• Privacy Policy

Research Method

Home » Case Study – Methods, Examples and Guide

Case Study – Methods, Examples and Guide

Table of Contents

Case Study Research

A case study is a research method that involves an in-depth examination and analysis of a particular phenomenon or case, such as an individual, organization, community, event, or situation.

It is a qualitative research approach that aims to provide a detailed and comprehensive understanding of the case being studied. Case studies typically involve multiple sources of data, including interviews, observations, documents, and artifacts, which are analyzed using various techniques, such as content analysis, thematic analysis, and grounded theory. The findings of a case study are often used to develop theories, inform policy or practice, or generate new research questions.

Types of Case Study

Types and Methods of Case Study are as follows:

Single-Case Study

A single-case study is an in-depth analysis of a single case. This type of case study is useful when the researcher wants to understand a specific phenomenon in detail.

For Example , A researcher might conduct a single-case study on a particular individual to understand their experiences with a particular health condition or a specific organization to explore their management practices. The researcher collects data from multiple sources, such as interviews, observations, and documents, and uses various techniques to analyze the data, such as content analysis or thematic analysis. The findings of a single-case study are often used to generate new research questions, develop theories, or inform policy or practice.

Multiple-Case Study

A multiple-case study involves the analysis of several cases that are similar in nature. This type of case study is useful when the researcher wants to identify similarities and differences between the cases.

For Example, a researcher might conduct a multiple-case study on several companies to explore the factors that contribute to their success or failure. The researcher collects data from each case, compares and contrasts the findings, and uses various techniques to analyze the data, such as comparative analysis or pattern-matching. The findings of a multiple-case study can be used to develop theories, inform policy or practice, or generate new research questions.

Exploratory Case Study

An exploratory case study is used to explore a new or understudied phenomenon. This type of case study is useful when the researcher wants to generate hypotheses or theories about the phenomenon.

For Example, a researcher might conduct an exploratory case study on a new technology to understand its potential impact on society. The researcher collects data from multiple sources, such as interviews, observations, and documents, and uses various techniques to analyze the data, such as grounded theory or content analysis. The findings of an exploratory case study can be used to generate new research questions, develop theories, or inform policy or practice.

Descriptive Case Study

A descriptive case study is used to describe a particular phenomenon in detail. This type of case study is useful when the researcher wants to provide a comprehensive account of the phenomenon.

For Example, a researcher might conduct a descriptive case study on a particular community to understand its social and economic characteristics. The researcher collects data from multiple sources, such as interviews, observations, and documents, and uses various techniques to analyze the data, such as content analysis or thematic analysis. The findings of a descriptive case study can be used to inform policy or practice or generate new research questions.

Instrumental Case Study

An instrumental case study is used to understand a particular phenomenon that is instrumental in achieving a particular goal. This type of case study is useful when the researcher wants to understand the role of the phenomenon in achieving the goal.

For Example, a researcher might conduct an instrumental case study on a particular policy to understand its impact on achieving a particular goal, such as reducing poverty. The researcher collects data from multiple sources, such as interviews, observations, and documents, and uses various techniques to analyze the data, such as content analysis or thematic analysis. The findings of an instrumental case study can be used to inform policy or practice or generate new research questions.

Case Study Data Collection Methods

Here are some common data collection methods for case studies:

Interviews involve asking questions to individuals who have knowledge or experience relevant to the case study. Interviews can be structured (where the same questions are asked to all participants) or unstructured (where the interviewer follows up on the responses with further questions). Interviews can be conducted in person, over the phone, or through video conferencing.

Observations

Observations involve watching and recording the behavior and activities of individuals or groups relevant to the case study. Observations can be participant (where the researcher actively participates in the activities) or non-participant (where the researcher observes from a distance). Observations can be recorded using notes, audio or video recordings, or photographs.

Documents can be used as a source of information for case studies. Documents can include reports, memos, emails, letters, and other written materials related to the case study. Documents can be collected from the case study participants or from public sources.

Surveys involve asking a set of questions to a sample of individuals relevant to the case study. Surveys can be administered in person, over the phone, through mail or email, or online. Surveys can be used to gather information on attitudes, opinions, or behaviors related to the case study.

Artifacts are physical objects relevant to the case study. Artifacts can include tools, equipment, products, or other objects that provide insights into the case study phenomenon.

How to conduct Case Study Research

Conducting a case study research involves several steps that need to be followed to ensure the quality and rigor of the study. Here are the steps to conduct case study research:

  • Define the research questions: The first step in conducting a case study research is to define the research questions. The research questions should be specific, measurable, and relevant to the case study phenomenon under investigation.
  • Select the case: The next step is to select the case or cases to be studied. The case should be relevant to the research questions and should provide rich and diverse data that can be used to answer the research questions.
  • Collect data: Data can be collected using various methods, such as interviews, observations, documents, surveys, and artifacts. The data collection method should be selected based on the research questions and the nature of the case study phenomenon.
  • Analyze the data: The data collected from the case study should be analyzed using various techniques, such as content analysis, thematic analysis, or grounded theory. The analysis should be guided by the research questions and should aim to provide insights and conclusions relevant to the research questions.
  • Draw conclusions: The conclusions drawn from the case study should be based on the data analysis and should be relevant to the research questions. The conclusions should be supported by evidence and should be clearly stated.
  • Validate the findings: The findings of the case study should be validated by reviewing the data and the analysis with participants or other experts in the field. This helps to ensure the validity and reliability of the findings.
  • Write the report: The final step is to write the report of the case study research. The report should provide a clear description of the case study phenomenon, the research questions, the data collection methods, the data analysis, the findings, and the conclusions. The report should be written in a clear and concise manner and should follow the guidelines for academic writing.

Examples of Case Study

Here are some examples of case study research:

  • The Hawthorne Studies : Conducted between 1924 and 1932, the Hawthorne Studies were a series of case studies conducted by Elton Mayo and his colleagues to examine the impact of work environment on employee productivity. The studies were conducted at the Hawthorne Works plant of the Western Electric Company in Chicago and included interviews, observations, and experiments.
  • The Stanford Prison Experiment: Conducted in 1971, the Stanford Prison Experiment was a case study conducted by Philip Zimbardo to examine the psychological effects of power and authority. The study involved simulating a prison environment and assigning participants to the role of guards or prisoners. The study was controversial due to the ethical issues it raised.
  • The Challenger Disaster: The Challenger Disaster was a case study conducted to examine the causes of the Space Shuttle Challenger explosion in 1986. The study included interviews, observations, and analysis of data to identify the technical, organizational, and cultural factors that contributed to the disaster.
  • The Enron Scandal: The Enron Scandal was a case study conducted to examine the causes of the Enron Corporation’s bankruptcy in 2001. The study included interviews, analysis of financial data, and review of documents to identify the accounting practices, corporate culture, and ethical issues that led to the company’s downfall.
  • The Fukushima Nuclear Disaster : The Fukushima Nuclear Disaster was a case study conducted to examine the causes of the nuclear accident that occurred at the Fukushima Daiichi Nuclear Power Plant in Japan in 2011. The study included interviews, analysis of data, and review of documents to identify the technical, organizational, and cultural factors that contributed to the disaster.

Application of Case Study

Case studies have a wide range of applications across various fields and industries. Here are some examples:

Business and Management

Case studies are widely used in business and management to examine real-life situations and develop problem-solving skills. Case studies can help students and professionals to develop a deep understanding of business concepts, theories, and best practices.

Case studies are used in healthcare to examine patient care, treatment options, and outcomes. Case studies can help healthcare professionals to develop critical thinking skills, diagnose complex medical conditions, and develop effective treatment plans.

Case studies are used in education to examine teaching and learning practices. Case studies can help educators to develop effective teaching strategies, evaluate student progress, and identify areas for improvement.

Social Sciences

Case studies are widely used in social sciences to examine human behavior, social phenomena, and cultural practices. Case studies can help researchers to develop theories, test hypotheses, and gain insights into complex social issues.

Law and Ethics

Case studies are used in law and ethics to examine legal and ethical dilemmas. Case studies can help lawyers, policymakers, and ethical professionals to develop critical thinking skills, analyze complex cases, and make informed decisions.

Purpose of Case Study

The purpose of a case study is to provide a detailed analysis of a specific phenomenon, issue, or problem in its real-life context. A case study is a qualitative research method that involves the in-depth exploration and analysis of a particular case, which can be an individual, group, organization, event, or community.

The primary purpose of a case study is to generate a comprehensive and nuanced understanding of the case, including its history, context, and dynamics. Case studies can help researchers to identify and examine the underlying factors, processes, and mechanisms that contribute to the case and its outcomes. This can help to develop a more accurate and detailed understanding of the case, which can inform future research, practice, or policy.

Case studies can also serve other purposes, including:

  • Illustrating a theory or concept: Case studies can be used to illustrate and explain theoretical concepts and frameworks, providing concrete examples of how they can be applied in real-life situations.
  • Developing hypotheses: Case studies can help to generate hypotheses about the causal relationships between different factors and outcomes, which can be tested through further research.
  • Providing insight into complex issues: Case studies can provide insights into complex and multifaceted issues, which may be difficult to understand through other research methods.
  • Informing practice or policy: Case studies can be used to inform practice or policy by identifying best practices, lessons learned, or areas for improvement.

Advantages of Case Study Research

There are several advantages of case study research, including:

  • In-depth exploration: Case study research allows for a detailed exploration and analysis of a specific phenomenon, issue, or problem in its real-life context. This can provide a comprehensive understanding of the case and its dynamics, which may not be possible through other research methods.
  • Rich data: Case study research can generate rich and detailed data, including qualitative data such as interviews, observations, and documents. This can provide a nuanced understanding of the case and its complexity.
  • Holistic perspective: Case study research allows for a holistic perspective of the case, taking into account the various factors, processes, and mechanisms that contribute to the case and its outcomes. This can help to develop a more accurate and comprehensive understanding of the case.
  • Theory development: Case study research can help to develop and refine theories and concepts by providing empirical evidence and concrete examples of how they can be applied in real-life situations.
  • Practical application: Case study research can inform practice or policy by identifying best practices, lessons learned, or areas for improvement.
  • Contextualization: Case study research takes into account the specific context in which the case is situated, which can help to understand how the case is influenced by the social, cultural, and historical factors of its environment.

Limitations of Case Study Research

There are several limitations of case study research, including:

  • Limited generalizability : Case studies are typically focused on a single case or a small number of cases, which limits the generalizability of the findings. The unique characteristics of the case may not be applicable to other contexts or populations, which may limit the external validity of the research.
  • Biased sampling: Case studies may rely on purposive or convenience sampling, which can introduce bias into the sample selection process. This may limit the representativeness of the sample and the generalizability of the findings.
  • Subjectivity: Case studies rely on the interpretation of the researcher, which can introduce subjectivity into the analysis. The researcher’s own biases, assumptions, and perspectives may influence the findings, which may limit the objectivity of the research.
  • Limited control: Case studies are typically conducted in naturalistic settings, which limits the control that the researcher has over the environment and the variables being studied. This may limit the ability to establish causal relationships between variables.
  • Time-consuming: Case studies can be time-consuming to conduct, as they typically involve a detailed exploration and analysis of a specific case. This may limit the feasibility of conducting multiple case studies or conducting case studies in a timely manner.
  • Resource-intensive: Case studies may require significant resources, including time, funding, and expertise. This may limit the ability of researchers to conduct case studies in resource-constrained settings.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Mixed Research methods

Mixed Methods Research – Types & Analysis

Ethnographic Research

Ethnographic Research -Types, Methods and Guide

Basic Research

Basic Research – Types, Methods and Examples

One-to-One Interview in Research

One-to-One Interview – Methods and Guide

Research Methods

Research Methods – Types, Examples and Guide

Focus Groups in Qualitative Research

Focus Groups – Steps, Examples and Guide

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Methodology

  • What Is a Case Study? | Definition, Examples & Methods

What Is a Case Study? | Definition, Examples & Methods

Published on May 8, 2019 by Shona McCombes . Revised on November 20, 2023.

A case study is a detailed study of a specific subject, such as a person, group, place, event, organization, or phenomenon. Case studies are commonly used in social, educational, clinical, and business research.

A case study research design usually involves qualitative methods , but quantitative methods are sometimes also used. Case studies are good for describing , comparing, evaluating and understanding different aspects of a research problem .

Table of contents

When to do a case study, step 1: select a case, step 2: build a theoretical framework, step 3: collect your data, step 4: describe and analyze the case, other interesting articles.

A case study is an appropriate research design when you want to gain concrete, contextual, in-depth knowledge about a specific real-world subject. It allows you to explore the key characteristics, meanings, and implications of the case.

Case studies are often a good choice in a thesis or dissertation . They keep your project focused and manageable when you don’t have the time or resources to do large-scale research.

You might use just one complex case study where you explore a single subject in depth, or conduct multiple case studies to compare and illuminate different aspects of your research problem.

Case study examples
Research question Case study
What are the ecological effects of wolf reintroduction? Case study of wolf reintroduction in Yellowstone National Park
How do populist politicians use narratives about history to gain support? Case studies of Hungarian prime minister Viktor Orbán and US president Donald Trump
How can teachers implement active learning strategies in mixed-level classrooms? Case study of a local school that promotes active learning
What are the main advantages and disadvantages of wind farms for rural communities? Case studies of three rural wind farm development projects in different parts of the country
How are viral marketing strategies changing the relationship between companies and consumers? Case study of the iPhone X marketing campaign
How do experiences of work in the gig economy differ by gender, race and age? Case studies of Deliveroo and Uber drivers in London

Here's why students love Scribbr's proofreading services

Discover proofreading & editing

Once you have developed your problem statement and research questions , you should be ready to choose the specific case that you want to focus on. A good case study should have the potential to:

  • Provide new or unexpected insights into the subject
  • Challenge or complicate existing assumptions and theories
  • Propose practical courses of action to resolve a problem
  • Open up new directions for future research

TipIf your research is more practical in nature and aims to simultaneously investigate an issue as you solve it, consider conducting action research instead.

Unlike quantitative or experimental research , a strong case study does not require a random or representative sample. In fact, case studies often deliberately focus on unusual, neglected, or outlying cases which may shed new light on the research problem.

Example of an outlying case studyIn the 1960s the town of Roseto, Pennsylvania was discovered to have extremely low rates of heart disease compared to the US average. It became an important case study for understanding previously neglected causes of heart disease.

However, you can also choose a more common or representative case to exemplify a particular category, experience or phenomenon.

Example of a representative case studyIn the 1920s, two sociologists used Muncie, Indiana as a case study of a typical American city that supposedly exemplified the changing culture of the US at the time.

While case studies focus more on concrete details than general theories, they should usually have some connection with theory in the field. This way the case study is not just an isolated description, but is integrated into existing knowledge about the topic. It might aim to:

  • Exemplify a theory by showing how it explains the case under investigation
  • Expand on a theory by uncovering new concepts and ideas that need to be incorporated
  • Challenge a theory by exploring an outlier case that doesn’t fit with established assumptions

To ensure that your analysis of the case has a solid academic grounding, you should conduct a literature review of sources related to the topic and develop a theoretical framework . This means identifying key concepts and theories to guide your analysis and interpretation.

There are many different research methods you can use to collect data on your subject. Case studies tend to focus on qualitative data using methods such as interviews , observations , and analysis of primary and secondary sources (e.g., newspaper articles, photographs, official records). Sometimes a case study will also collect quantitative data.

Example of a mixed methods case studyFor a case study of a wind farm development in a rural area, you could collect quantitative data on employment rates and business revenue, collect qualitative data on local people’s perceptions and experiences, and analyze local and national media coverage of the development.

The aim is to gain as thorough an understanding as possible of the case and its context.

Prevent plagiarism. Run a free check.

In writing up the case study, you need to bring together all the relevant aspects to give as complete a picture as possible of the subject.

How you report your findings depends on the type of research you are doing. Some case studies are structured like a standard scientific paper or thesis , with separate sections or chapters for the methods , results and discussion .

Others are written in a more narrative style, aiming to explore the case from various angles and analyze its meanings and implications (for example, by using textual analysis or discourse analysis ).

In all cases, though, make sure to give contextual details about the case, connect it back to the literature and theory, and discuss how it fits into wider patterns or debates.

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

  • Normal distribution
  • Degrees of freedom
  • Null hypothesis
  • Discourse analysis
  • Control groups
  • Mixed methods research
  • Non-probability sampling
  • Quantitative research
  • Ecological validity

Research bias

  • Rosenthal effect
  • Implicit bias
  • Cognitive bias
  • Selection bias
  • Negativity bias
  • Status quo bias

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

McCombes, S. (2023, November 20). What Is a Case Study? | Definition, Examples & Methods. Scribbr. Retrieved August 14, 2024, from https://www.scribbr.com/methodology/case-study/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, primary vs. secondary sources | difference & examples, what is a theoretical framework | guide to organizing, what is action research | definition & examples, "i thought ai proofreading was useless but..".

I've been using Scribbr for years now and I know it's a service that won't disappoint. It does a good job spotting mistakes”

  • Open access
  • Published: 27 June 2011

The case study approach

  • Sarah Crowe 1 ,
  • Kathrin Cresswell 2 ,
  • Ann Robertson 2 ,
  • Guro Huby 3 ,
  • Anthony Avery 1 &
  • Aziz Sheikh 2  

BMC Medical Research Methodology volume  11 , Article number:  100 ( 2011 ) Cite this article

794k Accesses

1098 Citations

42 Altmetric

Metrics details

The case study approach allows in-depth, multi-faceted explorations of complex issues in their real-life settings. The value of the case study approach is well recognised in the fields of business, law and policy, but somewhat less so in health services research. Based on our experiences of conducting several health-related case studies, we reflect on the different types of case study design, the specific research questions this approach can help answer, the data sources that tend to be used, and the particular advantages and disadvantages of employing this methodological approach. The paper concludes with key pointers to aid those designing and appraising proposals for conducting case study research, and a checklist to help readers assess the quality of case study reports.

Peer Review reports

Introduction

The case study approach is particularly useful to employ when there is a need to obtain an in-depth appreciation of an issue, event or phenomenon of interest, in its natural real-life context. Our aim in writing this piece is to provide insights into when to consider employing this approach and an overview of key methodological considerations in relation to the design, planning, analysis, interpretation and reporting of case studies.

The illustrative 'grand round', 'case report' and 'case series' have a long tradition in clinical practice and research. Presenting detailed critiques, typically of one or more patients, aims to provide insights into aspects of the clinical case and, in doing so, illustrate broader lessons that may be learnt. In research, the conceptually-related case study approach can be used, for example, to describe in detail a patient's episode of care, explore professional attitudes to and experiences of a new policy initiative or service development or more generally to 'investigate contemporary phenomena within its real-life context' [ 1 ]. Based on our experiences of conducting a range of case studies, we reflect on when to consider using this approach, discuss the key steps involved and illustrate, with examples, some of the practical challenges of attaining an in-depth understanding of a 'case' as an integrated whole. In keeping with previously published work, we acknowledge the importance of theory to underpin the design, selection, conduct and interpretation of case studies[ 2 ]. In so doing, we make passing reference to the different epistemological approaches used in case study research by key theoreticians and methodologists in this field of enquiry.

This paper is structured around the following main questions: What is a case study? What are case studies used for? How are case studies conducted? What are the potential pitfalls and how can these be avoided? We draw in particular on four of our own recently published examples of case studies (see Tables 1 , 2 , 3 and 4 ) and those of others to illustrate our discussion[ 3 – 7 ].

What is a case study?

A case study is a research approach that is used to generate an in-depth, multi-faceted understanding of a complex issue in its real-life context. It is an established research design that is used extensively in a wide variety of disciplines, particularly in the social sciences. A case study can be defined in a variety of ways (Table 5 ), the central tenet being the need to explore an event or phenomenon in depth and in its natural context. It is for this reason sometimes referred to as a "naturalistic" design; this is in contrast to an "experimental" design (such as a randomised controlled trial) in which the investigator seeks to exert control over and manipulate the variable(s) of interest.

Stake's work has been particularly influential in defining the case study approach to scientific enquiry. He has helpfully characterised three main types of case study: intrinsic , instrumental and collective [ 8 ]. An intrinsic case study is typically undertaken to learn about a unique phenomenon. The researcher should define the uniqueness of the phenomenon, which distinguishes it from all others. In contrast, the instrumental case study uses a particular case (some of which may be better than others) to gain a broader appreciation of an issue or phenomenon. The collective case study involves studying multiple cases simultaneously or sequentially in an attempt to generate a still broader appreciation of a particular issue.

These are however not necessarily mutually exclusive categories. In the first of our examples (Table 1 ), we undertook an intrinsic case study to investigate the issue of recruitment of minority ethnic people into the specific context of asthma research studies, but it developed into a instrumental case study through seeking to understand the issue of recruitment of these marginalised populations more generally, generating a number of the findings that are potentially transferable to other disease contexts[ 3 ]. In contrast, the other three examples (see Tables 2 , 3 and 4 ) employed collective case study designs to study the introduction of workforce reconfiguration in primary care, the implementation of electronic health records into hospitals, and to understand the ways in which healthcare students learn about patient safety considerations[ 4 – 6 ]. Although our study focusing on the introduction of General Practitioners with Specialist Interests (Table 2 ) was explicitly collective in design (four contrasting primary care organisations were studied), is was also instrumental in that this particular professional group was studied as an exemplar of the more general phenomenon of workforce redesign[ 4 ].

What are case studies used for?

According to Yin, case studies can be used to explain, describe or explore events or phenomena in the everyday contexts in which they occur[ 1 ]. These can, for example, help to understand and explain causal links and pathways resulting from a new policy initiative or service development (see Tables 2 and 3 , for example)[ 1 ]. In contrast to experimental designs, which seek to test a specific hypothesis through deliberately manipulating the environment (like, for example, in a randomised controlled trial giving a new drug to randomly selected individuals and then comparing outcomes with controls),[ 9 ] the case study approach lends itself well to capturing information on more explanatory ' how ', 'what' and ' why ' questions, such as ' how is the intervention being implemented and received on the ground?'. The case study approach can offer additional insights into what gaps exist in its delivery or why one implementation strategy might be chosen over another. This in turn can help develop or refine theory, as shown in our study of the teaching of patient safety in undergraduate curricula (Table 4 )[ 6 , 10 ]. Key questions to consider when selecting the most appropriate study design are whether it is desirable or indeed possible to undertake a formal experimental investigation in which individuals and/or organisations are allocated to an intervention or control arm? Or whether the wish is to obtain a more naturalistic understanding of an issue? The former is ideally studied using a controlled experimental design, whereas the latter is more appropriately studied using a case study design.

Case studies may be approached in different ways depending on the epistemological standpoint of the researcher, that is, whether they take a critical (questioning one's own and others' assumptions), interpretivist (trying to understand individual and shared social meanings) or positivist approach (orientating towards the criteria of natural sciences, such as focusing on generalisability considerations) (Table 6 ). Whilst such a schema can be conceptually helpful, it may be appropriate to draw on more than one approach in any case study, particularly in the context of conducting health services research. Doolin has, for example, noted that in the context of undertaking interpretative case studies, researchers can usefully draw on a critical, reflective perspective which seeks to take into account the wider social and political environment that has shaped the case[ 11 ].

How are case studies conducted?

Here, we focus on the main stages of research activity when planning and undertaking a case study; the crucial stages are: defining the case; selecting the case(s); collecting and analysing the data; interpreting data; and reporting the findings.

Defining the case

Carefully formulated research question(s), informed by the existing literature and a prior appreciation of the theoretical issues and setting(s), are all important in appropriately and succinctly defining the case[ 8 , 12 ]. Crucially, each case should have a pre-defined boundary which clarifies the nature and time period covered by the case study (i.e. its scope, beginning and end), the relevant social group, organisation or geographical area of interest to the investigator, the types of evidence to be collected, and the priorities for data collection and analysis (see Table 7 )[ 1 ]. A theory driven approach to defining the case may help generate knowledge that is potentially transferable to a range of clinical contexts and behaviours; using theory is also likely to result in a more informed appreciation of, for example, how and why interventions have succeeded or failed[ 13 ].

For example, in our evaluation of the introduction of electronic health records in English hospitals (Table 3 ), we defined our cases as the NHS Trusts that were receiving the new technology[ 5 ]. Our focus was on how the technology was being implemented. However, if the primary research interest had been on the social and organisational dimensions of implementation, we might have defined our case differently as a grouping of healthcare professionals (e.g. doctors and/or nurses). The precise beginning and end of the case may however prove difficult to define. Pursuing this same example, when does the process of implementation and adoption of an electronic health record system really begin or end? Such judgements will inevitably be influenced by a range of factors, including the research question, theory of interest, the scope and richness of the gathered data and the resources available to the research team.

Selecting the case(s)

The decision on how to select the case(s) to study is a very important one that merits some reflection. In an intrinsic case study, the case is selected on its own merits[ 8 ]. The case is selected not because it is representative of other cases, but because of its uniqueness, which is of genuine interest to the researchers. This was, for example, the case in our study of the recruitment of minority ethnic participants into asthma research (Table 1 ) as our earlier work had demonstrated the marginalisation of minority ethnic people with asthma, despite evidence of disproportionate asthma morbidity[ 14 , 15 ]. In another example of an intrinsic case study, Hellstrom et al.[ 16 ] studied an elderly married couple living with dementia to explore how dementia had impacted on their understanding of home, their everyday life and their relationships.

For an instrumental case study, selecting a "typical" case can work well[ 8 ]. In contrast to the intrinsic case study, the particular case which is chosen is of less importance than selecting a case that allows the researcher to investigate an issue or phenomenon. For example, in order to gain an understanding of doctors' responses to health policy initiatives, Som undertook an instrumental case study interviewing clinicians who had a range of responsibilities for clinical governance in one NHS acute hospital trust[ 17 ]. Sampling a "deviant" or "atypical" case may however prove even more informative, potentially enabling the researcher to identify causal processes, generate hypotheses and develop theory.

In collective or multiple case studies, a number of cases are carefully selected. This offers the advantage of allowing comparisons to be made across several cases and/or replication. Choosing a "typical" case may enable the findings to be generalised to theory (i.e. analytical generalisation) or to test theory by replicating the findings in a second or even a third case (i.e. replication logic)[ 1 ]. Yin suggests two or three literal replications (i.e. predicting similar results) if the theory is straightforward and five or more if the theory is more subtle. However, critics might argue that selecting 'cases' in this way is insufficiently reflexive and ill-suited to the complexities of contemporary healthcare organisations.

The selected case study site(s) should allow the research team access to the group of individuals, the organisation, the processes or whatever else constitutes the chosen unit of analysis for the study. Access is therefore a central consideration; the researcher needs to come to know the case study site(s) well and to work cooperatively with them. Selected cases need to be not only interesting but also hospitable to the inquiry [ 8 ] if they are to be informative and answer the research question(s). Case study sites may also be pre-selected for the researcher, with decisions being influenced by key stakeholders. For example, our selection of case study sites in the evaluation of the implementation and adoption of electronic health record systems (see Table 3 ) was heavily influenced by NHS Connecting for Health, the government agency that was responsible for overseeing the National Programme for Information Technology (NPfIT)[ 5 ]. This prominent stakeholder had already selected the NHS sites (through a competitive bidding process) to be early adopters of the electronic health record systems and had negotiated contracts that detailed the deployment timelines.

It is also important to consider in advance the likely burden and risks associated with participation for those who (or the site(s) which) comprise the case study. Of particular importance is the obligation for the researcher to think through the ethical implications of the study (e.g. the risk of inadvertently breaching anonymity or confidentiality) and to ensure that potential participants/participating sites are provided with sufficient information to make an informed choice about joining the study. The outcome of providing this information might be that the emotive burden associated with participation, or the organisational disruption associated with supporting the fieldwork, is considered so high that the individuals or sites decide against participation.

In our example of evaluating implementations of electronic health record systems, given the restricted number of early adopter sites available to us, we sought purposively to select a diverse range of implementation cases among those that were available[ 5 ]. We chose a mixture of teaching, non-teaching and Foundation Trust hospitals, and examples of each of the three electronic health record systems procured centrally by the NPfIT. At one recruited site, it quickly became apparent that access was problematic because of competing demands on that organisation. Recognising the importance of full access and co-operative working for generating rich data, the research team decided not to pursue work at that site and instead to focus on other recruited sites.

Collecting the data

In order to develop a thorough understanding of the case, the case study approach usually involves the collection of multiple sources of evidence, using a range of quantitative (e.g. questionnaires, audits and analysis of routinely collected healthcare data) and more commonly qualitative techniques (e.g. interviews, focus groups and observations). The use of multiple sources of data (data triangulation) has been advocated as a way of increasing the internal validity of a study (i.e. the extent to which the method is appropriate to answer the research question)[ 8 , 18 – 21 ]. An underlying assumption is that data collected in different ways should lead to similar conclusions, and approaching the same issue from different angles can help develop a holistic picture of the phenomenon (Table 2 )[ 4 ].

Brazier and colleagues used a mixed-methods case study approach to investigate the impact of a cancer care programme[ 22 ]. Here, quantitative measures were collected with questionnaires before, and five months after, the start of the intervention which did not yield any statistically significant results. Qualitative interviews with patients however helped provide an insight into potentially beneficial process-related aspects of the programme, such as greater, perceived patient involvement in care. The authors reported how this case study approach provided a number of contextual factors likely to influence the effectiveness of the intervention and which were not likely to have been obtained from quantitative methods alone.

In collective or multiple case studies, data collection needs to be flexible enough to allow a detailed description of each individual case to be developed (e.g. the nature of different cancer care programmes), before considering the emerging similarities and differences in cross-case comparisons (e.g. to explore why one programme is more effective than another). It is important that data sources from different cases are, where possible, broadly comparable for this purpose even though they may vary in nature and depth.

Analysing, interpreting and reporting case studies

Making sense and offering a coherent interpretation of the typically disparate sources of data (whether qualitative alone or together with quantitative) is far from straightforward. Repeated reviewing and sorting of the voluminous and detail-rich data are integral to the process of analysis. In collective case studies, it is helpful to analyse data relating to the individual component cases first, before making comparisons across cases. Attention needs to be paid to variations within each case and, where relevant, the relationship between different causes, effects and outcomes[ 23 ]. Data will need to be organised and coded to allow the key issues, both derived from the literature and emerging from the dataset, to be easily retrieved at a later stage. An initial coding frame can help capture these issues and can be applied systematically to the whole dataset with the aid of a qualitative data analysis software package.

The Framework approach is a practical approach, comprising of five stages (familiarisation; identifying a thematic framework; indexing; charting; mapping and interpretation) , to managing and analysing large datasets particularly if time is limited, as was the case in our study of recruitment of South Asians into asthma research (Table 1 )[ 3 , 24 ]. Theoretical frameworks may also play an important role in integrating different sources of data and examining emerging themes. For example, we drew on a socio-technical framework to help explain the connections between different elements - technology; people; and the organisational settings within which they worked - in our study of the introduction of electronic health record systems (Table 3 )[ 5 ]. Our study of patient safety in undergraduate curricula drew on an evaluation-based approach to design and analysis, which emphasised the importance of the academic, organisational and practice contexts through which students learn (Table 4 )[ 6 ].

Case study findings can have implications both for theory development and theory testing. They may establish, strengthen or weaken historical explanations of a case and, in certain circumstances, allow theoretical (as opposed to statistical) generalisation beyond the particular cases studied[ 12 ]. These theoretical lenses should not, however, constitute a strait-jacket and the cases should not be "forced to fit" the particular theoretical framework that is being employed.

When reporting findings, it is important to provide the reader with enough contextual information to understand the processes that were followed and how the conclusions were reached. In a collective case study, researchers may choose to present the findings from individual cases separately before amalgamating across cases. Care must be taken to ensure the anonymity of both case sites and individual participants (if agreed in advance) by allocating appropriate codes or withholding descriptors. In the example given in Table 3 , we decided against providing detailed information on the NHS sites and individual participants in order to avoid the risk of inadvertent disclosure of identities[ 5 , 25 ].

What are the potential pitfalls and how can these be avoided?

The case study approach is, as with all research, not without its limitations. When investigating the formal and informal ways undergraduate students learn about patient safety (Table 4 ), for example, we rapidly accumulated a large quantity of data. The volume of data, together with the time restrictions in place, impacted on the depth of analysis that was possible within the available resources. This highlights a more general point of the importance of avoiding the temptation to collect as much data as possible; adequate time also needs to be set aside for data analysis and interpretation of what are often highly complex datasets.

Case study research has sometimes been criticised for lacking scientific rigour and providing little basis for generalisation (i.e. producing findings that may be transferable to other settings)[ 1 ]. There are several ways to address these concerns, including: the use of theoretical sampling (i.e. drawing on a particular conceptual framework); respondent validation (i.e. participants checking emerging findings and the researcher's interpretation, and providing an opinion as to whether they feel these are accurate); and transparency throughout the research process (see Table 8 )[ 8 , 18 – 21 , 23 , 26 ]. Transparency can be achieved by describing in detail the steps involved in case selection, data collection, the reasons for the particular methods chosen, and the researcher's background and level of involvement (i.e. being explicit about how the researcher has influenced data collection and interpretation). Seeking potential, alternative explanations, and being explicit about how interpretations and conclusions were reached, help readers to judge the trustworthiness of the case study report. Stake provides a critique checklist for a case study report (Table 9 )[ 8 ].

Conclusions

The case study approach allows, amongst other things, critical events, interventions, policy developments and programme-based service reforms to be studied in detail in a real-life context. It should therefore be considered when an experimental design is either inappropriate to answer the research questions posed or impossible to undertake. Considering the frequency with which implementations of innovations are now taking place in healthcare settings and how well the case study approach lends itself to in-depth, complex health service research, we believe this approach should be more widely considered by researchers. Though inherently challenging, the research case study can, if carefully conceptualised and thoughtfully undertaken and reported, yield powerful insights into many important aspects of health and healthcare delivery.

Yin RK: Case study research, design and method. 2009, London: Sage Publications Ltd., 4

Google Scholar  

Keen J, Packwood T: Qualitative research; case study evaluation. BMJ. 1995, 311: 444-446.

Article   CAS   PubMed   PubMed Central   Google Scholar  

Sheikh A, Halani L, Bhopal R, Netuveli G, Partridge M, Car J, et al: Facilitating the Recruitment of Minority Ethnic People into Research: Qualitative Case Study of South Asians and Asthma. PLoS Med. 2009, 6 (10): 1-11.

Article   Google Scholar  

Pinnock H, Huby G, Powell A, Kielmann T, Price D, Williams S, et al: The process of planning, development and implementation of a General Practitioner with a Special Interest service in Primary Care Organisations in England and Wales: a comparative prospective case study. Report for the National Co-ordinating Centre for NHS Service Delivery and Organisation R&D (NCCSDO). 2008, [ http://www.sdo.nihr.ac.uk/files/project/99-final-report.pdf ]

Robertson A, Cresswell K, Takian A, Petrakaki D, Crowe S, Cornford T, et al: Prospective evaluation of the implementation and adoption of NHS Connecting for Health's national electronic health record in secondary care in England: interim findings. BMJ. 2010, 41: c4564-

Pearson P, Steven A, Howe A, Sheikh A, Ashcroft D, Smith P, the Patient Safety Education Study Group: Learning about patient safety: organisational context and culture in the education of healthcare professionals. J Health Serv Res Policy. 2010, 15: 4-10. 10.1258/jhsrp.2009.009052.

