Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Methodology

  • How to Write a Strong Hypothesis | Steps & Examples

How to Write a Strong Hypothesis | Steps & Examples

Published on May 6, 2022 by Shona McCombes . Revised on November 20, 2023.

A hypothesis is a statement that can be tested by scientific research. If you want to test a relationship between two or more variables, you need to write hypotheses before you start your experiment or data collection .

Example: Hypothesis

Daily apple consumption leads to fewer doctor’s visits.

Table of contents

What is a hypothesis, developing a hypothesis (with example), hypothesis examples, other interesting articles, frequently asked questions about writing hypotheses.

A hypothesis states your predictions about what your research will find. It is a tentative answer to your research question that has not yet been tested. For some research projects, you might have to write several hypotheses that address different aspects of your research question.

A hypothesis is not just a guess – it should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations and statistical analysis of data).

Variables in hypotheses

Hypotheses propose a relationship between two or more types of variables .

  • An independent variable is something the researcher changes or controls.
  • A dependent variable is something the researcher observes and measures.

If there are any control variables , extraneous variables , or confounding variables , be sure to jot those down as you go to minimize the chances that research bias  will affect your results.

In this example, the independent variable is exposure to the sun – the assumed cause . The dependent variable is the level of happiness – the assumed effect .

Receive feedback on language, structure, and formatting

Professional editors proofread and edit your paper by focusing on:

  • Academic style
  • Vague sentences
  • Style consistency

See an example

example of a hypothesis in chemistry

Step 1. Ask a question

Writing a hypothesis begins with a research question that you want to answer. The question should be focused, specific, and researchable within the constraints of your project.

Step 2. Do some preliminary research

Your initial answer to the question should be based on what is already known about the topic. Look for theories and previous studies to help you form educated assumptions about what your research will find.

At this stage, you might construct a conceptual framework to ensure that you’re embarking on a relevant topic . This can also help you identify which variables you will study and what you think the relationships are between them. Sometimes, you’ll have to operationalize more complex constructs.

Step 3. Formulate your hypothesis

Now you should have some idea of what you expect to find. Write your initial answer to the question in a clear, concise sentence.

4. Refine your hypothesis

You need to make sure your hypothesis is specific and testable. There are various ways of phrasing a hypothesis, but all the terms you use should have clear definitions, and the hypothesis should contain:

  • The relevant variables
  • The specific group being studied
  • The predicted outcome of the experiment or analysis

5. Phrase your hypothesis in three ways

To identify the variables, you can write a simple prediction in  if…then form. The first part of the sentence states the independent variable and the second part states the dependent variable.

In academic research, hypotheses are more commonly phrased in terms of correlations or effects, where you directly state the predicted relationship between variables.

If you are comparing two groups, the hypothesis can state what difference you expect to find between them.

6. Write a null hypothesis

If your research involves statistical hypothesis testing , you will also have to write a null hypothesis . The null hypothesis is the default position that there is no association between the variables. The null hypothesis is written as H 0 , while the alternative hypothesis is H 1 or H a .

  • H 0 : The number of lectures attended by first-year students has no effect on their final exam scores.
  • H 1 : The number of lectures attended by first-year students has a positive effect on their final exam scores.
Research question Hypothesis Null hypothesis
What are the health benefits of eating an apple a day? Increasing apple consumption in over-60s will result in decreasing frequency of doctor’s visits. Increasing apple consumption in over-60s will have no effect on frequency of doctor’s visits.
Which airlines have the most delays? Low-cost airlines are more likely to have delays than premium airlines. Low-cost and premium airlines are equally likely to have delays.
Can flexible work arrangements improve job satisfaction? Employees who have flexible working hours will report greater job satisfaction than employees who work fixed hours. There is no relationship between working hour flexibility and job satisfaction.
How effective is high school sex education at reducing teen pregnancies? Teenagers who received sex education lessons throughout high school will have lower rates of unplanned pregnancy teenagers who did not receive any sex education. High school sex education has no effect on teen pregnancy rates.
What effect does daily use of social media have on the attention span of under-16s? There is a negative between time spent on social media and attention span in under-16s. There is no relationship between social media use and attention span in under-16s.

If you want to know more about the research process , methodology , research bias , or statistics , make sure to check out some of our other articles with explanations and examples.

