring the experimenter’s actions and conversations with another child, may be exhibiting highly culturally appropriate and intentional resource allocation to ensure they are not missing a need to learn new relevant information or assist the experimenter (e.g., Correa-Chávez et al., 2005 ). Challenging the assumption that the management of attentional resources should happen in one, normative, culturally-sanctioned way, creates the opportunity for researchers to recognize important sources of cultural variance in otherwise invisible aspects of task construction (i.e., prosocial attentional engagement as a means of identifying information relevance).

4.2.2 Considering socio-cultural contexts of problem solving

4.2.2.1 where do problems occur.

✓ Assume that there are no neutral contexts for problem solving. The “lab” (a tightly controlled experimental context) is not, in fact, neutral.

⃠ Avoid assuming that the most meaningful problems we solve occur in formal educational settings or in tightly controlled experimental settings.

★ Forexample, in his landmark study of Brazilian child candy sellers, Saxe (1988) used a multimethod paradigm to observe and query the naturalistic mathematical behaviors of children in- and out-of-classroom mathematics problem-solving contexts. In challenging the assumption that normative mathematical problem solving only develops in formal educational contexts, he observed that the skills children used in their street vending activities did not necessarily transfer to their school contexts and vice versa, and importantly, that children who were quite adept at using mathematics in their real-world vending activities were not necessarily able to translate their skills toward high-achievement on formal educational tasks ( Saxe, 1988 ).

4.2.2.2 For whom is the problem consequential? and relatedly, who is empowered to solve the problem in this context?

✓ Assume that problem solving is not necessarily an individual sport - individuals, groups, and communities may identify problems, problem consequences, and problem solvers very differently.

⃠ Avoid assuming that problem solving should only be conceptualized and measured at the individual level. Similarly, avoid the assumption that cultural expectations for problem solving converge around efficiency (i.e., quickly and accurately; careless mistakes may have important consequences beyond an individual).

★ Forexample, when asked why they help with household chores, most Yucatec Maya children mentioned that if they did not do the chore, this would create more work for their parents or cause harm to others including younger siblings or aging adults ( Alcalá and Cervera, 2022 ). In challenging individualistic assumptions about measuring problem solving, these researchers were able to capture children’s mental representations of problems and problem consequences as belonging to the entire household, rather than assigning the responsibility for problem solving to a household’s individual members.

4.2.3 Evaluating researchers’ perspectives of problem solving

4.2.3.1 how does the observer’s positionality influence the evaluation of problem solving.

✓ Assume that positionality is something we can and should acknowledge, particularly if we are evaluating the problem-solving abilities of others.

⃠ Avoid assuming that researchers have the same positionality as research participants or groups to whom research is generalized (see for example, Bilgen et al., 2021 ; Patton and Winter, 2023 ).

★ Forexample, Patton and Winter (2023) provide a detailed and reflexive account of researcher positionality and decision-making in engaging in an observational study with preschool-aged children. These researchers consider the use of a teddy bear named “Ted” as an elicitation tool for gathering information about children’s perspectives and contextual experiences of early childhood educational settings. In examining their own positionalities, the authors were able to interrogate the inherent power structure between adults and children in traditional research participation paradigms. This consideration of positionality helped inform the researchers’ decision to embed “Ted” into children’s preschool contexts in meaningful ways that allowed children to engage with him as a peer, including him in activities and songs, helping him, or even explaining mistakes to him in the role of experts.

4.2.3.2 What can we infer from a reasoner’s problem-solving actions?

✓ Assume that the interpretation of problem-solving actions will be influenced by the problem solver, the context for problem solving, and the research observer.

⃠ Avoid assuming that a particular measurement instrument is contextually neutral or culturally unbiased. It is critical that we acknowledge the fact that measurement instruments are also NOT free of positionality. They exist in the context of larger epistemologies that influence their design, application, and interpretation.

★ Forexample, many laboratory tasks assume that children are familiar with and willing to follow adults’ instructions, even if the tasks do not accomplish readily apparent goals such as care or feeding. These tasks then may yield biased conclusions when used with children from communities which value autonomy over decision-making, specifically where respect for children’s ability to decide about their participation in activities means they are not required to obey adults; such children may perform poorly on these types of tasks or refuse to follow the researcher’s instructions ( Jukes et al., 2024 ).

5 Conclusion

We argue that problem solving is fundamentally and inextricably tied to deeper, often implicit, questions of epistemology, which need to be made explicit to facilitate its meaningful measurement. This philosophical work cannot be undertaken during methodological decision-making alone. Rather, if we hope to validly and reliably measure problem solving, we must also formulate strong theoretical positions about what it is, how it operates across various contexts of interest, and how we may observe it – all of which must be integrated and mapped onto specifications of our models of measurement. For as illustrated by the difficulties in interpreting performance on the marshmallow task, children with various prior experiences, in various sociocultural contexts, may have vastly different experiences of problem-solving the same task.

To be clear, rigorous measurement of information relevance in problem solving does not require that we abandon the empirical tenets of modern measurement theory. Nor does it require the rejection of the thoughtful positionality critiques of critical theorists. Rigorous research of problem solving requires the careful consideration of these seemingly irreconcilable epistemologies and, where possible, the integration of them in research design and interpretation.

Measuring problem solving “in context” does not necessarily remedy the issue of culturally biased measurement because contextualized for one group may be decontextualized (and biased) for another group. The wide variance in our experiences and contexts may necessitate admission that there may not be a perfect, unbiased measure of human problem solving, and the best measure for one’s particular research perspective will likely have shortcomings. Still, rigorous measurement of information relevance in problem solving demands that we acknowledge these shortcomings and interpret performance with sensitivity to them. The authors recognize that this process is not easy. We grapple with this in our own work; however, we believe that the process of grappling with these epistemological issues is central to the evolution of our research.

Data availability statement

The original contributions presented in the study are included in the article/supplementary material, further inquiries can be directed to the corresponding author.

Author contributions

KR: Conceptualization, Funding acquisition, Methodology, Project administration, Resources, Validation, Visualization, Writing – original draft, Writing – review & editing. LR: Conceptualization, Funding acquisition, Methodology, Project administration, Resources, Validation, Visualization, Writing – original draft, Writing – review & editing. LA: Conceptualization, Funding acquisition, Resources, Validation, Visualization, Writing – original draft, Writing – review & editing.

The author(s) declare that financial support was received for the research, authorship, and/or publication of this article. This material is based upon work supported by the National Science Foundation under Grant no. NSF 2141411.

Acknowledgments

We are grateful to Suzanne Gaskins, Ella Rose, and Lina Brodsky for substantive conversations that supported the development of these arguments.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Alcalá, L. (2023). The development of executive function skills through culturally organized autonomy and helping. Infant Child Dev. 32:e2460. doi: 10.1002/icd.2460

Crossref Full Text | Google Scholar

Alcalá, L., and Cervera, M. D. (2022). Yucatec Maya mothers’ ethnotheories about learning to help at home. Infant Child Dev. 31:E2318. doi: 10.1002/icd.2318

Alcalá, L., Cervera, M. D., and Fernandez, Y. S. (2021). How Yucatec Maya children learn to help at home. Hum. Dev. 65, 191–203. doi: 10.1159/000518457

Arieli, S., and Sagiv, L. (2018). Culture and problem-solving: congruency between the cultural mindset of individualism versus collectivism and problem type. J. Exp. Psychol. Gen. 147, 789–814. doi: 10.1037/xge0000444

PubMed Abstract | Crossref Full Text | Google Scholar

Ayduk, O., Mendoza-Denton, R., Mischel, W., Downey, G., Peake, P. K., and Rodriguez, M. (2000). Regulating the interpersonal self: strategic self-regulation for coping with rejection sensitivity. J. Pers. Soc. Psychol. 79, 776–792. doi: 10.1037/0022-3514.79.5.776

Bilgen, A., Nasir, A., and Schöneberg, J. (2021). Why positionalities matter: reflections on power, hierarchy, and knowledges in “development” research. Can. J. Dev. Stud. 42, 519–536. doi: 10.1080/02255189.2021.1871593

Borsboom, D. (2005). Measuring the mind: conceptual issues in contemporary psychometrics . Cambridge: Cambridge University Press.

Google Scholar

Burgess, P. W., Alderman, N., Forbes, C., Costello, A., Coates, L. M., Dawson, D. R., et al. (2006). The case for the development and use of "ecologically valid" measures of executive function in experimental and clinical neuropsychology. J. Int. Neuropsychol. Soc. 12, 194–209. doi: 10.1017/S1355617706060310

Cervera-Montejano, M. D. (2022). Children's learning to be vernacular architects: Yucatec Maya theory behind LOPI (Comoaprenden los niños mayas a ser arquitectos vernáculos: la teoría maya yucateca detrás de LOPI). J. Study Educ. Dev. 45, 549–566. doi: 10.1080/02103702.2022.2059948

Chavajay, P., and Rogoff, B. (2002). Schooling and traditional collaborative social organization of problem solving by Mayan mothers and children. Dev. Psychol. 38, 55–66. doi: 10.1037/0012-1649.38.1.55

Correa-Chávez, M., Rogoff, B., and Mejía Arauz, R. (2005). Cultural patterns in attending to two events at once. Child Dev. 76, 664–678. doi: 10.1111/j.1467-8624.2005.00870.x

Ericsson, K. A., Krampe, R. T., and Tesch-Römer, C. (1993). The role of deliberate practice in the acquisition of expert performance. Psychol. Rev. 100, 363–406. doi: 10.1037/0033-295X.100.3.363

Gaskins, S. (2020). “Integrating cultural values through everyday experiences” in The Oxford handbook of moral development , 186–202.