Article   PubMed   Google Scholar  

van Harten WH, Casparie TF, Fisscher OA: The evaluation of the introduction of a quality management system: a process-oriented case study in a large rehabilitation hospital. Health Policy. 2002, 60 (1): 17-37. 10.1016/S0168-8510(01)00187-7.

Stake RE: The art of case study research. 1995, London: Sage Publications Ltd.

Sheikh A, Smeeth L, Ashcroft R: Randomised controlled trials in primary care: scope and application. Br J Gen Pract. 2002, 52 (482): 746-51.

PubMed   PubMed Central   Google Scholar  

King G, Keohane R, Verba S: Designing Social Inquiry. 1996, Princeton: Princeton University Press

Doolin B: Information technology as disciplinary technology: being critical in interpretative research on information systems. Journal of Information Technology. 1998, 13: 301-311. 10.1057/jit.1998.8.

George AL, Bennett A: Case studies and theory development in the social sciences. 2005, Cambridge, MA: MIT Press

Eccles M, the Improved Clinical Effectiveness through Behavioural Research Group (ICEBeRG): Designing theoretically-informed implementation interventions. Implementation Science. 2006, 1: 1-8. 10.1186/1748-5908-1-1.

Article   PubMed Central   Google Scholar  

Netuveli G, Hurwitz B, Levy M, Fletcher M, Barnes G, Durham SR, Sheikh A: Ethnic variations in UK asthma frequency, morbidity, and health-service use: a systematic review and meta-analysis. Lancet. 2005, 365 (9456): 312-7.

Sheikh A, Panesar SS, Lasserson T, Netuveli G: Recruitment of ethnic minorities to asthma studies. Thorax. 2004, 59 (7): 634-

CAS   PubMed   PubMed Central   Google Scholar  

Hellström I, Nolan M, Lundh U: 'We do things together': A case study of 'couplehood' in dementia. Dementia. 2005, 4: 7-22. 10.1177/1471301205049188.

Som CV: Nothing seems to have changed, nothing seems to be changing and perhaps nothing will change in the NHS: doctors' response to clinical governance. International Journal of Public Sector Management. 2005, 18: 463-477. 10.1108/09513550510608903.

Lincoln Y, Guba E: Naturalistic inquiry. 1985, Newbury Park: Sage Publications

Barbour RS: Checklists for improving rigour in qualitative research: a case of the tail wagging the dog?. BMJ. 2001, 322: 1115-1117. 10.1136/bmj.322.7294.1115.

Mays N, Pope C: Qualitative research in health care: Assessing quality in qualitative research. BMJ. 2000, 320: 50-52. 10.1136/bmj.320.7226.50.

Mason J: Qualitative researching. 2002, London: Sage

Brazier A, Cooke K, Moravan V: Using Mixed Methods for Evaluating an Integrative Approach to Cancer Care: A Case Study. Integr Cancer Ther. 2008, 7: 5-17. 10.1177/1534735407313395.

Miles MB, Huberman M: Qualitative data analysis: an expanded sourcebook. 1994, CA: Sage Publications Inc., 2

Pope C, Ziebland S, Mays N: Analysing qualitative data. Qualitative research in health care. BMJ. 2000, 320: 114-116. 10.1136/bmj.320.7227.114.

Cresswell KM, Worth A, Sheikh A: Actor-Network Theory and its role in understanding the implementation of information technology developments in healthcare. BMC Med Inform Decis Mak. 2010, 10 (1): 67-10.1186/1472-6947-10-67.

Article   PubMed   PubMed Central   Google Scholar  

Malterud K: Qualitative research: standards, challenges, and guidelines. Lancet. 2001, 358: 483-488. 10.1016/S0140-6736(01)05627-6.

Article   CAS   PubMed   Google Scholar  

Yin R: Case study research: design and methods. 1994, Thousand Oaks, CA: Sage Publishing, 2

Yin R: Enhancing the quality of case studies in health services research. Health Serv Res. 1999, 34: 1209-1224.

Green J, Thorogood N: Qualitative methods for health research. 2009, Los Angeles: Sage, 2

Howcroft D, Trauth E: Handbook of Critical Information Systems Research, Theory and Application. 2005, Cheltenham, UK: Northampton, MA, USA: Edward Elgar

Book   Google Scholar  

Blakie N: Approaches to Social Enquiry. 1993, Cambridge: Polity Press

Doolin B: Power and resistance in the implementation of a medical management information system. Info Systems J. 2004, 14: 343-362. 10.1111/j.1365-2575.2004.00176.x.

Bloomfield BP, Best A: Management consultants: systems development, power and the translation of problems. Sociological Review. 1992, 40: 533-560.

Shanks G, Parr A: Positivist, single case study research in information systems: A critical analysis. Proceedings of the European Conference on Information Systems. 2003, Naples

Pre-publication history

The pre-publication history for this paper can be accessed here: http://www.biomedcentral.com/1471-2288/11/100/prepub

Download references

Acknowledgements

We are grateful to the participants and colleagues who contributed to the individual case studies that we have drawn on. This work received no direct funding, but it has been informed by projects funded by Asthma UK, the NHS Service Delivery Organisation, NHS Connecting for Health Evaluation Programme, and Patient Safety Research Portfolio. We would also like to thank the expert reviewers for their insightful and constructive feedback. Our thanks are also due to Dr. Allison Worth who commented on an earlier draft of this manuscript.

Author information

Authors and affiliations.

Division of Primary Care, The University of Nottingham, Nottingham, UK

Sarah Crowe & Anthony Avery

Centre for Population Health Sciences, The University of Edinburgh, Edinburgh, UK

Kathrin Cresswell, Ann Robertson & Aziz Sheikh

School of Health in Social Science, The University of Edinburgh, Edinburgh, UK

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Sarah Crowe .

Additional information

Competing interests.

The authors declare that they have no competing interests.

Authors' contributions

AS conceived this article. SC, KC and AR wrote this paper with GH, AA and AS all commenting on various drafts. SC and AS are guarantors.

Rights and permissions

This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article.

Crowe, S., Cresswell, K., Robertson, A. et al. The case study approach. BMC Med Res Methodol 11 , 100 (2011). https://doi.org/10.1186/1471-2288-11-100

Download citation

Received : 29 November 2010

Accepted : 27 June 2011

Published : 27 June 2011

DOI : https://doi.org/10.1186/1471-2288-11-100

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Case Study Approach
  • Electronic Health Record System
  • Case Study Design
  • Case Study Site
  • Case Study Report

BMC Medical Research Methodology

ISSN: 1471-2288

case study as research methodology

The Case Study as Research Method: A Practical Handbook

Qualitative Research in Accounting & Management

ISSN : 1176-6093

Article publication date: 21 June 2011

Scapens, R.W. (2011), "The Case Study as Research Method: A Practical Handbook", Qualitative Research in Accounting & Management , Vol. 8 No. 2, pp. 201-204. https://doi.org/10.1108/11766091111137582

Emerald Group Publishing Limited

Copyright © 2011, Emerald Group Publishing Limited

This book aims to provide case‐study researchers with a step‐by‐step practical guide to “help them conduct the study with the required degree of rigour” (p. xi).

It seeks to “demonstrate that the case study is indeed a scientific method” (p. 104) and to show “the usefulness of the case method as one tool in the researcher's methodological arsenal” (p. 105). The individual chapters cover the various stages in conducting case‐study research, and each chapter sets out a number of practical steps which have to be taken by the researcher. The following are the eight stages/chapters and, in brackets, the number of steps in each stages:

Assessing appropriateness and usefulness (4).

Ensuring accuracy of results (21).

Preparation (6).

Selecting cases (4).

Collecting data (7).

Analyzing data (4).

Interpreting data (3).

Reporting results (4).

It is particularly noticeable that ensuring accuracy of results has by far the largest number of number of steps – 21 steps compared to seven or fewer steps in the other stages. This reflects Gagnon's concern to demonstrate the scientific rigour of case‐study research. In the forward, he explains that the book draws on his experience in conducting his own PhD research, which was closely supervised by three professors, one of whom was inclined towards quantitative research. Consequently, his research was underpinned by the principles and philosophy of quantitative research. This is clearly reflected in the approach taken in this book, which seeks to show that case‐study research is just as rigorous and scientific as quantitative research, and it can produce an objective and accurate representation of the observed reality.

There is no discussion of the methodological issues relating to the use of case‐study research methods. This is acknowledged in the forward, although Gagnon refers to them as philosophical or epistemological issues (p. xii), as he tends to use the terms methodology and method interchangeably – as is common in quantitative research. Although he starts (step 1.1) by trying to distance case and other qualitative research from the work of positivists, arguing that society is socially constructed, he nevertheless sees social reality as objective and independent of the researcher. So for Gagnon, the aim of case research is to accurately reflect that reality. At various points in the book the notion of interpretation is used – evidence is interpreted and the (objective) case findings have to be interpreted.

So although there is a distancing from positivist research (p. 1), the approach taken in this book retains an objective view of the social reality which is being researched; a view which is rather different to the subjective view of reality taken by many interpretive case researchers. This distinction between an objective and a subjective view of the social reality being researched – and especially its use in contrasting positivist and interpretive research – has its origins the taxonomy of Burrell and Morgan (1979) . Although there have been various developments in the so‐called “objective‐subjective debate”, and recently some discussion in relation to management accounting research ( Kakkuri‐Knuuttila et al. , 2008 ; Ahrens, 2008 ), this debate is not mentioned in the book. Nevertheless, it is clear that Gagnon is firmly in the objective camp. In a recent paper, Johnson et al. (2006, p. 138) provide a more contemporary classification of the different types of qualitative research. In their terms, the approach taken in this book could be described as neo‐empiricist – an approach which they characterise as “qualitative positivists”.

The approach taken in this handbook leaves case studies open to the criticisms that they are a small sample, and consequently difficult to generalise, and to arguments that case studies are most appropriate for exploratory research which can subsequently be generalised though quantitative research. Gagnon explains that this was the approach he used after completing his thesis (p. xi). The handbook only seems to recognise two types of case studies, namely exploratory and raw empirical case studies – the latter being used where “the researcher is interested in a subject without having formed any preconceived ideas about it” (p. 15) – which has echoes of Glaser and Strauss (1967) . However, limiting case studies to these two types ignores other potential types; in particular, explanatory case studies which are where interpretive case‐study research can make important contributions ( Ryan et al. , 2002 ).

This limited approach to case studies comes through in the practical steps which are recommended in the handbook, and especially in the discussion of reliability and validity. The suggested steps seem to be designed to keep very close to the notions of reliability and validity used in quantitative research. There is no mention of the recent discussion of “validity” in interpretive accounting research, which emphasises the importance of authenticity and credibility and their implications for writing up qualitative and case‐study research ( Lukka and Modell, 2010 ). Although the final stage of Gagnon's handbook makes some very general comments about reporting the results, it does not mention, for example, Baxter and Chua's (2008) paper in QRAM which discusses the importance of demonstrating authenticity, credibility and transferability in writing qualitative research.

Despite Gagnon's emphasis on traditional notions of reliability and validity the handbook provides some useful practical advice for all case‐study researchers. For example, case‐study research needs a very good research design; case‐study researchers must work hard to gain access to and acceptance in the research settings; a clear strategy is needed for data collection; the case researcher should create field notes (in a field notebook, or otherwise) to record all the thoughts, ideas, observations, etc. that would not otherwise be collected; and the vast amount of data that case‐study research can generate needs to be carefully managed. Furthermore, because of what Gagnon calls the “risk of mortality” (p. 54) (i.e. the risk that access to a research site may be lost – for instance, if the organisation goes bankrupt) it is crucial for some additional site(s) to be selected at the outset to ensure that the planned research can be completed. This is what I call “insurance cases” when talking to my own PhD students. Interestingly, Gagnon recognises the ethical issues involved in doing case studies – something which is not always mentioned by the more objectivist type of case‐study researchers. He emphasises that it is crucial to honour confidentiality agreements, to ensure data are stored securely and that commitments are met and promises kept.

There is an interesting discussion of the advantages and disadvantages of using computer methods in analysing data (in stage 6). However, the discussion of coding appears to be heavily influenced by grounded theory, and is clearly concerned with producing an accurate reflection of an objective reality. In addition, Gagnon's depiction of case analysis is overly focussed on content analysis – possibly because it is a quantitative type of technique. There is no reference to the other approaches available to qualitative researchers. For example, there is no mention of the various visualisation techniques set out in Miles and Huberman (1994) .

To summarise, Gagnon's book is particularly useful for case‐study researchers who see the reality they are researching as objective and researcher independent. However, this is a sub‐set of case‐study researchers. Although some of the practical guidance offered is relevant for other types of case‐study researchers, those who see multiple realities in the social actors and/or recognise the subjectivity of the research process might have difficulty with some of the steps in this handbook. Gagnon's aim to show that the case study is a scientific method, gives the handbook a focus on traditional (quantitatively inspired) notions rigour and validity, and a tendency to ignore (or at least marginalise) other types of case study research. For example, the focus on exploratory cases, which need to be supplemented by broad based quantitative research, overlooks the real potential of case study research which lies in explanatory cases. Furthermore, Gagnon is rather worried about participant research, as the researcher may play a role which is “not consistent with scientific method” (p. 42), and which may introduce researcher bias and thereby damage “the impartiality of the study” (p. 53). Leaving aside the philosophical question about whether any social science research, including quantitative research, can be impartial, this stance could severely limit the potential of case‐study research and it would rule out both the early work on the sociology of mass production and the recent calls for interventionist research. Clearly, there could be a problem where a researcher is trying to sell consulting services, but there is a long tradition of social researchers working within organisations that they are studying. Furthermore, if interpretive research is to be relevant for practice, researchers may have to work with organisations to introduce new ideas and new ways of analysing problems. Gagnon would seem to want to avoid all such research – as it would not be “impartial”.

Consequently, although there is some good practical advice for case study researchers in this handbook, some of the recommendations have to be treated cautiously, as it is a book which sees case‐study research in a very specific way. As mentioned earlier, in the Forward Gagnon explicitly recognises that the book does not take a position on the methodological debates surrounding the use of case studies as a research method, and he says that “The reader should therefore use and judge this handbook with these considerations in mind” (p. xii). This is very good advice – caveat emptor .

Ahrens , T. ( 2008 ), “ A comment on Marja‐Liisa Kakkuri‐Knuuttila ”, Accounting, Organizations and Society , Vol. 33 Nos 2/3 , pp. 291 ‐ 7 , Kari Lukka and Jaakko Kuorikoski.

Baxter , J. and Chua , W.F. ( 2008 ), “ The field researcher as author‐writer ”, Qualitative Research in Accounting & Management , Vol. 5 No. 2 , pp. 101 ‐ 21 .

Burrell , G. and Morgan , G. ( 1979 ), Sociological Paradigms and Organizational Analysis , Heinneman , London .

Glaser , B.G. and Strauss , A.L. ( 1967 ), The Discovery of Grounded Theory: Strategies for Qualitative Research , Aldine , New York, NY .

Johnson , P. , Buehring , A. , Cassell , C. and Symon , G. ( 2006 ), “ Evaluating qualitative management research: towards a contingent critieriology ”, International Journal of Management Reviews , Vol. 8 No. 3 , pp. 131 ‐ 56 .

Kakkuri‐Knuuttila , M.‐L. , Lukka , K. and Kuorikoski , J. ( 2008 ), “ Straddling between paradigms: a naturalistic philosophical case study on interpretive research in management accounting ”, Accounting, Organizations and Society , Vol. 33 Nos 2/3 , pp. 267 ‐ 91 .

Lukka , K. and Modell , S. ( 2010 ), “ Validation in interpretive management accounting research ”, Accounting, Organizations and Society , Vol. 35 , pp. 462 ‐ 77 .

Miles , M.B. and Huberman , A.M. ( 1994 ), Qualitative Data Analysis: A Source Book of New Methods , 2nd ed. , Sage , London .

Ryan , R.J. , Scapens , R.W. and Theobald , M. ( 2002 ), Research Methods and Methodology in Finance and Accounting , 2nd ed. , Thomson Learning , London .

Related articles

All feedback is valuable.

Please share your general feedback

Report an issue or find answers to frequently asked questions

Contact Customer Support

Academic Success Center

Research Writing and Analysis

  • NVivo Group and Study Sessions
  • SPSS This link opens in a new window
  • Statistical Analysis Group sessions
  • Using Qualtrics
  • Dissertation and Data Analysis Group Sessions
  • Defense Schedule - Commons Calendar This link opens in a new window
  • Research Process Flow Chart
  • Research Alignment Chapter 1 This link opens in a new window
  • Step 1: Seek Out Evidence
  • Step 2: Explain
  • Step 3: The Big Picture
  • Step 4: Own It
  • Step 5: Illustrate
  • Annotated Bibliography
  • Literature Review This link opens in a new window
  • Systematic Reviews & Meta-Analyses
  • How to Synthesize and Analyze
  • Synthesis and Analysis Practice
  • Synthesis and Analysis Group Sessions
  • Problem Statement
  • Purpose Statement
  • Conceptual Framework
  • Theoretical Framework
  • Locating Theoretical and Conceptual Frameworks This link opens in a new window
  • Quantitative Research Questions
  • Qualitative Research Questions
  • Trustworthiness of Qualitative Data
  • Analysis and Coding Example- Qualitative Data
  • Thematic Data Analysis in Qualitative Design
  • Dissertation to Journal Article This link opens in a new window
  • International Journal of Online Graduate Education (IJOGE) This link opens in a new window
  • Journal of Research in Innovative Teaching & Learning (JRIT&L) This link opens in a new window

Writing a Case Study

Hands holding a world globe

What is a case study?

A Map of the world with hands holding a pen.

A Case study is: 

  • An in-depth research design that primarily uses a qualitative methodology but sometimes​​ includes quantitative methodology.
  • Used to examine an identifiable problem confirmed through research.
  • Used to investigate an individual, group of people, organization, or event.
  • Used to mostly answer "how" and "why" questions.

What are the different types of case studies?

Man and woman looking at a laptop

Descriptive

This type of case study allows the researcher to:

How has the implementation and use of the instructional coaching intervention for elementary teachers impacted students’ attitudes toward reading?

Explanatory

This type of case study allows the researcher to:

Why do differences exist when implementing the same online reading curriculum in three elementary classrooms?

Exploratory

This type of case study allows the researcher to:

 

What are potential barriers to student’s reading success when middle school teachers implement the Ready Reader curriculum online?

Multiple Case Studies

or

Collective Case Study

This type of case study allows the researcher to:

How are individual school districts addressing student engagement in an online classroom?

Intrinsic

This type of case study allows the researcher to:

How does a student’s familial background influence a teacher’s ability to provide meaningful instruction?

Instrumental

This type of case study allows the researcher to:

How a rural school district’s integration of a reward system maximized student engagement?

Note: These are the primary case studies. As you continue to research and learn

about case studies you will begin to find a robust list of different types. 

Who are your case study participants?

Boys looking through a camera

 

This type of study is implemented to understand an individual by developing a detailed explanation of the individual’s lived experiences or perceptions.

 

 

 

This type of study is implemented to explore a particular group of people’s perceptions.

This type of study is implemented to explore the perspectives of people who work for or had interaction with a specific organization or company.

This type of study is implemented to explore participant’s perceptions of an event.

What is triangulation ? 

Validity and credibility are an essential part of the case study. Therefore, the researcher should include triangulation to ensure trustworthiness while accurately reflecting what the researcher seeks to investigate.

Triangulation image with examples

How to write a Case Study?

When developing a case study, there are different ways you could present the information, but remember to include the five parts for your case study.

Man holding his hand out to show five fingers.

 

Writing Icon Purple Circle w/computer inside

Was this resource helpful?

  • << Previous: Thematic Data Analysis in Qualitative Design
  • Next: Journal Article Reporting Standards (JARS) >>
  • Last Updated: Jul 22, 2024 8:15 PM
  • URL: https://resources.nu.edu/researchtools

NCU Library Home

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • J Med Libr Assoc
  • v.107(1); 2019 Jan

Distinguishing case study as a research method from case reports as a publication type

The purpose of this editorial is to distinguish between case reports and case studies. In health, case reports are familiar ways of sharing events or efforts of intervening with single patients with previously unreported features. As a qualitative methodology, case study research encompasses a great deal more complexity than a typical case report and often incorporates multiple streams of data combined in creative ways. The depth and richness of case study description helps readers understand the case and whether findings might be applicable beyond that setting.

Single-institution descriptive reports of library activities are often labeled by their authors as “case studies.” By contrast, in health care, single patient retrospective descriptions are published as “case reports.” Both case reports and case studies are valuable to readers and provide a publication opportunity for authors. A previous editorial by Akers and Amos about improving case studies addresses issues that are more common to case reports; for example, not having a review of the literature or being anecdotal, not generalizable, and prone to various types of bias such as positive outcome bias [ 1 ]. However, case study research as a qualitative methodology is pursued for different purposes than generalizability. The authors’ purpose in this editorial is to clearly distinguish between case reports and case studies. We believe that this will assist authors in describing and designating the methodological approach of their publications and help readers appreciate the rigor of well-executed case study research.

Case reports often provide a first exploration of a phenomenon or an opportunity for a first publication by a trainee in the health professions. In health care, case reports are familiar ways of sharing events or efforts of intervening with single patients with previously unreported features. Another type of study categorized as a case report is an “N of 1” study or single-subject clinical trial, which considers an individual patient as the sole unit of observation in a study investigating the efficacy or side effect profiles of different interventions. Entire journals have evolved to publish case reports, which often rely on template structures with limited contextualization or discussion of previous cases. Examples that are indexed in MEDLINE include the American Journal of Case Reports , BMJ Case Reports, Journal of Medical Case Reports, and Journal of Radiology Case Reports . Similar publications appear in veterinary medicine and are indexed in CAB Abstracts, such as Case Reports in Veterinary Medicine and Veterinary Record Case Reports .

As a qualitative methodology, however, case study research encompasses a great deal more complexity than a typical case report and often incorporates multiple streams of data combined in creative ways. Distinctions include the investigator’s definitions and delimitations of the case being studied, the clarity of the role of the investigator, the rigor of gathering and combining evidence about the case, and the contextualization of the findings. Delimitation is a term from qualitative research about setting boundaries to scope the research in a useful way rather than describing the narrow scope as a limitation, as often appears in a discussion section. The depth and richness of description helps readers understand the situation and whether findings from the case are applicable to their settings.

CASE STUDY AS A RESEARCH METHODOLOGY

Case study as a qualitative methodology is an exploration of a time- and space-bound phenomenon. As qualitative research, case studies require much more from their authors who are acting as instruments within the inquiry process. In the case study methodology, a variety of methodological approaches may be employed to explain the complexity of the problem being studied [ 2 , 3 ].

Leading authors diverge in their definitions of case study, but a qualitative research text introduces case study as follows:

Case study research is defined as a qualitative approach in which the investigator explores a real-life, contemporary bounded system (a case) or multiple bound systems (cases) over time, through detailed, in-depth data collection involving multiple sources of information, and reports a case description and case themes. The unit of analysis in the case study might be multiple cases (a multisite study) or a single case (a within-site case study). [ 4 ]

Methodologists writing core texts on case study research include Yin [ 5 ], Stake [ 6 ], and Merriam [ 7 ]. The approaches of these three methodologists have been compared by Yazan, who focused on six areas of methodology: epistemology (beliefs about ways of knowing), definition of cases, design of case studies, and gathering, analysis, and validation of data [ 8 ]. For Yin, case study is a method of empirical inquiry appropriate to determining the “how and why” of phenomena and contributes to understanding phenomena in a holistic and real-life context [ 5 ]. Stake defines a case study as a “well-bounded, specific, complex, and functioning thing” [ 6 ], while Merriam views “the case as a thing, a single entity, a unit around which there are boundaries” [ 7 ].

Case studies are ways to explain, describe, or explore phenomena. Comments from a quantitative perspective about case studies lacking rigor and generalizability fail to consider the purpose of the case study and how what is learned from a case study is put into practice. Rigor in case studies comes from the research design and its components, which Yin outlines as (a) the study’s questions, (b) the study’s propositions, (c) the unit of analysis, (d) the logic linking the data to propositions, and (e) the criteria for interpreting the findings [ 5 ]. Case studies should also provide multiple sources of data, a case study database, and a clear chain of evidence among the questions asked, the data collected, and the conclusions drawn [ 5 ].

Sources of evidence for case studies include interviews, documentation, archival records, direct observations, participant-observation, and physical artifacts. One of the most important sources for data in qualitative case study research is the interview [ 2 , 3 ]. In addition to interviews, documents and archival records can be gathered to corroborate and enhance the findings of the study. To understand the phenomenon or the conditions that created it, direct observations can serve as another source of evidence and can be conducted throughout the study. These can include the use of formal and informal protocols as a participant inside the case or an external or passive observer outside of the case [ 5 ]. Lastly, physical artifacts can be observed and collected as a form of evidence. With these multiple potential sources of evidence, the study methodology includes gathering data, sense-making, and triangulating multiple streams of data. Figure 1 shows an example in which data used for the case started with a pilot study to provide additional context to guide more in-depth data collection and analysis with participants.

An external file that holds a picture, illustration, etc.
Object name is jmla-107-1-f001.jpg

Key sources of data for a sample case study

VARIATIONS ON CASE STUDY METHODOLOGY

Case study methodology is evolving and regularly reinterpreted. Comparative or multiple case studies are used as a tool for synthesizing information across time and space to research the impact of policy and practice in various fields of social research [ 9 ]. Because case study research is in-depth and intensive, there have been efforts to simplify the method or select useful components of cases for focused analysis. Micro-case study is a term that is occasionally used to describe research on micro-level cases [ 10 ]. These are cases that occur in a brief time frame, occur in a confined setting, and are simple and straightforward in nature. A micro-level case describes a clear problem of interest. Reporting is very brief and about specific points. The lack of complexity in the case description makes obvious the “lesson” that is inherent in the case; although no definitive “solution” is necessarily forthcoming, making the case useful for discussion. A micro-case write-up can be distinguished from a case report by its focus on briefly reporting specific features of a case or cases to analyze or learn from those features.

DATABASE INDEXING OF CASE REPORTS AND CASE STUDIES

Disciplines such as education, psychology, sociology, political science, and social work regularly publish rich case studies that are relevant to particular areas of health librarianship. Case reports and case studies have been defined as publication types or subject terms by several databases that are relevant to librarian authors: MEDLINE, PsycINFO, CINAHL, and ERIC. Library, Information Science & Technology Abstracts (LISTA) does not have a subject term or publication type related to cases, despite many being included in the database. Whereas “Case Reports” are the main term used by MEDLINE’s Medical Subject Headings (MeSH) and PsycINFO’s thesaurus, CINAHL and ERIC use “Case Studies.”

Case reports in MEDLINE and PsycINFO focus on clinical case documentation. In MeSH, “Case Reports” as a publication type is specific to “clinical presentations that may be followed by evaluative studies that eventually lead to a diagnosis” [ 11 ]. “Case Histories,” “Case Studies,” and “Case Study” are all entry terms mapping to “Case Reports”; however, guidance to indexers suggests that “Case Reports” should not be applied to institutional case reports and refers to the heading “Organizational Case Studies,” which is defined as “descriptions and evaluations of specific health care organizations” [ 12 ].

PsycINFO’s subject term “Case Report” is “used in records discussing issues involved in the process of conducting exploratory studies of single or multiple clinical cases.” The Methodology index offers clinical and non-clinical entries. “Clinical Case Study” is defined as “case reports that include disorder, diagnosis, and clinical treatment for individuals with mental or medical illnesses,” whereas “Non-clinical Case Study” is a “document consisting of non-clinical or organizational case examples of the concepts being researched or studied. The setting is always non-clinical and does not include treatment-related environments” [ 13 ].

Both CINAHL and ERIC acknowledge the depth of analysis in case study methodology. The CINAHL scope note for the thesaurus term “Case Studies” distinguishes between the document and the methodology, though both use the same term: “a review of a particular condition, disease, or administrative problem. Also, a research method that involves an in-depth analysis of an individual, group, institution, or other social unit. For material that contains a case study, search for document type: case study.” The ERIC scope note for the thesaurus term “Case Studies” is simple: “detailed analyses, usually focusing on a particular problem of an individual, group, or organization” [ 14 ].

PUBLICATION OF CASE STUDY RESEARCH IN LIBRARIANSHIP

We call your attention to a few examples published as case studies in health sciences librarianship to consider how their characteristics fit with the preceding definitions of case reports or case study research. All present some characteristics of case study research, but their treatment of the research questions, richness of description, and analytic strategies vary in depth and, therefore, diverge at some level from the qualitative case study research approach. This divergence, particularly in richness of description and analysis, may have been constrained by the publication requirements.

As one example, a case study by Janke and Rush documented a time- and context-bound collaboration involving a librarian and a nursing faculty member [ 15 ]. Three objectives were stated: (1) describing their experience of working together on an interprofessional research team, (2) evaluating the value of the librarian role from librarian and faculty member perspectives, and (3) relating findings to existing literature. Elements that signal the qualitative nature of this case study are that the authors were the research participants and their use of the term “evaluation” is reflection on their experience. This reads like a case study that could have been enriched by including other types of data gathered from others engaging with this team to broaden the understanding of the collaboration.

As another example, the description of the academic context is one of the most salient components of the case study written by Clairoux et al., which had the objectives of (1) describing the library instruction offered and learning assessments used at a single health sciences library and (2) discussing the positive outcomes of instruction in that setting [ 16 ]. The authors focus on sharing what the institution has done more than explaining why this institution is an exemplar to explore a focused question or understand the phenomenon of library instruction. However, like a case study, the analysis brings together several streams of data including course attendance, online material page views, and some discussion of results from surveys. This paper reads somewhat in between an institutional case report and a case study.

The final example is a single author reporting on a personal experience of creating and executing the role of research informationist for a National Institutes of Health (NIH)–funded research team [ 17 ]. There is a thoughtful review of the informationist literature and detailed descriptions of the institutional context and the process of gaining access to and participating in the new role. However, the motivating question in the abstract does not seem to be fully addressed through analysis from either the reflective perspective of the author as the research participant or consideration of other streams of data from those involved in the informationist experience. The publication reads more like a case report about this informationist’s experience than a case study that explores the research informationist experience through the selection of this case.

All of these publications are well written and useful for their intended audiences, but in general, they are much shorter and much less rich in depth than case studies published in social sciences research. It may be that the authors have been constrained by word counts or page limits. For example, the submission category for Case Studies in the Journal of the Medical Library Association (JMLA) limited them to 3,000 words and defined them as “articles describing the process of developing, implementing, and evaluating a new service, program, or initiative, typically in a single institution or through a single collaborative effort” [ 18 ]. This definition’s focus on novelty and description sounds much more like the definition of case report than the in-depth, detailed investigation of a time- and space-bound problem that is often examined through case study research.

Problem-focused or question-driven case study research would benefit from the space provided for Original Investigations that employ any type of quantitative or qualitative method of analysis. One of the best examples in the JMLA of an in-depth multiple case study that was authored by a librarian who published the findings from her doctoral dissertation represented all the elements of a case study. In eight pages, she provided a theoretical basis for the research question, a pilot study, and a multiple case design, including integrated data from interviews and focus groups [ 19 ].

We have distinguished between case reports and case studies primarily to assist librarians who are new to research and critical appraisal of case study methodology to recognize the features that authors use to describe and designate the methodological approaches of their publications. For researchers who are new to case research methodology and are interested in learning more, Hancock and Algozzine provide a guide [ 20 ].

We hope that JMLA readers appreciate the rigor of well-executed case study research. We believe that distinguishing between descriptive case reports and analytic case studies in the journal’s submission categories will allow the depth of case study methodology to increase. We also hope that authors feel encouraged to pursue submitting relevant case studies or case reports for future publication.

Editor’s note: In response to this invited editorial, the Journal of the Medical Library Association will consider manuscripts employing rigorous qualitative case study methodology to be Original Investigations (fewer than 5,000 words), whereas manuscripts describing the process of developing, implementing, and assessing a new service, program, or initiative—typically in a single institution or through a single collaborative effort—will be considered to be Case Reports (formerly known as Case Studies; fewer than 3,000 words).

Research-Methodology

Case Studies

Case studies are a popular research method in business area. Case studies aim to analyze specific issues within the boundaries of a specific environment, situation or organization.

According to its design, case studies in business research can be divided into three categories: explanatory, descriptive and exploratory.

Explanatory case studies aim to answer ‘how’ or ’why’ questions with little control on behalf of researcher over occurrence of events. This type of case studies focus on phenomena within the contexts of real-life situations. Example: “An investigation into the reasons of the global financial and economic crisis of 2008 – 2010.”

Descriptive case studies aim to analyze the sequence of interpersonal events after a certain amount of time has passed. Studies in business research belonging to this category usually describe culture or sub-culture, and they attempt to discover the key phenomena. Example: “Impact of increasing levels of multiculturalism on marketing practices: A case study of McDonald’s Indonesia.”

Exploratory case studies aim to find answers to the questions of ‘what’ or ‘who’. Exploratory case study data collection method is often accompanied by additional data collection method(s) such as interviews, questionnaires, experiments etc. Example: “A study into differences of leadership practices between private and public sector organizations in Atlanta, USA.”

Advantages of case study method include data collection and analysis within the context of phenomenon, integration of qualitative and quantitative data in data analysis, and the ability to capture complexities of real-life situations so that the phenomenon can be studied in greater levels of depth. Case studies do have certain disadvantages that may include lack of rigor, challenges associated with data analysis and very little basis for generalizations of findings and conclusions.

Case Studies

John Dudovskiy

Information

  • Author Services

Initiatives

You are accessing a machine-readable page. In order to be human-readable, please install an RSS reader.

All articles published by MDPI are made immediately available worldwide under an open access license. No special permission is required to reuse all or part of the article published by MDPI, including figures and tables. For articles published under an open access Creative Common CC BY license, any part of the article may be reused without permission provided that the original article is clearly cited. For more information, please refer to https://www.mdpi.com/openaccess .

Feature papers represent the most advanced research with significant potential for high impact in the field. A Feature Paper should be a substantial original Article that involves several techniques or approaches, provides an outlook for future research directions and describes possible research applications.

Feature papers are submitted upon individual invitation or recommendation by the scientific editors and must receive positive feedback from the reviewers.

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Original Submission Date Received: .

  • Active Journals
  • Find a Journal
  • Proceedings Series
  • For Authors
  • For Reviewers
  • For Editors
  • For Librarians
  • For Publishers
  • For Societies
  • For Conference Organizers
  • Open Access Policy
  • Institutional Open Access Program
  • Special Issues Guidelines
  • Editorial Process
  • Research and Publication Ethics
  • Article Processing Charges
  • Testimonials
  • Preprints.org
  • SciProfiles
  • Encyclopedia

systems-logo

Article Menu

case study as research methodology

  • Subscribe SciFeed
  • Recommended Articles
  • Google Scholar
  • on Google Scholar
  • Table of Contents

Find support for a specific problem in the support section of our website.