Gaskins, S., and Alcalá, L. (2023). Studying executive function in culturally meaningful ways. J. Cogn. Dev. 24, 260–279. doi: 10.1080/15248372.2022.2160722

Henrich, J., Heine, S. J., and Norenzayan, A. (2010). The weirdest people in the world? Behav. Brain Sci. 33, 61–83. doi: 10.1017/S0140525X0999152X

Jukes, M. C. H., Ahmed, I., Baker, S., Draper, C. E., Howard, S. J., McCoy, D. C., et al. (2024). Principles for adapting assessments of executive function across cultural contexts. Brain Sci. 14:318. doi: 10.3390/brainsci14040318

Kidd, C., Palmeri, H., and Aslin, R. N. (2013). Rational snacking: young children's decision-making on the marshmallow task is moderated by beliefs about environmental reliability. Cognition 126, 109–114. doi: 10.1016/j.cognition.2012.08.004

Lasker, R. D., and Weiss, E. S. (2003). Broadening participation in community problem solving: a multidisciplinary model to support collaborative practice and research. J. Urban Health 80, 14–60. doi: 10.1093/jurban/jtg014

López Fraire, A., Rogoff, B., and Alcalá, L. (2024). Helping without being asked as a cultural practice. J. Appl. Dev. Psychol. 91:101631. doi: 10.1016/j.appdev.2023.101631

Messick, S. (1981). Constructs and their vicissitudes in educational and psychological measurement. Psychol. Bull. 89, 575–588. doi: 10.1037/0033-2909.89.3.575

Miller, P. H., and Scholnick, E. K. (2015). Feminist theory and contemporary developmental psychology: the case of children’s executive function. Fem. Psychol. 25, 266–283. doi: 10.1177/0959353514552023

Miller-Cotto, D., Smith, L. V., Wang, A. H., and Ribner, A. D. (2022). Changing the conversation: a culturally responsive perspective on executive functions, minoritized children and their families. Infant Child Dev. 31:e2286. doi: 10.1002/icd.2286

Mischel, W. (1961). Father-absence and delay of gratification: crosscultural comparisons. J. Abnorm. Soc. Psychol. 63, 116–124. doi: 10.1037/h0046877

Mischel, W., and Ebbesen, E. B. (1970). Attention in delay of gratification. J. Pers. Soc. Psychol. 16, 329–337. doi: 10.1037/h0029815

Mischel, W., and Metzner, R. (1962). Preference for delayed reward as a function of age, intelligence, and length of delay interval. J. Abnorm. Soc. Psychol. 64, 425–431. doi: 10.1037/h0045046

Mischel, W., Shoda, Y., and Peake, P. K. (1988). The nature of adolescent competencies predicted by preschool delay of gratification. J. Pers. Soc. Psychol. 54, 687–696. doi: 10.1037//0022-3514.54.4.687

Mischel, W., Shoda, Y., and Rodriguez, M. I. (1989). Delay of gratification in children. Science (New York, N.Y.), 244, 933–938. doi: 10.1126/science.2658056

Newell, A., and Simon, H. A. (1972). Human problem solving . Englewood Cliffs, NJ: Prentice-Hall.

Ochs, E., and Izquierdo, C. (2009). Responsibility in childhood. Ethos 37, 391–413. doi: 10.1111/j.1548-1352.2009.01066.x

Oyserman, D. (2011). Culture as situated cognition: cultural mindsets, cultural fluency, and meaning making. Eur. Rev. Soc. Psychol. 22, 164–214. doi: 10.1080/10463283.2011.627187

Oyserman, D. (2016). What does a priming perspective reveal about culture: culture-as-situated cognition. Curr. Opin. Psychol. 12, 94–99. doi: 10.1016/j.copsyc.2016.10.002

Oyserman, D., Coon, H. M., and Kemmelmeier, M. (2002). Rethinking individualism and collectivism: evaluation of theoretical assumptions and meta-analyses. Psychol. Bull. 128, 3–72. doi: 10.1037/0033-2909.128.1.3

Patton, K., and Winter, K. (2023). Researcher positionality in eliciting young children’s perspectives. J. Early Child. Res. 21, 303–313. doi: 10.1177/1476718X221145484

Rogoff, B. (1990). Apprenticeship in thinking: Cognitive development in social context . Oxford: Oxford university press.

Saxe, G. B. (1988). Candy selling and math learning. Educ. Res. 17, 14–21. doi: 10.2307/1175948

Shoda, Y., Mischel, W., and Peake, P. K. (1990). Predicting adolescent cognitive and self-regulatory competencies from preschool delay of gratification: identifying diagnostic conditions. Dev. Psychol. 26, 978–986. doi: 10.1037/0012-1649.26.6.978

Watts, T. W., Duncan, G. J., and Quan, H. (2018). Revisiting the marshmallow test: a conceptual replication investigating links between early delay of gratification and later outcomes. Psychol. Sci . 29, 1159–1177. doi: 10.1177/0956797618761661

Keywords: problem solving, measurement, information relevance, ecological validity, cultural relevance

Citation: Rhodes KT, Richland LE and Alcalá L (2024) Problem solving is embedded in context… so how do we measure it? Front. Psychol . 15:1380178. doi: 10.3389/fpsyg.2024.1380178

Received: 01 February 2024; Accepted: 26 April 2024; Published: 17 May 2024.

Reviewed by:

Copyright © 2024 Rhodes, Richland and Alcalá. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY) . The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

*Correspondence: Katherine T. Rhodes, [email protected]

Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Cart

  • SUGGESTED TOPICS
  • The Magazine
  • Newsletters
  • Managing Yourself
  • Managing Teams
  • Work-life Balance
  • The Big Idea
  • Data & Visuals
  • Reading Lists
  • Case Selections
  • HBR Learning
  • Topic Feeds
  • Account Settings
  • Email Preferences

The Power of Leaders Who Focus on Solving Problems

  • Deborah Ancona
  • Hal Gregersen

article on problem solving

Can you get people excited about the problems that excite you?

There’s a new kind of leadership taking hold in organizations. Strikingly, these new leaders don’t like to be called leaders, and none has any expectation that they will attract “followers”  personally  — by dint of their charisma, status in a hierarchy, or access to resources. Instead, their method is to get others excited about whatever problem they have identified as ripe for a novel solution. Having fallen in love with a problem, they step up to leadership — but only reluctantly and only as necessary to get it solved. Leadership becomes an intermittent activity as people with enthusiasm and expertise step up as needed, and readily step aside when, based on the needs of the project, another team member’s strengths are more central. Rather than being pure generalists, leaders pursue their own deep expertise, while gaining enough familiarity with other knowledge realms to make the necessary connections. They expect to be involved in a series of initiatives with contributors fluidly assembling and disassembling.

In front of a packed room of MIT students and alumni, Vivienne Ming is holding forth in a style all her own. “Embrace cyborgs,” she calls out, as she clicks to a slide that raises eyebrows even in this tech-smitten crowd. “ Really . Fifteen to 25 years from now, cognitive neuroprosthetics will fundamentally change the definition of what it means to be human.”

article on problem solving

  • Deborah Ancona is the Seley Distinguished Professor of Management at MIT’s Sloan School of Management and the founder of the MIT Leadership Center.
  • Hal Gregersen is a Senior Lecturer in Leadership and Innovation at the MIT Sloan School of Management , a globally recognized expert in navigating rapid change, and a Thinkers50 ranked management thinker. He is the author of Questions Are the Answer: A Breakthrough Approach to Your Most Vexing Problems at Work and in Life and the coauthor of The Innovator’s DNA: Mastering the Five Skills of Disruptive Innovators .

Partner Center

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Springer Nature - PMC COVID-19 Collection

Logo of phenaturepg

The art of problem solving and its translation into practice

Janine brooks.

Dentalia Coaching and Training Consultancy, Northampton, UK

Dr Janine Brooks MBE discusses effective problem solving in our professional and personal lives, what it is to be a good problem solver and how you can improve your own problem-solving skills

A problem is a gap or difference in what the situation is now and what you would like it to be. This means that problems can be universal - the same situation would be a problem for everyone or it may be specific to us or a group of people. How we develop new, flexible, open-minded approaches or solutions to a problem is the creativity we employ. Critical thinking is how we examine and reflect on ideas and thinking (our own and those of others). Then judgments of the options are made on how best to proceed and a course of action decided upon. By combining critical thinking and observation, the problem is identified, information is gathered, beliefs and ideas are challenged, and different options are examined creatively. Asking questions of ourselves, others and the situation is the way to build critical thinking into problem solving, as shown in Figure 1 .

An external file that holds a picture, illustration, etc.
Object name is 41404_2022_1714_Fig1_HTML.jpg

Components when solving a problem

Problem solving is a fundamental human cognitive process. Modern humans have been problem solving for hundreds of thousands of years. Our ability to solve problems is one of the factors that underpin our success as a species. Many of the problems our early ancestors had to solve may be less of an issue to us today, but the process is pretty much the same.

Not every problem is one we have encountered before or one that can be easily and simply solved. Some problems are not static, they change over time, they allow for multiple valid solutions, and require active exploration before they can be solved, as Figure 2 shows.

An external file that holds a picture, illustration, etc.
Object name is 41404_2022_1714_Fig2_HTML.jpg

Factors underpinning a solution

Complicated or complex?

At first glance these two words could be describing similar problems. However, there is a very real difference. Complicated problems are ones that have a high level of difficulty involved. Think some restorative treatment plans. The problem is generally easy to predict and therefore complicated problems are usually solvable.

Complex problems are ones that have many components and are difficult to define. Think climate change, drug misuse, terrorism. As well as being difficult to define, complex problems can be hard to understand plus tricky to predict the outcome. Each component may not necessarily be difficult, it is the interplay of factors that gives the complexity. Complex problems can rarely be solved, often they can only be addressed or, to some extent, managed. Think COVID-19 pandemic.

Complex Problem Solving

Complex Problem Solving (CPS) was Introduced in the late 1970s by Dietrich Dörner who felt there was an assumed lack of realism in existing problem-solving approaches. Dörner criticised the classical approach to problem solving as being too static. He noted that real problems usually neither have a single valid solution, nor do they reveal all the information necessary for their solution from the beginning. To reduce this discrepancy between problems in reality and existing problem-solving approaches, he defined CPS. Funke states there are five typical attributes to a complex problem. 1 These are:

  • Complexity - a large number of variables make up the problem
  • Connectivity - the variables are connected and there are mutual dependencies
  • Dynamics - development of variables over time and across a system
  • Intransparency (difficult to see) - between variables and their values
  • Polytely (many goals) - there are goal conflicts on different levels of analysis.

The current NHS Dental Contract and how to find a solution seems to me to fit into the category of a complex problem. It may also be a wicked problem, see later.

The steps in Figure 3 give a map to the stages of solving most problems. Probably the most important is the first step - identifying exactly what the problem is. All too often we think we know what the problem is and then go about putting in solutions, only to find that we have solved the wrong problem. The first stage of identification should take time and investigation. As dentists we are trained to look more deeply, so for example when a patient comes in with pain, it's not always the most obvious problem. Jumping to the first conclusion is not always the right one. The seven steps are very akin to good treatment planning. However, we can use these same steps in many of the problems we face outside the clinical environment. Effective problem solving is one of the key attributes that separate great leaders (and indeed, great clinicians) from average ones.

An external file that holds a picture, illustration, etc.
Object name is 41404_2022_1714_Fig3_HTML.jpg

Seven steps to effective problem solving Source: https://crestcom.com

Wicked problems

Wicked problems are social or cultural problems that are difficult or impossible to solve because: incomplete or contradictory knowledge; the number of people and opinions involved; the large economic burden, and the interconnected nature of these problems with other problems. Rittell and Webber first introduced wicked problems into planning in 1973. Conklin et al stated that wicked problems ' were a problem type and not a new way of solving complex problems. Problem wickedness is not about a higher degree of complexity, it's a fundamentally different kind of challenge to the design process, one that makes solution secondary and understanding the problem central '. 3

Improving oral health in society is a wicked problem, it involves cultural, social, economic, nutrition and equality issues. The issues constantly change which impact on the solutions, it is a constantly dynamic and fluid situation. Solutions which may have been successful cease to be as the factors change in ways that were not obvious when a solution was first implemented. I hinted above that the dental contact may be a wicked problem. I'll leave that to you to ponder.

Being a good problem solver

I believe that dental professionals are generally good at problem solving, it is part of our training, however, we can always improve and, as noted above, factors change and solutions that worked in the past may not work now. A good problem solver needs to constantly re-evaluate and not rely on past experience alone. Here are a few steps that can improve your problem solving.

  • Take a breath : A good problem solver stays calm, even in stressful situations.
  • Keep on track : Having an overview of the situation and the context helps good problem solvers prioritise tasks and reduce vast amounts of information to the most important points.
  • Work strategically , if possible: Good problem solvers aim to identify and analyse the important variables and try to gain control over the complex situation by using adequate strategies. Don't be knocked off track by minutiae.
  • Evaluate actions and adapt : Possible sudden changes of the situation and the relationship of variables should be considered. Hence, interactions within the situation should be evaluated and, if applicable, the problem solver's internal representation of the model should be updated. Keep your eye on the ball and be flexible.

Some strategies to solve problems

Brain storming/thought shower.

The term brain storming got some politically correct bad press in the early part of the 21st century. Thought shower was a term developed to replace it. I leave it to readers to decide which term they wish to use.

Often used by groups, but can also be used by individuals. Used to create as many possible solutions to a problem as possible. To be effective, the ideas must not be judged or evaluated in any way as they are being developed, no matter how bizarre they seem. Wild and whacky ideas are welcomed. Ideas can build on other ideas. New ideas can be created by changing ideas already mentioned.

The more solutions that can be created, the more likely you are to find an effective one. Also, the more variety there is in the solutions, the more likely you are to find an effective one. Once all possible ideas have been created, they are considered for possible consequences. A solution is then selected.

Thinking Hats

The Thinking Hats model was developed by Edward de Bono in 1985. The model can be used in groups or by individuals. There are six imaginary hats. Each hat stands for a different way of thinking about a problem or issue. Using all of the hats will help to consider the problem more creatively.

The model, shown in Table 1 , helps to think about a problem from different viewpoints. If it is being used in a group, all members have on the same-coloured hat at the same time. First all the group is one colour thinking hat, then they move to another colour until all coloured hats have been 'worn'.

Six thinking hats 4

Problem reversal

Sometimes, you will get a different view of a problem if you look at it from the opposite direction. This means stating the problem in reverse. Change a positive statement into a negative one. For example, if there is a problem with a member of staff and you want to improve the situation, consider what would make the situation worse, reverse the problem. Strangely, negative ideas can be easier to generate than positive ideas. Problem reversal can seem rather an alien technique at first. Here's how it's done.

For example, if you have a receptionist who is not very good with patients and you want to improve the situation, reverse the problem - ask 'How can I reduce patient satisfaction with reception? Some of the answers might be:

  • Not answering the phone when patients call
  • Not returning phone calls
  • Have receptionists who know nothing about the practice answering the phone
  • Use rude reception staff
  • Give patients the wrong information.

This has flipped the problem and you can now think how you would like to address those issues. What you would probably do is set up a training programme for your receptionists to make sure they are answering the phones in the way you want them to, pleasantly and quickly and giving patients accurate information. You can then evaluate if the training has improved the initial problem.

This is a problem-solving and strategic planning technique that I'm sure many people are familiar with. The technique is also called a situational assessment or situational analysis. SWOT (Strengths, Weaknesses, Opportunities, Threats) can be used in so many different personal, professional or organisational settings. When writing your Personal Development Plan, you have probably used SWOT to think about your development and what continuing professional development to undertake. It is also a useful tool when planning business or organisational developments. As a general guide strengths and weaknesses are internal to us, whilst opportunities and threats are external to us.

' Sometimes, you will get a different view of a problem if you look at it from the opposite direction. This means stating the problem in reverse.'

SWOT can be helpful when evaluating solutions. What are the possible benefits? What strengths are present? What are the weaknesses? What new opportunities or situations can be created? How can we take advantage of these opportunities? What is the possible harm in the problem? What is the possible harm in the solution? The primary goal with SWOT is to grow a picture of areas you are good at - your strengths. These are areas you need to maintain and maybe get even better at. These are your advantage areas, build on them. Your weaknesses are generally areas you would like to improve, minimise or eliminate. For example, if you are not very good at a particular area of dentistry you can either get better at it or you can decide to refer to someone else who is already better at it. Opportunities are things that can help you to improve yourself or your practice. Think about how you can capitalise opportunities. Threats are things that can get in the way of improvement. Alternatively identifying what the threats or obstacles are can turn them into opportunities as you find ways to overcome them.

Role playing

Role-playing helps to consider the problem from another person's point of view. To do this, adopt the roles of other people who are involved in the problem. Coaches encourage the people they work with to swap chairs to 'become' the other person. The technique can also be described as 'walking in their shoes'. Role play can be used where you have a specific problem that you are grappling with. In that case think about being 'in' the situation you want to resolve. Role play helps you develop a new perspective on the issue or problem.

An alternative use of role play is to choose a fictional character, or even a superhero and imagine how they would deal with a problem. Sometimes being completely whacky can allow a solution to develop that you may not have thought of otherwise.

Whilst it is possible to role play as an individual it is best undertaken between two or more people, each acting out a role to explore a specific scenario. Role play can be particularly useful in preparing for a difficult situation, for example interviews, presentations or emotionally difficult conversation, for example when resolving conflict.