Please let us know what you think of our products and services.

Visit our dedicated information section to learn more about MDPI.

JSmol Viewer

A bi-objective model for the multi-period inventory-based reverse logistics network: a case study from an automobile component distribution network.

case study as research methodology

1. Introduction

  • To optimize the transportation system in the ISACO company.
  • To cut down transportation costs.
  • To increase customer satisfaction by increasing the supply of customer demands.
  • To allow the customers to return unused parts (which are not used by customers due to seasonal variations or environmental changes and market fluctuations.
  • To collect and dispose or recycle the stock parts.

2. Literature Review

2.1. a review of the literature on distribution systems in supply chain management, 2.2. a review of the literature on green logistics in supply chain management, 3. materials and methods.

  • Very high transportation costs induced by long round-trip distances.
  • High costs imposed on the company as a result of vehicle breakdown.
  • Frequent troubles related to timely goods delivery (e.g., the cities located far from Tehran, the chances are high that the goods do not reach on time).
  • To benefit from the full capacity of cars, it is required that the amount of the ordered goods reach a certain quantity and then the goods be delivered to the representatives, which leads to dissatisfaction among the representatives and losing the competitive market.
  • The lack of order and prioritization in the current system.
  • Not considering different scenarios in decision making.
  • Not being able to return unused or low-use parts by the representatives.
  • The lack of an integrated system for receiving scrap parts.
  • Not able to implement strategic planning.
  • Some of the expected merits of the new system are the following:
  • Reducing the costs resulting from redundant transportation.
  • Increasing the representatives’ satisfaction level due to goods’ timely delivery and increasing the power to supply the demanded goods and the possibility of returning low-use parts to the representative.
  • Systematizing transportation system which curbs other nuisances.
  • Increasing the flexibility of the system.
  • Decreasing the risks such as the sensitive parts becoming faulty during long transportation or the possibility of vehicle breakdowns that impose losses on the company.
  • Building regional warehouses and reducing the heavy costs of the central warehouse.
  • Controlling the system better and the potential to constantly improve.

5. Discussion and Conclusions

  • Employing a multi-period model along with the power of inventory management so that it leads to reduced costs and increased revenue.
  • With respect to the variety of available products, the number of product groups should be increased and included in the proposed model.
  • Reducing the time of ordering periods to better use the multi-period model, supplying faster and more up-to-date customer demands in the year, and removing the barriers of the inventory cost increase through modeling and making decisions at the tactical and operational level.
  • Raising the number of customers and applying the proposed model to the actual number of customers. It is worth mentioning that in this model, they were integrated into the provincial centers to facilitate the modeling of customer demand.
  • Constructing regional warehouses in the locations suggested by the model outputs considering the construction cost and setting up and storing the goods in these warehouses.
  • Launching the central warehouse number 2 when its effectiveness gets approved in all the models to properly benefit from it.
  • Regularly controlling the proposed performance evaluation indices considering the possibility of changing the supply or demand pattern and making suitable decisions accordingly.
  • Investigating the demand pattern in various time periods and the possibility of presenting a supplementary model for the probability mode of demand.
  • Investigating the profit from waste recycling.
  • Investigating the benefits of the brand’s mental image in terms of compliance with environmental issues.
  • Considering production issues in the supply chain and distribution system.
  • Including the demand of the different classes of customers in the distribution system and locating facilities; accordingly, in other words, assessing the effect of marketing decisions on the strategic macro-decisions of facility location.
  • Considering other location benchmarks.
  • Determining the order supply deadline for all sorts of goods orders and programming to supply them within the deadline and its effect on facility location problems.
  • Considering other objective functions like social aspects, employment rates, and environmental impacts according to the priorities of managers and decision-makers.

Author Contributions

Data availability statement, conflicts of interest.

  • Kamalahmadi, M.; Parast, M.M. A review of the literature on the principles of enterprise and supply chain resilience: Major findings and directions for future research. Int. J. Prod. Econ. 2016 , 171 , 116–133. [ Google Scholar ] [ CrossRef ]
  • Wang, G.; Gunasekaran, A.; Ngai, E.W.T.; Papadopoulos, T. Big data analytics in logistics and supply chain management: Certain investigations for research and applications. Int. J. Prod. Econ. 2016 , 176 , 98–110. [ Google Scholar ] [ CrossRef ]
  • Alshubiri, F. The Impact of Green Logistics-Based Activities on the Sustainable Monetary Expansion Indicators of Oman. J. Ind. Eng. Manag. 2017 , 10 , 389–405. [ Google Scholar ] [ CrossRef ]
  • Sheikh Azadi, A.H.; Shamsi Nesary, V.; Kebriyaii, O.; Khalilzadeh, M.; Antucheviciene, J. Design of a Green Supply Chain Based on the Kano Model Considering Pricing. Sustainability 2023 , 15 , 13038. [ Google Scholar ] [ CrossRef ]
  • Liou, J.J.H.; Tamošaitienė, J.; Zavadskas, E.K.; Tzeng, G.-H. New hybrid COPRAS-G MADM Model for improving and selecting suppliers in green supply chain management. Int. J. Prod. Res. 2015 , 54 , 114–134. [ Google Scholar ] [ CrossRef ]
  • Scott, J.; Ho, W.; Dey, P.K.; Talluri, S. A decision support system for supplier selection and order allocation in stochastic, multi-stakeholder and multi-criteria environments. Int. J. Prod. Econ. 2015 , 166 , 226–237. [ Google Scholar ] [ CrossRef ]
  • Dweiri, F.; Kumar, S.; Khan, S.A.; Jain, V. Designing an integrated AHP based decision support system for supplier selection in automotive industry. Expert Syst. Appl. 2016 , 62 , 273–283. [ Google Scholar ] [ CrossRef ]
  • Mogeni, L.M.; Kiarie, D.M. Effect of Green Logistics Practices on Performance of Supply Chains in Multinational Organizations in Kenya. Ind. Eng. Lett. 2016 , 6 , 40–50. [ Google Scholar ]
  • Muangpan, T.; Chaowarat, M.; Neamvonk, J. The key activities of green logistics management in the Thai automotive industry. J. Arts Sci. Commer. 2016 , 7 , 1–11. [ Google Scholar ] [ CrossRef ]
  • Brusset, X.; Teller, C. Supply chain capabilities, risks, and resilience. Int. J. Prod. Econ. 2017 , 184 , 59–68. [ Google Scholar ] [ CrossRef ]
  • Ribeiro, J.P.; Barbosa-Povoa, A. Supply Chain Resilience: Definitions and quantitative modelling approaches. Comput. Ind. Eng. 2018 , 115 , 109–122. [ Google Scholar ] [ CrossRef ]
  • Heidari, A.; Imani, D.M.; Khalilzadeh, M. A hub location model in the sustainable supply chain considering customer segmentation. J. Eng. Des. Technol. 2021 , 19 , 1387–1420. [ Google Scholar ] [ CrossRef ]
  • Eydi, A.; Fazayeli, S.; Ghafouri, H. Multi-period configuration of forward and reverse integrated supply chain networks through transport mode. Sci. Iran. 2020 , 27 , 935–955. [ Google Scholar ] [ CrossRef ]
  • Antucheviciene, J.; Jafarnejad, A.; Amoozad Mahdiraji, H.; Razavi Hajiagha, S.H.; Kargar, A. Robust Multi-Objective Sustainable Reverse Supply Chain Planning: An Application in the Steel Industry. Symmetry 2020 , 12 , 594. [ Google Scholar ] [ CrossRef ]
  • Gholamian, N.; Mahdavi, I.; Mahdavi-Amiri, N.; Tavakkoli-Moghaddam, R. Hybridization of an interactive fuzzy methodology with a lexicographic min-max approach for optimizing a multi-period multi-product multi-echelon sustainable closed-loop supply chain network. Comput. Ind. Eng. 2021 , 158 , 107282. [ Google Scholar ] [ CrossRef ]
  • Alinezhad, M.; Mahdavi, I.; Hematian, M. A fuzzy multi-objective optimization model for sustainable closed-loop supply chain network design in food industries. Environ. Dev. Sustain. 2022 , 24 , 8779–8806. [ Google Scholar ] [ CrossRef ]
  • Pazhani, S.; Mendoza, A.; Nambirajan, R.; Narendran, T.T.; Ganesh, K.; Olivares-Benitez, E. Multi-period multi-product closed loop supply chain network design: A relaxation approach. Comput. Ind. Eng. 2021 , 155 , 107191. [ Google Scholar ] [ CrossRef ]
  • Nazari-Ghanbarloo, V.; Ghodratnama, A. Optimizing a robust tri-objective multi-period reliable supply chain network considering queuing system and operational and disruption risks. Oper. Res. 2021 , 21 , 1963–2020. [ Google Scholar ] [ CrossRef ]
  • Rabe, M.; Gonzalez-Feliu, J.; Chicaiza-Vaca, J.; Tordecilla, R.D. Simulation-Optimization Approach for Multi-Period Facility Location Problems with Forecasted and Random Demands in a Last-Mile Logistics Application. Algorithms 2021 , 14 , 41. [ Google Scholar ] [ CrossRef ]
  • Zarrat Dakhely Parast, Z.; Haleh, H.; Avakh Darestani, S. Green reverse supply chain network design considering location-routing-inventory decisions with simultaneous pickup and delivery. Environ. Sci. Pollut. Res. 2021 . [ Google Scholar ] [ CrossRef ]
  • Abdolazimi, O.; Bahrami, F.; Shishebori, D. A multi-objective closed-loop supply chain network design problem under parameter uncertainty: Comparison of exact methods. Environ. Dev. Sustain. 2022 , 24 , 10768–10802. [ Google Scholar ] [ CrossRef ]
  • Maliki, F.; Souier, M.; Dahane, M. A multi-objective optimization model for a multi-period mobile facility location problem with environmental and disruption considerations. Ann. Oper. Res. 2022 , 1–26. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Gupta, S.; Vijaygargy, L.; Sarkar, B. A bi-objective integrated transportation and inventory management under a supply chain network considering multiple distribution networks. RAIRO Oper. Res. 2022 , 56 , 3991–4022. [ Google Scholar ] [ CrossRef ]
  • Bortolini, M.; Calabrese, F.; Gabriele Galizia, F.; Mora, C. A three-objective optimization model for mid-term sustainable supply chain network design. Comput. Ind. Eng. 2022 , 168 , 108131. [ Google Scholar ] [ CrossRef ]
  • Mogale, D.G.; De, A.; Ghadge, A.; Aktas, E. Multi-objective modelling of sustainable closed-loop supply chain network with price-sensitive demand and consumer’s incentives. Comput. Ind. Eng. 2022 , 168 , 108105. [ Google Scholar ] [ CrossRef ]
  • Al-Refaie, A.; Kokash, T. Optimization of sustainable reverse logistics network with multi-objectives under uncertainty. J. Remanuf. 2023 , 13 , 1–23. [ Google Scholar ] [ CrossRef ]
  • Meidute-Kavaliauskiene, I.; Yıldırım, F.; Ghorbani, S.; Činčikaitė, R. The Design of a Multi-Period and Multi-Echelon Perishable Goods Supply Network under Uncertainty. Sustainability 2022 , 14 , 2472. [ Google Scholar ] [ CrossRef ]
  • Allehashemi, T.; Hassanzadeh Amin, S.; Zolfaghari, S. A proposed multi-objective model for cellphone closed-loop supply chain optimization based on fuzzy QFD. Expert Syst. Appl. 2022 , 210 , 118577. [ Google Scholar ] [ CrossRef ]
  • Abdi, F.; Farughi, H.; Sadeghi, H.; Arkat, J. Location-inventory-reliability optimisation problem in a multi-objective multi-period three-level supply chain network with stochastic demand. Eur. J. Ind. Eng. 2023 , 17 , 479–528. [ Google Scholar ] [ CrossRef ]
  • Arab Momeni, M.; Jain, V.; Bagheri, M. A Multi-Objective Model for Designing a Sustainable Closed-Loop Supply Chain Logistics Network. Logistics 2024 , 8 , 29. [ Google Scholar ] [ CrossRef ]
  • Varshney, N.; Gupta, S.; Ahmed, A. Addressing uncertainty in closed-loop supply chain networks: A multi-objective approach to integrated production and transportation problems. J. Model. Manag. 2024 , in press . [ Google Scholar ] [ CrossRef ]
  • Xia, H.; Chen, Z.; Milisavljevic-Syed, J.; Salonitis, K. Uncertain programming model for designing multi-objective reverse logistics networks. Clean. Logist. Supply Chain 2024 , 11 , 100155. [ Google Scholar ] [ CrossRef ]

Click here to enlarge figure

α
0.10.20.30.40.50.60.70.80.9
β0Z14.82 × 10 3.50 × 10 2.19 × 10 1.90 × 10 1.34 × 10 9.49 × 10 5.34 × 10 0.00 × 10 0.00 × 10
Z210.950.83689850.80.68571430.57142860.381192100
0.1Z14.82 × 10 3.64 × 10 3.19 × 10 2.27 × 10 1.98 × 10 1.64 × 10 1.18 × 10 1.10 × 10 9.38 × 10
Z210.9550.92285710.82642860.7750.64642860.53714290.48571430.2649475
0.2Z14.82 × 10 3.78 × 10 3.37 × 10 2.59 × 10 2.33 × 10 1.87 × 10 1.62 × 10 1.55 × 10 1.43 × 10
Z210.960.93142860.84571430.80.68571430.58857140.54285710.3942857
0.3Z14.82 × 10 4.11 × 10 3.55 × 10 2.90 × 10 2.68 × 10 2.28 × 10 2.06 × 10 2.00 × 10 1.90 × 10
Z210.9750.940.8650.8250.7250.640.60.47
0.4Z14.82 × 10 4.21 × 10 3.73 × 10 3.31 × 10 3.07 × 10 2.69 × 10 2.50 × 10 2.44 × 10 2.36 × 10
Z210.97857140.94857140.90142860.85857140.76428570.69142860.65714290.5457143
0.5Z14.82 × 10 4.31 × 10 3.92 × 10 3.56 × 10 3.36 × 10 3.09 × 10 2.94 × 10 2.88 × 10 2.81 × 10
Z210.98214290.95714290.91785710.88214290.81428570.76071430.72142860.6214286
0.6Z14.82 × 10 4.41 × 10 4.10 × 10 3.82 × 10 3.65 × 10 3.43 × 10 3.32 × 10 3.27 × 10 3.21 × 10
Z210.98571430.96571430.93428570.90571430.85142860.80857140.77714290.6971429
0.7Z14.82 × 10 4.51 × 10 4.28 × 10 4.07 × 10 3.94 × 10 3.78 × 10 3.69 × 10 3.66 × 10 3.61 × 10
Z210.98928570.97428570.95071430.92928570.88857140.85642860.83285710.7728571
0.8Z14.82 × 10 4.62 × 10 4.46 × 10 4.32 × 10 4.24 × 10 4.13 × 10 4.07 × 10 4.05 × 10 4.01 × 10
Z210.99285710.98285710.96714290.95285710.92571430.90428570.88857140.8485714
0.9Z14.82 × 10 4.72 × 10 4.64 × 10 4.57 × 10 4.53 × 10 4.47 × 10 4.44 × 10 4.43 × 10 4.42 × 10
Z210.99642860.99142860.98327140.97642860.96285710.95214290.94428570.9242857
1Z14.82 × 10 4.82 × 10 4.82 × 10 4.82 × 10 4.82 × 10 4.82 × 10 4.82 × 10 4.82 × 10 4.82 × 10
Z2111111111
Variable TitleValue
Z 3.32 × 10
Z 80%
V(1,2)(1,1)
U(1,2,3,4,5,6,7,8)(0,0,0,0,0,1,0,1)
α
0.10.20.30.40.50.60.70.80.9
β0Z14.84 × 10 4.70 × 10 4.52 × 10 4.20 × 10 3.68 × 10 3.54 × 10 3.41 × 10 3.15 × 10 2.65 × 10
Z210.99285710.97857140.94285710.84942170.81428570.75714290.59285710
0.1Z14.84 × 10 4.72 × 10 4.55 × 10 4.27 × 10 3.82 × 10 3.70 × 10 3.58 × 10 3.35 × 10 3.31 × 10
Z210.99357140.98071430.94857140.86241670.83285710.78142860.63357140.5821429
0.2Z14.84 × 10 4.73 × 10 4.58 × 10 4.22 × 10 4.15 × 10 3.87 × 10 3.76 × 10 3.55 × 10 0.5821429
Z210.99428570.98285710.93714290.92571430.85142860.80571430.67428570.6285714
0.3Z14.84 × 10 4.74 × 10 4.62 × 10 4.30 × 10 4.24 × 10 4.14 × 10 3.94 × 10 3.75 × 10 3.72 × 10
Z210.9950.9850.9450.9350.910.830.7150.675
0.4Z14.84 × 10 4.76 × 10 4.65 × 10 4.37 × 10 4.33 × 10 4.24 × 10 4.14 × 10 3.98 × 10 3.93 × 10
Z210.99571430.98714290.95285710.94428570.92285710.880.78142860.7214286
0.5Z14.84 × 10 4.77 × 10 4.68 × 10 4.45 × 10 4.41 × 10 4.34 × 10 4.26 × 10 4.12 × 10 4.11 × 10
Z210.99642860.98928570.96071430.95357140.93571430.90.81785710.7928571
0.6Z14.84 × 10 4.79 × 10 4.71 × 10 4.53 × 10 4.50 × 10 4.44 × 10 4.37 × 10 4.27 × 10 4.26 × 10
Z210.99714290.99142860.96857140.96285710.94857140.920.85428570.8342857
0.7Z14.84 × 10 4.80 × 10 4.75 × 10 4.61 × 10 4.58 × 10 4.54 × 10 4.49 × 10 4.41 × 10 4.40 × 10
Z210.99785710.99357140.97642860.97214290.96142860.940.89071430.8757143
0.8Z14.84 × 10 4.82 × 10 4.78 × 10 4.69 × 10 4.67 × 10 4.64 × 10 4.61 × 10 4.56 × 10 4.55 × 10
Z210.99857140.99571430.98428570.9812860.97428570.960.92714290.9171429
0.9Z14.84 × 10 4.83 × 10 4.81 × 10 4.77 × 10 4.76 × 10 4.74 × 10 4.73 × 10 4.70 × 10 4.70 × 10
Z210.99928570.99785710.99214290.99071430.98714290.980.96357140.9585714
1Z14.84 × 10 4.84 × 10 4.84 × 10 4.84 × 10 4.84 × 10 4.84 × 10 4.84 × 10 4.84 × 10 4.84 × 10
Z2111111111
Variable TitleValue
Z 3.37 × 10
Z 92%
V(1,2)(1,1)
U(1,2,3,4,5,6,7,8)(0,0,0,0,0,1,0,1)
α
0.10.20.30.40.50.60.70.80.9
1.65 × 10 1.65 × 10 1.65 × 10 1.61 × 10 1.51 × 10 1.48 × 10 1.37 × 10 1.34 × 10 1.21 × 10
1110.92285710.97142860.96428570.91507490.8883110.7168279
1.65 × 10 1.65 × 10 1.65 × 10 1.61 × 10 1.52 × 10 1.50 × 10 1.40 × 10 1.37 × 10 1.26 × 10
1110.99357140.97428570.96785710.92328920.89822670.7361599
1.65 × 10 1.65 × 10 1.65 × 10 1.61 × 10 1.54 × 10 1.52 × 10 1.43 × 10 1.40 × 10 1.33 × 10
1110.99428570.9771429097442860.93155680.90852020.8056308
1.65 × 10 1.65 × 10 1.65 × 10 0.62 × 10 1.55 × 10 1.53 × 10 1.46 × 10 1.43 × 10 1.37 × 10
1110.9950.980.9750.9399050.9196350.8278087
1.65 × 10 1.65 × 10 1.65 × 10 0.62 × 10 1.57 × 10 1.55 × 10 1.49 × 10 1.47 × 10 1.41 × 10
1110.99571430.98285710.97857140.94826790.93074980.8485393
1.65 × 10 1.65 × 10 1.65 × 10 1.63 × 10 1.58 × 10 1.57 × 10 1.52 × 10 1.50 × 10 1.45 × 10
1110.96642860.98571430.98214290.95666040.94186460.8732143
1.65 × 10 1.65 × 10 1.65 × 10 1.63 × 10 1.57 × 10 1.48 × 10 1.43 × 10 1.41 × 10 1.39 × 10
1110.99714290.98857140.98571430.96541330.95301320.8985714
1.65 × 10 1.65 × 10 1.65 × 10 1.64 × 10 1.61 × 10 1.60 × 10 1.57 × 10 1.56 × 10 1.53 × 10
1110.99785710.99142860.98928570.97428570.9646340.9238566
1.65 × 10 1.65 × 10 1.65 × 10 1.64 × 10 1.62 × 10 1.62 × 10 1.61 × 10 1.59 × 10 1.57 × 10
1110.99857140.99428570.99285710.98857140.976250.9489286
1.65 × 10 0.20.30.41.64 × 10 1.64 × 10 1.63 × 10 1.63 × 10 1.62 × 10
11.65 × 10 1.65 × 10 1.61 × 10 0.99714290.99642860.99428570.98955360.9785714
1.65 × 10 110.92285711.65 × 10 1.65 × 10 1.65 × 10 1.65 × 10 1.65 × 10
11.65 × 10 1.65 × 10 1.61 × 10 11111
Variable TitleValue
Z 1.42 × 10
Z 94%
V(1,2)(1,1)
U(1,2,3,4,5,6,7,8)(1,0,1,1,0,1,0,1)
α
0.10.20.30.40.50.60.70.80.9
β0Z11.65 × 10 1.65 × 10 1.65 × 10 1.61 × 10 1.51 × 10 1.48 × 10 1.37 × 10 1.34 × 10 1.21 × 10
Z21110.92285710.97142860.96428570.91507490.8883110.7168279
0.1Z11.65 × 10 1.65 × 10 1.65 × 10 1.61 × 10 1.52 × 10 1.50 × 10 1.40 × 10 1.37 × 10 1.26 × 10
Z21110.99357140.97428570.96785710.92328920.89822670.7361599
0.2Z11.65 × 10 1.65 × 10 1.65 × 10 1.61 × 10 1.54 × 10 1.52 × 10 1.43 × 10 1.40 × 10 1.33 × 10
Z21110.99428570.97714290.97442860.93155680.90852020.8056308
0.3Z11.65 × 10 1.65 × 10 1.65 × 10 0.62 × 10 1.55 × 10 1.53 × 10 1.46 × 10 1.43 × 10 1.37 × 10
Z21110.9950.980.9750.9399050.9196350.8278087
0.4Z11.65 × 10 1.65 × 10 1.65 × 10 0.62 × 10 1.57 × 10 1.55 × 10 1.49 × 10 1.47 × 10 1.41 × 10
Z21110.99571430.98285710.97857140.94826790.93074980.8485393
0.5Z11.65 × 10 1.65 × 10 1.65 × 10 1.63 × 10 1.58 × 10 1.57 × 10 1.52 × 10 1.50 × 10 1.45 × 10
Z21110.96642860.98571430.98214290.95666040.94186460.8732143
0.6Z11.65 × 10 1.65 × 10 1.65 × 10 1.63 × 10 1.57 × 10 1.48 × 10 1.43 × 10 1.41 × 10 1.39 × 10
Z21110.99714290.98857140.98571430.96541330.95301320.8985714
0.7Z11.65 × 10 1.65 × 10 1.65 × 10 1.64 × 10 1.61 × 10 1.60 × 10 1.57 × 10 1.56 × 10 1.53 × 10
Z21110.99785710.99142860.98928570.97428570.9646340.9238566
0.8Z11.65 × 10 1.65 × 10 1.65 × 10 1.64 × 10 1.62 × 10 1.62 × 10 1.61 × 10 1.59 × 10 1.57 × 10
Z21110.99857140.99428570.99285710.98857140.976250.9489286
0.9Z11.65 × 10 1.65 × 10 1.65 × 10 1.65 × 10 1.64 × 10 1.64 × 10 1.63 × 10 1.63 × 10 1.62 × 10
Z211110.99714290.99642860.99428570.98955360.9785714
1Z11.65 × 10 1.65 × 10 1.65 × 10 1.65 × 10 1.65 × 10 1.65 × 10 1.65 × 10 1.65 × 10 1.65 × 10
Z2111111111
Variable TitleValue
Z 1.43 × 10
Z 96%
V(1,2)(1,1)
U(1,2,3,4,5,6,7,8)(1,0,1,1,0,1,0,1)
Criterion Illustration Criterion Components Basic Model Basic Model with Inventory Management Multi-Period Basic Model with Inventory ManagementMulti-Period Basic Model with Inventory Management and Green Logistics
Overall Satisfaction of Customers 85%92%94%96%
Total Costs 3.32 × 10 4.37 × 10 1.42 × 10 1.43 × 10
The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

Khalilzadeh, M.; Antucheviciene, J.; Božanić, D. A Bi-Objective Model for the Multi-Period Inventory-Based Reverse Logistics Network: A Case Study from an Automobile Component Distribution Network. Systems 2024 , 12 , 299. https://doi.org/10.3390/systems12080299

Khalilzadeh M, Antucheviciene J, Božanić D. A Bi-Objective Model for the Multi-Period Inventory-Based Reverse Logistics Network: A Case Study from an Automobile Component Distribution Network. Systems . 2024; 12(8):299. https://doi.org/10.3390/systems12080299

Khalilzadeh, Mohammad, Jurgita Antucheviciene, and Darko Božanić. 2024. "A Bi-Objective Model for the Multi-Period Inventory-Based Reverse Logistics Network: A Case Study from an Automobile Component Distribution Network" Systems 12, no. 8: 299. https://doi.org/10.3390/systems12080299

Article Metrics

Article access statistics, further information, mdpi initiatives, follow mdpi.

MDPI

Subscribe to receive issue release notifications and newsletters from MDPI journals

  • Study protocol
  • Open access
  • Published: 05 August 2024

A pragmatic, stepped-wedge, hybrid type II trial of interoperable clinical decision support to improve venous thromboembolism prophylaxis for patients with traumatic brain injury

  • Christopher J. Tignanelli   ORCID: orcid.org/0000-0002-8079-5565 1 , 2 , 3 , 4 ,
  • Surbhi Shah 5 ,
  • David Vock 6 ,
  • Lianne Siegel 6 ,
  • Carlos Serrano 6 ,
  • Elliott Haut 7 ,
  • Sean Switzer 8 ,
  • Christie L. Martin 9 ,
  • Rubina Rizvi 2 , 3 ,
  • Vincent Peta 1 ,
  • Peter C. Jenkins 10 ,
  • Nicholas Lemke 1 ,
  • Thankam Thyvalikakath 11 , 12 ,
  • Jerome A. Osheroff 13 ,
  • Denise Torres 14 ,
  • David Vawdrey 15 ,
  • Rachael A. Callcut 16 ,
  • Mary Butler 3 , 17 &
  • Genevieve B. Melton 1 , 2 , 3  

Implementation Science volume  19 , Article number:  57 ( 2024 ) Cite this article

274 Accesses

2 Altmetric

Metrics details

Venous thromboembolism (VTE) is a preventable medical condition which has substantial impact on patient morbidity, mortality, and disability. Unfortunately, adherence to the published best practices for VTE prevention, based on patient centered outcomes research (PCOR), is highly variable across U.S. hospitals, which represents a gap between current evidence and clinical practice leading to adverse patient outcomes.

This gap is especially large in the case of traumatic brain injury (TBI), where reluctance to initiate VTE prevention due to concerns for potentially increasing the rates of intracranial bleeding drives poor rates of VTE prophylaxis. This is despite research which has shown early initiation of VTE prophylaxis to be safe in TBI without increased risk of delayed neurosurgical intervention or death. Clinical decision support (CDS) is an indispensable solution to close this practice gap; however, design and implementation barriers hinder CDS adoption and successful scaling across health systems. Clinical practice guidelines (CPGs) informed by PCOR evidence can be deployed using CDS systems to improve the evidence to practice gap. In the Scaling AcceptabLE cDs (SCALED) study, we will implement a VTE prevention CPG within an interoperable CDS system and evaluate both CPG effectiveness (improved clinical outcomes) and CDS implementation.

The SCALED trial is a hybrid type 2 randomized stepped wedge effectiveness-implementation trial to scale the CDS across 4 heterogeneous healthcare systems. Trial outcomes will be assessed using the RE 2 -AIM planning and evaluation framework. Efforts will be made to ensure implementation consistency. Nonetheless, it is expected that CDS adoption will vary across each site. To assess these differences, we will evaluate implementation processes across trial sites using the Exploration, Preparation, Implementation, and Sustainment (EPIS) implementation framework (a determinant framework) using mixed-methods. Finally, it is critical that PCOR CPGs are maintained as evidence evolves. To date, an accepted process for evidence maintenance does not exist. We will pilot a “Living Guideline” process model for the VTE prevention CDS system.

The stepped wedge hybrid type 2 trial will provide evidence regarding the effectiveness of CDS based on the Berne-Norwood criteria for VTE prevention in patients with TBI. Additionally, it will provide evidence regarding a successful strategy to scale interoperable CDS systems across U.S. healthcare systems, advancing both the fields of implementation science and health informatics.

Trial registration

Clinicaltrials.gov – NCT05628207. Prospectively registered 11/28/2022, https://classic.clinicaltrials.gov/ct2/show/NCT05628207 .

Contributions to the Literature

This paper provides a study protocol for a new and novel stepped wedge study variation which includes external control sites to take into account external influences on the uptake of traumatic brain injury guidelines nationally

This paper provides a study design for one of the largest trauma pragmatic trials in the U.S. of 9 heterogenous hospitals

This study is also unique and first-in-kind feature as the guideline may change over time during the study due to the “living” nature of the guideline being implemented.

Introduction

Venous thromboembolism (VTE) is a preventable complication of traumatic brain injury (TBI), which has a substantial impact on patient morbidity, mortality, disability. It is also associated with significant economic burden > $1.5 billion per year [ 1 , 2 ]. VTE is considered a preventable medical condition in the majority of cases [ 2 , 3 ]. Unfortunately, adherence with patient centered outcomes research (PCOR)-informed VTE prevention best practices is highly variable and often poor across U.S. hospitals. Compliance with best practice is especially relevant in the case of TBI as 54% of TBI patients will develop a VTE if they do not receive appropriate anticoagulation [ 4 ]. The delivery of appropriate VTE prophylaxis to TBI patients is such an important quality measure that adherence is tracked nationally and benchmarked by the American College of Surgeons Trauma Quality Improvement Program (ACS-TQIP) [ 5 ]. We have previously shown that instituting a hospital-wide VTE prevention initiative modeled after the Berne-Norwood criteria for VTE prophylaxis in TBI was associated with significantly increased compliance with VTE-related process and improved outcome metrics [ 6 ]. Specifically, we observed improved adherence with the Berne-Norwood criteria [ 7 , 8 ], reduced time to initiation of VTE prophylaxis, and reduced VTE events [ 9 ]. Multiple studies have shown that VTE prophylaxis in trauma patients not only reduces VTE events, but also significantly reduces mortality [ 10 ]. We noted the same reduction in mortality for TBI patients following the initiation of a VTE prophylaxis guideline for patients with TBI [ 11 ]. Unfortunately, despite widely published PCOR-informed best practice, nationally there is reluctance to initiate VTE prevention due to concerns for progression of intracranial hemorrhage. This is despite research which has shown early initiation of VTE prophylaxis to be safe in TBI without increased risk of delayed neurosurgical intervention or death [ 12 , 13 , 14 , 15 , 16 ].

Since approximately 40% of TBI patients do not receive DVT prophylaxis in a timely manner, there is a critical and timely need to close the gap between current PCOR evidence and clinical practice. [ 17 , 18 , 19 , 20 , 21 , 22 , 23 ]. Clinical decision support (CDS) systems are an indispensable solution to close this practice gap; however, design and implementation barriers hinder CDS adoption [ 24 , 25 ]. Another significant challenge to the implementation of CDS is that health information technology (IT) needs a common language for PCOR evidence to translate it into practice across multiple organizations [ 26 ]. Because of these challenges, we will deploy CDS using fast healthcare interoperability resources (FHIR) standards to rapidly implement PCOR evidence into practice [ 27 , 28 ]. We hypothesize that, FHIR standards will reduce CDS development and maintenance costs, increase PCOR uptake in rural and other underserved sites, and speed the development timeline to build a comprehensive suite of CDS for PCOR evidence [ 29 ].

Few studies have investigated specific barriers to and facilitating factors for adoption of interoperable FHIR-based CDS [ 30 ]. For example, many current studies investigating barriers and facilitators for interoperable CDS are limited to expert opinion [ 30 , 31 ] or lack a formal implementation science framework-guided investigation [ 32 , 33 ]. Barriers to and facilitating factors for adoption of interoperable CDS following real-life implementation and multicenter scaling guided by validated implementation science frameworks should be rigorously investigated. This study will facilitate comprehensive exploration of clinician and environmental (internal and external) contextual elements that influence interoperable CDS implementation success. In this study, we will scale and assess the effectiveness of a CDS system for a VTE prophylaxis guideline in patients with TBI and evaluate implementation across 9 sites within 4 U.S. trauma systems.

Study aims and implementation framework

This trial consists of a stepped wedge hybrid effectiveness-implementation trial to scale the CDS system across 4 trauma systems and in parallel evaluate implementation strategy guided by the Exploration, Preparation, Implementation, and Sustainment (EPIS) implementation framework (Fig.  1 a) [ 34 ]. We anticipate variability in CDS adoption across sites during the implementation trial. This variation represents a unique opportunity to study implementation at each site and understand what strategies, system factors, and engagement of specific stakeholders are associated with improved CDS adoption. We will rigorously evaluate each implementation phase, guided by The EPIS Implementation Framework [ 34 ], our determinant framework (Fig.  1 b). We will apply the EPIS framework to guide assessment of implementation phases, barriers, and facilitators (Fig.  2 ) [ 34 ]. EPIS comprises 16 constructs over 4 domains (outer context, inner context, bridging factors, and innovation factors). We selected EPIS as our determinant framework as it includes clearly delineated implementation stages and allows for examination of change at multiple levels, across time, and through phases that build toward implementation. While EPIS was initially developed for implementation in public service, it has since been translated to healthcare, especially for complex multi-institutional healthcare interventions [ 34 , 35 , 36 ].

figure 1

a Randomized Stepped Wedge design of the SCALED clinical trial. b Parallel, implementation evaluation guided by Explore, Preparation, Implementation and Sustain (EPIS) framework

figure 2

Implementation evaluation across study sites

Trial overview, setting, and inclusion/exclusion criteria

This trial will be conducted at 4 healthcare systems with 1–3 hospitals per system and is projected to occur over a 3 to 4-year period. The trial uses a randomized stepped-wedge design to scale an interoperable CDS system for the Berne-Norwood TBI CPG. Figure  1 a provides a schematic for the trial design. The order of health systems and sites will be randomly determined. This study will include a heterogeneous number of hospitals by trauma verification status, electronic health record (EHR) platform, bed size, and setting (Table  1 ). Our target population is adult patients admitted with an acute TBI defined as International Classification of Disease 10 Clinical Modification (ICD-10-CM): S06.1 – S06.9 or S06.A. Patients who die within 24 h of hospital admission and patients documented as “comfort cares” during the first 72 h of hospitalization will be excluded, as they would have a limited opportunity to receive adherence with the Berne-Norwood criteria. Additionally, patients with a pre-existing VTE or inferior vena cava (IVC) filter at the time of admission, and patients with a mechanical heart valve or ventricular assist device will be excluded from final analysis.