In conclusion, you are probably much better at solving problems that you think you are. The problems you solve easily you tend to forget about, the difficult ones stick in your mind. When you come across a difficult or novel problem then think about tools to help you solve it. Old methods and ways that worked before don't always work; things change. There can be tremendous satisfaction when a thorny problem has been resolved successfully. Problem solvers are always in demand - they bring solutions and everyone loves a solution. ◆

Into all problem-solving, a little dissent must fall

Events of the past several years have reiterated for executives the importance of collaboration and of welcoming diverse perspectives when trying to solve complicated workplace problems. Companies weren’t fully prepared for the onset of a global pandemic, for instance, and all that it engendered—including supply chain snarls and the resulting Great Attrition  and shift to remote (and now hybrid) work, which required employers to fundamentally rethink their talent strategies . But in most cases leaders have been able to collaborate their way through the uncertainty, engage in rigorous debate and analyses about the best steps to take, and work with employees, suppliers, partners, and other critical stakeholders to react and, ultimately, recover.

And It’s not just COVID-19: many organisations have had to rethink their business strategies and practices in the wake of environmental concerns, the war in Ukraine, and social movements sparked by racial injustice, sexual misconduct, and widespread economic inequity . Ours are fast-moving, complex times, rich not just in worrisome challenges but also in exciting potential—organisations that enable innovation will find ample opportunities to thrive. So now more than ever, decision makers can’t act alone; they must bring diverse perspectives to the table and ensure that those voices are fully heard . 1 Sundiatu Dixon-Fyle, Kevin Dolan, Vivian Hunt, and Sara Prince, “ Diversity wins: How inclusion matters ,” McKinsey, May 19, 2020.

But while many leaders say they welcome dissent, their reactions often change when they actually get some. They may feel defensive. They may question their own judgment. They may resent having to take time to revisit the decision-making process. These are natural responses, of course; employees’ loyalty and affirmation are more reassuring to leaders than robust challenges from the group. There is discomfort, too, for potential dissenters; it is much safer to keep your thoughts to yourself and conform  than to risk expulsion from the group. 2 Derived from this work on the evolutionary origins of social and political behavior: Christopher Boehm, Hierarchy in the Forest: The Evolution of Egalitarian Behavior , Cambridge, Massachusetts: Harvard University Press, 2001.

What’s missing in many companies, in our experience, is the use of “contributory dissent” or the capabilities required to engage in healthy if divergent discussions about critical business problems. Contributory dissent allows individuals and groups to air their differences in a way that moves the discussion toward a positive outcome and doesn’t undermine leadership or group cohesion . 3 McKinsey itself has established obligation to dissent as one of its core values alongside those focused on client service and talent development. For more, see Bill Taylor, “True leaders believe dissent is an obligation,” Harvard Business Review , January 12, 2017.

McKinsey’s research and experience in the field point to several steps leaders can take to engage in healthy dissent and build a culture where constructive feedback is expected and where communication is forthright. These include modeling “open” behaviors, embedding psychological safety  and robust debate into decision-making processes, and equipping employees with the communication skills that will allow them to contribute dissenting opinions effectively.

In this article we outline the steps leaders can take to encourage healthy dissent, and the actions teams and individuals can take to share their voices and perspectives most effectively. It takes both sides, after all, to engage in robust debate, find the right solutions, and enable lasting, positive change.

How leaders can encourage contributory dissent

Senior leaders in an organisation play a central role in ensuring that individuals and teams see contributory dissent as a normal part of any discussion. They can signal the importance of dissent by taking a series of steps to institutionalise the practice within an organisation and empower employees to share their ideas freely and productively. Specifically, senior leaders should strive to inspire rather than direct employees to collaborate, explicitly demand dissent and, taking that one step further, actively engage with naysayers (see sidebar “How to encourage healthy dissent”). 4 Leaders can also draw on McKinsey’s “influence model” for changing mindsets and behaviors: role modeling, fostering understanding and conviction, reinforcing with formal mechanisms, and developing talent and skills. For more, see Tessa Basford and Bill Schaninger, “ The four building blocks of change ,” McKinsey Quarterly , April 11, 2016.

Inspire, don’t direct

How to encourage healthy dissent.

To encourage dissent through personal leadership:

Lead to inspire, not to direct:

  • Empower the group to come up with ideas: “None of us knows the answer yet, but we can work it out together if we harness the best of everyone’s thinking.”

Foster dissent by actively seeking it:

  • Explicitly seek dissent; give people permission and encouragement.
  • Consider including dissent as a stated organisational value.
  • Make provision for open discussion in the buildup to decisions.

Welcome open discussion when it comes:

  • Listen to dissenters and naysayers, and thank them for their insights.
  • Recognise this as a usefully unfiltered channel for understanding the organisation’s perceptions on issues.
  • Seek to bring dissenters along the decision journey, so they become positive influencers later during implementation.
  • Employ deliberate techniques such as red teaming and pre-mortems to widen the debate and mitigate groupthink.

As the inspirational speaker Simon Sinek put it, “The role of a leader is not to come up with all the great ideas. The role of a leader is to create an environment in which great ideas can happen.” 5 Simon Sinek, Start with Why: How Great Leaders Inspire Everyone to Take Action , New York, NY: Portfolio, 2009. That is especially important for fostering an atmosphere of collaboration and contributory dissent. Rather than immediately jump into a discussion about solutions, one senior leader in an international organisation addressed his team’s anxiety in the wake of a crisis. “Let me guess,” he said, “you’re all feeling confused and uncertain about the way ahead. Terrific. I’m so glad we are of one mind and that we all understand our situation correctly! I’m sure that we can work it out together, but it’s going to require the best of everyone’s thinking. Let’s get started.” His authenticity and understated humor allowed him to connect with the group and inspired them to keep calm, carry on, and generate solutions that the leader alone couldn’t have come up with. Harvard professor Ron Heifetz describes this as creating a holding environment, a key element of adaptive leadership. 6 Ronald A. Heifetz and Mary Linksy, Leadership on the Line: Staying Alive through the Dangers of Leading , Boston, MA: Harvard Business School Press, 2002; Ronald Heifetz, Alexander Grashow, and Marty Linksy, The Practice of Adaptive Leadership: Tools and Tactics for Changing Your Organization and the World , Boston, MA: Harvard Business Press, 2009.

Explicitly demand dissent

It’s not enough for leaders to give people permission to dissent; they must demand it of people. In many companies, individuals and teams may (understandably) default to collegiality, not realizing that there are ways to challenge ideas while still respecting colleagues’ roles and intellect. It’s on senior leaders, then, to help employees understand where the boundaries are. In World War 1, Australia’s General Sir John Monash was determined to develop better tactics to overcome the catastrophic impasse of trench warfare. He knew there were answers to be found from the experience of soldiers in the trenches, but he needed to loosen the military discipline of blind obedience: “I don’t care a damn for your loyal service when you think I am right; when I really want it most is when you think I am wrong.” Monash scheduled open battle planning sessions and pulled in advice from whoever offered it. In doing so, he built ownership of and confidence in his plans among all ranks. The resulting orchestration of tanks, artillery, aircraft, and troops led to rapid advances along the Somme Valley, and Monash garnered respect and appreciation from his troops, whose chances of survival and ultimate victory had increased markedly.

Actively engage with naysayers

Taking the demand imperative one step further, it’s beneficial for leaders to actively seek out the views of vocal naysayers , who can turn into influential champions just by being part of the conversation. They can immediately improve the nature of business debate and may boost the quality of the final decision, although engaging with naysayers can be tough. Some dissenting opinions can be ill-informed or uncomfortable to hear. The objective for senior leaders, then, is to put their discomfort aside and listen for signs of cognitive dissonance within an organisation. As an example, front-line employees may say things like “We’re not considered strategic thinkers,” or “The company doesn’t put people first,” while senior management may actually feel as though they have made strides in both of those areas. Still, leaders need to absorb such comments, treat them as useful data points, assess their validity, and engage in what may be a challenging discussion. They may want to use red teams  and premortems , in which teams at the outset anticipate all the ways a project could fail, to frame up dissenting opinions, mitigate groupthink, and find a positive resolution. These behaviours also serve to enhance organizational agility and resilience .

How leaders can establish psychological safety

Senior leaders need to establish a work environment in which it is safe to offer dissenting views. The McKinsey Health Institute’s work on employee well-being points to a strong correlation between leadership behaviors, collaborative culture, and resistance to mental health problems and burnout : only 15 percent of employees in environments with low inclusivity and low support for personal growth are highly engaged, compared with 38 percent in high-scoring environments. 7 “ Addressing employee burnout: Are you solving the right problem? ,” McKinsey, May 27, 2022. Leaders can build psychological safety (where team members feel they can take interpersonal risks and remain respected and accepted) and set the conditions for contributory dissent by rethinking how they engage in debate—both the dynamics and the choreography of it.

The dynamics of debate

The poet and playwright Oscar Wilde described a healthy debating culture as one in which people are “playing gracefully with ideas”— listening to, and even nourishing, opposing points of view in a measured and respectful way. 8 The Complete Works of Oscar Wilde, Volume 2: De Profundis, “Epistola: In Carcere et Vinculis,” Oxford, United Kingdom: Clarendon Press, 2005. Indeed, the best ideas can emerge at the intersection of cultures and opinions. In 15th century Florence, for instance, the Medici family attracted and funded creators from across the arts and sciences to establish an epicenter of innovative thinking that sparked the Renaissance. 9 Frans Johansson, The Medici Effect: Breakthrough Insights at the Intersection of Ideas, Concepts, and Culture , Boston, MA: Harvard Business School Press, 2004. Closer to this century, we have seen cross-discipline innovations like the application of biologists’ research on ant colonies to solve problems in telecommunications routing. And in the business world, extraordinary innovations have been achieved by open-minded leaders bringing together smart people and creating the conditions for playful exploration.

To achieve a state of “graceful play,” senior leaders must carefully manage group dynamics during debates. Rather than lead with their own opinions, for instance, which might immediately carry outsize weight in the group and stifle discussion, senior leaders can hold back and let others lead the discussion . They can lean in to show genuine curiosity or to explicitly recognise when a dissenting view has changed their thinking. But by letting other, more junior voices carry the agenda and work through ideas, however imperfect, senior leaders can establish a climate of psychological safety—and garner more respect from colleagues long term. 10 Amy C. Edmondson, The Fearless Organization: Creating Psychological Safety in the Workplace for Learning, Innovation, and Growth , Hoboken, NJ: John Wiley & Sons, 2019.

Leaders will also need to be aware of cultural differences that may crop up during debates. For example, many Australians speak candidly and are happy to address issues squarely. By contrast, the concept of “face” is so important in many Asian cultures that a more circumspect approach is taken. And the Pacific and Maori cultures emphasize displays of both strength and respect. 11 Erin Meyer, The Culture Map: Breaking through the Invisible Boundaries of Global Business , Philadelphia, PA: PublicAffairs, 2014. These differences in debate dynamics really matter. They can be a great source of hybrid vigour, 12 “Heterosis, also called hybrid vigour: the increase in such characteristics as size, growth rate, fertility, and yield of a hybrid organism over those of its parents. The first-generation offspring generally show, in greater measure, the desired characteristics of both parents.” Encyclopedia Britannica , accessed September 19, 2022. if sensitively managed, or a source of conflict and disenfranchisement if not. To approach these differences in a positive way, senior leaders could undertake a mapping exercise that identifies the different styles of the cultures present, thereby providing validation and enabling pragmatic measures to integrate them.

Choreographing debate

Beyond just managing debate dynamics, business leaders must take a hand in choreographing the debate and, specifically, in helping to design collective-thinking processes  so people know how best to play their part. Business leaders may adopt a structured approach  to brainstorming, for instance, or plan strategic off-site schedules that combine deliberate thinking with “distracted” thinking—taking time to engage in a social activity, for instance—to take advantage of employees’ deep-thinking processes.

How deliberate choices by the leader can optimise a decision-making process

A leader must consciously assess each new situation and design the collective-thinking process accordingly, then articulate this so that people know how best to play their part.

In doing so, the leader should consider an array of questions, the answers to which will determine the context, for example:

  • What does success look like?
  • Will the organisation underwrite initial failures in the interests of agility and innovation?
  • How broad and freethinking an analysis is required?
  • What are the explicit expectations for contributory dissent?
  • Are any topics and behaviours out of bounds?
  • Who will lead the discussion, and how will comments be captured?
  • Does urgency mean that it’s better to be directive?
  • Who will be consulted?
  • Which decisions can be delegated, and to whom?
  • Whose support needs to be built?
  • What parameters and boundaries exist?
  • Are there interim decisions and communications required?
  • What form should the deliverable outcomes take?
  • When are the deliverables required?
  • Direction setting on these parameters by the leader focuses the team, while also creating space for creativity and iterative learning.

To create a sustainable structure for debate, business leaders will need to consider questions relating to team structure and rules of engagement: What does success look like when it comes to contributory dissent? What topics and behaviors are out of bounds? Who will lead the discussion, and how will comments be captured? Who has the final say on decisions, or which decisions can be delegated, and to whom? (For a more comprehensive explanation, see sidebar “How deliberate choices by the leader can optimise a decision-making process.”)

Having these parameters in place can free up the team to think more creatively about the issue at hand. Establishing such protocols can also make it easier to raise dissenting opinions. At one company, people are asked to call out their underlying values or potential biases when expressing a dissenting view. During meetings of the promotion committee, for instance, a statement like “I think we are making the wrong decision” would be rephrased as “I am someone who values experience over collaboration, and this decision would risk losing too much institutional knowledge.”

How individuals and teams can engage and dissent

As we’ve shared, senior leaders can take steps to set conditions for robust discussion and problem-solving, but individuals and teams themselves must also have the right mindsets and skills for contributory dissent to work well (see sidebar “How teams and individuals can dissent effectively”). In particular, they must embrace the obligation to dissent, actively make space to analyse ideas that are different from their own, and then find ways to either iterate on others’ ideas or respectfully agree to disagree.

Embrace the obligation to dissent

How teams and individuals can dissent effectively.

For dissent to be effective, its delivery requires courage and tactical skills underpinned by sincere respect and grace. Speaking up with respect is the right thing to do, and the responsibility to do so exists, even if there is uncertainty. The following guidelines are useful in enabling effective dissent:

Prepare a welcome for dissenting views:

  • Understand the context and motivations of others, appreciate their views, and syndicate your own.
  • Stop and strategise before wading into the conversations, establish a solid platform for agreement, and explicitly seek permission to dissent.

Play the long game:

  • Be open minded and iterative. Don’t expect to succeed on the first try.
  • Listen to others for what their views might add rather than to defend your own.

Withhold assent if you need to, but do it carefully:

  • Withholding assent is a legitimate option if done judiciously.
  • Minimise offense to and loss of face for the decision maker.
  • If principles or legality is at stake, document your dissent.

Individuals and teams need to exhibit a certain amount of humility and confidence in order to speak truth to power with respect; they must be sure for themselves that doing so is the right thing to do. To build this confidence, individuals and teams should remember that the very act of dissent can be valuable, even if the contribution itself isn’t 100 percent baked. Others can react or build on the dissenting view—which, in itself, can be a satisfying process for a dissenter. If the ultimate decision isn’t what they proposed, they still helped shape it by offering and testing a worthy possibility.

Make space to analyse different views

Individuals and teams may need time to determine their positions on an issue. During this period, it’s important to be (and seen to be) open-minded and respectful of others’ views. That means asking lots of questions, gathering information, assessing others’ motivations, and acknowledging their views before syndicating alternatives of your own. Much of this fact gathering can be done one-on-one, in a nonconfrontational way, in offline conversations rather than in a tension-filled meeting room. In these conversations, individuals could start by reaffirming a shared commitment to finding a solution to the issue at hand, their respect for the decision-making process and the group, and areas of broad agreement. They could also signal their possible intention to dissent and seek permission to do so rather than confronting people head-on. People will find it harder to refuse that permission, and will be less likely to get defensive, when approached with statements like “This is a great discussion, and I love the vision of where we are headed, but would it be OK for us to explore some alternatives for how to get there?”

Agree to iterate …

Individuals and teams that decide to offer dissenting views should agree to iterate on other solutions, rather than digging in. Their dissenting opinions should be cogent, persuasive, and open-minded—but dissenters shouldn’t expect to change hearts and minds on the first try. They should plant seeds gently and bide their time; they might even see their idea come back as someone else’s. The critical skill required here is active, open listening: dissenters should listen carefully for others’ additive insights and find ways to build on them. In their contributory dissent, individuals and teams can take a moment to summarize what others have said and then use statements like “Can I offer another take?” and then allow the momentum of the conversation to take over.

… or agree to disagree

But what happens if, after all the considered and tactful input, the dissenter still believes a decision is heading in the wrong direction? In our experience, withholding assent then becomes a legitimate option: people shouldn’t agree if they don’t agree. This is where all the careful, respectful groundwork the dissenter has done can pay dividends. In fact, a dissenting view gains even more power when an individual can say something like, “I still believe in my alternate solution, but I’m grateful for the opportunity to contribute to this process, and I respect that you have the final say.” In this case, the dissenter is supporting the leader while flagging that the open debate hasn’t convinced them to change their initial view.

Of course, withholding assent should be a relatively rare action, taken only after an individual or team has shown that they can accommodate other views and have aligned with the consensus when they believe it’s right to do so. Think of US Supreme Court associate justice Ruth Bader Ginsburg, who joined the consensus view on many decisions but who is especially celebrated for the positive changes that arose from her highly influential dissenting opinions on issues such as gender equity, human rights, and religious freedom.

Contributory dissent can help strengthen employee engagement, unlock hidden insights, and help organisations solve tough challenges. But putting it into practice takes courage and humility, and it won’t just happen by accident. Leaders need to be intentional about welcoming challenges to their plans and opinions, even when it’s uncomfortable to do so. They need to establish cultures and structures where respectful debate can occur and where individuals and teams feel free to bring innovative—and often better—alternative solutions to the table.

Ben Fletcher is a senior partner in McKinsey’s Sydney office, Chris Hartley is a partner in the Melbourne office, Rupe Hoskin is a senior expert in the Canberra office, and Dana Maor is a senior partner in the Tel Aviv office.

The authors wish to thank Jacqueline Brassey, Nikki Dines, Richard Fitzgerald, Sam Hemphill, Ayush Jain, Jemma King, and Martin Nimmo for their contributions to this article.

Explore a career with us

Related articles.