This study will also include up to 3 control sites (Fig.  1 a), a feature not typically included with historic stepped-wedge trial designs, which will strengthen our ability to understand external influences on the study findings. These control sites, which do not receive the CDS intervention and do not have any planned initiatives around guideline implementation, will allow the study to assess baseline adherence and variation in clinical practice over the study period.

CDS Intervention

TBI diagnosis upon admission will activate an interoperable CDS system leveraging the Stanson Health (Charlotte, NC) CDS platform [ 37 ], which is being expanded to include interoperable offerings for TBI VTE prophylaxis. This system provides a knowledge representation framework to faithfully express the intent of the Berne-Norwood prevention criteria computationally (Table  2 ). The interoperable FHIR data standard will be used for bi-directional data transfer between each site’s EHR and the CDS platform. Workflow integration includes a combination of both passive and interruptive provider and trauma system leader information and “nudges”. Table 2 represents the Standards-based, Machine-readable, Adaptive, Requirements-based, and Testable (SMART) L2 layer [ 38 ] of the Berne-Norwood criteria.

CDS user-centered design

We will complete a rapid cycle CDS evaluation to optimize CDS workflow integration by conducting a user-driven simulation and expert-driven heuristic usability optimization as we have previously done [ 39 ]. For rapid cycle CDS evaluation, multidisciplinary trauma end-user “teams” will complete up to 3 scenarios designed to represent various extremes in TBI VTE prevention decision making. Simulation usability testing will be overseen by usability experts, who will catalogue usability issues that arise during simulation. Via consensus ranking, the development and planning teams will rank usability issues from 0 (cosmetic) to 5 (usability catastrophe). Using 10 predefined heuristics for usability design [ 40 ], we will conduct a heuristic evaluation of the CDS, then catalogue and rank usability issues. These results will inform CDS application design, optimized for TBI workflow integration.

Implementation strategy

Following CDS development, our healthcare system relies on a time-tested approach for the implementation and scaling of user-centered CDS: this approach is called the Scaling AcceptabLE cDs (SCALED) Strategy [ 41 ]. This framework integrates multiple evidence-based implementation strategies (Table  3 ).

Study outcomes

The primary implementation outcome is patient-level adherence with the CPG: Specifically, did the patient received guideline-concordant care? Adherence will be measured as an all-or-none measure (binary endpoint at the encounter/patient-level). Thus, if a patient is low-risk for TBI progression, by 24 h they should have risk-specific VTE prevention ordered; if they receive this after 24 h, or if they receive the intermediate risk VTE prevention regimen, this would be deemed non-adherent. The primary effectiveness outcome is VTE (binary endpoint at the patient-encounter level). Safety outcomes evaluated include: TBI progression, in-hospital mortality, and bleeding events. A secondary hypothesis is that as the trial scales to additional sites, iterative implementations will be more efficient (reduced implementation time) and more effective (improved adoption). Secondary hypotheses will be evaluated using the RE 2 -AIM framework [ 42 , 43 ] and are displayed in Table  4 .

Clinical trial data collection methods

Data sources used in this trial include the Stanson Health CDS eCaseReport and site trauma registry. The eCaseReport is a living registry of all patients, and their associated clinical trial data elements, that were eligible for the CDS. All sites also maintain a trauma registry adhering to the National Trauma Data Standards [ 44 ], a requirement for ACS trauma center verification. This dataset is manually annotated by trained clinical abstractors. Data will be sent to the biostatistical team at 6-month intervals. Control and pre-implementation sites will provide their trauma registry in addition to supplemental standards-based EHR extraction of clinical trial data elements or manual abstraction. A data dictionary has been created for the study and will be made available on the trial webpage.

Multiple methods evaluation of implementation success at each EPIS phase

Survey instruments will be prepared using Likert-type scales. Outcomes will be calculated based on scoring guides for the following validated scales: Program Sustainability Assessment Tool (PSAT) [ 45 ], Clinical Sustainability Assessment Tool (CSAT) [ 46 ], Implementation Leadership Scale (ILS) [ 47 ], and Evidenced-based Practice Attitude Scale-36 (EBPAS-36) [ 48 ]. Two scales do not have scoring rubrics: the Organizational Readiness for Change Questionnaire [ 49 , 50 ] and the Normalization Measure Development (NoMAD) Questionnaire [ 51 , 52 , 53 ]. Since both of these scales group questions into constructs, they will be analyzed by generating mean Likert scores and standard deviations per construct, and a mean across constructs, at each of the four implementation phases [ 54 ].

To deeply investigate barriers and facilitators of successful implementation, semi-structured qualitative interviews of key personnel (clinical leadership and end-users, IT leadership and staff) will be conducted at each of the 4 implementation phases. Studies suggest saturation of new ideas occurs after approximately 12 interviews [ 55 ]. Additional samples will be added as needed if thematic saturation is not achieved. Following informed consent, interviews will be performed by a trained qualitative research assistant, audio recorded, and transcribed verbatim. An interview guide, informed by the EPIS framework, was developed to collect key informant experiences with CDS implementation with a focus on inner and outer context factors [ 56 ]. A hybrid approach, primarily deductive and secondarily inductive, approach will be applied. All interviews will be independently double-coded and coding discrepancies will be resolved through discussion. A descriptive thematic analysis approach [ 57 ] will be used to characterize the codes into themes and sub-themes representing the barriers and facilitators to implementation success.

Results for all instruments will be primarily stratified according to site implementation success at each study phase. Additional stratifications may include respondent role, discipline, and hospital system. Bar charts displaying mean survey domains with integrative quotations from the qualitative analysis will be used to facilitate data visualization and understanding of key themes representing barriers and facilitators to successful CDSS implementation.

Statistical analysis

Mixed-effects logistic regression models will be fit to test whether or not CDS implementation changes the likelihood of a VTE event during TBI admission (effectiveness outcome) and the likelihood that the clinical guideline was followed (implementation outcome). The models for these outcomes include fixed-effects for month (when available, to account for secular trends) and an indicator variable for whether the center had the CDS integrated in the EHR. The primary test statistic will be a Wald test of the coefficient for this treatment indicator. We will include random center-specific intercepts to account for correlation within center. Assuming there are 9 sites enrolled with an average of 400 TBI admissions per year and the typical site has between 20%-40% adherence to the clinical guidelines, we will have > 80.0% and > 99.9% power to detect a 5 and 10 percentage point increase in the adherence. Similarly, assuming the typical site has between a VTE event rate of 5–6%, we will have > 80.0% power to detect a 40%-50% reduction in VTE consistent with our published data [ 11 ].

Study oversight

This study is overseen by the University of Minnesota Surgical Clinical Trials Office and by an independent Data Safety Monitoring Board (DSMB). Even though this intervention is deploying a TBI clinical guideline that is currently considered best practice, we believe the addition of a DSMB will improve trial safety, data quality, and trial integrity [ 58 ]. DSMB membership will be independent from the study investigators and will consist of 3 members including: 1 trauma surgeon, 1 informaticist, and 1 statistician. Annual reports including data from all sites, including control sites, will be shared with the DSMB to assure timely monitoring of safety and data quality. The trial will not be stopped early in the event of CDS efficacy because a critical secondary outcome focuses on studying implementation and effectiveness over time.

VTE guideline monitoring and maintenance

Given the potential for a changing evidence-base, it is possible that best practice VTE prevention guidance may change during the study period or afterwards. A critical element in improving adherence with PCOR evidence is updating guidance based on this evidence – in this study, this requires ensuring that the CDS system remains current.

We will pilot a model for producing and maintaining TBI VTE prophylaxis 'Living Guidance and CDS' to ensure that the CDS remains current (Fig.  3 ). The University of Minnesota Evidence-based Practice Center (EPC) Evidence Generation team will conduct and maintain a “living” systematic review. Systematic review data will be uploaded to the AHRQ’s Systematic Review Data Repository (SRDR). “Living” implies that every 6 months the EPC team will evaluate and synthesize new evidence related to TBI VTE prophylaxis, update the existing systematic review and deliver it to a multi-stakeholder Guideline Committee. The Guideline Committee will then use the GRADE (Grading of Recommendations, Assessment, Development and Evaluations) evidence-to-decision (EtD) framework to develop VTE prophylaxis guidelines for patients with TBI [ 59 , 60 , 61 ]. A computational representation of these guidelines will be updated and maintained within the CDS platform by Stanson Health, the CDS Vendor.

figure 3

Pilot process for “Living Guideline”

Spreading successful results beyond study sites

The ultimate goal of this study is to spread successful CDS tools and strategies to broadly improve TBI VTE-related care processes and outcomes. The research outlined above will surface sharable insights about what information needs to be presented to which people in what formats through what channels at what times to reliably deliver guideline-based care – i.e., specific instantiations of the “CDS 5 Rights Framework” applied to this target [ 62 ]. We will use Health Service Blueprint tools to describe our recommended implementation approaches; these tools are being applied in an increasing number of public and private care delivery organizations as a structured approach to ‘get the CDS 5 Right right’ for various improvement targets. We will further adapt and apply Health Service Blueprint foundations supported by VA and AHRQ [ 63 ] to capture VTE care transformation guidance in Health Service Blueprint tooling [ 64 ]. Presenting recommended CDS-enabled workflow, information flow – as well as and related implementation considerations and broader healthcare ecosystem implications – in this structured format will help organizations beyond the initial study participants put study results into action efficiently and effectively.

In this paper, we present the protocol for the SCALED trial, a stepped-wedge cluster randomized trial of a CDS intervention to improve adherence with VTE prevention best practices for patients with TBI. As a hybrid type 2 trial, this study will evaluate both implementation and effectiveness outcomes. In addition to investigating effectiveness, we will also be able to provide insight into the implementation challenges for deploying interoperable CDS across heterogenous health systems. In our pilot study [ 9 ], while patients who received guideline-concordant care had significantly improved outcomes, we noted that not all patients receive guideline concordant care following implementation. Additionally, best strategies for scaling interoperable CDS systems are poorly studied. Thus, this study represents one of the earliest implementation evaluations of scaling interoperable CDS systems across heterogeneous health systems.

This study has several strengths. First, it will rigorously test implementation of a CPG for VTE prevention across 9 U.S. trauma centers using a multi-faceted CDS platform supporting both passive and interruptive decision support. Second, it will rigorously investigate scalable and interoperable CDS strategies to deploy CPGs. Third, this study leverages a centralized eCaseReport generated by the CDS system, a solution which can drive data collection for future pragmatic trials. Importantly, this study takes place at trauma centers which are geographically distinct, utilize different EHR vendors, include both ACS-verified level 1 through level 3 trauma centers, and include rural, community, and university-based trauma centers. In addition to helping spread recommended care transformation strategies beyond additional study sites, documenting these approaches in Health Service Blueprint tools will also support creation of learning communities for sharing, implementing, and enhancing these strategies.

This study also has limitations. First, we are only investigating 4 trauma systems which already have fairly advanced informatics divisions and experience implementing interoperable CDS systems. Thus, these findings may not be broadly applicable to health systems with less informatics experience and expertise. Second, we are only investigating implementation across two EHR vendors: Epic and Cerner, thus these findings may not be applicable to health systems with different EHR vendors such as Meditech or Allscripts. However, the Health Service Blueprint implementation strategy representations should still enable users of other systems to glean valuable insights about components of the transformation approach less dependent on specific EHRs used.

In summary, this study will implement and scale a CDS-enabled care transformation approach across a diverse collaborative CDS community, serving as an important demonstration of this critical healthcare challenge. We will integrate lessons learned for a planned national scaling in collaboration with U.S. trauma societies. Finally, we will pilot an approach for the “Living Guideline” and use that to maintain evidenced-based decision logic within CDS platforms.

Availability of data and materials

Following trial completion data will be made available upon request through the University of Minnesota Data Repository.

Heit JA. Venous thromboembolism: disease burden, outcomes and risk factors. J Thromb Haemost. 2005;3(8):1611–7.

Article   CAS   PubMed   Google Scholar  

Yorkgitis BK, Berndtson AE, Cross A, Kennedy R, Kochuba MP, Tignanelli C, Tominaga GT, Jacobs DG, Marx WH, Ashley DW, Ley EJ, Napolitano L, Costantini TW. American Association for the Surgery of Trauma/American College of Surgeons-Committee on Trauma Clinical Protocol for inpatient venous thromboembolism prophylaxis after trauma. J Trauma Acute Care Surg. 2022;92(3):597–604.

Article   PubMed   Google Scholar  

Nicholson M, Chan N, Bhagirath V, Ginsberg J. Prevention of Venous Thromboembolism in 2020 and Beyond. J Clin Med. 2020;9(8):2467.

Article   CAS   PubMed   PubMed Central   Google Scholar  

Geerts WH, Code KI, Jay RM, Chen E, Szalai JP. A prospective study of venous thromboembolism after major trauma. N Engl J Med. 1994;331(24):1601–6.

Nathens AB, Cryer HG, Fildes J. The American College of Surgeons Trauma Quality Improvement Program. Surg Clin North Am. 2012;92(2):441–54, x−xi.

Ingraham NE, Lotfi-Emran S, Thielen BK, Techar K, Morris RS, Holtan SG, Dudley RA, Tignanelli CJ. Immunomodulation in COVID-19. Lancet Respir Med. 2020;8(6):544–6.

Phelan HA, Eastman AL, Madden CJ, Aldy K, Berne JD, Norwood SH, Scott WW, Bernstein IH, Pruitt J, Butler G, Rogers L, Minei JP. TBI risk stratification at presentation: a prospective study of the incidence and timing of radiographic worsening in the Parkland Protocol. J Trauma Acute Care Surg. 2012;73(2 Suppl 1):S122–7.

Pastorek RA, Cripps MW, Bernstein IH, Scott WW, Madden CJ, Rickert KL, Wolf SE, Phelan HA. The Parkland Protocol’s modified Berne-Norwood criteria predict two tiers of risk for traumatic brain injury progression. J Neurotrauma. 2014;31(20):1737–43.

Article   PubMed   PubMed Central   Google Scholar  

Tignanelli CJ, Gipson J, Nguyen A, Martinez R, Yang S, Reicks PL, Sybrant C, Roach R, Thorson M, West MA. Implementation of a Prophylactic Anticoagulation Guideline for Patients with Traumatic Brain Injury. Jt Comm J Qual Patient Saf. 2020;46(4):185–91.

PubMed   Google Scholar  

Jacobs BN, Cain-Nielsen AH, Jakubus JL, Mikhail JN, Fath JJ, Regenbogen SE, Hemmila MR. Unfractionated heparin versus low-molecular-weight heparin for venous thromboembolism prophylaxis in trauma. J Trauma Acute Care Surg. 2017;83(1):151–8.

Tignanelli CJ, Silverman GM, Lindemann EA, Trembley AL, Gipson JC, Beilman G, Lyng JW, Finzel R, McEwan R, Knoll BC, Pakhomov S, Melton GB. Natural language processing of prehospital emergency medical services trauma records allows for automated characterization of treatment appropriateness. J Trauma Acute Care Surg. 2020;88(5):607–14.

Kim J, Gearhart MM, Zurick A, Zuccarello M, James L, Luchette FA. Preliminary report on the safety of heparin for deep venous thrombosis prophylaxis after severe head injury. J Trauma. 2002;53(1):38–42; discussion 3.

Cothren CC, Smith WR, Moore EE, Morgan SJ. Utility of once-daily dose of low-molecular-weight heparin to prevent venous thromboembolism in multisystem trauma patients. World J Surg. 2007;31(1):98–104.

Norwood SH, Berne JD, Rowe SA, Villarreal DH, Ledlie JT. Early venous thromboembolism prophylaxis with enoxaparin in patients with blunt traumatic brain injury. J Trauma. 2008;65(5):1021–6; discussion 6-7.

CAS   PubMed   Google Scholar  

Scudday T, Brasel K, Webb T, Codner P, Somberg L, Weigelt J, Herrmann D, Peppard W. Safety and efficacy of prophylactic anticoagulation in patients with traumatic brain injury. J Am Coll Surg. 2011;213(1):148–53; discussion 53-4.

Byrne JP, Mason SA, Gomez D, Hoeft C, Subacius H, Xiong W, Neal M, Pirouzmand F, Nathens AB. Timing of Pharmacologic Venous Thromboembolism Prophylaxis in Severe Traumatic Brain Injury: A Propensity-Matched Cohort Study. J Am Coll Surg. 2016;223(4):621-31e5.

Lau R, Stevenson F, Ong BN, Dziedzic K, Eldridge S, Everitt H, Kennedy A, Kontopantelis E, Little P, Qureshi N, Rogers A, Treweek S, Peacock R, Murray E. Addressing the evidence to practice gap for complex interventions in primary care: a systematic review of reviews protocol. BMJ Open. 2014;4(6): e005548.

Tignanelli CJ, Vander Kolk WE, Mikhail JN, Delano MJ, Hemmila MR. Noncompliance with American College of Surgeons Committee on Trauma recommended criteria for full trauma team activation is associated with undertriage deaths. J Trauma Acute Care Surg. 2018;84(2):287–94.

Robbins AJ, Ingraham NE, Sheka AC, Pendleton KM, Morris R, Rix A, Vakayil V, Chipman JG, Charles A, Tignanelli CJ. Discordant Cardiopulmonary Resuscitation and Code Status at Death. J Pain Symptom Manage. 2021;61(4):770–780.e1.

Tignanelli CJ, Watarai B, Fan Y, Petersen A, Hemmila M, Napolitano L, Jarosek S, Charles A. Racial Disparities at Mixed-Race and Minority Hospitals: Treatment of African American Males With High-Grade Splenic Injuries. Am Surg. 2020;86(5):441–9.

Tignanelli CJ, Rix A, Napolitano LM, Hemmila MR, Ma S, Kummerfeld E. Association Between Adherence to Evidence-Based Practices for Treatment of Patients With Traumatic Rib Fractures and Mortality Rates Among US Trauma Centers. JAMA Netw Open. 2020;3(3): e201316.

Oliphant BW, Tignanelli CJ, Napolitano LM, Goulet JA, Hemmila MR. American College of Surgeons Committee on Trauma verification level affects trauma center management of pelvic ring injuries and patient mortality. J Trauma Acute Care Surg. 2019;86(1):1–10.

Tignanelli CJ, Wiktor AJ, Vatsaas CJ, Sachdev G, Heung M, Park PK, Raghavendran K, Napolitano LM. Outcomes of Acute Kidney Injury in Patients With Severe ARDS Due to Influenza A(H1N1) pdm09 Virus. Am J Crit Care. 2018;27(1):67–73.

Khairat S, Marc D, Crosby W, Al SA. Reasons For Physicians Not Adopting Clinical Decision Support Systems: Critical Analysis. JMIR Med Inform. 2018;6(2): e24.

Jones EK, Ninkovic I, Bahr M, Dodge S, Doering M, Martin D, Ottosen J, Allen T, Melton GB, Tignanelli CJ. A novel, evidence-based, comprehensive clinical decision support system improves outcomes for patients with traumatic rib fractures. J Trauma Acute Care Surg. 2023;95(2):161–71.

Marcos M, Maldonado JA, Martinez-Salvador B, Bosca D, Robles M. Interoperability of clinical decision-support systems and electronic health records using archetypes: a case study in clinical trial eligibility. J Biomed Inform. 2013;46(4):676–89.

FHIR Clinical Guidelines. http://build.fhir.org/ig/HL7/cqf-recommendations/ . Accessed 14 Sep 2021. 

Mandel JC, Kreda DA, Mandl KD, Kohane IS, Ramoni RB. SMART on FHIR: a standards-based, interoperable apps platform for electronic health records. J Am Med Inform Assoc. 2016;23(5):899–908.

Goldberg HS, Paterno MD, Rocha BH, Schaeffer M, Wright A, Erickson JL, Middleton B. A highly scalable, interoperable clinical decision support service. J Am Med Inform Assoc. 2014;21(e1):e55-62.

Marcial LH, Blumenfeld B, Harle C, Jing X, Keller MS, Lee V, Lin Z, Dover A, Midboe AM, Al-Showk S, Bradley V, Breen J, Fadden M, Lomotan E, Marco-Ruiz L, Mohamed R, O’Connor P, Rosendale D, Solomon H, Kawamoto K. Barriers, Facilitators, and Potential Solutions to Advancing Interoperable Clinical Decision Support: Multi-Stakeholder Consensus Recommendations for the Opioid Use Case. AMIA Annu Symp Proc. 2019;2019:637–46.

Lomotan EA, Meadows G, Michaels M, Michel JJ, Miller K. To Share is Human! Advancing Evidence into Practice through a National Repository of Interoperable Clinical Decision Support. Appl Clin Inform. 2020;11(1):112–21.

Dolin RH, Boxwala A, Shalaby J. A Pharmacogenomics Clinical Decision Support Service Based on FHIR and CDS Hooks. Methods Inf Med. 2018;57(S 02):e115–23.

Dorr DA, D’Autremont C, Pizzimenti C, Weiskopf N, Rope R, Kassakian S, Richardson JE, McClure R, Eisenberg F. Assessing Data Adequacy for High Blood Pressure Clinical Decision Support: A Quantitative Analysis. Appl Clin Inform. 2021;12(4):710–20.

Moullin JC, Dickson KS, Stadnick NA, Rabin B, Aarons GA. Systematic review of the Exploration, Preparation, Implementation, Sustainment (EPIS) framework. Implement Sci. 2019;14(1):1.

Becan JE, Bartkowski JP, Knight DK, Wiley TRA, DiClemente R, Ducharme L, Welsh WN, Bowser D, McCollister K, Hiller M, Spaulding AC, Flynn PM, Swartzendruber A, Dickson MF, Fisher JH, Aarons GA. A model for rigorously applying the Exploration, Preparation, Implementation, Sustainment (EPIS) framework in the design and measurement of a large scale collaborative multi-site study. Health Justice. 2018;6(1):9.

Idalski Carcone A, Coyle K, Gurung S, Cain D, Dilones RE, Jadwin-Cakmak L, Parsons JT, Naar S. Implementation Science Research Examining the Integration of Evidence-Based Practices Into HIV Prevention and Clinical Care: Protocol for a Mixed-Methods Study Using the Exploration, Preparation, Implementation, and Sustainment (EPIS) Model. JMIR Res Protoc. 2019;8(5): e11202.

Jackson JM, Witek MA, Hupert ML, Brady C, Pullagurla S, Kamande J, Aufforth RD, Tignanelli CJ, Torphy RJ, Yeh JJ, Soper SA. UV activation of polymeric high aspect ratio microstructures: ramifications in antibody surface loading for circulating tumor cell selection. Lab Chip. 2014;14(1):106–17.

Mazzag B, Tignanelli CJ, Smith GD. The effect of residual Ca2+ on the stochastic gating of Ca2+-regulated Ca2+ channel models. J Theor Biol. 2005;235(1):121–50.

Jones EK, Hultman G, Schmoke K, Ninkovic I, Dodge S, Bahr M, Melton GB, Marquard J, Tignanelli CJ. Combined Expert and User-Driven Usability Assessment of Trauma Decision Support Systems Improves User-Centered Design. Surgery. 2022;172(5):1537–48.

Jakob N. Enhancing the explanatory power of usability heuristics. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI '94). New York: Association for Computing Machinery; 1994. p. 152–8. https://doi.org/10.1145/191666.191729 .

Shah S, Switzer S, Shippee ND, Wogensen P, Kosednar K, Jones E, Pestka DL, Badlani S, Butler M, Wagner B, White K, Rhein J, Benson B, Reding M, Usher M, Melton GB, Tignanelli CJ. Implementation of an Anticoagulation Practice Guideline for COVID-19 via a Clinical Decision Support System in a Large Academic Health System and Its Evaluation: Observational Study. JMIR Med Inform. 2021;9(11): e30743.

Ingraham NE, Jones EK, King S, Dries J, Phillips M, Loftus T, Evans HL, Melton GB, Tignanelli CJ. Re-Aiming Equity Evaluation in Clinical Decision Support: A Scoping Review of Equity Assessments in Surgical Decision Support Systems. Ann Surg. 2023;277(3):359–64.

Holtrop JS, Estabrooks PA, Gaglio B, Harden SM, Kessler RS, King DK, Kwan BM, Ory MG, Rabin BA, Shelton RC, Glasgow RE. Understanding and applying the RE-AIM framework: Clarifications and resources. J Clin Transl Sci. 2021;5(1): e126.

https://www.facs.org/-/media/files/quality-programs/trauma/ntdb/ntds/data-dictionaries/ntds_data_dictionary_2022.ashx . Accessed 14 Sep 2021. ACoSNTDSDDA.

https://www.cdc.gov/pcd/issues/2014/13_0184.htm . Accessed 1/3/2021.

Malone S, Prewitt K, Hackett R, Lin JC, McKay V, Walsh-Bailey C, Luke DA. The Clinical Sustainability Assessment Tool: measuring organizational capacity to promote sustainability in healthcare. Implement Sci Commun. 2021;2(1):77.

Aarons GA, Ehrhart MG, Farahnak LR. The Implementation Leadership Scale (ILS): development of a brief measure of unit level implementation leadership. Implement Sci. 2014;9(1):45.

Rye M, Torres EM, Friborg O, Skre I, Aarons GA. The Evidence-based Practice Attitude Scale-36 (EBPAS-36): a brief and pragmatic measure of attitudes to evidence-based practice validated in US and Norwegian samples. Implement Sci. 2017;12(1):44.

Holt DT, Armenakis AA, Feild HS, Harris SG. Readiness for Organizational Change. J Appl Behav Sci. 2007;43(2):232–55.

Article   Google Scholar  

Weiner BJ. A theory of organizational readiness for change. Implement Sci. 2009;4:67.

Goodridge D, Rana M, Harrison EL, Rotter T, Dobson R, Groot G, Udod S, Lloyd J. Assessing the implementation processes of a large-scale, multi-year quality improvement initiative: survey of health care providers. BMC Health Serv Res. 2018;18(1):237.

Vis C, Ruwaard J, Finch T, Rapley T, de Beurs D, van Stel H, van Lettow B, Mol M, Kleiboer A, Riper H, Smit J. Toward an Objective Assessment of Implementation Processes for Innovations in Health Care: Psychometric Evaluation of the Normalization Measure Development (NoMAD) Questionnaire Among Mental Health Care Professionals. J Med Internet Res. 2019;21(2): e12376.

NoMAD. https://www.implementall.eu/17-nomad.html . Accessed 1/2/2021.

Ng F, McGrath BA, Seth R, et al. Measuring multidisciplinary staff engagement in a national tracheostomy quality improvement project using the NoMAD instrument. Br J Anesth. 2019;123(4):e506.

Guest G, Bunce A, Johnson L. How Many Interviews Are Enough?: An Experiment with Data Saturation and Variability. Field Methods. 2006;18:59–82.

Beidas RS, Stewart RE, Adams DR, Fernandez T, Lustbader S, Powell BJ, Aarons GA, Hoagwood KE, Evans AC, Hurford MO, Rubin R, Hadley T, Mandell DS, Barg FK. A Multi-Level Examination of Stakeholder Perspectives of Implementation of Evidence-Based Practices in a Large Urban Publicly-Funded Mental Health System. Adm Policy Ment Health. 2016;43(6):893–908.

Braun V, Clarke V. Thematic analysis. In Cooper H, Camic PM, Long DL, Panter AT, Rindskopf D, Sher KJ, editors. APA handbooks in psychology®. APA handbook of research methods in psychology, vol. 2. Research designs: Quantitative, qualitative, neuropsychological, and biological. American Psychological Association; 2012. p. 57–71.

Fiscella K, Sanders M, Holder T, Carroll JK, Luque A, Cassells A, Johnson BA, Williams SK, Tobin JN. The role of data and safety monitoring boards in implementation trials: When are they justified? J Clin Transl Sci. 2020;4(3):229–32.

Alonso-Coello P, Schunemann HJ, Moberg J, Brignardello-Petersen R, Akl EA, Davoli M, Treweek S, Mustafa RA, Rada G, Rosenbaum S, Morelli A, Guyatt GH, Oxman AF, Group GW. GRADE Evidence to Decision (EtD) frameworks: a systematic and transparent approach to making well informed healthcare choices. 1: Introduction. BMJ. 2016;353:i2016.

Rosenbaum SE, Moberg J, Glenton C, Schunemann HJ, Lewin S, Akl E, Mustafa RA, Morelli A, Vogel JP, Alonso-Coello P, Rada G, Vasquez J, Parmelli E, Gulmezoglu AM, Flottorp SA, Oxman AD. Developing Evidence to Decision Frameworks and an Interactive Evidence to Decision Tool for Making and Using Decisions and Recommendations in Health Care. Glob Chall. 2018;2(9):1700081.

Alonso-Coello P, Oxman AD, Moberg J, Brignardello-Petersen R, Akl EA, Davoli M, Treweek S, Mustafa RA, Vandvik PO, Meerpohl J, Guyatt GH, Schunemann HJ, Group GW. GRADE Evidence to Decision (EtD) frameworks: a systematic and transparent approach to making well informed healthcare choices. 2: Clinical practice guidelines. BMJ. 2016;353:i2089.

Osheroff JA. CDS and and the CDS & LHS 5 Rights. CDS/PI Collaborative: Getting Better Faster Together.

ACTS Project Team. Patient Journey and Service Blueprint How Tos. AHRQ evidence-based Care Transformation Support (ACTS) Home. [Online] October 2021. https://cmext.ahrq.gov/confluence/display/PUB/Patient+Journey+and+Service+Blueprint+How+Tos .

CDS Approach for Optimizing VTE Prophylaxis (VTEP) Society of Hospital Medicine (SHM) Recommendations1 Version 2; March, 2013. [online] https://www.healthit.gov/sites/default/files/cds/Detailed%20Inpatient%20CDS-QI%20Worksheet%20-%20VTE%20Example%20-%20Recommendations.xlsx .

Download references

This research was supported by the Agency for Healthcare Research and Quality (AHRQ), grant R18HS028583, the University of Minnesota Center for Learning Health System Sciences – a partnership between the University of Minnesota Medical School and the School of Public Health. The authors have no other conflicts of interest.

Author information

Authors and affiliations.

Department of Surgery, University of Minnesota, 420 Delaware St SE, MMC 195, Minneapolis, MN, 55455, USA

Christopher J. Tignanelli, Vincent Peta, Nicholas Lemke & Genevieve B. Melton

Institute for Health Informatics, University of Minnesota, Minneapolis, MN, USA

Christopher J. Tignanelli, Rubina Rizvi & Genevieve B. Melton

Center for Learning Health Systems Science, University of Minnesota, Minneapolis, MN, USA

Christopher J. Tignanelli, Rubina Rizvi, Mary Butler & Genevieve B. Melton

Center for Quality Outcomes, Discovery and Evaluation, University of Minnesota, Minneapolis, MN, USA

Christopher J. Tignanelli

Department of Medicine, Mayo Clinic, Scottsdale, AZ, USA

Surbhi Shah

Division of Biostatistics and Health Data Science, University of Minnesota, Minneapolis, MN, USA

David Vock, Lianne Siegel & Carlos Serrano

Department of Surgery, Johns Hopkins University, Baltimore, MD, USA

Elliott Haut

M Health Fairview, Minneapolis, MN, USA

Sean Switzer

School of Nursing, University of Minnesota, Minneapolis, MN, USA

Christie L. Martin

Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA

Peter C. Jenkins

Center for Biomedical Informatics, Regenstrief Institute, Indianapolis, IN, USA

Thankam Thyvalikakath

Indiana University School of Dentistry, Indianapolis, IN, USA

TMIT Consulting, LLC, Naples, FL, USA

Jerome A. Osheroff

Department of Surgery, Geisinger Health, Danville, PA, USA

Denise Torres

Department of Biomedical Informatics, Geisinger Health, Danville, PA, USA

David Vawdrey

Department of Surgery, UC Davis School of Medicine, Sacramento, CA, USA

Rachael A. Callcut

School of Publish Health, University of Minnesota, Minneapolis, MN, USA

Mary Butler

You can also search for this author in PubMed   Google Scholar

Contributions

CT conceived and jointly designed the study protocol and helped write and critically revise this protocol paper, SS conceived and jointly designed the study protocol and helped write and critically revise this protocol paper, DV jointly designed the study protocol and helped write and critically revise this protocol paper, LS jointly designed the study protocol and helped write and critically revise this protocol paper, CS jointly designed the study protocol and helped write and critically revise this protocol paper, EH jointly designed the study protocol and helped write and critically revise this protocol paper, SS jointly designed the study protocol and helped write and critically revise this protocol paper, CM jointly designed the study protocol and helped write and critically revise this protocol paper, RR jointly designed the study protocol and helped write and critically revise this protocol paper, VP jointly designed the study protocol and helped write and critically revise this protocol paper, PJ jointly designed the study protocol and helped write and critically revise this protocol paper, NL jointly designed the study protocol and helped write and critically revise this protocol paper, TT jointly designed the study protocol and helped write and critically revise this protocol paper, JO jointly designed the study protocol and helped write and critically revise this protocol paper, DT jointly designed the study protocol and helped write and critically revise this protocol paper, DV jointly designed the study protocol and helped write and critically revise this protocol paper, RC jointly designed the study protocol and helped write and critically revise this protocol paper, MB jointly designed the study protocol and helped write and critically revise this protocol paper, GM conceived and jointly designed the study protocol and helped write and critically revise this protocol paper.

Corresponding author

Correspondence to Christopher J. Tignanelli .

Ethics declarations

Ethics approval and consent to participate.

This study protocol was given the determination of “Exempt” as secondary research for which consent is not required. The Mixed Methods investigation was given the determination of “Not Human Research” as a quality improvement activity.

Consent for publication

Not applicable.

Competing interests

The authors have no conflicts of interest to report.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/ .

Reprints and permissions

About this article

Cite this article.