Psychological safety and the critical role of leadership development

Psychological safety and the critical role of leadership development

How to demonstrate calm and optimism in a crisis

How to demonstrate calm and optimism in a crisis

q16_web_four-building-blocks_137885675_1536x1536_Standard

The four building blocks of change

Help | Advanced Search

Computer Science > Computation and Language

Title: self-reflection in llm agents: effects on problem-solving performance.

Abstract: In this study, we investigated the effects of self-reflection in large language models (LLMs) on problem-solving performance. We instructed nine popular LLMs to answer a series of multiple-choice questions to provide a performance baseline. For each incorrectly answered question, we instructed eight types of self-reflecting LLM agents to reflect on their mistakes and provide themselves with guidance to improve problem-solving. Then, using this guidance, each self-reflecting agent attempted to re-answer the same questions. Our results indicate that LLM agents are able to significantly improve their problem-solving performance through self-reflection ($p < 0.001$). In addition, we compared the various types of self-reflection to determine their individual contribution to performance. All code and data are available on GitHub at this https URL

Submission history

Access paper:.

  • HTML (experimental)
  • Other Formats

license icon

References & Citations

  • Google Scholar
  • Semantic Scholar

BibTeX formatted citation

BibSonomy logo

Bibliographic and Citation Tools

Code, data and media associated with this article, recommenders and search tools.

  • Institution

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs .

TOI logo

  • Astrology News
  • Horoscope News

Virgo, Horoscope Today, May 14, 2024: Ideal day for problem-solving

Virgo, Horoscope Today, May 14, 2024: Ideal day for problem-solving

About the Author

AstroDevam is a premium organisation providing ancient and authentic knowledge of Astrology, Vastu, Numerology, and Innovative Corporate Solutions with a contemporary perspective. AstroDevam, having patrons in more than 100 countries, has been promoted by Achary Anita Baranwal and Achary Kalki Krishnan, who not only have Master's Degrees in Astrology, but are engaged in teaching Scientific Astrology, Vastu, and Numerology for more than three decades. Read More

Visual Stories

article on problem solving

Pew Research Center conducted this analysis to better understand teens’ use of and experiences with video games.

The Center conducted an online survey of 1,453 U.S. teens from Sept. 26 to Oct. 23, 2023, through Ipsos. Ipsos recruited the teens via their parents, who were part of its KnowledgePanel . The KnowledgePanel is a probability-based web panel recruited primarily through national, random sampling of residential addresses. The survey was weighted to be representative of U.S. teens ages 13 to 17 who live with their parents by age, gender, race and ethnicity, household income, and other categories.

This research was reviewed and approved by an external institutional review board (IRB), Advarra, an independent committee of experts specializing in helping to protect the rights of research participants.

Here are the questions used for this analysis , along with responses, and  its methodology .

There are long-standing debates about the impact of video games on youth. Some credit them for helping young people form friendships and teaching them about teamwork and problem-solving . Others say video games expose teenagers to violent content, negatively impact their sleep and can even lead to addiction.

With this in mind, Pew Research Center surveyed 1,423 U.S. teens ages 13 to 17 about their own video game habits – from how often they play to the friends they’ve made and whether it gets in the way of them doing well in school or getting a good night’s sleep. 1

Key findings from the survey

  • Video games as a part of daily teen life: 85% of U.S. teens report playing video games, and 41% say they play them at least once a day. Four-in-ten identify as a gamer.
  • Gaming as a social experience: 72% of teens who play video games say that a reason why they play them is to spend time with others. And some have even made a friend online from playing them – 47% of teen video game players say they’ve done this.
  • Helpful with problem-solving, less so for sleep: Over half of teens who play video games say it has helped their problem-solving skills, but 41% also say it has hurt their sleep.
  • Bullying is a problem: 80% of all teens think harassment over video games is a problem for people their age. And 41% of those who play them say they’ve been called an offensive name when playing.
  • Boys’ and girls’ experiences differ: Most teen boys and girls play video games, but larger shares of boys identify as gamers (62% vs. 17%) and play every day (61% vs. 22%). Boys who play them are also more likely to experience positive things from it, like making friends, and more troubling things like harassment.

Jump to read about: Who plays video games | Socializing over video games | Views about video games’ impact | Harassment and violence in video games      

A bar chart showing that 85% of teens play video games, and 4 in 10 identify as gamers

Playing video games is widespread among teens. The vast majority of U.S. teens (85%) say they play them. Just 15% say they never do, according to the survey conducted Sept. 26-Oct. 23, 2023.

In addition to asking whether teens play video games, we also wanted to learn whether they consider themselves gamers. Overall, four-in-ten U.S. teens think of themselves as gamers. Just under half of teens (45%) play video games but do not think of themselves as gamers.

A bar chart showing that Most teen boys and girls play video games, but boys are far more likely to identify as gamers

Nearly all boys (97%) say they play video games, compared with about three-quarters of teen girls. There is a substantial gap by gender in whether teens identify as gamers: 62% of teen boys do, compared with 17% of girls. 2

By gender and age

Younger teen girls are more likely than older girls to say they play video games: 81% of girls ages 13 to 14 compared with 67% of those ages 15 to 17. But among boys, nearly all play video games regardless of age. 

Similar shares of teens play video games across different racial and ethnic groups and among those who live in households with different annual incomes. Go to Appendix A for more detail on which teens play video games and which teens identify as gamers.

A flow chart showing How we asked teens in our survey if they play video games and identify as gamers by first asking who plays video games and then who identifies as a gamer

We also asked teens how often they play video games. About four-in-ten U.S. teens say they play video games daily, including 23% who do so several times a day.

A bar chart showing that About 6 in 10 teen boys play video games daily

Another 22% say they play several times a week, while 21% play them about once a week or less.

Teen boys are far more likely than girls to say they play video games daily (61% vs. 22%). They are also much more likely to say they play them several times a day (36% vs. 11%).

By whether someone identifies as a gamer

About seven-in-ten teens who identify as gamers (71%) say they play video games daily. This drops to 30% among those who play them but aren’t gamers.

By household income

Roughly half of teens living in households with an annual income of less than $30,000 (53%) say they play video games at least daily. This is higher than those in households with an annual income of $30,000 to $74,999 (42%) and $75,000 or more (39%).

Go to Appendix A to see more details about who plays video games and identifies as a gamer by gender, age, race and ethnicity, and household income.

A bar chart showing that Most teens play video games on a console or smartphone, 24% do so on a virtual reality headset

Most teens play video games on a gaming console or a smartphone. When asked about five devices, most teens report playing video games on a gaming console (73%), such as PlayStation, Switch or Xbox. And 70% do so on a smartphone. Fewer – though still sizable shares – play them on each of the following:

  • 49% say they play them on a desktop or laptop computer
  • 33% do so on a tablet  
  • 24% play them on a virtual reality (VR) headset such as Oculus, Meta Quest or PlayStation VR

Many teens play video games on multiple devices. About a quarter of teens (27%) do so on at least four of the five devices asked about, and about half (49%) play on two or three of them. Just 8% play video games on one device.

A dot plot showing that Teen boys are more likely than girls to play video games on all devices except tablets

Teen boys are more likely than girls to play video games on four of the five devices asked about – all expect tablets. For instance, roughly nine-in-ten teen boys say they ever play video games on a gaming console, compared with 57% of girls. Equal shares of teen boys and girls play them on tablets.  

Teens who consider themselves gamers are more likely than those who play video games but aren’t gamers to play on a gaming console (95% vs. 78%), desktop or laptop computer (72% vs. 45%) or a virtual reality (VR) headset (39% vs. 19%). Similar shares of both groups play them on smartphones and tablets.

A dot plot showing that Teen gamers are far more likely to use Discord and Twitch than other teens

One way that teens engage with others about video games is through online platforms. And our survey findings show that teen gamers stand out for their use of two online platforms that are known for their gaming communities – Discord and Twitch :

  • 44% of teen gamers say they use Discord, far higher than video game players who don’t identify as gamers or those who use the platform but do not play video games at all. About three-in-ten teens overall (28%) use Discord.
  • 30% of teens gamers say they use Twitch. About one-in-ten other teens or fewer say the same; 17% of teens overall use the platform.

Previous Center research shows that U.S. teens use online platforms at high rates .

A bar chart showing that Teens most commonly say they spend the right amount of time playing video games

Teens largely say they spend the right amount of time playing video games. When asked about how much time they spend playing them, the largest share of teens (58%) say they spend the right amount of time. Far fewer feel they spend too much (14%) or too little (13%) time playing them.

Teen boys are more likely than girls to say they spend too much time playing video games (22% vs. 6%).

By race and ethnicity

Black (17%) and Hispanic (18%) teens are about twice as likely than White teens (8%) to say they spend too little time playing video games. 3

A quarter of teens who consider themselves gamers say they spend too much time playing video games, compared with 9% of those who play video games but don’t identify as gamers. Teen gamers are also less likely to think they spend too little time playing them (19% vs. 10%).

A bar chart showing that About 4 in 10 teens have cut back on how much they play video games

Fewer than half of teens have reduced how much they play video games. About four-in-ten (38%) say they have ever chosen to cut back on the amount of time they spend playing them. A majority (61%) report that they have not cut back at all.

This share is on par with findings about whether teenagers have cut back with their screen time – on social media or their smartphone.