Tignanelli, C.J., Shah, S., Vock, D. et al. A pragmatic, stepped-wedge, hybrid type II trial of interoperable clinical decision support to improve venous thromboembolism prophylaxis for patients with traumatic brain injury. Implementation Sci 19 , 57 (2024). https://doi.org/10.1186/s13012-024-01386-4

Download citation

Received : 09 June 2024

Accepted : 14 July 2024

Published : 05 August 2024

DOI : https://doi.org/10.1186/s13012-024-01386-4

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Traumatic brain injury
  • Prophylaxis
  • Venous thromboembolism
  • Stepped wedge
  • Implementation science
  • Mixed methods
  • Clinical decision support
  • Randomized controlled trial
  • Learning health system
  • Health informatics

Implementation Science

ISSN: 1748-5908

  • Submission enquiries: Access here and click Contact Us
  • General enquiries: [email protected]

case study as research methodology

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • Open access
  • Published: 10 August 2024

Mapping biomimicry research to sustainable development goals

  • Raghu Raman 1 ,
  • Aswathy Sreenivasan 2 ,
  • M. Suresh 2 &
  • Prema Nedungadi 3  

Scientific Reports volume  14 , Article number:  18613 ( 2024 ) Cite this article

364 Accesses

Metrics details

  • Environmental sciences
  • Environmental social sciences

This study systematically evaluates biomimicry research within the context of sustainable development goals (SDGs) to discern the interdisciplinary interplay between biomimicry and SDGs. The alignment of biomimicry with key SDGs showcases its interdisciplinary nature and potential to offer solutions across the health, sustainability, and energy sectors. This study identified two primary thematic clusters. The first thematic cluster focused on health, partnership, and life on land (SDGs 3, 17, and 15), highlighting biomimicry's role in healthcare innovations, sustainable collaboration, and land management. This cluster demonstrates the potential of biomimicry to contribute to medical technologies, emphasizing the need for cross-sectoral partnerships and ecosystem preservation. The second thematic cluster revolves around clean water, energy, infrastructure, and marine life (SDGs 6, 7, 9, and 14), showcasing nature-inspired solutions for sustainable development challenges, including energy generation and water purification. The prominence of SDG 7 within this cluster indicates that biomimicry significantly contributes to sustainable energy practices. The analysis of thematic clusters further revealed the broad applicability of biomimicry and its role in enhancing sustainable energy access and promoting ecosystem conservation. Emerging research topics, such as metaheuristics, nanogenerators, exosomes, and bioprinting, indicate a dynamic field poised for significant advancements. By mapping the connections between biomimicry and SDGs, this study provides a comprehensive overview of the field's trajectory, emphasizing its importance in advancing global sustainability efforts.

Similar content being viewed by others

case study as research methodology

Assessing the sustainability of the European Green Deal and its interlin kages with the SDGs

case study as research methodology

Greater gains for Australia by tackling all SDGs but the last steps will be the most challenging

case study as research methodology

Six Transformations to achieve the Sustainable Development Goals

Introduction.

Biomimicry, which combines 'bio' (life) and 'mimicry' (imitation), uses nature's patterns to solve human problems, aligning with the SDGs by fostering innovations 1 . This discipline studies natural processes to inspire sustainable designs and promote responsible consumption and production 2 . Biomimicry emphasizes sustainability, ideation, and education in reconnecting with nature to achieve the SDGs 3 . Collaboration among designers, technologists, and business experts is vital for translating natural mechanisms into commercial solutions 4 . Biomimetics, which aims for radical innovations by replicating living systems, strives for breakthroughs in economic growth 5 . By promoting systemic change through the emulation of nature's regenerative processes, biomimicry's alignment with the SDGs could enhance sustainability efforts. Merging biomimicry insights with SDGs could exceed sustainability benchmarks.

Integrating biomimicry with sustainable development goals (SDGs) is crucial for addressing global challenges. The SDGs offer a blueprint for global well-being and environmental stewardship by 2030 6 . They aim to protect the environment and foster social and economic development. Biomimicry provides innovative approaches to these objectives, drawing from natural strategies. While SDGs offer clear targets, biomimicry complements these by providing a unique lens for solutions 7 . The investigation of biomimicry in conjunction with the SDGs is based on the understanding that the development of biologically inspired materials, structures, and systems offers a novel and sustainable solution to design problems, particularly in the built environment 8 . By mimicking nature's answers to complicated challenges, biomimicry produces creative, clever, long-lasting, and environmentally responsible ideas.

The SDGs outline a comprehensive sustainability agenda targeting social equity, environmental conservation, and poverty alleviation 9 . The use of biomimicry in research can lead to the development of solutions that mimic natural efficiency 10 , revolutionizing industries with resource-efficient technologies and enhancing sustainability. This synergy could lead to environmentally friendly products, improved energy solutions, and effective waste management systems. Integrating biomimicry into industry and education promotes environmental stewardship and ecological appreciation 11 . Marrying biomimicry research with SDGs has accelerated progress toward sustainable development.

Biomimicry can provide insightful and useful solutions consistent with sustainability ideals by imitating the adaptability and efficiency observed in biological systems 12 . The built environment's use of biomimicry has a greater sustainable impact when circular design features are included 13 . Reusing materials, cutting waste, and designing systems that work with natural cycles are all stressed in a circular design. Combining biomimicry and circular design promotes social inclusion, environmental resilience, resourcefulness, and compassionate governance, all of which lead to peaceful coexistence with the environment. This all-encompassing strategy demonstrates a dedication to tackling the larger social and environmental concerns that the SDGs represent and design challenges 14 . Complementing these studies, Wamane 7 examined the intersection of biomimicry, the environmental, social, and governance (ESG) framework, and circular economy principles, advocating for an economic paradigm shift toward sustainability.

A key aspect of realizing the impact of biomimicry on SDGs is the successful translation and commercialization of biomimicry discoveries. This involves overcoming barriers such as skill gaps, the engineering mindset, commercial acumen, and funding. Insights from the "The State of Nature-Inspired-Innovation in the UK" report provide a comprehensive analysis of these challenges and potential strategies to address them, underscoring the importance of integrating commercial perspectives into biomimicry research.

This research employs bibliometric techniques to assess the integration and coherence within circular economy policy-making, emphasizing the potential for a synergistic relationship between environmental stewardship, economic growth, and social equity to foster a sustainable future.

In addressing the notable gap in comprehensive research concerning the contribution of biomimicry solutions to specific SDGs, this study offers significant insights into the interdisciplinary applications of biomimicry and its potential to advance global sustainability efforts. Our investigation aims to bridge this research gap through a systematic analysis, resulting in the formulation of the following research questions:

RQ1: How does an interdisciplinary analysis of biomimicry research align with and contribute to advancing specific SDGs?

RQ2: What emerging topics within biomimicry research are gaining prominence, and how do they relate to the SDGs?

RQ3 : What are the barriers to the translation and commercialization of biomimicry innovations, and how can these barriers be overcome to enhance their impact on SDGs?

RQ4: Based on the identified gaps in research and the potential for interdisciplinary collaboration, what innovative areas within biomimicry can be further explored to address underrepresented SDGs?

The remainder of this paper is arranged as follows. Section " Literature review " focuses on the literature background of biomimicry, followed by methods (section " Methods ") and results and discussion, including emerging research topics (section " Results and discussion "). Section " Conclusion " concludes with recommendations and limitations.

Literature review

The potential of biomimicry solutions for sustainability has long been recognized, yet there is a notable lack of comprehensive studies that explore how biomimicry can address specific sustainable development goals (SDGs) (Table 1 ). This research aims to fill this gap by investigating relevant themes and building upon the literature in this field.

Biomimicry, with its roots tracing back to approximately 500 BC, began with Greek philosophers who developed classical concepts of beauty and drew inspiration from natural organisms for balanced design 15 . This foundational idea of looking to nature for design principles continued through history, as exemplified by Leonardo Da Vinci's creation of a flying machine inspired by birds in 1482. This early instance of biomimicry influenced subsequent advancements, including the Wright brothers' development of the airplane in 1948 12 , 15 . The term "bionics," coined in 1958 to describe "the science of natural systems or their analogs," evolved into "biomimicry" by 1982. Janine Benyus's 1997 book, “Biomimicry: Innovation Inspired by Nature,” and the founding of the Biomimicry Institute (Biomimicry 16 ) were pivotal, positioning nature as a guide and model for sustainable design. Benyus’s work underscores the potential of biomimicry in tackling contemporary environmental challenges such as climate change and ecosystem degradation 12 , 17 .

In recent years, the call for more targeted research in biomimicry has grown, particularly in terms of architecture and energy use. Meena et al. 18 and Varshabi et al. 19 highlighted the need for biomimicry to address energy efficiency in building design, stressing the potential of nature-inspired solutions to reduce energy consumption and enhance sustainability. This perspective aligns with that of Perricone et al. 20 , who explored the differences between artificial and natural systems, noting that biomimetic designs, which mimic the principles of organism construction, can significantly improve resource utilization and ecosystem restoration. Aggarwal and Verma 21 contributed to this discourse by mapping the evolution and applications of biomimicry through scientometric analysis, revealing the growing significance of nature-inspired optimization methodologies, especially in clustering techniques. Their work suggested that these methodologies not only provide innovative solutions but also reflect a deeper integration of biomimetic principles in technological advancements. Building on this, Pinzón and Austin 22 emphasized the infancy of biomimicry in the context of renewable energy, advocating for more research to explore how nature can inspire new energy solutions. Their work connects with that of Carniel et al. 23 , who introduced a natural language processing (NLP) technique to identify research themes in biomimicry across disciplines, facilitating a holistic understanding of current trends and future directions.

To further illustrate the practical applications of biomimicry, Nasser et al. 24 presented the Harmony Search Algorithm (HSA), a nature-inspired optimization technique. Their bibliometric analysis demonstrated the algorithm's effectiveness in reducing energy and resource consumption, highlighting the practical benefits of biomimicry in technological innovation. Rusu et al. 25 expanded on these themes by documenting significant advancements in soft robotics, showing how biomimicry influences design principles and applications in this rapidly evolving field. Their findings underscore the diverse applications of biomimetic principles, from robotics to building design. Shashwat et al. 26 emphasized the role of bioinspired solutions in enhancing energy efficiency within the built environment, promoting the use of high solar reflectance surfaces that mimic natural materials. This perspective is in line with that of Pires et al. 27 , who evaluated the application of biomimicry in dental restorative materials and identified a need for more clinical studies to realize the full potential of biomimetic innovations in healthcare. Liu et al. 28 explored the application of nature-inspired design principles in software-defined networks, demonstrating how biomimetic algorithms can optimize resource and energy utilization in complex systems. This study builds on the broader narrative of biomimicry's potential to transform various sectors by offering efficient, sustainable solutions. Finally, Hinkelman et al. 29 synthesized these insights by discussing the transdisciplinary applications of ecosystem biomimicry, which supports sustainable development goals by integrating biomimetic principles across engineering and environmental disciplines. This comprehensive approach underscores the transformative potential of biomimicry, suggesting that continued interdisciplinary research and innovation are crucial for addressing global sustainability challenges effectively.

PRISMA framework

This study utilizes the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) framework to structure its analysis, following the established five-step protocol: formulating research questions, defining a search strategy, executing a literature search, screening identified literature, and analyzing the findings (Page et al., 2021). The application of the PRISMA guidelines across various research domains, including the SDGs, is well documented 30 .

To ensure a comprehensive search, we searched the Scopus database, a widely utilized resource for bibliometric studies 31 (Donthu et al. 82 ), which led to the discovery of 46,141 publications from 2013 to 2023. This period marked significant research activity following the introduction of the SDGs at the Rio + 20 summit in 2012. Publications were identified using the following terms in the title and abstract: “ (biomimic* OR biomimetic* OR bioinspired OR bioinsp* OR bionic* OR nature-inspired OR "biologically inspired" OR bioinspiration OR biomimesis OR biognosis).”

During the screening phase, publications lacking complete author details were reviewed, narrowing the field to 46,083 publications for further analysis. The eligibility phase utilized proprietary algorithms to map publications to the 17 SDGs, informed by initiatives such as the University of Auckland (Auckland’s SDG mapping 32 ) and Elsevier's SDG Mapping Initiatives (Elsevier's SDG Mapping 33 ). The selection of the Elsevier SDG Mapping Initiative for this study was based on its seamless integration with Scopus, facilitating the use of predefined search queries for each SDG and employing a machine learning model that has been refined through expert review. This approach has been utilized in various studies to analyze research trends within emerging fields. For example, the exploration of green hydrogen was detailed by Raman et al. 34 , while investigations into Fake News and the Dark Web were conducted by Raman et al. 35 , 36 , 37 and Rama et al. 38 , respectively. These examples demonstrate the efficacy of SDG mapping in elucidating how research outputs align with and contribute to sustainable development goals in these emerging domains. This phase identified 13,287 publications as mapped to SDGs. In the inclusion phase, stringent criteria further filtered the publications to English-language journals and review articles, culminating in 13,271 publications deemed suitable for in-depth analysis. This process ensures a comprehensive and high-quality dataset for the study, reflecting the robust and systematic approach afforded by the PRISMA framework in evaluating literature relevant to SDGs.

Our keyword search strategy, while comprehensive, may capture papers that do not genuinely contribute to the field. To mitigate this, we employed manual verification. After the automated search, the authors conducted a manual review of a subset of the final set of identified papers to assess their relevance and authenticity in the context of biomimicry. The subset was based on 20 highly cited papers from each year. We believe that papers that are frequently cited within the community are more likely to be accurately classified. The authors mainly reviewed the introduction, methodology, and results sections to confirm the relevance and authenticity of the papers. However, we acknowledge that these steps may not fully eliminate the inclusion of irrelevant papers, which could skew the results of our meta-analysis.

SDG framework

The examination of sustainable development goals (SDGs) reveals their interconnected nature, where the achievement of one goal often supports progress in others. Studies by Le Blanc (2015) and Allison et al. (2016) have mapped out the complex web of relationships among the SDGs, identifying both strong and subtle linkages across different objectives. To visualize these connections, we employed a cocitation mapping approach using VOSviewer 39 , which allows us to depict the semantic relationships between SDGs through their cocitation rates in scholarly works. This approach generates a visual map where each SDG is represented as a node, with the node size reflecting the goal's research prominence and the thickness of the lines between nodes indicating the frequency of cocitations among the goals. This visual representation reveals the SDGs as an intricate but unified framework, emphasizing the collaborative nature of global sustainability initiatives.

Topic prominence percentile

The Scopus prominence percentile is a crucial metric indicating the visibility and impact of emerging research topics within the scientific community. High-ranking topics in this percentile are rapidly gaining attention, highlighting emerging trends and areas poised for significant advancements. This tool enables researchers and policymakers to identify and focus on innovative topics, ensuring that their efforts align with the forefront of scientific development 35 , 36 , 37 . Topics above the 99.9th percentile were used in this study.

Results and discussion

Rq1: sdg framework and interdisciplinary research (rq4).

This study evaluates biomimicry research through the framework of SDGs. A cocitation SDG map shows two clusters and provides insights into the interplay between biomimicry themes and SDGs, highlighting the cross-disciplinary nature of this research (Fig.  1 ). The blue box hidden behind the “3 – Good Health and Well-being” and “7 – Affordable and Clean Energy” is “11 – Sustainable cities and Communities”. The blue box hidden behind “15 – Life on Land” is “16 – Peace, Justice and Strong institutions”.

figure 1

Interdisciplinary SDG network of biomimicry research.

Cluster 1 (Red): Biomimetic innovations for health, partnership, and life on land

This cluster comprises a diverse array of research articles that explore the application of biomimicry across various SDGs 3 (health), 17 (partnership), and 15 (land). The papers in this cluster delve into innovative biomimetic ideas, each contributing uniquely to the intersection of sustainable development and biological inspiration. SDG 3, emphasizing good health and well-being for all, is significantly represented, indicating a global effort to leverage biomimicry for advancements in healthcare, such as new medication delivery systems and medical technologies. Similarly, the frequent citations of SDG 17 underscore the vital role of partnerships in achieving sustainable growth, especially where bioinspired solutions require interdisciplinary collaboration to address complex challenges. Finally, the prominence of 15 SDG citations reflects a commitment to preserving terrestrial ecosystems, where biomimicry is increasingly applied in land management, demonstrating nature's adaptability and resilience as a model for sustainable practices. Table 2 lists the top 5 relevant papers from Cluster 1, further illustrating the multifaceted application of biomimicry in addressing these SDGs.

A unique binary variant of the gray wolf optimization (GWO) technique, designed especially for feature selection in classification tasks, was presented by Emary et al. 40 . GWO is a method inspired by the social hierarchy and hunting behavior of gray wolves to find the best solutions to complex problems. This bioinspired optimization technique was used to optimize SDG15, which also highlights its ecological benefits. The results of the study highlight the effectiveness of binary gray wolf optimization in identifying the feature space for ideal pairings and promoting environmental sustainability and biodiversity. Lin et al. 41 focused on SDG 3 by examining catalytically active nanomaterials as potential candidates for artificial enzymes. While acknowledging the limits of naturally occurring enzymes, this study explores how nanobiotechnology can address problems in the food, pharmaceutical, and agrochemical sectors.

The investigation of enzymatic nanomaterials aligns with health-related objectives, highlighting the potential for major improvements in human health. Parodi et al. 42 used biomimetic leukocyte membranes to functionalize synthetic nanoparticles, extending biomimicry into the biomedical domain. To meet SDG 3, this research presents "leukolike vectors," which are nanoporous silicon particles that can communicate with cells, evade the immune system, and deliver specific payloads. In line with the SDGs about health, this study emphasizes the possible uses of biomimetic structures in cancer detection and treatments. A novel strategy for biological photothermal nanodot-based anticancer therapy utilizing peptide‒porphyrin conjugate self-assembly was presented by Zou et al. 43 . For therapeutic reasons, efficient light-to-heat conversion can be achieved by imitating the structure of biological structures. By providing a unique biomimetic approach to cancer treatment and demonstrating the potential of self-assembling biomaterials in biomedical applications, this research advances SDG 3. Finally, Wang et al. 44 presented Monarch butterfly optimization (MBO), which is a bioinspired algorithm that mimics the migration patterns of monarch butterflies to solve optimization problems effectively. This method presents a novel approach to optimization, mimicking the migration of monarch butterflies, aligning with SDG 9. Comparative analyses highlight MBO's exceptional performance and demonstrate its capacity to address intricate issues about business and innovation, supporting objectives for long-term collaboration and sector expansion.

The publications in Cluster 1 show a wide range of biomimetic developments, from ecological optimization to new optimization techniques and biomedical applications. These varied contributions highlight how biomimicry can advance sustainable development in health, symbiosis, and terrestrial life.

Cluster 2 (green): Nature-inspired solutions for clean water, energy, and infrastructure

Cluster 2, which focuses on the innovative application of biomimicry in sustainable development, represents a range of research that aligns with SDGs 6 (sanitation), 7 (energy), 9 (infrastructure), and 14 (water). This cluster is characterized by studies that draw inspiration from natural processes and structures to offer creative solutions to sustainability-related challenges. The papers in this cluster, detailed in Table 3 , demonstrate how biomimicry can address key global concerns in a varied and compelling manner.

Within this cluster, the high citation counts for SDG 7 underscore the significance of accessible clean energy, a domain where biomimicry contributes innovative energy generation and storage solutions inspired by natural processes. This aligns with the growing emphasis on sustainable energy practices. The prominence of SDG 9 citations further highlights the global focus on innovation and sustainable industry, where biomimicry's role in developing nature-inspired designs is crucial for building robust systems and resilient infrastructure. Furthermore, the substantial citations for SDG 6 reflect a dedicated effort toward ensuring access to clean water and sanitation for all. In this regard, biomimicry principles are being applied in water purification technologies, illustrating how sustainable solutions modeled after natural processes can effectively meet clean water objectives.

The study by Sydney Gladman et al. (2016), which presented the idea of shape-morphing systems inspired by nastic plant motions, is one notable addition to this cluster. This discovery creates new opportunities for tissue engineering, autonomous robotics, and smart textile applications by encoding composite hydrogel designs that exhibit anisotropic swelling behavior. The emphasis of SDG 9 on promoting industry, innovation, and infrastructure aligns with this biomimetic strategy. SDGs 7 and 13 are addressed in the study of Li et al. 45 , which is about engineering heterogeneous semiconductors for solar water splitting. This work contributes to the goals of inexpensive, clean energy and climate action by investigating methods such as band structure engineering and bionic engineering to increase the efficiency of solar water splitting. Li et al. 46 conducted a thorough study highlighting the importance of catalysts for the selective photoreduction of CO2 into solar fuels. This review offers valuable insights into the use of semiconductor catalysts for selective photocatalytic CO2 reduction. Our work advances sustainable energy solutions by investigating biomimetic, metal-based, and metal-free cocatalysts and contributes to SDGs 7 and 13. Wang et al. 47 address the critical problem of water pollution. Creating materials with superlyophilic and superlyophobic qualities offers a creative method for effectively separating water and oil. This contributes to the goals of clean water, industry, innovation, and life below the water. It also correlates with SDGs 6, 9, and 14. Singh et al. 48 also explored the 'green' synthesis of metals and their oxide nanoparticles for environmental remediation, which furthers SDG 9. This review demonstrates the environmentally benign and sustainable features of green synthesis and its potential to lessen the environmental impact of conventional synthesis methods.

Cluster 2 provides nature-inspired solutions for clean water, renewable energy, and sustainable infrastructure, demonstrating the scope and importance of biomimicry. The varied applications discussed in these papers help overcome difficult problems and advance sustainable development in line with several SDGs.

RQ2: Emerging research topics

Temporal evolution of emerging topics.

Figure  2 displays the publication counts for various emerging topics from 2013 to 2022, indicating growth trends over the years. For 'Metaheuristics', there is a notable increase in publications peaking in approximately 2020, suggesting a surge in interest. 'Strain sensor' research steadily increased, reaching its highest publication frequency toward the end of the period, which is indicative of growing relevance in the field. 'Bioprinting' sharply increased over the next decade, subsequently maintaining high interest, which highlights its sustained innovation. In contrast, 'Actuators' showed fluctuating publication counts, with a recent upward trend. 'Cancer' research, while historically a major topic, displayed a spike in publications in approximately 2018, possibly reflecting a breakthrough or increased research funding. 'Myeloperoxidase' has a smaller presence in the literature, with a modest peak in 2019. The number of 'Water '-related publications remains relatively low but shows a slight increase, suggesting a gradual but increasing recognition of its importance. Research on exosomes has significantly advanced, particularly since 2018, signifying a greater area of focus. 'Mechanical' topic publications have moderate fluctuations without a clear trend, indicating steady research interest. 'Micromotors' experienced an initial publication surge, followed by a decline and then a recent resurgence, possibly due to new technological applications. 'Nanogenerators' have shown a dramatic increase in interest, particularly in recent years, while 'Hydrogel' publications have varied, with a recent decline, which may point toward a shift in research focus or maturity of the topic.

figure 2

Evolution of emerging topics according to publications (y-axis denotes the number of publications; x-axis denotes the year of publication).

Figure  3 presents the distribution of various research topics based on their prominence percentile and total number of publications. Topics above the 99.9th percentile and to the right of the vertical threshold line represent the most emergent and prolific topics of study. Next, we examine the topics within each of the four quadrants, focusing on how each topic has developed over the years in relation to SDGs and the key phrases associated with each topic.

figure 3

Distribution of research topics based on prominence percentile and total number of publications.

Next, we examine each research topic in four quadrants, assessing their evolution concerning SDGs. We also analyze the keyphrase cloud to identify which keyphrases are most relevant (indicated by their font size) and whether they are growing or not. In the key phrase cloud, green indicates an increasing relevance of the key phrase, grey signifies that its relevance remains constant, and blue represents a declining relevance of the key phrase.

Niche biomimetic applications

These are topics with a lower number of publications and prominence percentiles, indicating specialized or emerging areas of research that are not yet widely recognized or pursued (Quadrant 1—bottom left).

Myeloperoxidase; colorimetric; chromogenic compounds

The inclusion of myeloperoxidase indicates that inflammation and the immune system are the main research topics. The focus on chromogenic and colorimetric molecules suggests a relationship to analytical techniques for identifying biological materials. The evolution of the research is depicted in Fig.  4 a shows an evolving emphasis on various sustainable development goals (SDGs) over time. The research trajectory, initially rooted in SDG 3 (Good Health and Well-being), has progressively branched out to encompass SDG 7 (Affordable and Clean Energy) and SDG 6 (Clean Water and Sanitation), reflecting an expanding scope of inquiry within the forestry sciences. More recently, the focus has transitioned toward SDG 15 (Life on Land), indicating an increased recognition of the interconnectedness between forest ecosystems and broader environmental and sustainability goals. This trend underscores the growing complexity and multidisciplinary nature of forestry research, highlighting the need to address comprehensive ecological concerns along with human well-being and sustainable development.

figure 4

Evolution of research ( a ) and key phrases ( b ).

The word cloud in Fig.  4 b highlights key phrases such as 'Biocompatible', 'Actuator', and 'Self-healing Hydrogel', reflecting a focus on advanced materials, while terms such as 'Elastic Modulus' and 'Polymeric Networks' suggest an emphasis on the structural properties essential for creating innovative diagnostic and environmental sensing tools. Such developments are pertinent to health monitoring and water purification, resonating with SDG 3 (Good Health and Well-being) and SDG 6 (Clean Water and Sanitation). The prominence of 'Self-healing' and 'Bioinspired' indicates a shift toward materials that emulate natural processes for durability and longevity, supporting sustainable industry practices aligned with SDG 9 (Industry, Innovation, and Infrastructure) and SDG 12 (Responsible Consumption and Production), contributing to the overarching aim of sustainable development.

Next, we analyzed the top 3 cited publications. Catalytically active nanomaterials, or nanozymes, are exciting candidates for artificial enzymes, according to Lin et al. 41 . The authors explore the structural features and biomimetics applications of these enzymes, classifying them as metal-, carbon-, and metal oxide-based nanomaterials. This study emphasizes the benefits of enzymes over natural enzymes, including their high stability, variable catalytic activity, and controlled production. Wang et al. 49 developed biomimetic nanoflowers made from nanozymes to cause intracellular oxidative damage in hypoxic malignancies. Under both normoxic and hypoxic conditions, the nanoflowers demonstrated catalytic efficiency. By overcoming the constraints of existing systems that depend on oxygen availability or external stimuli, this novel technique represents a viable treatment option for malignant neoplasms. Gao et al. 50 investigated the use of a dual inorganic nanozyme-catalyzed cascade reaction as a biomimetic approach for nanocatalytic tumor therapy. This approach produces a high level of therapeutic efficacy by cascading catalytic events inside the tumor microenvironment. This study highlights the potential of inorganic nanozymes for achieving high therapeutic efficacy and outstanding biosafety, which adds to the growing interest in nanocatalytic tumor therapy.

Water; hydrophobicity; aerogels

With an emphasis on hydrophobicity, aerogel use, and water-related features, this topic relates to materials science and indicates interest in cutting-edge materials with unique qualities. From Fig.  5 a, we can see that, initially, the focus was directed toward SDG 6 (Clean Water and Sanitation), which is intrinsically related to the research theme, as biomimetic approaches are leveraged to develop innovative water purification and management solutions. As the research progressed, the scope expanded to intersect with SDG 14 (Life Below Water) and SDG 7 (Affordable and Clean Energy), signifying a broadened impact of biomimetic innovations in marine ecosystem conservation and energy-efficient materials. The gradual involvement with SDG 9 (industry, innovation, and infrastructure) and SDG 13 (climate action) indicates the interdisciplinary reach of this research, which aims to influence industrial practices and climate change mitigation strategies.

figure 5

The word cloud in Fig.  5 b reinforces this narrative by showcasing key phrases such as 'Hydrophobic', 'Bioinspired', 'Emulsion', and 'Oil Pollution', which reflect the emphasis on developing materials and technologies that mimic natural water repellency and separation processes. 'Aerogel' and 'polydopamine', along with 'Underwater' and 'Biomimetic Cleaning', suggest a strong focus on creating lightweight, efficient materials capable of self-cleaning and oil spill remediation. These keywords encapsulate the essence of the research theme, demonstrating a clear alignment with the targeted SDGs and the overall aim of sustainable development through biomimicry.

Three highly referenced works that have made substantial contributions to the field of biomimetic materials for oil/water separation are included in the table. The development of superlyophilic and superlyophobic materials for effective oil/water separation was examined by Wang et al. 47 . This review highlights the applications of these materials in separating different oil-and-water combinations by classifying them according to their surface wettability qualities. The excellent efficiency, selectivity, and recyclability of the materials—which present a viable treatment option for industrial oily wastewater and oil spills—are highlighted in the paper. Su et al. 51 explored the evolution of super wettability systems. The studies included superhydrophobicity, superoleophobicity, and undersea counterparts, among other extreme wettabilities. The kinetics, material structures, and wetting conditions related to obtaining superwettability are covered in the article. This demonstrates the wide range of uses for these materials in chemistry and materials science, including self-cleaning fabrics and systems for separating oil and water. Zhang et al. 52 presented a bioinspired multifunctional foam with self-cleaning and oil/water separation capabilities. To construct a polyurethane foam with superhydrophobicity and superoleophobicity, this study used porous biomaterials and superhydrophobic self-cleaning lotus leaves. Foam works well for separating oil from water because of its slight weight and ability to float on water. It also shows exceptional resistance to corrosive liquids. According to the article, multifunctional foams for large-scale oil spill cleaning might be designed using a low-cost fabrication technology that could be widely adopted.

Growing interest in bioinspired healthcare

These topics have a higher prominence percentile but a lower number of publications, suggesting growing interest and importance in the field despite a smaller body of research (Quadrant 2—top left).

Exosomes; extracellular vesicles; MicroRNAs

Exosomes and extracellular vesicles are essential for intercellular communication, and reference to microRNAs implies a focus on genetic regulation. The evolution of this topic reflects an increasing alignment with specific sustainable development goals (SDGs) over the years. The initial research focused on SDG 3 (good health and well-being) has expanded to encompass SDG 9 (industry, innovation, and infrastructure) and SDG 6 (clean water and sanitation), showcasing the multifaceted impact of biomimetic research in healthcare (Fig.  6 a). The research trajectory into SDG 9 and SDG 6 suggests broader application of bioinspired technologies beyond healthcare, potentially influencing sustainable industrial processes and water treatment technologies, respectively.

figure 6

The word cloud (Fig.  6 b) underscores the central role of 'Extracellular Vesicles' and 'Exosomes' as platforms for 'Targeted Drug Delivery' and 'Nanocarrier' systems, which are key innovations in medical biotechnology. The prominence of terms such as 'Bioinspired', 'Biomimetic', 'Liposome', and 'Gold Nanoparticle' illustrates the inspiration drawn from biological systems for developing advanced materials and delivery mechanisms. These key phrases indicate significant advancements in 'Controlled Drug Delivery Systems', 'Cancer Chemotherapy', and 'Molecular Imaging', which have contributed to improved diagnostics and treatment options, consistent with the objectives of SDG 3.

The work by Jang et al. 53 , which introduced bioinspired exosome-mimetic nanovesicles for improved drug delivery to tumor tissues, is one of the most cited articles. These nanovesicles, which resemble exosomes but have higher creation yields, target cells and slow the growth of tumors in a promising way. Yong et al.'s 54 work presented an effective drug carrier for targeted cancer chemotherapy, focusing on biocompatible tumor cell-exocytosed exosome-biomimetic porous silicon nanoparticles. A paper by Cheng et al. 55 discussed the difficulties in delivering proteins intracellularly. This study suggested a biomimetic nanoparticle platform that uses extracellular vesicle membranes and metal–organic frameworks. These highly cited studies highlight the importance of biomimetic techniques in improving drug delivery systems for improved therapeutic interventions.

Nanogenerators; piezoelectric; energy harvesting

This topic advises concentrating on technology for energy harvesting, especially for those that use piezoelectric materials and nanogenerators. We see a rising focus on medical applications of biomimetics, from diagnostics to energy harvesting mimicking biological systems.

The evolution of this research topic reflects a broader contribution to the SDGs by not only addressing healthcare needs but also by promoting sustainable energy practices and supporting resilient infrastructure through biomimetic innovation (Fig.  7 a). Initially, the emphasis on SDG 3 (Good Health and Well-being) suggested the early application of biomimetic principles in healthcare, particularly in medical devices and diagnostics leveraging piezoelectric effects. Over time, the transition toward SDG 7 (Affordable and Clean Energy) and SDG 9 (Industry, Innovation, and Infrastructure) indicates an expansion of bioinspired technologies into sustainable energy solutions and industrial applications. Nanogenerators and energy harvesting techniques draw inspiration from biological processes and structures, aiming to optimize energy efficiency and contribute to clean energy initiatives.

figure 7

The word cloud in Fig.  7 b emphasizes key phrases such as 'Piezoelectric', 'Energy Harvesting', 'Tactile Sensor', 'Triboelectricity', and 'Nanogenerators', highlighting the core technologies that are being developed. These terms, along with 'Bioinspired', 'Wearable Electronic Devices', and 'Energy Conversion Efficiency', illustrate the convergence of natural principles with advanced material science to create innovative solutions for energy generation and sensor technology.

Yang et al.'s 56 study in Advanced Materials presented the first triboelectrification-based bionic membrane sensor. Wearable medical monitoring and biometric authentication systems will find new uses for this sensor since it allows self-powered physiological and behavioral measurements, such as noninvasive human health evaluation, anti-interference throat voice recording, and multimodal biometric authentication. A thorough analysis of the state-of-the-art in piezoelectric energy harvesting was presented by Sezer and Koç 57 . This article addresses the fundamentals, components, and uses of piezoelectric generators, highlighting their development, drawbacks, and prospects. It also predicts a time when piezoelectric technology will power many electronics. The 2021 paper by Zhao et al. 58 examines the use of cellulose-based materials in flexible electronics. This section describes the benefits of these materials and the latest developments in intelligent electronic device creation, including biomimetic electronic skins, optoelectronics, sensors, and optoelectronic devices. This review sheds light on the possible drawbacks and opportunities for wearable technology and bioelectronic systems based on cellulose.

Leading edge of biomimetic sensing and electronics

This quadrant represents topics with both a high number of publications and a prominence percentile, indicating well-established and influential research areas (Quadrant 3—top right).

Strain sensor; flexible electronics; sensor

Figure  8 a highlights the progress of research on bioinspired innovations, particularly in the development of strain sensors and flexible electronics for adaptive sensing technologies. Initially, concentrated on health applications aligned with SDG 3 (Good Health and Well-being), the focus has expanded. The integration of SDG 9 (Industry, Innovation, and Infrastructure) indicates a shift toward industrial applications, while the incorporation of SDG 7 (Affordable and Clean Energy) suggests a commitment to energy-efficient solutions. Additionally, the mention of SDG 11 (Sustainable Cities and Communities) and SDG 12 (Responsible Consumption and Production) reflects the broadening scope to include urban sustainability and eco-friendly manufacturing practices.

figure 8

Figure  8 b provides insight into the key phrases associated with this research topic, highlighting terms such as 'Bioinspired', 'Self-healing', 'Wearable Electronic Devices', 'Flexible Electronics', and 'Pressure Sensor'. These key phrases speak to the innovative approaches for creating sensors and electronics that are not only inspired by biological systems but also capable of seamlessly integrating human activity and environmental needs. The mention of 'Wearable Sensors' and 'Tactile Sensor' indicates a focus on user interaction and sensitivity, which is crucial for medical applications and smart infrastructure.

The top three articles with the most citations represent the cutting edge of this topic’s study. Chortos et al. 59 investigated how skin characteristics can be replicated for medicinal and prosthetic uses. Kim et al. 60 focused on creating ultrathin silicon nanoribbon sensors for smart prosthetic skin, opening up new possibilities for bionic systems with many sensors. A bioinspired microhairy sensor for ultraconformability on nonflat surfaces was introduced in Pang et al.'s 61 article, which significantly improved signal-to-noise ratios for accurate physiological measurements.

Cancer; photoacoustics; theranostic nanomedicine

Modern technologies such as photoacoustics, theranostic nanomedicine, and cancer research suggest that novel cancer diagnosis and therapy methods are highly needed. Figure  9 a traces the research focus that has evolved across various SDGs over time, commencing with SDG 3 (Good Health and Well-being), which is indicative of the central role of health in biomimetic research. It then extends into SDG 9 (Industry, Innovation, and Infrastructure) and SDG 7 (Affordable and Clean Energy), illustrating the cross-disciplinary applications of biomimetic technologies from healthcare to the energy and industrial sectors.

figure 9

Figure  9 b provides a snapshot of the prominent keywords within this research theme, featuring terms such as “photodynamic therapy”, “photothermal chemotherapy”, “nanocarrier”, and “controlled drug delivery”. These terms underscore the innovative therapeutic strategies that mimic biological mechanisms for targeted cancer treatment. 'Bioinspired' and 'Biomimetic Synthesis' reflect the approach of deriving design principles from natural systems for the development of advanced materials and medical devices. 'Theranostic nanomedicine' integrates diagnosis and therapy, demonstrating a trend toward personalized and precision medicine.

A study conducted by Yu et al. 62 presented a novel approach for synergistic chemiexcited photodynamic-starvation therapy against metastatic tumors: a biomimetic nanoreactor, or bio-NR. Bio-NRs use hollow mesoporous silica nanoparticles to catalyze the conversion of glucose to hydrogen peroxide for starvation therapy while also producing singlet oxygen for photodynamic therapy. Bio-NR is promising for treating cancer metastasis because its coating on cancer cells improves its biological qualities. Yang et al.'s 63 study focused on a biocompatible Gd-integrated CuS nanotheranostic agent created via a biomimetic approach. This drug has low systemic side effects and good photothermal conversion efficiency, making it suitable for skin cancer therapy. It also performs well in imaging. The ultrasmall copper sulfide nanoparticles generated within ferritin nanocages are described in Wang et al.’s 64 publication. This work highlights the possibility of photoacoustic imaging-guided photothermal therapy with improved therapeutic efficiency and biocompatibility. These highly referenced articles highlight the significance of biomimetic techniques in furthering nanotheranostics and cancer therapy.

Established biomimetic foundations

Here, there are topics with a greater number of publications but a lower prominence percentile, which may imply areas where there has been significant research but that may be waning in influence or undergoing a shift in focus (Quadrant 4—bottom right).

Metaheuristics; Fireflies; Chiroptera

This topic is a fascinating mix of subjects. Using Firefly and Chiroptera in metaheuristic optimization algorithms provides a bioinspired method for resolving challenging issues. The thematic progression of research papers suggests the maturation of biomimetic disciplines that resonate with several SDGs (Fig.  10 a). The shift from initially aligning with SDG 3 (Good Health and Well-being) extends to intersecting with goals such as SDG 9 (Industry, Innovation, and Infrastructure), SDG 7 (Affordable and Clean Energy), SDG 11 (Sustainable Cities and Communities), SDG 13 (Climate Action), and SDG 15 (Life on Land). This diversification reflects the expansive utility of biomimetic approaches, from health applications to broader environmental and societal challenges.

figure 10

The top keyphrases, such as 'Swarm Intelligence', 'Global Optimization', 'Cuckoo Search Algorithm', and 'Particle Swarm Optimization', are shown in Fig.  10 b highlights the utilization of nature-inspired algorithms for solving complex optimization problems. These terms, along with the 'Firefly Algorithm' and 'Bat Algorithm', underscore the transition of natural phenomena into computational algorithms that mimic the behavioral patterns of biological organisms, offering robust solutions in various fields, including resource management, logistics, and engineering design.

The three highly referenced metaheuristic publications centered around the “Moth Flame Optimization (MFO),” Salp Swarm Algorithm (SSA),” and Whale Optimization Algorithm (WOA).” The WOA, authored by Mirjalili and Lewis 65 , is a competitive solution for mathematical optimization and structural design issues because it emulates the social behavior of humpback whales. Inspired by the swarming behavior of salps, Mirjalili et al. 66 introduced the SSA and multiobjective SSA. This shows how well they function in optimizing a variety of engineering design difficulties. Finally, Mirjalili 67 suggested the MFO algorithm, which is modeled after the navigational strategy of moths and exhibits competitive performance in resolving benchmark and real-world engineering issues.

Bioprinting; three-dimensional printing; tissue engineering

The emphasis on sophisticated manufacturing methods for biological applications in this field suggests a keen interest in the nexus of biology and technology, especially in tissue engineering. As shown in Fig.  11 a, the topic's evolution encompasses Sustainable Development Goals (SDGs) that have transitioned over the years, including SDG 3 (Good Health and Well-being), which is inherently connected to the advancement of medical technologies and tissue engineering for health applications. This research also touches upon SDG 6 (Clean Water and Sanitation) and SDG 7 (Affordable and Clean Energy), suggesting applications of bioprinting technologies in the environmental sustainability and energy sectors. The progression toward SDG 9 (Industry, Innovation, and Infrastructure) and SDG 15 (Life on Land) reflects a broader impact, where biomimetic principles are applied to foster innovation in industrial processes and contribute to the preservation of terrestrial ecosystems.

figure 11

Key phrases emerging from the word cloud in Fig.  11 b, such as “Hydrogel”, “Biofabrication”, “Tissue Scaffold”, and “Regenerative Medicine”, highlight the specialized methodologies and materials that are inspired by natural processes and structures. Terms such as 'Three-Dimensional Printing' and 'Bioprinting' underscore the technological advancements in creating complex biological structures, aiming to revolutionize the field of tissue engineering and regenerative medicine.

Three widely referenced papers about advances in 3D printing—particularly in bioprinting, soft matter, and the incorporation of biological tissue with functional electronics—are described next. Truby and Lewis’s 68 review of light- and ink-based 3D printing techniques is ground-breaking. This highlights the technology's capacity to create soft matter with tunable properties and its potential applications in robotics, shape-morphing systems, biologically inspired composites, and soft sensors. Ozbolat, and Hospodiuk 69 provide a thorough analysis of “extrusion-based bioprinting (EBB).” The adaptability of EBB in printing different biologics is discussed in the paper, with a focus on its uses in pharmaceutics, primary research, and clinical contexts. Future directions and challenges in EBB technology are also discussed. Using 3D printing, Mannoor et al. 70 presented a novel method for fusing organic tissue with functioning electronics. In the proof-of-concept, a hydrogel matrix seeded with cells and an interwoven conductive polymer containing silver nanoparticles are 3D printed to create a bionic ear. The improved auditory sensing capabilities of the printed ear show how this novel technology allows biological and nanoelectronic features to work together harmoniously.

RQ3: Translation and commercialization

Biomimicry offers promising solutions for sustainability in commercial industries with environmentally sustainable product innovation and energy savings with reduced resource commitment 71 . However, translating biomimicry innovations from research to commercialization presents challenges, including product validation, regulatory hurdles, and the need for strategic investment, innovative financial models, and interdisciplinary collaboration 71 , 72 , 73 , 74 . Ethical considerations highlight the need for universally applicable ethical guidelines regarding the moral debates surrounding biomimicry, such as motivations for pursuing such approaches and the valuation of nature 75 .

Addressing these barriers requires interdisciplinary collaboration, targeted education, and training programs. Strategic investment in biomimicry research and development is also crucial. Encouraging an engineering mindset that integrates biomimicry principles into conventional practices and developing commercial acumen among researchers is essential for navigating the market landscape 76 . Securing sufficient funding is essential for the development, testing, and scaling of these innovations 76 .

Successful case studies illustrate that the strategic integration of biomimicry enhances corporate sustainability and innovation (Larson & Meier 2017). In biomedical research, biomimetic approaches such as novel scaffolds and artificial skins have made significant strides (Zhang 2012). Architecture benefits through energy-efficient building facades modeled after natural cooling systems (Webb et al. 2017). The textile industry uses biomimicry to create sustainable, high-performance fabrics 77 .

RQ4: Interdisciplinary collaboration

Agricultural innovations (sdgs 1—no poverty and 2—zero hunger).

Environmental degradation, biodiversity loss, poverty, and hunger highlight the need for sustainable agricultural methods to mimic natural ecosystems. This includes computational models for ecological interactions, field experiments for biomimetic techniques, and novel materials inspired by natural soil processes. Research can develop solutions such as artificial photosynthesis for energy capture, polyculture systems mimicking ecosystem diversity, and bioinspired materials for soil regeneration and water retention 28 . These innovations can improve sustainability and energy efficiency in agriculture, addressing poverty and hunger through sustainable farming practices.

Educational models (SDG 4—Quality education)

Integrating sustainability principles and biomimicry into educational curricula at all levels presents opportunities for innovation. Collaborations between educators, environmental scientists, and designers can create immersive learning experiences that promote sustainability. This includes interdisciplinary curricula with biomimicry case studies, digital tools, and simulations for exploring biomimetic designs, and participatory learning approaches for engaging students with natural environments. Designing biomimicry-based educational tools and programs can help students engage in hands-on, project-based learning 10 , fostering a deeper understanding of sustainable living and problem-solving.

Gender-inclusive design (SDG 5—Gender inequality)

Gender biases in design and innovation call for research into biomimetic designs and technologies that facilitate gender equality. This includes participatory design processes involving women as cocreators, studying natural systems for inclusive strategies, and applying biomimetic principles to develop technologies supporting gender equality. Bioinspired technologies can address women's specific needs, enhancing access to education, healthcare, and economic opportunities. Interdisciplinary approaches involving gender studies, engineering, and environmental science can uncover new pathways for inclusive innovation.

Inclusive urban solutions (SDG 11—Sustainable cities and communities)

Rapid urbanization challenges such as housing shortages, environmental degradation, and unsustainable transportation systems require innovative solutions. Methodologies include systems thinking in urban planning, simulation tools for modeling biomimetic solutions, and pilot projects testing bioinspired urban innovations. Research on biomimetic architecture for affordable housing, green infrastructure for climate resilience, and bioinspired transportation systems can offer solutions. Collaborative efforts among architects, urban planners, ecologists, and sociologists are essential 78 .

Peace and justice (SDG 16—Peace, justice and institutions)

Social conflicts and weak institutions necessitate innovative approaches that integrate political science, sociology, and biology. Methods involve case studies, theoretical modeling, and participatory action research to develop strategies for peacebuilding and institutional development.

This research provides a comprehensive exploration of the multifaceted dimensions of biomimicry, SDG alignment, and interdisciplinary topics, demonstrating a clear trajectory of growth and relevance. Interdisciplinary collaboration has emerged as a pivotal strategy for unlocking the full potential of biomimicry in addressing underexplored SDGs.

While answering RQ1, the interdisciplinary analysis underscores the significant alignment of biomimicry research with several SDGs. This reflects the interdisciplinary nature of biomimicry and its ability to generate solutions for societal challenges. The analysis of two thematic clusters revealed the broad applicability of biomimicry across various sustainable development goals (SDGs). The first cluster includes health, partnership, and life on land (SDGs 3, 17, and 15), highlighting biomimicry's potential in medical technologies, sustainability collaborations, and land management. The second cluster encompasses clean water, energy, infrastructure, and marine life (SDGs 6, 7, 9, and 14), demonstrating innovative approaches to clean energy generation, sustainable infrastructure, and water purification.

In response to RQ2, this study highlights emerging topics within biomimicry research, such as metaheuristics and nanogenerators, which reflect a dynamic and evolving field that is swiftly gaining attention. These topics, alongside sensors, flexible electronics, and strain sensors, denote evolving research objectives and societal demands, pointing to new areas of study and innovation. This focus on interdisciplinary topics within biomimicry underscores the field’s adaptability and responsiveness to the shifting landscapes of technological and societal challenges.

In addressing RQ3, biomimicry holds potential for sustainable innovation but faces challenges in commercialization. Biomimicry inspires diverse technological and product innovations, driving sustainable advancements (Lurie-Luke 84 ). Overcoming these barriers through strategic investment, training, interdisciplinary collaboration, and ethical guidelines is essential for unlocking their full potential.

For RQ4 , the recommendations are formulated based on underexplored SDGs like 1, 4, 5, and 10 where biomimicry could play a pivotal role.

Future research could apply generative AI models to this dataset to validate the findings and explore additional insights. While our current study did not explore this topic, we see significant potential for this approach. Generative AI models can process extensive datasets and reveal patterns, potentially offering insights into biomimetic research correlations. The interpretation required for context-specific analysis remains challenging for generative AI 36 , 37

Our study provides valuable insights, but some limitations are worth considering. The chosen database might limit the comprehensiveness of the research captured, potentially excluding relevant work from other sources. Additionally, while the combination of cocitation mapping and BERTopic modeling provides a powerful analysis, both methods have inherent limitations. They may oversimplify the complexities of the field or introduce bias during theme interpretation, even with advanced techniques. Furthermore, our use of citations to thematically clustered publications as a proxy for impact inherits the limitations of citation analysis, such as biases toward established ideas and potential misinterpretations 79 , 80 . Another limitation of our study is the potential for missing accurate SDG mappings, as multiple SDG mapping initiatives are available, and our reliance on a single, Scopus-integrated method may not capture all relevant associations. Consequently, this could have resulted in the exclusion of papers that were appropriately aligned with certain SDGs but were not identified by our chosen mapping approach. Given these limitations, this study provides a valuable snapshot for understanding biomimicry research.

Data availability

All data generated or analyzed during this study are included in this published article and its supplementary information files.

El-Zeiny, R. M. A. Biomimicry as a problem solving methodology in interior architecture. Procedia. Soc. 50 , 502–512 (2012).

Article   Google Scholar  

Othmani, N. I., Sahak, N. M. & Yunos, M. Y. M. Biomimicry in agrotechnology: Future solution of water problem for the agriculture industry?. IOP Conf. Ser.: Earth Environ. Sci. 756 (1), 012051. https://doi.org/10.1088/1755-1315/756/1/012051 (2021).

Bensaude-Vincent, B. Bioinformed emerging technologies and their relation to the sustainability aims of biomimicry. Environ. Values 28 (5), 551–571 (2019).

Chirazi, J. E. Commercialization journeys: Bringing biomimetic innovation to the market. In Biomim. Mat., Des. and Habit. (pp. 393–436). Elsevier (2022).

Vincent, J. F., Bogatyreva, O. A., Bogatyrev, N. R., Bowyer, A. & Pahl, A. K. Biomimetics: Its practice and theory. J. R. Soc. Interface 3 (9), 471–482 (2006).

Article   PubMed   PubMed Central   Google Scholar  

Pogge, T. & Sengupta, M. The sustainable development goals: A plan for building a better world?. J. Glob. Ethics 11 (1), 56–64 (2015).

Wamane, G. V. A “new deal” for a sustainable future: Enhancing circular economy by employing ESG principles and biomimicry for efficiency. Manag. Environ. Qual. https://doi.org/10.1108/MEQ-07-2022-0189 (2023).

Butt, A. N. & Dimitrijević, B. Multidisciplinary and transdisciplinary collaboration in nature-based design of sustainable architecture and urbanism. Sustainability 14 (16), 10339 (2022).

Gupta, J. & Vegelin, C. Sustainable development goals and inclusive development. INEA 16 , 433–448 (2016).

Google Scholar  

Hayes, S., Desha, C. & Baumeister, D. Learning from nature—Biomimicry innovation to support infrastructure sustainability and resilience. TFSC 161 , 120287 (2020).

Toner, J., Desha, C., Reis, K., Hes, D. & Hayes, S. Integrating ecological knowledge into regenerative design: A rapid practice review. Sustainability 15 (17), 13271 (2023).

Jamei, E. & Vrcelj, Z. Biomimicry and the built environment, learning from nature’s solutions. Appl. Sci. 11 (16), 7514 (2021).

Article   CAS   Google Scholar  

Blanco, E., Pedersen Zari, M., Raskin, K. & Clergeau, P. Urban ecosystem-level biomimicry and regenerative design: Linking ecosystem functioning and urban built environments. Sustainability 13 (1), 404 (2021).

Rebecca, C. Climate Action Through Biomimcry: Innovation for the SDGs. Sustainable Brands. https://sustainablebrands.com/read/product-service-design-innovation/climate-action-through-biomimicry-innovation-for-the-sdgs . (Accessed on January 9, 2024) (2020).

Vierra, S. Biomimicry: Designing to model nature. Whole Build. Des. Guide 1–10 (2011).

Biomimicry Institute. Case Studies of Commercialisation of Biomimicry Innovations (2023).

Fayemi, P. E., Wanieck, K., Zollfrank, C., Maranzana, N. & Aoussat, A. Biomimetics: Process, tools and practice. Bioinsp. Biomim. 12 (1), 011002. https://doi.org/10.1088/1748-3190/12/1/011002 (2017).

Article   PubMed   CAS   Google Scholar  

Meena, A. K., D’Costa, D., Bhavsar, S., Kshirsagar, M. & Kulkarni, S. Applications of biomimicry in construction and architecture: A bibliometric analysis. Lib. Phil. Prac. Lincoln, NE, USA , 1–17 (2021).

Varshabi, N., Arslan Selçuk, S. & Mutlu Avinç, G. Biomimicry for energy-efficient building design: A bibliometric analysis. Biomimetics 7 (1), 21 (2022).

Perricone, V., Langella, C. & Santulli, C. Sustainable Biomimetics: A Discussion on Differences in Scale, Complexity, and Organization Between the Natural and Artificial World. In Bion. Sustain. Design 171–193 (Springer Nature Singapore, 2022).

Aggarwal, S., & Verma, A. Scientometric analysis of research trends in clustering and nature inspired techniques. In AIP Conf. Proc. (Vol. 2576, No. 1). AIP Publishing (2022, December).

Pinzón, O. A. & Austin, M. C. Nature as an Inspiration to Exploit Renewable Energy Sources: A Review on Trends and Biological Strategies. In 2022 8th International Engineering, Sciences and Technology Conference (IESTEC) 463–468 (IEEE, 2022).

Carniel, T., Cazenille, L., Dalle, J. M. & Halloy, J. Using natural language processing to find research topics in Living Machines conferences and their intersections with Bioinspiration & Biomimetics publications. Bioinsp. & Biomim 17 (6), 065008 (2022).

Nasser, H. K. et al. Harmony search algorithm for solving combinatorial optimization problems: Bibliometric analysis. Math. Model. Eng. Prob. 10 (3), 906 (2023).

Rusu, D. M. et al. Soft robotics: A systematic review and bibliometric analysis. Micromachines 14 (2), 359. https://doi.org/10.3390/mi14020359 (2023).

Shashwat, S. et al. A review on bioinspired strategies for an energy-efficient built environment. Energy Build. 296 , 113382 (2023).

Pires, P. M. et al. Bioactive restorative materials applied over coronal dentine—A bibliometric and critical review. Bioengineering 10 (6), 731. https://doi.org/10.3390/bioengineering10060731 (2023).

Article   PubMed   PubMed Central   CAS   Google Scholar  

Liu, H., Liao, X. & Du, B. The applications of nature-inspired meta-heuristic algorithms for decreasing the energy consumption of software-defined networks: A comprehensive and systematic literature review. Sustain. Comput.: Inform. Syst. 39 , 100895. https://doi.org/10.1016/j.suscom.2023.100895 (2023).

Hinkelman, K., Yang, Y. & Zuo, W. Design methodologies and engineering applications for ecosystem biomimicry: An interdisciplinary review spanning cyber, physical, and cyber-physical systems. Bioinsp. Biomim. 18 (2), 021001 (2023).

Raman, R., Lathabhai, H., Mandal, S., Kumar, C. & Nedungadi, P. Contribution of business research to sustainable development goals: bibliometrics and science mapping analysis. Sustainability 15 (17), 12982 (2023).

Nedungadi, P. et al. Mapping autism’s research landscape: Trends in autism screening and its alignment with sustainable development goals. Front. Psychiatry 14 , 1294254 (2024).

Auckland's SDG Mapping. University of Auckland's SDG Mapping initiative from https://www.sdgmapping.auckland.ac.nz , accessed on 4th February 2024

Elsevier's SDG Mapping - Elsevier's SDG Mapping Initiative from https://www.elsevier.com/about/partnerships/sdg-research-mapping-initiative , accessed on 4th February 2024

Raman, R., Nair, V. K., Prakash, V., Patwardhan, A. & Nedungadi, P. Green-hydrogen research: What have we achieved, and where are we going? Bibliometrics analysis. Energy Rep. 8 , 9242–9260 (2022).

Raman, R. et al. Fake news research trends, linkages to generative artificial intelligence and sustainable development goals. Heliyon 10 (3), e24727 (2024).

Raman, R. et al. ChatGPT: Literate or intelligent about UN sustainable development goals?. Plos one 19 (4), e0297521 (2024).

Raman, R., Calyam, P. & Achuthan, K. ChatGPT or bard: Who is a better certified ethical hacker?. Comput. Secur. 140 , 103804 (2024).

Rama, R., Nair, V. K., Nedungadi, P., Ray, I. & Achuthan, K. Darkweb research: Past, present, and future trends and mapping to sustainable development goals. Heliyon 9 (11), e22269 (2023).

Van Eck, N. J. & Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 84 , 523–538 (2010).

Article   PubMed   Google Scholar  

Emary, E., Zawbaa, H. M. & Hassanien, A. E. Binary gray wolf optimization approaches for feature selection. Neurocomputing 172 , 371–381 (2016).

Lin, Y., Ren, J. & Qu, X. Catalytically active nanomaterials: a promising candidate for artificial enzymes. Acc. Chem. Res. 47 (4), 1097–1105 (2014).

Parodi, A. et al. Synthetic nanoparticles functionalized with biomimetic leukocyte membranes possess cell-like functions. Nat. Nanotechnol. 8 (1), 61–68 (2013).

Article   ADS   PubMed   CAS   Google Scholar  

Zou, Q. et al. Biological photothermal nanodots based on self-assembly of peptide–porphyrin conjugates for antitumor therapy. J. Am. Chem. Soc. 139 (5), 1921–1927 (2017).

Wang, G. G., Deb, S. & Cui, Z. Monarch butterfly optimization. Neural Comput. Appl. 31 , 1995–2014 (2019).

Li, X. et al. Engineering heterogeneous semiconductors for solar water splitting. J. Mater. Chem. 3 (6), 2485–2534 (2015).

Li, X., Yu, J., Jaroniec, M. & Chen, X. Cocatalysts for selective photoreduction of CO 2 into solar fuels. Chem. Rev. 119 (6), 3962–4179 (2019).

Wang, B., Liang, W., Guo, Z. & Liu, W. Biomimetic superlyophobic and superlyophilic materials applied for oil/water separation: A new strategy beyond nature. Chem. Soc. Rev. 44 (1), 336–361 (2015).

Singh, J. et al. ‘Green’synthesis of metals and their oxide nanoparticles: Applications for environmental remediation. J. Nanobiotechnology 16 (1), 1–24 (2018).

Wang, Z. et al. Biomimetic nanoflowers by self-assembling nanozymes to induce intracellular oxidative damage against hypoxic tumors. Nat. Commun. 9 (1), 3334 (2018).

Article   ADS   PubMed   PubMed Central   Google Scholar  

Gao, S. et al. Nanocatalytic tumor therapy by biomimetic dual inorganic nanozyme-catalyzed cascade reaction. Adv. Sci. 6 (3), 1801733 (2019).

Su, B., Tian, Y. & Jiang, L. Bioinspired interfaces with superwettability: From materials to chemistry. J. Am. Chem. Soc. 138 (6), 1727–1748 (2016).

Zhang, X., Li, Z., Liu, K. & Jiang, L. Bioinspired multifunctional foam with self-cleaning and oil/water separation. Adv. Funct. Mater. 23 (22), 2881–2886 (2013).

Jang, S. C. et al. Bioinspired exosome-mimetic nanovesicles for targeted delivery of chemotherapeutics to malignant tumors. ACS Nano 7 (9), 7698–7710 (2013).

Yong, T. et al. Tumor exosome-based nanoparticles are efficient drug carriers for chemotherapy. Nat. Commun. 10 (1), 3838 (2019).

Cheng, G. et al. Self-assembly of extracellular vesicle-like metal–organic framework nanoparticles for protection and intracellular delivery of biofunctional proteins. J. Am. Chem. Soc. 140 (23), 7282–7291 (2018).

Yang, J. et al. Eardrum-inspired active sensors for self-powered cardiovascular system characterization and throat-attached anti-interference voice recognition. Adv. Mater. 27 (8), 1316–1326 (2015).

Sezer, N. & Koç, M. A comprehensive review on the state-of-the-art of piezoelectric energy harvesting. Nano Energy 80 , 105567 (2021).

Zhao, D. et al. Cellulose-based flexible functional materials for emerging intelligent electronics. Adv. Mater. 33 (28), 2000619 (2021).

Chortos, A., Liu, J. & Bao, Z. Pursuing prosthetic electronic skin. Nat. mater. 15 (9), 937–950 (2016).

Kim, J. et al. Stretchable silicon nanoribbon electronics for skin prosthesis. Nat. Commun. 5 (1), 5747 (2014).

Pang, C. et al. Highly skin-conformal microhairy sensor for pulse signal amplification. Adv. Mater. 27 (4), 634–640 (2015).

Yu, Z., Zhou, P., Pan, W., Li, N. & Tang, B. A biomimetic nanoreactor for synergistic chemiexcited photodynamic and starvation therapy against tumor metastasis. Nat. Commun. 9 (1), 5044 (2018).

Yang, W. et al. Albumin-bioinspired Gd: CuS nanotheranostic agent for in vivo photoacoustic/magnetic resonance imaging-guided tumor-targeted photothermal therapy. ACS Nano 10 (11), 10245–10257 (2016).

Wang, Z. et al. Biomineralization-inspired synthesis of copper sulfide–ferritin nanocages as cancer theranostics. ACS Nano 10 (3), 3453–3460 (2016).

Mirjalili, S. & Lewis, A. The whale optimization algorithm. Adv. Eng. Softw. 95 , 51–67 (2016).

Mirjalili, S. et al. Salp Swarm Algorithm: A bioinspired optimizer for engineering design problems. Adv. Eng. Softw. 114 , 163–191 (2017).

Mirjalili, S. Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowl. Based Syst. 89 , 228–249 (2015).

Truby, R. L. & Lewis, J. A. Printing soft matter in three dimensions. Nature 540 (7633), 371–378 (2016).

Ozbolat, I. T. & Hospodiuk, M. Current advances and future perspectives in extrusion-based bioprinting. Biomater. 76 , 321–343 (2016).

Mannoor, M. S. et al. 3D printed bionic ears. Nano Lett. 13 (6), 2634–2639 (2013).

Article   ADS   PubMed   PubMed Central   CAS   Google Scholar  

Kennedy, E. B. & Marting, T. A. Biomimicry: Streamlining the front end of innovation for environmentally sustainable products. Res. Technol. Manage. 59 (4), 40–48 (2016).

Chazhaev, M. Economic potential of biotechnologies: challenges and windows of opportunity. BIO Web Conf. 76 , 10002 (2023).

Kasatova, A. A., Vagizova, V. I. & Tufetulov, A. M. Stages of biotechnology commercialization in the system of interaction between financial and innovative industrial structures. Acad. Strateg. Manag. J. 15 , 191 (2016).

Rovalo, E., McCardle, J., Smith, E. & Hooker, G. Growing the practice of biomimicry: Opportunities for mission-based organisations based on a global survey of practitioners. Technol. Anal. Strateg. Manag. 32 (1), 71–87 (2020).

Broeckhoven, C. & Winters, S. Biomimethics: a critical perspective on the ethical implications of biomimetics in technological innovation. Bioinspir. Biomim. 18 (5), 053001 (2023).

Article   ADS   Google Scholar  

Biomimicry Innovation Lab. The State of Nature-Inspired Innovation in the UK. Retrieved from https://www.biomimicryinnovationlab.com/blog/the-state-of-nature-inspired-innovation-in-the-uk (2023).

Weerasinghe, D. U., Perera, S. & Dissanayake, D. Application of biomimicry for sustainable functionalization of textiles: Review of current status and prospectus. Textile Res. J. 89 (22), 4282–4294 (2019).

Madmar, S., Shah, M. Z., Matusin, A. M. R. A. & Ilhan, A. A. Applications of biomimicry to urban planning: interrogating the relevance of emerging approaches to design cities by inspiring from nature. IOP Conf. Ser.: Earth Environ. Sci. 1274 (1), 012015 (2023).

Letrud, K. & Hernes, S. Affirmative citation bias in scientific myth debunking: A three-in-one case study. PLoS One 14 (9), e0222213 (2019).

McCain, K. W. Obliteration by incorporation. Beyond bibliometrics: Harnessing multidimensional indicators of scholarly impact. J. Scientometr. Res. 4 (1), 129–149 (2014).

Benyus, J. M. (1997). Biomimicry: Innovation inspired by nature.

Donthu, N., Kumar, S., Pandey, N., Pandey, N., & Mishra, A. (2021). Mapping the electronic word-of-mouth (eWOM) research: A systematic review and bibliometric analysis. J. Bus. Res. , 135 , 758–773.

Sydney Gladman, A., Matsumoto, E. A., Nuzzo, R. G., Mahadevan, L., & Lewis, J. A. (2016). Biomimetic 4D printing. Nature materials , 15 (4), 413–418.

Lurie-Luke, E. Product and technology innovation: What can biomimicry inspire?. Biotechnology advances , 32 (8), 1494–1505 (2014).

Download references

This research received no specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and affiliations.

Amrita School of Business, Amritapuri, Amrita Vishwa Vidyapeetham, Kollam, Kerala, India

Raghu Raman

Amrita School of Business, Amrita Vishwa Vidyapeetham, Coimbatore, Tamil Nadu, India

Aswathy Sreenivasan & M. Suresh

Amrita School of Computing, Amritapuri, Amrita Vishwa Vidyapeetham, Kollam, Kerala, India

Prema Nedungadi

You can also search for this author in PubMed   Google Scholar

Contributions

R.R.—Conceptualization; supervision; methodology; data curation; visualization; writing—original draft; and writing—review and editing. A.S.—Data curation; Writing—original draft; and Writing—review and editing. M.S.—writing—original draft; and writing—review and editing. P.N.—Data curation; writing—original draft; and writing—review and editing.

Corresponding author

Correspondence to Raghu Raman .

Ethics declarations

Competing interests.

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/ .

Reprints and permissions

About this article

Cite this article.

Raman, R., Sreenivasan, A., Suresh, M. et al. Mapping biomimicry research to sustainable development goals. Sci Rep 14 , 18613 (2024). https://doi.org/10.1038/s41598-024-69230-9

Download citation

Received : 28 April 2024

Accepted : 01 August 2024

Published : 10 August 2024

DOI : https://doi.org/10.1038/s41598-024-69230-9

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Sustainable development goal
  • Network map
  • Thematic areas

By submitting a comment you agree to abide by our Terms and Community Guidelines . If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

case study as research methodology

ORIGINAL RESEARCH article

Study on the f-u-bvf analytical model for sustainable food design: a case study of tofu.

Yuehui Liang

  • Department of Spatial Culture Design, Graduate School of Techno Design, Kookmin University, Seoul, Republic of Korea

The food lifestyle has evolved from the regional differences that were previously shaped by different geographic locations to the pluralistic complexity of food styles that are now influenced by different user consciousnesses. The field of food design has assumed a greater social responsibility, while also facing the challenge of sustainable development. Consequently, it is of paramount importance to devise or refine the methodology of food design innovation. This study makes a significant contribution to the field of sustainable food design by combining design methodology with sociological concepts such as “Field and Habitus” to construct the “F-U-BVF” food lifestyle analysis framework. This study examines the applicability of the F-U-BVF analytical framework, exemplified by tofu, through the refinement and translation of user needs, among other methods. The objective is to guide users toward sustainable lifestyles based on a design methodology, thereby creating multiple values conducive to food sustainability. At the same time, the deconstruction of the structural relationship, process, and methodology of sustainable food design based on the F-U-BVF analytical framework is intended to break through the barriers of traditional design science. This is to provide a new systematic research paradigm for sustainable food design, as well as to provide a new perspective on the experience and interactive relationship between people and food. Finally, it is also to provide effective food design innovation solutions for relevant multi-stakeholders. This is of great significance for the development of sustainable food design.

1 Introduction

The process of socio-economic transition from an agro-pastoral economy to an industrial economy to a service economy ( Liang et al., 2022 ), with the globalization of information, environmental changes and cultural developments, has led to complex problems and challenges in society, resulting in group needs and conflicts between people in the spatial environment. To address the current social problems and challenges of environmental degradation, social inequality and economic instability faced globally, it is necessary to embrace the principles of sustainalism and adopting a sustainalist lifestyle, pave the way toward a more sustainable economy that balances humanity’s and the environment’s needs, benefiting everyone involved ( Hariram et al., 2023 ). In this regard, Governments are setting or have set targets for change and are taking sustainable action, including innovation in policies, services, products, etc., to address the challenges ( Elzen and Wieczorek, 2005 ; Almeida et al., 2013 ; Silvestre and Ţîrcă, 2019 ). This shift in focus not only promotes the development of design solutions for social problems but also expands the scope of design beyond physical objects to include non-object design such as service design, information design, and lifestyle design ( Liang et al., 2022 ). This change is closely linked to the shift in the social characteristics of modern humans, and it gives design the ability and social responsibility to promote change. Design should be utilized as a strategic tool to promote sustainable innovation and play a crucial role in integrating transformative capacity and social responsibility. Sustainable design takes into account the environmental, economic and social impacts that occur throughout a product’s life cycle ( Elkington, 1997 ). It involves rethinking modern society’s way of life and aims to create design changes for products and services that minimize resource consumption and promote recycling. With the development of society and the awakening of people’s sense of social responsibility, today’s ecological environment and social issues have prompted designers to pay attention to the concept of sustainable development and changes in the way of life ( Papanek, 2020 ). As a result, there are numerous initiatives aimed at promoting sustainable behavior and innovation through design. Design innovation has become a key driver of sustainable change ( Chick and Micklethwaite, 2011 ; Keitsch, 2012 ).

Food is a crucial source of energy for human beings in their daily activities and is closely linked to global issues and sustainable development ( Rasul, 2016 ). Modern technologies, such as preservation methods, and the rapid development of the transportation industry have made food a commodity. The focus on profit, rather than health, has become the primary goal of the food industry ( Zhang, 2000 ). But food is much more than a commodity. Food has a significant impact on human and environmental health, and sustainable diets can be a win-win for both human health and environmental sustainability ( Zhang and Chai, 2022 ; Liu et al., 2024 ). The wastage and pollution involved in the life cycle of food, including raw materials, production, sale, consumption, disposal, and recycling, have a direct or indirect impact on ecological and environmental sustainability ( Murphy et al., 2014 ; Nemecek et al., 2016 ; Lekavičius et al., 2023 ). At the same time, the regional cultural variability carried by food also reflects the different social patterns between regions from the side, clearly defining the relationship between the regional system context and its food ( Hinrichs, 2003 ; Kittler et al., 2016 ). Additionally, many consumers hold the belief that plant-based diets are healthier than animal-based diets. This belief has led to changes in dietary behaviors ( Possidónio et al., 2021 ) and has continued to encourage the development of sustainable dietary lifestyles. As a result, the concept of “sustainable diets” has emerged as a paradigm that considers both the ecological aspects of specific environments and human health and nutrition. It also focuses on the affordability and sociocultural acceptability of diets at global, local, and individual levels ( Garnett et al., 2014 ; Johnston et al., 2014 ; del Valle et al., 2022 ).