Although boys are more likely to say they play video games too much, boys and girls are on par for whether they have ever cut back. About four-in-ten teen boys (39%) and girls (38%) say that they have ever cut back.

And gamers are as likely to say they have cut back as those who play video games but don’t identify as gamers (39% and 41%).

A chart showing that 89% of teens who play video games do so with others; about half or 47% made a friend through them

A main goal of our survey was to ask teens about their own experiences playing video games. For this section of the report, we focus on teens who say they play video games.

Socializing with others is a key part of the video game experience. Most teens who play video games do so with others, and some have developed friendships through them.

About nine-in-ten teen video game players (89%) say they play them with other people, in person or online. Far fewer (11%) play them only on their own.

Additionally, about half (47%) report that they have ever made a friend online because of a video game they both play. This equals 40% of all U.S. teens who have made a friend online because of a video game.

These experiences vary by:  

A bar chart showing that Teen boys who play video games are more likely than girls to make friends over video games

  • Gender: Most teen boy and girl video game players play them with others, though it’s more common among boys (94% vs. 82%). Boys who play video games are much more likely to say they have made a friend online because of a video game (56% vs. 35%).
  • Race and ethnicity: Black (55%) and Hispanic (53%) teen video game players are more likely than White teen video game players (43%) to say they have made a friend online because of them.
  • Whether someone identifies as a gamer: Nearly all teen gamers report playing video games with others (98%). Fewer – though still most – of those who play video games but aren’t gamers (81%) also play them with others. And about seven-in-ten (68%) say they have made a friend online because of a video game, compared with 29% of those who play them but don’t identify as gamers.

A bar chart showing that More than half of teens who play video games say it helps their problem-solving skills, but many say it negatively impacts the amount of sleep they get

Teens who play video games are particularly likely to say video games help their problem-solving skills. More than half of teens who play video games (56%) say this.

Additionally, more think that video games help, rather than hurt, three other parts of their lives that the survey asked about. Among teens who play video games:

  • Roughly half (47%) say it has helped their friendships
  • 41% say it has helped how they work with others
  • 32% say it has helped their mental health

No more than 7% say playing video games has hurt any of these.

More teens who play video games say it hurts, rather than helps, their sleep. Among these teens, 41% say it has hurt how much sleep they get, while just 5% say it helps. And small shares say playing video games has impacted how well they do in school in either a positive or a negative way.

Still, many teens who play video games think playing them doesn’t have much an impact in any of these areas. For instance, at least six-in-ten teens who play video games say it has neither a positive nor a negative impact on their mental health (60%) or their school performance (72%). Fewer (41%) say this of their problem-solving skills.

A dot plot showing that Boys who play video games are more likely than girls to think it helps friendships, problem-solving, ability to work with others

Teen boys who play video games are more likely than girls to think playing them has helped their problem-solving skills, friendships and ability to work with others. For instance, 55% of teen boys who play video games say this has helped their friendships, compared with 35% of teen girls.

As for ways that it may hurt their lives, boys who play them are more likely than girls to say that it has hurt the amount of sleep they get (45% vs. 37%) and how well they do in school (21% vs. 11%). 

Teens who consider themselves gamers are more likely than those who aren’t gamers but play video games to say video games have helped their friendships (60% vs. 35%), ability to work with others (52% vs. 32%), problem-solving skills (66% vs. 47%) and mental health (41% vs. 24%).

Gamers, though, are somewhat more likely to say playing them hurt their sleep (48% vs. 36%) and how well they do in school (20% vs. 14%).

By whether teens play too much, too little or the right amount

Teens who report playing video games too much stand out for thinking video games have hurt their sleep and school performance. Two-thirds of these teens say it has hurt the amount of sleep they get, and 39% say it hurt their schoolwork. Far fewer of those who say they play the right amount (38%) or too little (32%) say it has hurt their sleep, or say it hurt their schoolwork (12% and 16%).

A bar chart showing that Most common reason teens play video games is entertainment

Teens who play video games say they largely do so to be entertained. And many also play them to be social with and interact with others. Teens who play video games were asked about four reasons why they play video games. Among those who play video games:

  • Nearly all say fun or entertainment is a major or minor reason why they play video games – with a large majority (87%) saying it’s a major reason.
  • Roughly three-quarters say spending time with others is a reason, and two-thirds say this of competing with others. Roughly three-in-ten say each is a major reason.
  • Fewer – 50% – see learning something as a reason, with just 13% saying it’s a major reason.

While entertainment is by far the most common reason given by teens who play video games, differences emerge across groups in why they play video games.

A bar chart showing that Teen gamers are especially likely to say spending time and competing with others are reasons why they play

Teens who identify as gamers are particularly likely to say each is major reason, especially when it comes to competing against others. About four-in-ten gamers (43%) say this is a major reason, compared with 13% of those who play video games but aren’t gamers.

Teen boys who play video games are more likely than girls to say competing (36% vs. 15%), spending time with others (36% vs. 27%) and entertainment (90% vs. 83%) are major reasons they play video games.

Black and Hispanic teens who play video games are more likely than White teens to say that learning new things and competing against others are major reasons they play them. For instance, 29% of Black teen video game players say learning something new is a major reason, higher than 17% of Hispanic teen video game players. Both are higher than the 7% of White teen video game players who say the same.

Teens who play video games and live in lower-income households are especially likely to say competing against others and learning new things are major reasons. For instance, four-in-ten teen video game players who live in households with an annual income of less than $30,000 say competing against others is a major reason they play. This is higher than among those in households with annual incomes of $30,000 to $74,999 (29%) and $75,000 or more (23%).

Cyberbullying can happen in many online environments, but many teens encounter this in the video game world.

Our survey finds that name-calling is a relatively common feature of video game life – especially for boys. Roughly four-in-ten teen video game players (43%) say they have been harassed or bullied while playing a video game in one of three ways: 

A bar chart showing that About half of teen boys who play video games say they have been called an offensive name while playing

  • 41% have been called an offensive name
  • 12% have been physically threatened
  • 8% have been sent unwanted sexually explicit things

Teen boys are particularly likely to say they have been called an offensive name. About half of teen boys who play video games (48%) say this has happened while playing them, compared with about a third of girls (32%). And they are somewhat more likely than girls to have been physically threatened (15% vs. 9%).

Teen gamers are more likely than those who play video games but aren’t gamers to say they been called and offensive name (53% vs. 30%), been physically threatened (17% vs. 8%) and sent unwanted sexually explicit things (10% vs. 6%).

A pie chart showing that Most teens say that bullying while playing video games is a problem for people their age

Teens – regardless of whether they’ve had these experiences – think bullying is a problem in gaming. Eight-in-ten U.S. teens say that when it comes to video games, harassment and bullying is a problem for people their age. This includes 29% who say it is a major problem.

It’s common for teens to think harassment while playing video games is a problem, but girls are somewhat more likely than boys to say it’s a major problem (33% vs. 25%).

There have also been decades-long debates about how violent video games can influence youth behavior , if at all – such as by encouraging or desensitizing them to violence. We wanted to get a sense of how commonly violence shows up in the video games teens are playing.

A bar chart showing that About 7 in 10 teen boys who play video games say there is violence in at least some of the games they play

Just over half of teens who play video games (56%) say at least some of the games they play contain violence. This includes 16% who say it’s in all or most of the games they play.

Teen boys who play video games are far more likely than girls to say that at least some of the games they play contain violence (69% vs. 37%).

About three-quarters of teen gamers (73%) say that at least some of the games they play contain violence, compared with 40% among video game players who aren’t gamers.   

  • Throughout this report, “teens” refers to those ages 13 to 17. ↩
  • Previous Center research of U.S. adults shows that men are more likely than women to identify as gamers – especially the youngest adults. ↩
  • There were not enough Asian American respondents in the sample to be broken out into a separate analysis. As always, their responses are incorporated into the general population figures throughout the report. ↩

Sign up for our weekly newsletter

Fresh data delivery Saturday mornings

Sign up for The Briefing

Weekly updates on the world of news & information

  • Friendships
  • Online Harassment & Bullying
  • Teens & Tech
  • Teens & Youth

How Teens and Parents Approach Screen Time

Teens and internet, device access fact sheet, teens and social media fact sheet, teens, social media and technology 2023, what the data says about americans’ views of artificial intelligence, most popular, report materials.

1615 L St. NW, Suite 800 Washington, DC 20036 USA (+1) 202-419-4300 | Main (+1) 202-857-8562 | Fax (+1) 202-419-4372 |  Media Inquiries

Research Topics

  • Age & Generations
  • Coronavirus (COVID-19)
  • Economy & Work
  • Family & Relationships
  • Gender & LGBTQ
  • Immigration & Migration
  • International Affairs
  • Internet & Technology
  • Methodological Research
  • News Habits & Media
  • Non-U.S. Governments
  • Other Topics
  • Politics & Policy
  • Race & Ethnicity
  • Email Newsletters

ABOUT PEW RESEARCH CENTER  Pew Research Center is a nonpartisan fact tank that informs the public about the issues, attitudes and trends shaping the world. It conducts public opinion polling, demographic research, media content analysis and other empirical social science research. Pew Research Center does not take policy positions. It is a subsidiary of  The Pew Charitable Trusts .

Copyright 2024 Pew Research Center

IMAGES

  1. Problem-Solving Strategies: Definition and 5 Techniques to Try

    article on problem solving

  2. 15 Importance of Problem Solving Skills in the Workplace

    article on problem solving

  3. 7 Steps to Improve Your Problem Solving Skills

    article on problem solving

  4. (PDF) How to Improve Your Problem-Solving Skills

    article on problem solving

  5. (PDF) Problem Solving Skills: Essential Skills in Providing Solutions

    article on problem solving

  6. An introduction to creative problem solving

    article on problem solving

VIDEO

  1. Lecture on problem-solving and DFT calculation. || Private Batch ||

  2. Solving TCS Interview Question: Number of Open Doors

COMMENTS

  1. What Is Creative Problem-Solving & Why Is It Important?

    Creative problem-solving primarily operates in the ideate phase of design thinking but can be applied to others. This is because design thinking is an iterative process that moves between the stages as ideas are generated and pursued. This is normal and encouraged, as innovation requires exploring multiple ideas.

  2. The Problem-Solving Process

    Problem-solving is a mental process that involves discovering, analyzing, and solving problems. The ultimate goal of problem-solving is to overcome obstacles and find a solution that best resolves the issue. The best strategy for solving a problem depends largely on the unique situation. In some cases, people are better off learning everything ...

  3. Problem-Solving Strategies and Obstacles

    Problem-solving is a vital skill for coping with various challenges in life. This webpage explains the different strategies and obstacles that can affect how you solve problems, and offers tips on how to improve your problem-solving skills. Learn how to identify, analyze, and overcome problems with Verywell Mind.

  4. How to Solve Problems

    How to Solve Problems. To bring the best ideas forward, teams must build psychological safety. by. Laura Amico. October 29, 2021. HBR Staff/EschCollection/Getty Images. Teams today aren't just ...

  5. What Is Problem Solving?

    The first step in solving a problem is understanding what that problem actually is. You need to be sure that you're dealing with the real problem - not its symptoms. For example, if performance in your department is substandard, you might think that the problem lies with the individuals submitting work. However, if you look a bit deeper, the ...

  6. Problem-Solving Strategies: Definition and 5 Techniques to Try

    In insight problem-solving, the cognitive processes that help you solve a problem happen outside your conscious awareness. 4. Working backward. Working backward is a problem-solving approach often ...

  7. 35 problem-solving techniques and methods for solving complex problems

    6. Discovery & Action Dialogue (DAD) One of the best approaches is to create a safe space for a group to share and discover practices and behaviors that can help them find their own solutions. With DAD, you can help a group choose which problems they wish to solve and which approaches they will take to do so.

  8. What is Problem Solving? Steps, Process & Techniques

    Finding a suitable solution for issues can be accomplished by following the basic four-step problem-solving process and methodology outlined below. Step. Characteristics. 1. Define the problem. Differentiate fact from opinion. Specify underlying causes. Consult each faction involved for information. State the problem specifically.

  9. The effectiveness of collaborative problem solving in promoting

    Collaborative problem-solving has been widely embraced in the classroom instruction of critical thinking, which is regarded as the core of curriculum reform based on key competencies in the field ...

  10. Creative Problem Solving as Overcoming a Misunderstanding

    Solving or attempting to solve problems is the typical and, hence, general function of thought. A theory of problem solving must first explain how the problem is constituted, and then how the solution happens, but also how it happens that it is not solved; it must explain the correct answer and with the same means the failure. The identification of the way in which the problem is formatted ...

  11. What Is Problem Solving? Steps, Techniques, and Best ...

    How to Solve Problems: 5 Steps. 1. Precisely Identify Problems. As obvious as it seems, identifying the problem is the first step in the problem-solving process. Pinpointing a problem at the beginning of the process will guide your research, collaboration, and solutions in the right direction. At this stage, your task is to identify the scope ...

  12. How to Develop Problem Solving Skills: 4 Tips

    Learning the soft skills and critical thinking techniques that good problem solvers use can help anyone overcome complex problems. Learning problem-solving techniques is a must for working professionals in any field. No matter your title or job description, the ability to find the root cause of a difficult problem and formulate viable solutions ...

  13. Full article: Motivation to learn and problem solving

    Learning motivation is usually considered to be conducive to problem solving as it influences the initiation, direction, and intensity of cognitive processing (Baars et al., 2017 ). The motivation to deal with problem-solving tasks can come from the learners themselves or be triggered by task design.

  14. (PDF) Theory of Problem Solving

    The main part of this article is an analysis of the problem solving process itself. It specifies related terms in detail, e.g. the ability to perceive the problem, the perceptibility of the ...

  15. How to master the seven-step problem-solving process

    To discuss the art of problem solving, I sat down in California with McKinsey senior partner Hugo Sarrazin and also with Charles Conn. Charles is a former McKinsey partner, entrepreneur, executive, and coauthor of the book Bulletproof Problem Solving: The One Skill That Changes Everything [John Wiley & Sons, 2018].

  16. Business problem solving

    Most of the problem-solving teams we are involved with have twin dilemmas of uncertainty and complexity, at times combined as truly "wicked problems." 7 A term coined in a now famous 1973 article: Horst W. J. Rittel and Melvin Webber, "Dilemmas in a general theory of planning," Policy Sciences, 1973, Number 4, pp. 155-69.

  17. Problem solving through values: A challenge for thinking and capability

    Abstract. The paper aims to introduce the conceptual framework of problem solving through values. The framework consists of problem analysis, selection of value (s) as a background for the solution, the search for alternative ways of the solution, and the rationale for the solution. This framework reveals when, how, and why is important to ...

  18. Theory of Problem Solving

    The article reacts on the works of the leading theorists in the fields of psychology focusing on the theory of problem solving. It contains an analysis of already published knowledge, compares it and evaluates it critically in order to create a basis that is corresponding to the current state of cognition.

  19. The Process of Problem Solving

    In a 2013 article published in the Journal of Cognitive Psychology, Ngar Yin Louis Lee (Chinese University of Hong Kong) and APS William James Fellow Philip N. Johnson-Laird (Princeton University) examined the ways people develop strategies to solve related problems. In a series of three experiments, the researchers asked participants to solve ...

  20. Problem solving News, Research and Analysis

    Schools will teach 'soft skills' from 2017, but assessing them presents a challenge. Bill Lucas, Victoria University. Teaching students skills such as creative thinking and problem solving ...

  21. Problem solving is embedded in context… so how do we measure it?

    Problem solving encompasses the broad domain of human, goal-directed behaviors. Though we may attempt to measure problem solving using tightly controlled and decontextualized tasks, it is inextricably embedded in both reasoners' experiences and their contexts. Without situating problem solvers, problem contexts, and our own experiential ...

  22. The Power of Leaders Who Focus on Solving Problems

    They expect to be involved in a series of initiatives with contributors fluidly assembling and disassembling. In front of a packed room of MIT students and alumni, Vivienne Ming is holding forth ...

  23. The art of problem solving and its translation into practice

    Problem solving is a fundamental human cognitive process. Modern humans have been problem solving for hundreds of thousands of years. Our ability to solve problems is one of the factors that underpin our success as a species. Many of the problems our early ancestors had to solve may be less of an issue to us today, but the process is pretty ...

  24. Into all problem-solving, a little dissent must fall

    As we've shared, senior leaders can take steps to set conditions for robust discussion and problem-solving, but individuals and teams themselves must also have the right mindsets and skills for contributory dissent to work well (see sidebar "How teams and individuals can dissent effectively"). In particular, they must embrace the ...

  25. Identification of Problem-Solving Techniques in Computational Thinking

    The second stage of the discussion in this study demonstrates the interconnections among articles. We conduct a content analysis on the 37 selected articles. This stage shows the frequency of the phrase problem solving in each article divided by section. Figure 5 shows the frequency of the phrase problem solving in each article. The phrase is ...

  26. Self-Reflection in LLM Agents: Effects on Problem-Solving Performance

    In this study, we investigated the effects of self-reflection in large language models (LLMs) on problem-solving performance. We instructed nine popular LLMs to answer a series of multiple-choice questions to provide a performance baseline. For each incorrectly answered question, we instructed eight types of self-reflecting LLM agents to reflect on their mistakes and provide themselves with ...

  27. Deputy Regional Inspector General Meridith Seife: Creative Problem

    After graduation, Meridith's longstanding problem-solving ability and Spanish speaking skills were useful when she landed a position with AmeriCorps helping people at a free medical clinic for uninsured people and teaching parenting classes for young mothers alongside direct line medical providers. Seeking to develop her knowledge of health ...

  28. Virgo, Horoscope Today, May 14, 2024: Ideal day for problem-solving

    AstroDevam / TOI Astrology / May 14, 2024, 01:15 IST. AA. Follow us. Virgo excels with planetary alignments, enhancing analytical skills. Ideal for problem-solving. Reserved nature challenged by ...

  29. Teens and Video Games Today

    There are long-standing debates about the impact of video games on youth. Some credit them for helping young people form friendships and teaching them about teamwork and problem-solving.Others say video games expose teenagers to violent content, negatively impact their sleep and can even lead to addiction.. With this in mind, Pew Research Center surveyed 1,423 U.S. teens ages 13 to 17 about ...