The Food and Agriculture Organization of the United Nations (FAO) recognizes sustainable diets as dietary patterns that promote an individual’s health and well-being, have low environmental impact, and are accessible, affordable, safe, equitable, and culturally acceptable ( Food and Agriculture Organization of the United Nations, 2020 ). Food involves ecology, society, economy, health, culture, and their interrelationships, which together constitute the macro-organization of sustainable food ( Hajer et al., 2016 ; Mason and Lang, 2017 ). The design intervention in sustainable food development is a balanced optimization of the relationship between these factors. At the same time, consumer food choices are shaped by the food environment, including access to healthy foods ( Turner et al., 2021 ). Therefore, the intervention of design prompts the supply side, processors, and others to rethink the possibility of food sustainability ( Sijtsema and Snoek, 2023 ) and explore how to provide more effective and innovative ideas and strategies for structural changes in food development. This becomes a real challenge for the sustainable design of food. For instance, Grönman et al. used different methods at different stages of food packaging design to improve the sustainability of the packaging, integrating sustainability into the design process at all stages ( Grönman et al., 2013 ). Choi and Blevis investigated the impact of human-computer interaction (HCI) design on promoting individual participation in establishing a sustainable food culture in urban areas ( Choi and Blevis, 2010 ). Clear et al. conducted a detailed microdocumentation of participants to quantify the relationship between potential impacts and their daily food preparation methods, scheduling, and roles in social gatherings. The aim was to inform the sustainable design of at-home cooking and dining ( Clear et al., 2013 ). These studies show that sustainable innovation research and practice in food has expanded beyond its original limitations with the design shift. There is now more consideration given to combining bottom-up consumer social responsibility awareness with top-down design strategy interventions. In other words, sustainable food design emerges from a combination of user awareness of responsibility and producer product innovation ( Nielsen et al., 2016 ). This paper argues that sustainable design is one of the ways to define the connotations and forms of food design and create points of connection between relevant variables such as people and food, thus making design one of the innovative ways to make food sustainable. Therefore, research on “Food” and “User” is one of the requirements for sustainable food design before food innovations can be generated and related issues can be defined. The objective of this study is to cross-fertilize multiple disciplines from the perspectives of “food” and “user,” with the construction of dietary lifestyle research methodology serving as the primary innovation point for sustainable food design. This approach is intended to enhance the multifaceted values conducive to the sustainable development of food and to break through the barriers of traditional design science in order to provide a new systematic research paradigm for sustainable food design.

2 Methods and process

2.1 constructing a methodology for studying dietary lifestyles, 2.1.1 field theory.

The concept of “field (French champ) theory” was put forward by the renowned French sociologist Pierre Bourdieu ( Hilgers and Mangez, 2014 ). This theory provides a crucial theoretical foundation for comprehending and analyzing lifestyles. The term “field” refers to the social space in which individuals are subject to certain rules and norms, as well as the specific social, economic, and cultural relationships that exist within that space. “Habitus” is another core concept in Bourdieu’s sociological theory ( Bourdieu, 2009 ). It refers to the habits of perception, thought, and behavior that are accumulated and solidified through long periods of life practice and taken for granted. The cognitive structure of individuals as the subject of behavior is characterized by a perception mode formed through long-term social practice, known as the “Habitus.” The “Habitus” guides the generation of people’s thoughts and behaviors, and lifestyle is a complete and systematic expression of the products and behaviors of “Habitus” in a specific “field” ( Bourdieu, 2014 , 2020 ). Since the 20th century, behavioral economists have researched the types and components of lifestyle to provide a theoretical basis for understanding the consumption habits of different social groups. Recently, research on lifestyle has focused on the behavioral characteristics and consumption habits of various social groups ( Xin, 2020 ).

2.1.2 Factors affecting modern dietary habits

According to the theory of “Field-Habitus,” the dietary practices of individuals within specific social, economic, and cultural contexts form a “Habitus” that influences their thoughts and behaviors related to food, ultimately shaping their dietary lifestyles.

User: The main factor influencing modern dietary lifestyles is the user. People are the primary agents in food production, selection, distribution, and other related activities. However, their behavior and realize are not fixed. They can change due to various external factors such as social, environmental, and economic conditions, as well as their backgrounds, emotions, and feelings. These factors play a significant role in the emergence and development of dietary lifestyles.

Field space: It is important to recognize that human beings are social creatures and that society often influences their actions. The society serves as a “field space” for actors, encompassing policies, economy, technology, culture, and other social layers that guide the development of dietary lifestyles. All behavioral activities within the field space have their bottom line, and although the development of dietary lifestyles relies on social influences, it is also influenced by “the choices and identities of people in the relevant social activities,” which results in the creation or development of diversified dietary lifestyles.

Behavior: People as a behavioral subject in the field of space generated by the “habitus “determines the dietary lifestyle, which mainly refers to the activities and habits generated by people, the activities determine the behavioral actions and social scope, attributes, etc., habit is the user’s long-term habitual activities generated by the behavioral preferences, which are the user’s physiological and psychological needs for food comprehensive reflection.

Value: The choice of dietary lifestyles among different groups is influenced by various factors, including personal values and their perceived impact on society ( Zhang, 2008 ). This dimension is a key variable in the study of food-related cultural and social contexts, as well as in the psychological and spiritual aspects of food. Values can impact dietary behaviors and lifestyle choices. However, they can also change in response to human experiences. The function of values lies in their ability to encapsulate culturally significant concepts, connotations, sentiments, and convictions, which can then be utilized to motivate actions ( Rokeach, 1973 ).

In summary, the user is central to shaping modern dietary lifestyles. Behavioral patterns, influenced by people’s activities and habits, are key factors in determining dietary lifestyles. Additionally, people’s values play a role in the formation of diverse dietary lifestyles, while the environment in which people live provides the background orientation for their dietary choices. The interplay of these factors creates a diverse and contemporary dietary lifestyle and also provides a benchmark for examining particular food and cultural practices.

2.1.3 Research methods for dietary lifestyles

The primary objective of constructing a research methodology for dietary lifestyles is to treat them as structured objects to be guided. The focus is on describing the state of people’s dietary lifestyles in a specific field environment, using their essential attributes and dimensional analysis as the main content. Currently, scholars typically study lifestyles using ethnography and phenomenological research methods. This involves user observation, interviews, and questionnaires, as well as extracting keywords, categorization, abstraction, and comparison. Researchers validate their findings through a reciprocal cycle of research until they develop a framework that can be applied beyond the limited empirical material and specific objects of observation while remaining relatively stable ( Xin, 2020 ). Based on the analysis of the influencing factors of dietary lifestyle, this study constructs a research method of dietary lifestyle based on “field theory” from the perspective of food and the dimensions of users’ behaviors (habits, activities) and values in a specific field space, i.e., the research framework of “F-U-BVF (Food Food-User User Behavior, Value Values, Field Field)” ( Figure 1 ). The objective is to interpret the eating lifestyle by incorporating the relevant perceptions, conceptual thinking, speculations, doubts, pleasures, pains, hopes, worries, desires, and demands ( Ni, 2007 ) of users of eating activities into the empirical material.

www.frontiersin.org

Figure 1 . F-U-BVF dietary lifestyle research framework.

The analysis of dietary lifestyle attributes and dimensions should be an objective evaluation based on the user’s perspective. The F-U-BVF framework’s dynamic research on users is analyzed from three perspectives. The first one is the field space, which includes both objective factors at the social level such as policy background, social culture, spatial environment, and people’s continuous relationship with other people or things in the social space. The second perspective is the value orientation, which consists of the value orientation at the time of the behavior or event and the intensity of the feelings in the heart and its continuous impact, which drives user behavior. Lastly, the third perspective is behavioral habits, which include daily living habits, eating habits, and other specific manifestations of food life. This analysis provides more reference value for multi-dynamic research on users and a more comprehensive approach to research on dietary lifestyles. The F-U-BVF research framework is employed in the field of food design innovation. This framework is utilized to analyze the complex relationship between food and users, the continuous influence on the social environment, and the user’s habits and activities in their dietary life. This analysis allows for the identification of potential design solutions that align with the needs and preferences of users. For instance, the F-U-BVF research framework can be employed to examine the application environments, user behavioral patterns, and prospective development dynamics of a diverse array of foods with sustainability characteristics, including alternative foods (plant proteins, insect proteins, etc.), surplus foods (coffee grounds, fruit peels, etc.), and so forth. Propose innovative possibilities from multiple perspectives, including food itself, related products, visual impressions, space, interactive behaviors, reflective activities, and so forth, with the objective of promoting the innovative development of related sustainable food design. It can be argued that the F-U-BVF research framework reflects the plasticity of the dietary lifestyle itself and, at the same time, interprets the diversity of life itself to guide the researcher to discover the different opportunities for the development of food from different dimensions and to establish the corresponding dietary lifestyle guidelines, to re-comprehend and adapt to different social environments, and to continuously update or adopt new dietary lifestyles.

2.2 Dietary lifestyle study using the example of Chinese tofu

Tofu has become a popular traditional food due to its nutritional value, soft texture, and versatility in preparation. Tofu has its origins in China and has since spread throughout East Asia and beyond as a result of social and cultural movements. The spread of tofu and soy products has provided the world with a resource of high-quality plant proteins, contributing significantly to sustainable food development. Research has demonstrated that the protein digestibility of whole-cooked soybeans, which contain a significant amount of high-quality protein, is only 65.3%. However, the protein digestibility of soy products can be increased to 92–96% through heating and cooking ( Wu et al., 2012 ). Additionally, mixing soy products with cereal food can result in protein absorption levels similar to those of meat protein. Therefore, the emergence of soy products not only makes it possible to fully utilize the nutrients of soy, but also has a significant impact on the insufficient or lack of animal protein intake and even social problems such as food shortages that humans may face. Tofu is currently the most widely used soybean product. Other soybean products are typically derived from the reprocessing of tofu. These soy products have a similar nutritional profile, including high-quality protein, fat, carbohydrates, carotenoids, and various vitamins ( Augustin and Cole, 2022 ). Soybean products have not only enriched people’s dietary structure, style and content, but also created the diversified development of tofu culture under the influence of the differences in humanities and customs in different regions. The culture surrounding tofu has expanded to encompass various categories of soy products, diverse usage scenarios, and multiple processing methods. The tofu culture of today exhibits characteristics of locality, universality, and everydayness.

In a more expansive sense, the culture surrounding tofu encompasses not only the food itself but also the production and consumption of tofu, as well as the related lifestyles, group beliefs, modern science and technology, and other related foods. In other words, tofu culture encompasses not only the historical and cultural connotations associated with it, but also the dietary behaviors, life patterns, and social responsibilities that it carries. By transcending the current linkage between people and food, tofu culture has adapted or altered regional characteristics, group needs, and social developments to meet the needs of consumers in modern lifestyles. This also indicates the potential for further expansion of the boundaries of tofu culture. The development of food innovations related to tofu and soy products is aligned with the sustainability goals of “responsible consumption and production, good health and well-being.” While the related food activities or practices are influenced by social development, the pattern of development of tofu culture is driven by the values of the consumers. Innovation in tofu culture based on modern lifestyles represents a potential avenue for overcoming the limitations of established knowledge and future development. It is also becoming one of the most significant avenues for the sustainable advancement of tofu culture.

This paper analyzes the lifestyle of users who consume tofu using the F-U-BVF framework ( Figure 2 ). Among them, F-Food, i.e., tofu, is used as a specific food research object, and comparative analysis, survey research and other methods are mainly used to explore the categories, production and consumption of tofu-related food. U-User is to take tofu-related stakeholders as research users, the core users are (potential) consumers, but also includes other related parties such as producers, sellers, etc. The aim is to study user types, behaviors, and needs, and to analyze these needs to identify the real internal needs of the users. This information will be used to construct the direction or possibilities for the future development of tofu and provide a research basis for designing future interventions to promote sustainable innovation in tofu. BVF (Behavior, Value, and Felid) is related to both food and users, including their relevant social background, user activities, value orientation, habits, behavioral logic, and many other aspects.

www.frontiersin.org

Figure 2 . Study on the lifestyle impact of tofu based on the F-U-BVF research framework.

2.2.1 Analysis of tofu production and consumption

There are two main steps in making tofu: pulping and coagulation molding. The process of making tofu involves soaking and softening soybeans, grinding them, separating the soybean milk and dregs, steaming the soybean milk, and adding a coagulant to create soybean protein gelatinization ( Cai et al., 1997 ). The specifics will vary in different production environments, but most are done in these steps. In addition, various soy products can be produced by intervening in different ways during the tofu-making process. For instance, when heating soy milk, it is important to control whether it boils or not, as this can cause a surface film to form, known as Soy milk film (千张) or dried Beancurd sticks (腐竹); Various coagulants are added after pulping, resulting in different textures of tofu; Derivatives of tofu, such as Fried tofu (油豆腐), Dougan (豆腐干), and Fermented bean curd (腐乳), are produced through deep-frying, red cooking, or fermenting ( Figure 3 ). Tofu and its derivative food products constitute the tofu culture. The diverse tastes, forms, and textures of these soy products provide the foundation for the innovative development of the tofu culture.

www.frontiersin.org

Figure 3 . Study of the relationship between tofu and related soy products.

Modern marketing strategies ensure continued consumption of tofu and related foods. As a result of the shift from a subsistence economy to a commercial one, most tofu and related foods have become marketable commodities and have entered the global marketplace. Users have also participated in the globalized marketplace through their consumption behavior ( Chen, 2019 ). Tofu represents 50% of the consumption share of traditional soy foods, making it a significant product category. Furthermore, soybeans (also known as soya beans), the primary ingredient in tofu, have significant health benefits and are environmentally friendly. The Agricultural Outlook 2022–2031 published by the OECD-FAO (Organisation for Economic Co-operation and Development-Food and Agriculture Organisation) mentions pulses as an ingredient in foods such as meat substitutes, which is likely to significantly increase their importance in agricultural commodities given that public demand for these products will continue to grow. Pulses are set to regain their importance in the dietary systems of many regions of the world. The Agricultural Outlook 2022–2031 predicts that this global trend will continue, with global per capita consumption of pulses forecast to grow to 9 kg in 2031 ( OECD/FAO, 2022 ). Such a trend could encourage more profound innovation in tofu and related food products.

In this paper, tofu and related foods are categorized into those that cook food and ready-to-eat food ( Figure 4 ). Foods that require cooking are primarily intended to meet daily dietary needs. They possess the characteristics of versatility, adaptability, and originality, and to a certain extent, reflect traditional production processes and related ways of life. Those that are ready-to-eat foods are mostly derivative products based on modern dietary lifestyles, including regional snacks with traditional cultural characteristics, packaged foods derived from traditional soy products, and creative foods with strong innovations. These foods represent an extension of tofu culture from traditional to modern times. This reflects the ability to adapt traditional foods to meet the needs of the present and explore innovative directions for tofu from multiple perspectives, expanding into new markets for consumption.

www.frontiersin.org

Figure 4 . Major categories of tofu and related soy products.

Based on the analysis above, it is evident that soybean products are commonly consumed in daily meals. However, traditional soybean products have already met the requirements for three meals, leaving limited room for innovation. At the same time, there is an increasing demand for ready-to-eat food due to modern lifestyles, social changes, group behavior, and other developments in food consumption. The development of tofu and related foods is driven by the pursuit of the health benefits of soy products. However, the specific approach to promoting their consumption needs to be analyzed and researched from multiple perspectives of relevant consumers. This will help propose the direction of innovation for the materialization of related foods.

2.2.2 User study on tofu and related foods

2.2.2.1 analysis of user stakeholders.

The relevant stakeholders in the dietary lifestyle of a commercial economy mainly include suppliers, producers, and sellers of raw materials involved in the production and life cycle of the food in question, as well as (potential) consumers who are at the heart of the dietary lifestyle ( Figure 5 ). Consumers’ dietary behavior plays a crucial role in food development and the formation of dietary lifestyles, making it a prerequisite for food sustainability. Modern dietary lifestyles can, in turn, enhance and enrich the content of consumers’ diets. Most food ingredients come from the local environment, and their suppliers are one of the key factors in preserving local ecosystems, while at the same time playing a fundamental role in ensuring food quality for the end consumer. The main role of the food producer is to transform raw materials into commodities and to pass on the material and related immaterial content of food. Food sellers’ behavioral activities, such as selling and promotion, are directly linked to the dietary lifestyles of other stakeholders and consumers. These activities can effectively promote and facilitate food innovation, as well as expand the external reach of food.

www.frontiersin.org

Figure 5 . Key stakeholders in the food industry in a commodity-based economy.

The tofu and related food industry chain encompasses all aspects of soybean production, from planting and management to harvesting, trading, processing, warehousing, logistics, and retailing of soybean products. Additionally, it includes food consumption and edibility ( Zheng et al., 2020 ). With changing lifestyles, consumers have developed a more diversified demand for soy products, which requires transformative and innovative measures for the development of traditional soy-based foods. This study examines the relationships among stakeholders of soy products ( Figure 6 ). The main interested parties, who are (potential) consumers, consist of both shop and internet users. They together shape the relevant food consumption patterns and are the determining factors for the development of soya products in a commodity economy. Sellers, such as offline stores and online Internet stores, and producers, such as factories and workshops, are the direct stakeholders in tofu and related foods and are mainly involved in production and distribution. Direct stakeholders influence the evolution of modern dietary lifestyles by being involved in the consumption patterns of core consumer users. Indirect stakeholders include government, media, logistics, external capital, etc., and the social policies and publicity involved also play a role in the development of soya products. The quality of soy products produced and sold, and ultimately the consumer’s experience of consumption, are affected by providers of soybean raw materials. The consumption preferences, values, and behavior of core consumer users have a direct impact on other related parties. This influence expands the boundaries of food culture from intrinsic attributes to extrinsic forms, promoting the formation or development of related dietary lifestyles. Understanding consumers is crucial for researching soybean product dietary lifestyles and promoting the formation of stable relationships related to tofu culture.

www.frontiersin.org

Figure 6 . Stakeholder analysis of tofu and related soy products.

2.2.2.2 Core consumer user requirements analysis

The Internet’s virtual public space is a crucial component of modern society, providing people with access to external information and consumption opportunities ( Papacharissi, 2002 ). During the COVID-19 outbreak, online information platforms popularized the nutritional benefits of soy products and strongly promoted healthy diets, increasing consumers’ attention and awareness of soy products. The development and innovation of tofu culture is driven by consumers’ growing health awareness. At the same time, the market economy has facilitated the growth of e-commerce platforms, leading to significant changes in the consumption patterns of soybean products. Various online marketing methods have emerged, expanding the market boundaries of soybean products. Consumers of traditional soybean products include people of all ages. However, with the rise of the internet, young people have become the largest group of consumers of modern commercialized soybean products. They are willing to try new things, which has made them the main consumers of innovative food. The diet of young people has changed due to the transformation of modern lifestyles, which has led to diversified consumption scenarios for soybean products. This change has not only altered the traditional marketing model but has also raised consumer expectations for the value of soybean products. As a result, people have begun to explore the various functions of soybean products in multiple scenarios. Thus, the future development trend of tofu culture is determined by the choice preferences of young consumers. This paper aims to enhance the definition of the target users by creating a questionnaire and an in-depth interview framework that considers four dimensions from both the user and food perspectives ( Table 1 ). These dimensions include basic user information (closely related to consumer demand and consumption level), knowledge of soybean products (understanding of the value of food culture, health, low carbon, etc.), consumption of soybean products (consumption categories, reasons for purchase, purchase channels, expenditure, mode of consumption, frequency of consumption, etc.), and expectations for the future development of soybean products (soybean product consumption scenarios, form and flavor, nutritional composition and low carbon and environmental protection, etc.). This study aims to re-examine and analyze changes in consumer needs, as well as explore possibilities for innovative development in tofu culture.

www.frontiersin.org

Table 1 . Framework for user questionnaire and in-depth interviews based on modern dietary lifestyles.

Based on the physical and mental health, consumption ability, and other relevant aspects of modern lifestyle users, this study distributes 212 questionnaires to consumers aged 18–44 in mainland China based on Table 1 . Finally, 200 valid questionnaires were returned ( Figure 7 ). The ratio of men and women engaged in this study was approximately 3:7 (27% male, 69% female). Among the users, those aged 18 to 35 account for 95%. The majority of users (82%) are located in cities and counties, with a significant proportion comprising students and business persons. A mere 29% of respondents to this survey were aware of the cultural aspects of soy products. Nevertheless, 68.5% of users are aware of the health benefits of soy products, and over half (55%) are aware of their low-carbon value. The majority (91%) of users purchase soy products, with the majority of these purchases being traditional (68%) and derived (83%). Among them, 66.5% went to supermarkets, 51% bought on e-commerce platforms, and 55.5% went to food markets to make their selections. The data indicates that 41.5% of consumers spent between RMB 11 and RMB 20 per visit, 32.5% spent between RMB 21 and RMB 150, and no individual spent more than RMB 100 on soy products. Furthermore, the results of the consumption method survey indicated that over half (62.5%) of respondents selected soy products for fast food, 63.5% opted to prepare them themselves, and 35.5% patronized restaurants for their consumption. In the survey on the frequency of consumption, 37.5% of respondents indicated that they consumed the soybean product depending on their mood, 39.5% reported consuming it 2–3 times a week, 7.5% reported consuming it once a week, and 15.5% reported consuming it almost every day. The results of the survey on consumers’ expectations for future soybean products revealed that 30% of respondents indicated a preference for the form of the product, 39.5% expressed a desire for a specific taste, and 29.5% indicated a preference for regional characteristics. The proportion of expectations for future consumption scenarios of soy products was essentially comparable, with a range of 31–33%. However, with regard to the anticipated future nutritional value of soy products, 62.5% of respondents indicated a preference for protein supplementation, while 36% expressed a desire to replace meat.

www.frontiersin.org

Figure 7 . Soy products related lifestyle survey questionnaire statistics.

Through research and analysis, it was found that the nutrition and variety of tofu-related foods are the main factors influencing consumption. Consumers have high demands for the taste of soybean products, their compatibility with their lifestyles, and their overall experience. In addition, the nutritional benefits of soy products are derived primarily from soybeans. As a result of the public’s growing focus on health and increased awareness of soy nutrition, consumers are gradually incorporating related foods into their daily diets. This trend has also contributed to the development of tofu and other soy-based foods. Meanwhile, due to rapid urbanization, changing lifestyles, and busy work schedules, healthy snacks have become popular among working people. Ready-to-eat soy products are receiving consumer attention due to their healthfulness. In addition, at present, the R&D and deep-processing capabilities of soybean product producers are increasing, the variety of tofu-related foods is enriching, and the added value of the products is improving. The proportion of soybean products in the user’s food consumption is continuing to grow, which provides a new point of opportunity for the development of soybean products. This paper analyzes the innovation strategy of tofu and related foods by taking the basic attributes, consumption preferences, and consumption demands of users as reference targets. A typical user profile ( Figure 8 ) is constructed based on the above research collation to analyze the consumption preferences and demands of consumers for tofu-related foods.

www.frontiersin.org

Figure 8 . Constructing a typical user profile for tofu-related foods.

An analysis of typical users’ soybean product consumption preferences and demand shows that the core group’s demand for innovation in tofu-related foods is mainly an expectation for the development of ready-to-eat (instant) foods. After sorting out the user requirements and categorizing the user requirements into three aspects—quality, health, and humanity—and combining the applicable multi-scenario characteristics of soya bean products, we propose possible innovation directions for tofu-related food in Table 2 . These directions include modeling, flavoring, packaging, and interaction, among others. We also explore how to embody the healthiness, culture, and sustainability of soya bean products in ready-to-eat food through innovations in raw materials, visual effects, and user experience.

www.frontiersin.org

Table 2 . User demand and translation of ready-to-eat soybean foods.

The F-U-BVF research framework, which examines the modern dietary lifestyle, allows for the design to intervene in the sustainable and innovative practice of tofu culture from multiple perspectives. These include the design, construction, and reorganization of food, which can be approached from various angles, such as the shape, packaging, experience, and eating scene. The preceding analysis identified two fundamental conditions that must be met for the practice of sustainable food design to be effective.

1. A healthy and sustainable dietary lifestyle. In the context of rapid social and economic development and the fast pace of urban life, there has been a shift in people’s dietary aspirations from solving the problem of subsistence to a plant-based, healthy eating lifestyle. The concept of sustainable food design, as exemplified by the tofu culture, places greater emphasis on the nutritional value of the food itself. Soy protein and other nutrients present in tofu fulfill the dietary needs of specific user groups within the context of healthy eating. Design interventions provide a greater opportunity for innovation within the experience of soy products, encompassing categories, flavors, packaging, and scenarios.

2. Dietary activities that do not result in harm to the natural ecology. The current industrialized model of food production, which is dominated by the laws of the market economy, ignores the negative impacts it has on the food system. For instance, the depletion of water resources, ecological degradation, unsustainable use of natural resources, and the large amounts of energy consumption and carbon emissions resulting from long-distance trade have become one of the main obstacles to the sustainable development of food security, natural resources, and the ecological environment. They are also one of the key concerns of sustainable food production and consumption. There are significant telecoupling effects in the global agro-food system, where changes in one region affect global cropland expansion and biodiversity loss ( Chai et al., 2024 ). Foods exemplified by soy products are characterized by eco-friendly sustainability. Therefore, this paper advocates the replacement of red meat with soy-based foods, which will not only benefit the development of China’s local food system, but also have significant telecoupling effects and positive impacts on ecosystems on a global scale. The ecological damage caused by food can be avoided or minimized through the implementation of design interventions in the production of soybean products and consumer dietary activities. The social responsibility of design drives it to meet the needs of consumers while becoming one of the most effective ways to achieve low-carbon development in food-related ecosystems.

3.1 Structural relationships in sustainable food design

The study constructed the F-U-BVF research framework to analyze tofu and its related food culture influenced by modern lifestyles. It was determined that the material properties of tofu and related foods can meet the sustainability goals related to food, which is a necessary component of sustainable food design. In recent years, economic growth has facilitated exchanges between different regions and the movement of internal and external consumers. This has resulted in a constant renewal of food and living cultures within the regions, leading to the coexistence of traditional and modern food cultures, such as tofu. The consumption of tofu and related foods aligns with modern society’s demand for sustainable development. This study examines the demand relationship between “F-Tofu” and “U-User.” It analyzes both traditional and modern food culture to identify sustainable characteristics of the tofu-related industrial chain. The study uses design as the leading role to construct the structural relationship of food design based on the example of the tofu culture ( Figure 9 ). The aim is to provide a methodology for realizing sustainable innovation of traditional food.

www.frontiersin.org

Figure 9 . Structural relationship of sustainable food design based on tofu culture.

User needs analysis is essential in the design and innovation process of tofu and related foods. This analysis helps to effectively promote the link and interaction between innovative concepts and consumers, and enhances the interaction between users and foods. Design participation in the development process of tofu culture is a systematic integration of tangible materials (food) and intangible content (culture), providing sustainable added value to tofu-related food innovations. Based on the research and analysis conducted, the development of tofu culture involves three main aspects: studying user needs related to tofu, integrating and excavating tofu culture comprehensively, and balancing and optimizing sustainable development with modern dietary lifestyles. Designers can help users adopt sustainable lifestyles by incorporating design elements that reflect their dietary values. Although designers cannot dictate human values, they can create design outputs, such as product (or food itself) design, experience design, visual or packaging design, and service design, to encourage users to establish sustainable dietary goals and corresponding dietary principles. This, in turn, helps users to re-understand and adapt to sustainable dietary patterns, and develop and promote new dietary behaviors and lifestyles.

3.2 Sustainable food design process exemplified by tofu culture

The design engagement process in sustainable food development, as exemplified by the tofu culture ( Figure 10 ), comprises two stages. The first stage, exploration and discovery phase: (1) Analyze the characteristics of traditional foods related to tofu and modern lifestyles, as well as research the sustainable characteristics of foods; (2) Explore and discover user needs in the process of sustainable development of tofu-related food based on the above research. After identifying and organizing the essential requirements during the exploration phase, we proceeded to the second phase, the design intervention phase. This phase involved the following steps: (1) Identifying sustainable food design opportunities related to tofu through requirement translation; (2) Developing sustainable food design proposals related to tofu based on the identified opportunities; (3) Conducting experiments on different sustainable food design proposals related to tofu. (4) Finalize the marketable output of the effective design proposals obtained through experimentation. Simultaneously, feedback from the design intervention phase will inform an iterative analysis of the research elements in the exploration and discovery phase. Additionally, feedback from the design execution and design experiment will validate the proposal’s validity. The design execution feedback will also validate the validity of the design experiment. A continuous process of design intervention and feedback leads to the creation of a final design output for tofu and related foods that meets user needs and achieves sustainability goals.

www.frontiersin.org

Figure 10 . Main process of sustainable food design based on tofu culture.

The sustainable food design process described above focuses on the “social needs” of tofu-related foods, which are related to the culture, lifestyle, and society of the group. Sustainable food design promotes sustainability by considering the needs relations of both F (food) and U (user). It expands the scope of concern to explore the dynamics of society as a whole, as well as the food and way of life of different groups. The goal of sustainable food design is not only to provide a pleasurable eating experience but also to emphasize the interaction between the material and immaterial elements of food. Sustainable food design not only provides food to the user but integrates the user into the sustainability process, becoming a co-producer of design resources.

3.3 A design approach for sustainable food based on tofu culture

The main methodological tools for engaging in sustainable food design come from extensions of design disciplines such as industrial design, interaction design, and service design ( Figure 11 ). However, sustainable food design is not entirely in the same dimension as traditional design, and its methods are more flexible. Additionally, it involves the integration of various fields, including anthropology, psychology, and sociology. For instance, anthropological fieldwork and observation methods are utilized to examine diverse aspects such as the characteristics of food, its sustainability, and its value and significance. This study examines tofu culture using the F-U-BVF framework. The methodology involves conducting desktop and on-site surveys to provide an in-depth analysis of the food. Combining stakeholder maps, quantitative and qualitative user research, and user profiling based on research to identify food sustainability issues. Subsequently, analyze the results to uncover the underlying causes of the problems and prioritize user needs. Analyze and summarize key requirements using visual aids, identify opportunities for sustainable food design by mapping user journeys and translating requirements, and explore new design and business models. In the direct or indirect participation of different players such as stakeholders, consumer users, social enterprises, local institutions, and social organizations, the interactive touchpoints between food and people and society are explored to present sustainable food design outputs. Experiment, test, evaluate, and provide feedback on design results to improve the description and presentation of sustainable food design. And implement the final tangible or intangible sustainable food design solution.

www.frontiersin.org

Figure 11 . Main methodological tools for the sustainable food design process.

Based on the analysis above, it is evident that the design approach to promote sustainability in tofu-related food involves deconstructing various aspects of tofu culture, such as its historical characteristics, social life, regional ecology, production, and consumption. This deconstruction provides an opportunity for design innovation, which can then be reorganized from a sustainability perspective. The resulting design should consider both material and immaterial aspects of tofu-related food to promote sustainable design and innovation in tofu culture.

The design methodology for material content outputs includes: (1) The material ontology of tofu-related foods was deconstructed and reorganized. The culture surrounding tofu encompasses a wide variety of food-related topics. To deconstruct and restructure the material ontology of tofu-related foods, it is necessary to separate their material form, color, taste, texture, and other external appearance factors. The design presentation can be productized, materialized, and visualized through a multi-perspective reorganization using design thinking. (2) Derivation of tofu-related foods in multiple directions. Food derivatives related to tofu include eating utensils, packaging, tools, and furniture, among others. The design of derivative products stems from the dismantling of tofu culture-related content and the reorganization, superimposition, mutation, and expansion of different design elements, thus ultimately presenting a design that breaks the established boundaries of existing design.

The design methodology for non-material content outputs includes (1) constructing sustainable dietary concepts through tofu-related food innovations. Design no longer solely exists as a commoditized object, but also plays a guiding role in social life. By deconstructing the content of modern life culture in tofu culture, sorting out modern food-related development trends and social needs, and designing in a restructured way, we can promote the generation and development of sustainable food activities by guiding the change of users’ behavior. (2) Tofu-related food service experience activities. Tofu culture encompasses a wealth of intangible experiences, including not only the enjoyment of tofu as a food but also the production of tofu-related food, social culture, customs, and habits. The use of various design methods allows the tofu to transcend its material properties and create emotional and sensory design outputs, such as cultural heritage, low-carbon impact, and environmental protection.

The design methodology for sustainable food innovation aims primarily at problem-solving. It is used to analyze and summarize scenarios related to sustainable food, as well as the final output results. Essentially, design methodology guides the innovation of sustainable practices in food practices and proposes more rational models of food design innovation. The sustainable food design methodology described above, which is based on the F-U-BVF framework, offers distinct advantages in addressing the issues that arise among the food product, the consumer, and sustainable development. In modern society, people and the environment are in a state of interdependent interaction, and sustainable food design is a discussion of people in modern diets, as well as the state of interaction between people and food-related social, environmental and cultural conditions, as an object of design. The sustainable food design approach expands the scope of the design object and shifts the purpose of the design from addressing food consumption needs to exploring solutions for complex social problems.

4 Conclusions and discussion

The paper proposes the F-U-BVF Framework realizes the design value of a closed loop of “Innovation-Experience-Reassessment” ( Figure 12 ). This framework reflects a globalized and systematic thinking mode in the development process of food culture and provides an innovative methodological tool for understanding the complex relationship related to food. It aims to achieve the commercial value sought by food producers under the demand of economic growth, to satisfy users’ multi-scenario dietary needs in a healthy and sustainable living model. Applying this framework to sustainable food innovation activities can effectively address sustainability issues in food development from the perspective of multi-stakeholders, including producers and consumers. It can also provide new ways of experiencing and interacting with food while creating sustainable solutions. This text explores the value of design thinking for sustainable food innovation through the closed-loop relationship of “Innovation-Experience-Reassessment.”

www.frontiersin.org

Figure 12 . The value of “innovation-experience-reflection” in sustainable food design.

4.1 Innovation value: solving complex problems in food sustainability

Factors such as social background, lifestyle, human customs, industrial structure, etc. related to the process of sustainable food development may influence and change the direction of food development. Consumers may also have different problems in the process of basic food needs, information awareness, and experience and interaction. Traditional Design Thinking solves problems primarily by designing tangible objects such as food, utensils, tools, and spaces, focusing on creating functional and practical solutions. However, given the shift in design and the diverse range of methods and tools available, producers should seek sustainable innovation paths for food from multiple perspectives. To achieve this, the “F-U-BVF Framework” provides a systematic approach to addressing the complex and diverse issues related to food sustainability. It offers ideas and solutions for identifying and solving problems, ultimately promoting sustainable development in the food industry. This framework aims to facilitate innovative sustainable food design with the producer as the leader.

4.2 Experiential value: enhancing the interactive experience related to sustainable food

One purpose of design is to create experiential value for the user. Designers should aim to engage users at an emotional level, which can be achieved through the user’s mood and feelings during experience and interaction. Sustainable food design explores the relationship between people, social culture, and food. The design focus shifts to the non-material needs of people related to food, taking the guidance of values and interactive experience as the core goal. This approach aligns with the touchpoints of food design to create more positive interactions between people and food. Integrating tangible resources and intangible values can enhance the user experience, form a stable and positive emotional connection with users, and continuously develop and update food-related lifestyles to create value for users.

4.3 Reassessment value: effectively connecting the multiple stakeholders involved in food culture

Food culture is a prerequisite for design innovation for producers and user experience for consumers. Moving from the innovation and experience layer to the r reassessment layer of food design requires a reassessment of the social values inherent in food culture, particularly about sustainability. The reassessment activities on designing sustainable content can provide feedback to both users and producers. This feedback can promote the development of sustainable lifestyles for users and help producers update and iterate their final design outputs. The closed-loop process involves service providers, government, technology, media, and other parties to provide sustainable food design reassessment value, including related policy development, publicity activities, and technical support. The involvement of multiple food stakeholders in the context of sustainable design increases the relevance of the production side to the user side and creates an effective feedback mechanism for food evaluation to receive timely feedback from users and stakeholders. Based on the feedback, the design output can be continuously updated and improved, and sustainable food solutions can be tested and innovated from various perspectives.

The development of society and technology in the information age has influenced the transformation of food-based design in the context of globalization. In addition, the need for a sustainable global diet based on plant-based lifestyles has led to food sustainability has brought about new breakthroughs in the exploration of design methods. This paper posits that the structural relationship, design process, main design tools, and related design methods of sustainable food design based on the F-U-BVF research framework can serve as a guide for future research and practice in food design. This will enable relevant users to implement a sustainable dietary lifestyle and, in turn, promote the sustainable development of plant-based dietary lifestyles, and ultimately effectively enhance the social responsibility of sustainable food design under the commercialization mode, such as the exploration of food and ecology, food and culture, and food and society in the context of globalization and other related sustainable development directions. In conclusion, the F-U-BVF framework offers insights into the field of sustainable food innovation. It provides a novel vision, guiding methodology, and theoretical framework for sustainable food design related to plant-based diets and more. In addition, the F-U-BVF framework can be employed not only in the investigation of sustainable food design, but also in the cross-fertilization of other multidisciplinary disciplines. Furthermore, this paper also expects to provide certain possibilities for food-related research in other disciplines.

Nevertheless, it should be noted that this study is not without its limitations. Firstly, the “F-U-BVF Research Framework” proposed in this paper is based on field theory to analyze the influencing factors of dietary lifestyle, with the objective of conducting systematic research on food and its related contents. However, it should be noted that the framework constructed through theoretical and qualitative research will inevitably be affected by the research perspectives and personal subjective perceptions. Secondly, the structural relationships, processes, and methods of sustainable food design derived in this paper are primarily based on case studies. Therefore, the design processes, methods, etc. emphasized here still need to be verified in more design practice activities, and accordingly, design strategies that can meet specific practice activities should be adapted and applied. It is anticipated that in the future, more pertinent researchers and practitioners will be able to corroborate the framework of this study in a continuous cycle, thereby prompting us to continuously update the research framework paradigm of sustainable food design in a more rational manner.

Data availability statement

The original contributions presented in the study are included in the article/supplementary material, further inquiries can be directed to the corresponding author.

Ethics statement

Ethical review and approval was not required for the study on human participants in accordance with the local legislation and institutional requirements. Written informed consent from the patients/participants or patients/participants legal guardian/next of kin was not required to participate in this study in accordance with the national legislation and the institutional requirements.

Author contributions

YL: Conceptualization, Methodology, Visualization, Writing – original draft. YH: Writing – original draft, Writing – review & editing.

The author(s) declare that no financial support was received for the research, authorship, and/or publication of this article.

Acknowledgments

The authors would like to express their gratitude to the professors of Kookmin University, Korea, and Beijing Institute of Fashion Technology, China, for providing help and resources for this study.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Almeida, C. M. V. B., Bonilla, S. H., Giannetti, B. F., and Huisingh, D. (2013). Cleaner production initiatives and challenges for a sustainable world: an introduction to this special volume. J. Clean. Prod. 47, 1–10. doi: 10.1016/j.jclepro.2013.03.010

Crossref Full Text | Google Scholar

Augustin, M. A., and Cole, M. B. (2022). Towards a sustainable food system by design using faba bean protein as an example. Trends Food Sci. Technol. 125, 1–11. doi: 10.1016/j.tifs.2022.04.029

Bourdieu, P. (2009). “Pierre” in O Senso Prático. Petrópolis (Rio de Janeiro: Ed. Vozes).

Google Scholar

Bourdieu, P. (2014). “The habitus and the space of life-styles” in The people, place, and space reader , 139.

Bourdieu, P. (2020). “Outline of a theory of practice” in The new social theory reader (London UK: Routledge), 80–86.

Cai, T. D., Chang, K. C., Shih, M. C., Hou, H. J., and Ji, M. (1997). Comparison of bench and production scale methods for making soymilk and tofu from 13 soybean varieties. Food Res. Int. 30, 659–668. doi: 10.1016/S0963-9969(98)00032-5

Chai, L., Liu, A., Li, X. C., Guo, Z. S., He, W. R., Huang, J. X., et al. (2024). Telecoupled impacts of the Russia–Ukraine war on global cropland expansion and biodiversity. Nat. Sustain. 7, 432–441. doi: 10.1038/s41893-024-01292-z

Chen, Z. M. (2019). Tofu and related products in Chinese Foodways. J. Hubei Minzu Univ. (Philos. Soc. Sci.) , 120–127. doi: 10.13501/j.cnki.42-1328/c.2019.02.016

Chick, A., and Micklethwaite, P. (2011). Design for sustainable change: How design and designers can drive the sustainability agenda , vol. 38. London UK: AVA publishing.

Choi, J. H. J., and Blevis, E. (2010). HCI & sustainable food culture: a design framework for engagement. In: Proceedings of the 6th Nordic Conference on Human-Computer Interaction: Extending Boundaries, 112–117.

Clear, A. K., Hazas, M., Morley, J., Friday, A., and Bates, O. (2013). Domestic food and sustainable design: a study of university student cooking and its impacts. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 2447–2456.

del Valle, M. M., Shields, K., Alvarado Vazquez Mellado, A. S., and Boza, S. (2022). Food governance for better access to sustainable diets: a review. Front. Sustain. Food Syst. 6:784264. doi: 10.3389/fsufs.2022.784264

Elkington, J. (1997). The triple bottom line for 21st century business. J. Exp. Psychol. Gen. 136, 37–51.

Elzen, B., and Wieczorek, A. (2005). Transitions towards sustainability through system innovation. Technol. Forecast. Soc. Chang. 72, 651–661. doi: 10.1016/j.techfore.2005.04.002

Food and Agriculture Organization of the United Nations (2020). Sustainable healthy diets - guiding principles . Rome Available at: https://www.fao.org/3/ca6640en/CA6640EN.pdf .

Garnett, T., Appleby, M. C., Balmford, A., Bateman, I. J., Benton, T. G., Bloomer, P., et al. (2014). What is a sustainable healthy diet? A Discussion Paper. Available at: https://hdl.handle.net/10568/35584 .

Grönman, K., Soukka, R., Järvi-Kääriäinen, T., Katajajuuri, J. M., Kuisma, M., Koivupuro, H. K., et al. (2013). Framework for sustainable food packaging design. Packag. Technol. Sci. 26, 187–200. doi: 10.1002/pts.1971

Hajer, M. A., Westhoek, H., Ingram, J., Van Berkum, S., and Özay, L. (2016). Food systems and natural resources . UNESCO Paris France: United Nations Environmental Programme.

Hariram, N. P., Mekha, K. B., Suganthan, V., and Sudhakar, K. (2023). Sustainalism: an integrated socio-economic-environmental model to address sustainable development and sustainability. Sustain. For. 15:10682. doi: 10.3390/su151310682

Hilgers, M., and Mangez, E. (2014). “Introduction to Pierre Bourdieu's theory of social fields” in Bourdieu's theory of social fields (London UK: Routledge), 1–36.

Hinrichs, C. C. (2003). The practice and politics of food system localization. J. Rural. Stud. 19, 33–45. doi: 10.1016/S0743-0167(02)00040-2

Johnston, J., Fanzo, J., and Cogill, B. (2014). Understanding sustainable diets: a descriptive analysis of the determinants and processes that influence diets and their impact on health, food security, and environmental sustainability. Adv. Nutr. 5, 418–429. doi: 10.3945/an.113.005553

PubMed Abstract | Crossref Full Text | Google Scholar

Keitsch, M. (2012). Sustainable design: a brief appraisal of its main concepts. Sustain. Dev. 20, 180–188. doi: 10.1002/sd.1534

Kittler, P. G., Sucher, K. P., and Nelms, M. (2016). Food and culture . California, USA: Wadsworth Publishing.

Lekavičius, V., Bobinaitė, V., Kliaugaitė, D., and Rimkūnaitė, K. (2023). Socioeconomic impacts of food waste reduction in the European Union. Sustain. For. 15:10151. doi: 10.3390/su151310151

Liang, Y. H., He, S. F., and Zhan, B. H. (2022). “Multiple values of Service Design in Participating in social sustainability: research on food Design in Zhenze, Suzhou, China” in With design: Reinventing design modes. IASDR 2021 . eds. G. Bruyns and H. Wei (Singapore: Springer).

Liu, A., Hou, A., and Chai, L. (2024). Assessing human and environmental health in global diets from a perspective of economic growth. Sustain. Product. Consum. 45, 306–315. doi: 10.1016/j.spc.2024.01.011

Mason, P., and Lang, T. (2017). S ustainable diets: How ecological nutrition can transform consumption and the food system . London, UK: Routledge.

Murphy, F., McDonnell, K., and Fagan, C. C. (2014). “Sustainability and environmental issues in food processing” in Food processing: Principles and applications , 207–232.

Nemecek, T., Jungbluth, N., i Canals, L. M., and Schenck, R. (2016). Environmental impacts of food consumption and nutrition: where are we and what is next? Int. J. Life Cycle Assess. 21, 607–620. doi: 10.1007/s11367-016-1071-3

Ni, L. K. (2007). General interpretation of Husserl’s phenomenology concepts . Revised. Beijing: SDX Joint Publishing Company.

Nielsen, K. R., Reisch, L. A., and Thøgersen, J. (2016). Sustainable user innovation from a policy perspective: a systematic literature review. J. Clean. Prod. 133, 65–77. doi: 10.1016/j.jclepro.2016.05.092

OECD/FAO . (2022). OECD-FAO Agricultural Outlook 2022–2031 . Paris (France): OECD.

Papacharissi, Z. (2002). The virtual sphere: the internet as a public sphere. New Media Soc. 4, 9–27. doi: 10.1177/14614440222226244

Papanek, V. (2020). Design for the Real World: Human ecology and social change . Beijing: Beijing Daily.

Possidónio, C., Prada, M., Graça, J., and Piazza, J. (2021). Consumer perceptions of conventional and alternative protein sources: a mixed-methods approach with meal and product framing. Appetite 156:104860. doi: 10.1016/j.appet.2020.104860

Rasul, G. (2016). Managing the food, water, and energy nexus for achieving the sustainable development goals in South Asia. Environ. Dev. 18, 14–25. doi: 10.1016/j.envdev.2015.12.001

Rokeach, M. (1973). The nature of human values . New York: Free Press.

Sijtsema, S. J., and Snoek, H. M. (2023). Involving consumers in food product development: perspectives on the application of circular food design. Front. Sustain. Food Syst. 7:1069278. doi: 10.3389/fsufs.2023.1069278

Silvestre, B. S., and Ţîrcă, D. M. (2019). Innovations for sustainable development: moving toward a sustainable future. J. Clean. Prod. 208, 325–332. doi: 10.1016/j.jclepro.2018.09.244

Turner, G., Green, R., Alae-Carew, C., and Dangour, A. D. (2021). The association of dimensions of fruit and vegetable access in the retail food environment with consumption; a systematic review. Glob. Food Sec. 29:100528. doi: 10.1016/j.gfs.2021.100528

Wu, J. L., Li, X. Z., Zang, H. S., Wang, J., and Zhang, X. X. (2012). “Nutrition ingredient of soybean and its products” in Farm Products Processing (Innovation Edition) , 53–56+77.

Xin, X. Y. (2020). Butterfly effect: when life becomes subject of design. Pack. Eng. , 57–66. doi: 10.19554/j.cnki.1001-3563.2020.06.009

Zhang, G. Z. (2000). Several breakthroughs in the history of Chinese cuisine. Folk. Stud. , 71–74. doi: 10.13370/j.cnki.fs.2000.02.008

Zhang, H. M. (2008).Academic research of trends persona based on lifestyle transformation. [master's thesis]. [Wuxi]: Jiangnan University.

Zhang, J., and Chai, L. (2022). Trade-off between human health and environmental health in global diets. Resour. Conserv. Recycl. 182:106336. doi: 10.1016/j.resconrec.2022.106336

Zheng, L., Regenstein, J. M., Teng, F., and Li, Y. (2020). Tofu products: a review of their raw materials, processing conditions, and packaging. Compr. Rev. Food Sci. Food Saf. 19, 3683–3714. doi: 10.1111/1541-4337.12640

Keywords: sustainable, food design, lifestyle, research framework, tofu culture

Citation: Liang Y and Han Y (2024) Study on the F-U-BVF analytical model for sustainable food design: a case study of tofu. Front. Sustain. Food Syst . 8:1365638. doi: 10.3389/fsufs.2024.1365638

Received: 04 January 2024; Accepted: 05 August 2024; Published: 15 August 2024.

Reviewed by:

Copyright © 2024 Liang and Han. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY) . The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

*Correspondence: Yuehui Liang, [email protected]

Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Analysing Complete Street Design Principles Using Space Syntax Methodology in a Case of Haft-e-Tir Square, Tehran

  • Research paper
  • Published: 13 August 2024
  • Volume 18 , article number  97 , ( 2024 )

Cite this article

case study as research methodology

  • Azadeh Mohajer Milani   ORCID: orcid.org/0000-0002-0912-4347 1  

Research on urban fabric has long been a focus of interest for researchers and planners. In response to the automobile-centric design of cities, approaches such as Complete Streets have emerged to create accessible, people-centric environments by integrating various transportation modes. The study is to understand how complete street design strategies influence the connectivity and integration of the urban fabric, focusing on Haft-e-Tir Square in Tehran as a case study. Employing space syntax methodology, the current layout and a design proposal based on Complete Street strategies for the square had analysed to reveal the impact of this planning and design principle on the city’s urban fabric. The result uncovers how Complete Street hold promise in improving urban functionality and elevating the life quality. The design proposal’s interventions proved that by prioritizing pedestrians, cyclists, motorists, and transit riders, the level of safety, walkability, liveability, and environmental sustainability of the area can improve. Moreover, the findings showed a considerable reduction in the pedestrian and traffic congestion, resulting in supports for local businesses and improved urban functionalities. By contributing to the ongoing discourse on Complete Streets and its impact on shaping urban environments, this research is paving the way for future studies in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save.

  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime

Price includes VAT (Russian Federation)

Instant access to the full article PDF.

Rent this article via DeepDyve

Institutional subscriptions

case study as research methodology

Explore related subjects

  • Artificial Intelligence

Data availability

The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request.

Strollology, or Promenadology, regards walking and observing as fundamental methods for exploring and understanding the environment. Developed by Lucius Burckhardt and expanded upon by scholars like Tim Ingold, Strollology views walking not just as a means of transportation, but as a deliberate practice for immersing oneself in landscapes, urban areas, and natural settings. It emphasizes the sensory engagement and embodied experience of walking, encouraging individuals to slow down, perceive details, and reflect deeply on their surroundings. Through this method, Strollology aims to uncover the richness of environments, revealing hidden meanings and fostering a profound connection between individuals and their surroundings.

Amistadi L, Balducci V, Bradecki T, Prandi E, Schröder U (2022) Mapping urban spaces: designing the European city. Routledge, New York

Google Scholar  

Appleyard D (1980) Livable Streets: Protected Neighborhoods? Ann Am Acad Pol Soc Sci 451(1):106–117

Article   Google Scholar  

Bas J, Al-Khasawneh MB, Erdog ̆an S, & Cirillo C (2023). How the design of Complete Streets affects mode choice: Understanding the behavioral responses to the level of traffic stress. Transportation Research Part A: Policy and Practice, 173 .

Borowczyk J (2018) Sustainable urban development: spatial analyses as novel tools for planning a universally designed city. Sustainability 10:1407. https://doi.org/10.3390/su10051407

Bry Sarte S (2010) Sustainable Infrastructure “The Guide to Green Engineering and Design.” John Wiley & Sons Inc, Hoboken, New Jersey

Burckhardt L (2015) Why is landscape beautiful?. The Science of Strollology, Basel, Birkhäuser

Book   Google Scholar  

Burden D, Lagerwey P (1999) Road diets: Fixing the big roads. Walkable Communities Inc, Minneapolis, MN

Burden D, Litman T (2011) America needs complete streets. ITE Journal 81(4):36–43

Carr K (2011) Regional livability planning and complete streets. TRB Annual Meeting Online Compendium . Transportation Research Board, Washington, D.C.

Carter P, Martin F, Núñez M, Peters S, Raykin L, Salinas J, Milam R (2013) Complete enough for complete streets?: Sensitivity testing of multimodal level of service in the highway capacity manual. Transp Res Rec 2395(1):31–40

Cheshmehzangi A, Heath T (2012) Effects of Temporary Markets on Spatial Inter-relations: A behavioural analysis of a public realm in the UK. Int J Asian Behav Stud 2:21–32. https://doi.org/10.21834/jabs.v2i3.190

D’Acci LS, Banister D, White RW (2024) Liveable urban forms: planning, self-organisation, and a third way (Isobenefit urbanism). Human Social Sci Commun 11:578–586

Dock FC, Greenberg E, Yamarone M (2012). Multimodal and Complete Streets Performance Measures in Pasadena, California. ITE Journal , 33–37.

Ewing R, Brown SJ (2009) Traffic calming progress report. Planning 75(10):32–35

Fezer J, Schmitz M (2012). Lucius Burckhardt Writings. Rethinking Man-made Environments: Politics, Landscape & Design, https://doi.org/10.1007/978-3-7091-1257-1 .

Furchtlehner J, Daniela L, Lilli L (2022) Sustainable Streetscapes: Design Approaches and Examples of Viennese Practice. Sustainability 14:961. https://doi.org/10.3390/su14020961

Gehl J (2011) Life Between Buildings. Island Press, Washington, D.C.

Hanson J (1989) Order and structure in urban design: The plans for the rebuilding of London after the Great Fire of 1666. Ekistics 56:22–42

Hanson J, Hillier B (1987) The architecture of community: Some new proposals on the social consequences of architectural and planning decisions. Architecture and Behaviour 3(3):251–273

Hillier B (1993) Specifically architectural theory: A partial account of the ascent from building as cultural transmission to architecture as theoretical concretion. Harvard Architecture Review 9:8–27

Hillier B (1996a) Cities as movement economies. URBAN DESIGN International 1:41–60

Hillier B (1996b) Space is the Machine: A Configurational Theory of Architecture. Cambridge University Press, Cambridge, UK

Hillier B (1998) Against enclosure. In: Teymus N, Markus T, Woaley T (eds) Rehu-manising housing. Butterworths, London, pp 63–85

Hillier B (2002) A theory of the city as object: Or, how spatial laws mediate the social construction of urban space. URBAN DESIGN International 7:153–179

Hillier B, Hanson J (1989) The Social Logic of Space. Cambridge University Press, Cambridge, UK

Hillier B, Penn A (1996) Cities as movement economies. Urban Design Int 1(1):49–60

Hillier B, Iida S (2005) Network and psychological effects in urban movement. Space Syntax and Spatial Cognition , 147–165.

Jensen WA, Stump TK, Brown BB, Werner CM, Smith KR (2017) Walkability, complete streets, and gender: Who benefits most? Health Place 48:80–89

Karimi K (2012) A configurational approach to analytical urban design: ‘Space syntax’ methodology. Urban Design International 17:297–318

Karimi K (2023) The configurational structures of social spaces:  space syntax  and urban morphology in the context of analytical, evidence-based design. Land 12:2084. https://doi.org/10.3390/land12112084

Kim M, Kim Y, Choi J, Park H (2019) Identifying the cityscape of the Olympic Park using space syntax analysis and GIS. Cities 86:102–115

Kingsbury KT, Lowry MB, Dixon MP (2011) What makes a “complete street” complete?: A robust definition, given context and public input. Transp Res Rec 2245(1):103–110

Knapp K, Chandler B, Atkinson J, Welch T, Rigdon H, Retting R, Porter R (2014). Road diet informational guide (No. FHWA-SA-14–028), Federal Highway Administration Office of Safety, United States

Koohsari MJ, Owen N, Cerin E, Giles-Corti B, Sugiyama T (2016) Walkabilityand walking for transport: characterizing the built environment using space syntax. Int JBehav Nutr Phys Act 13:1–9

LaPlante J, McCann B (2008) Complete streets: We can get there from here. ITE Journal 78(5):24–28

Levy A (1999) Urban morphology and the problem of the modern urban fabric: some questions for research. Urban Morphology 3(2):79–85

Litman T (2015) Evaluating Complete Streets The Value of Designing Roads for Diverse Modes Users and Activities. Victoria Transport Policy Institute, Santiago, Chile

Lynott J, Haase J, Nelson K, Taylor A, Twaddell H, Ulmer J, Stollof ER (2009) Planning Complete Streets for an Aging America. AARP Public Policy Institute, Washington, DC

Marcus L (2007) Spatial capital and how to measure it: An outline of an analytical theory of the social performativity of urban form. In A. Kubat, E. Özhan, Y. Guney, & E. Eyuboglu (Ed.), Proceedings of sixth international space syntax symposium. Istanbul: Istanbul Technical University.

McCann B, Rynne S (2010) Complete streets: best policy and implementation practices. American Planning Association, Chicago

McCann B (2010) Happy Anniversary. Complete Streets. Retrieved from Smart Growth America: https://smartgrowthamerica.org/happy-anniversary-complete-streets/

National Complete Streets Coalition (2012). Complete Streets Policy Analysis. Retrieved from National Complete Streets Coalition: http://www.smartgrowthamerica.org/documents/cs/resources/cs policyanalysis.pdf.

National Complete Streets Coalition (2020). Complete Streets. Retrieved from Smart Growth America: https://smartgrowthamerica.org/program/national-complete-streets-coalition/what-are-complete-streets/

National Complete Streets Coalition (2022). Smart Growth America. Retrieved from Complete Streets: https://smartgrowthamerica.org/what-are-complete-streets/

Newman P, Kosonen L, Kenworthy J (2015) Theory of Urban Fabrics: Planning the Walking, Transit and Automobile Cities for Reduced Automobile Dependence. In: P. Newman, & J. Kenworthy, The End of Automobile Dependence , Island Press, Washington, DC.

Newman P, Kenworthy J (1999) Sustainability and Cities: Overcoming Automobile Dependence. Island Press, Washington, DC

Peiravian F, Derrible S (2014) Complete Streets Designs: A Comparative Emission Impact Analysis. TRB Annual Meeting , Compendium of Papers, Transportation Research Board, Washington, D.C.

Perk V, Catalá M, Mantius M, Corcoran K (2015) Capturing the Benefits of Complete Streets. NCTR, Florida

Pilkington J (2020). Space syntax as urban design tool, Digital Space, 54: 3.

Rabl A, Nazelle A (2012) Benefits of shift from car to active transport. Transp Policy 19(1):121–131

Rissel CE (2009) Active travel: a climate change mitigation strategy with co-benefits for health. N S W Public Health Bull 20(2):10–13

Sælensminde K (2004) Cost–benefit analyses of walking and cycling track networks taking into account insecurity, health effects and external costs of motorized traffic. Trans Res Part A 38(8):593–606

Sanders RL, Macdonald E, Anderson A, Ragland DR, Cooper JF (2011) Performance Measures for Complete, Green Streets: Initial Findings for Pedestrian Safety along a California Corridor. TRB Annual Meeting, Compendium of Papers , Transportation Research Boardpp, Washington, D.C.

Schiller PL, Bruun EC, Kenworthy JR (2010) An Introduction to Sustainable Transportation: Policy, Planning and Implementation. Routledge, London, Earthscan.

Seskin, S., McCann, B., Rosenblum, E., & Vanderwaart, C. (2012). Complete streets policy analysis 2011. National complete streets coalition.

Smart Growth America (2012) Complete Streets Stimulate the Economy. National Complete Street Coalition, Washington, D.C.

Smart Growth America. (2015). Introduction to Complete Streets. Retrieved from http://www.smartgrowthamerica.org/complete-streets/complete-streets fundamentals#presentation

Space Syntax Limited©. n.d. Space Syntax. Accessed June 04, 2024. https://spacesyntax.com/the-space-syntax-approach/ .

Van Nes A, Yamu C (2021) Introduction to Space Syntax in Urban Studies. Springer, Switzerland

Xia Y, Zhang L, Liu Y (2016) Special issue on big data driven Intelligent Transportation Systems. Neurocomputing 181:1–3

Yamu C, van Nes A, Garau C (2021) Bill Hillier’s Legacy: space syntax—a synopsis of basic concepts, measures, and empirical application. Sustainability 13:3394–3419

Young T (2017) Effects of complete streets infrastructure and design on street life. Columbia University, New York

Zavestoski S, Agyeman J (2014) Incomplete streets: processes, practices, and possibilities. Routledge, London

Download references

Author information

Authors and affiliations.

Department of Environmental Design Engineering, Faculty of Environment, University of Tehran, Tehran, Iran

Azadeh Mohajer Milani

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Azadeh Mohajer Milani .

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Mohajer Milani, A. Analysing Complete Street Design Principles Using Space Syntax Methodology in a Case of Haft-e-Tir Square, Tehran. Int J Environ Res 18 , 97 (2024). https://doi.org/10.1007/s41742-024-00646-x

Download citation

Received : 06 March 2024

Revised : 13 July 2024

Accepted : 15 July 2024

Published : 13 August 2024

DOI : https://doi.org/10.1007/s41742-024-00646-x

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Complete street
  • Urban fabric
  • Connection analysis
  • Integration analysis
  • Pedestrian and traffic flow
  • Find a journal
  • Publish with us
  • Track your research

COMMENTS

  1. Case Study Methodology of Qualitative Research: Key Attributes and

    A case study is one of the most commonly used methodologies of social research. This article attempts to look into the various dimensions of a case study research strategy, the different epistemological strands which determine the particular case study type and approach adopted in the field, discusses the factors which can enhance the effectiveness of a case study research, and the debate ...

  2. Case Study

    A case study is a research method that involves an in-depth examination and analysis of a particular phenomenon or case, such as an individual, organization, community, event, or situation. It is a qualitative research approach that aims to provide a detailed and comprehensive understanding of the case being studied. Case studies typically ...

  3. Case Study Methods and Examples

    This study represents a general structure to guide, design, and fulfill a case study research with levels and steps necessary for researchers to use in their research. Lai, D., & Roccu, R. (2019). Case study research and critical IR: the case for the extended case methodology. International Relations, 33(1), 67-87.

  4. What Is a Case Study?

    Revised on November 20, 2023. A case study is a detailed study of a specific subject, such as a person, group, place, event, organization, or phenomenon. Case studies are commonly used in social, educational, clinical, and business research. A case study research design usually involves qualitative methods, but quantitative methods are ...

  5. Case Study Method: A Step-by-Step Guide for Business Researchers

    Some famous books about case study methodology (Merriam, 2002; Stake, 1995; Yin, 2011) provide useful details on case study research but they emphasize more on theory as compared to practice, and most of them do not provide the basic knowledge of case study conduct for beginners (Hancock & Algozzine, 2016). This article is an attempt to bridge ...

  6. (PDF) Qualitative Case Study Methodology: Study Design and

    McMaster University, West Hamilton, Ontario, Canada. Qualitative case study methodology prov ides tools for researchers to study. complex phenomena within their contexts. When the approach is ...

  7. The case study approach

    A case study is a research approach that is used to generate an in-depth, multi-faceted understanding of a complex issue in its real-life context. It is an established research design that is used extensively in a wide variety of disciplines, particularly in the social sciences. A case study can be defined in a variety of ways (Table 5 ), the ...

  8. Continuing to enhance the quality of case study methodology in health

    Introduction. The popularity of case study research methodology in Health Services Research (HSR) has grown over the past 40 years. 1 This may be attributed to a shift towards the use of implementation research and a newfound appreciation of contextual factors affecting the uptake of evidence-based interventions within diverse settings. 2 Incorporating context-specific information on the ...

  9. Methodology or method? A critical review of qualitative case study

    Definitions of qualitative case study research. Case study research is an investigation and analysis of a single or collective case, intended to capture the complexity of the object of study (Stake, 1995).Qualitative case study research, as described by Stake (), draws together "naturalistic, holistic, ethnographic, phenomenological, and biographic research methods" in a bricoleur design ...

  10. 22 Case Study Research: In-Depth Understanding in Context

    From this point on and in further studies, case study in educational research and evaluation came to be a major methodology for understanding complex educational and social programs. It also extended to other practice professions, such as nursing, health, and social care ( Zucker, 2001 ; Greenhalgh & Worrall, 1997 ; Shaw & Gould, 2001 ).

  11. Methodology or method? A critical review of qualitative case study reports

    Definitions of qualitative case study research. Case study research is an investigation and analysis of a single or collective case, intended to capture the complexity of the object of study (Stake, Citation 1995).Qualitative case study research, as described by Stake (Citation 1995), draws together "naturalistic, holistic, ethnographic, phenomenological, and biographic research methods ...

  12. (PDF) Case Study Research

    The case study method is a research strategy that aims to gain an in-depth understanding of a specific phenomenon by collecting and analyzing specific data within its true context (Rebolj, 2013 ...

  13. (PDF) Case study as a research method

    Case study method enables a researcher to closely examine the data within a specific context. In most cases, a case study method selects a small geograph ical area or a very li mited number. of ...

  14. The Case Study as Research Method: A Practical Handbook

    This book aims to provide case‐study researchers with a step‐by‐step practical guide to "help them conduct the study with the required degree of rigour" (p. xi). It seeks to "demonstrate that the case study is indeed a scientific method" (p. 104) and to show "the usefulness of the case method as one tool in the researcher's ...

  15. 23 Case Study Research: In-Depth Understanding in Context

    This chapter explores case study as a major approach to research and evaluation using primarily qualitative methods, as well as documentary sources, contemporaneous or historical. However, this is not the only way in which case study can be conceived. No one has a monopoly on the term. While sharing a focus on the singular in a particular context, case study has a wide variety of uses, not all ...

  16. Toward Developing a Framework for Conducting Case Study Research

    Nevertheless, the case study researchers mentioned above emphasize different features. Stake points out that crucial to case study research are not the methods of investigation, but that the object of study is a case: "As a form of research, the case study is defined by the interest in individual cases, not by the methods of inquiry used."

  17. LibGuides: Research Writing and Analysis: Case Study

    A Case study is: An in-depth research design that primarily uses a qualitative methodology but sometimes includes quantitative methodology. Used to examine an identifiable problem confirmed through research. Used to investigate an individual, group of people, organization, or event. Used to mostly answer "how" and "why" questions.

  18. The case study approach

    A case study is a research approach that is used to generate an in-depth, multi-faceted understanding of a complex issue in its real-life context. It is an established research design that is used extensively in a wide variety of disciplines, particularly in the social sciences. A case study can be defined in a variety of ways (Table 5 ), the ...

  19. PDF Case study as a research method

    of case study method in research becomes more prominent when issues with regard to education (Gulsecen & Kubat, 2006), sociology (Grassel & Schirmer, 2006) and community-based problems (Johnson, 2006), such as poverty, unemployment, drug addiction, illiteracy, etc. were raised. One of the reasons for the recognition of case study as a research ...

  20. Distinguishing case study as a research method from case reports as a

    Case study as a qualitative methodology is an exploration of a time- and space-bound phenomenon. As qualitative research, case studies require much more from their authors who are acting as instruments within the inquiry process. In the case study methodology, a variety of methodological approaches may be employed to explain the complexity of ...

  21. Case Studies

    Case Studies. Case studies are a popular research method in business area. Case studies aim to analyze specific issues within the boundaries of a specific environment, situation or organization. According to its design, case studies in business research can be divided into three categories: explanatory, descriptive and exploratory.

  22. Systems

    The current research took ISACO company into account as a case study. ISACO, as the provider of after-sales service company of Iran Khodro Industrial Group, is the largest car manufacturer in the Middle East, which has an extensive commercial and service network to provide proper services to the customers and buyers of Iran Khodro products.

  23. A pragmatic, stepped-wedge, hybrid type II trial of interoperable

    Study aims and implementation framework. This trial consists of a stepped wedge hybrid effectiveness-implementation trial to scale the CDS system across 4 trauma systems and in parallel evaluate implementation strategy guided by the Exploration, Preparation, Implementation, and Sustainment (EPIS) implementation framework (Fig. 1a) [].We anticipate variability in CDS adoption across sites ...

  24. What Is a Case, and What Is a Case Study?

    Résumé. Case study is a common methodology in the social sciences (management, psychology, science of education, political science, sociology). A lot of methodological papers have been dedicated to case study but, paradoxically, the question "what is a case?" has been less studied.

  25. FTO gene polymorphism and susceptibility to polycystic ovary syndrome

    Aim. To explore the correlation between Fat mass and objectivity associated gene (FTO) rs9939609 polymorphism and susceptibility to polycystic ovary syndrome.Methods. Case-control studies on the relationship between FTO rs9939609 A/T polymorphism and PCOS were searched in PubMed, EMBASE, and Web of Science according to inclusion and exclusion criteria.

  26. Mapping biomimicry research to sustainable development goals

    This study systematically evaluates biomimicry research within the context of sustainable development goals (SDGs) to discern the interdisciplinary interplay between biomimicry and SDGs. The ...

  27. Frontiers

    Consequently, it is of paramount importance to devise or refine the methodology of food design innovation. This study makes a significant contribution to the field of sustainable food design by combining design methodology with sociological concepts such as "Field and Habitus" to construct the "F-U-BVF" food lifestyle analysis framework.

  28. Case Study Method: A Step-by-Step Guide for Business Researchers

    First is to provide a step-by-step guideline to research students for conducting case study. Second, an analysis of authors' multiple case studies is presented in order to provide an application of step-by-step guideline. This article has been divided into two sections. First section discusses a checklist with four phases that are vital for ...

  29. Analysing Complete Street Design Principles Using Space ...

    The study is to understand how complete street design strategies influence the connectivity and integration of the urban fabric, focusing on Haft-e-Tir Square in Tehran as a case study. Employing space syntax methodology, the current layout and a design proposal based on Complete Street strategies for the square had analysed to reveal the ...