  • Sampling methods
  • Simple random sampling
  • Stratified sampling
  • Cluster sampling
  • Likert scales
  • Reproducibility

 Statistics

  • Null hypothesis
  • Statistical power
  • Probability distribution
  • Effect size
  • Poisson distribution

Research bias

  • Optimism bias
  • Cognitive bias
  • Implicit bias
  • Hawthorne effect
  • Anchoring bias
  • Explicit bias

Here's why students love Scribbr's proofreading services

Discover proofreading & editing

A hypothesis is not just a guess — it should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations and statistical analysis of data).

Null and alternative hypotheses are used in statistical hypothesis testing . The null hypothesis of a test always predicts no effect or no relationship between variables, while the alternative hypothesis states your research prediction of an effect or relationship.

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics. It is used by scientists to test specific predictions, called hypotheses , by calculating how likely it is that a pattern or relationship between variables could have arisen by chance.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

McCombes, S. (2023, November 20). How to Write a Strong Hypothesis | Steps & Examples. Scribbr. Retrieved July 4, 2024, from https://www.scribbr.com/methodology/hypothesis/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, construct validity | definition, types, & examples, what is a conceptual framework | tips & examples, operationalization | a guide with examples, pros & cons, "i thought ai proofreading was useless but..".

I've been using Scribbr for years now and I know it's a service that won't disappoint. It does a good job spotting mistakes”

What Is a Hypothesis? (Science)

If...,Then...

Angela Lumsden/Getty Images

  • Scientific Method
  • Chemical Laws
  • Periodic Table
  • Projects & Experiments
  • Biochemistry
  • Physical Chemistry
  • Medical Chemistry
  • Chemistry In Everyday Life
  • Famous Chemists
  • Activities for Kids
  • Abbreviations & Acronyms
  • Weather & Climate
  • Ph.D., Biomedical Sciences, University of Tennessee at Knoxville
  • B.A., Physics and Mathematics, Hastings College

A hypothesis (plural hypotheses) is a proposed explanation for an observation. The definition depends on the subject.

In science, a hypothesis is part of the scientific method. It is a prediction or explanation that is tested by an experiment. Observations and experiments may disprove a scientific hypothesis, but can never entirely prove one.

In the study of logic, a hypothesis is an if-then proposition, typically written in the form, "If X , then Y ."

In common usage, a hypothesis is simply a proposed explanation or prediction, which may or may not be tested.

Writing a Hypothesis

Most scientific hypotheses are proposed in the if-then format because it's easy to design an experiment to see whether or not a cause and effect relationship exists between the independent variable and the dependent variable . The hypothesis is written as a prediction of the outcome of the experiment.

Null Hypothesis and Alternative Hypothesis

Statistically, it's easier to show there is no relationship between two variables than to support their connection. So, scientists often propose the null hypothesis . The null hypothesis assumes changing the independent variable will have no effect on the dependent variable.

In contrast, the alternative hypothesis suggests changing the independent variable will have an effect on the dependent variable. Designing an experiment to test this hypothesis can be trickier because there are many ways to state an alternative hypothesis.

For example, consider a possible relationship between getting a good night's sleep and getting good grades. The null hypothesis might be stated: "The number of hours of sleep students get is unrelated to their grades" or "There is no correlation between hours of sleep and grades."

An experiment to test this hypothesis might involve collecting data, recording average hours of sleep for each student and grades. If a student who gets eight hours of sleep generally does better than students who get four hours of sleep or 10 hours of sleep, the hypothesis might be rejected.

But the alternative hypothesis is harder to propose and test. The most general statement would be: "The amount of sleep students get affects their grades." The hypothesis might also be stated as "If you get more sleep, your grades will improve" or "Students who get nine hours of sleep have better grades than those who get more or less sleep."

In an experiment, you can collect the same data, but the statistical analysis is less likely to give you a high confidence limit.

Usually, a scientist starts out with the null hypothesis. From there, it may be possible to propose and test an alternative hypothesis, to narrow down the relationship between the variables.

Example of a Hypothesis

Examples of a hypothesis include:

  • If you drop a rock and a feather, (then) they will fall at the same rate.
  • Plants need sunlight in order to live. (if sunlight, then life)
  • Eating sugar gives you energy. (if sugar, then energy)
  • White, Jay D.  Research in Public Administration . Conn., 1998.
  • Schick, Theodore, and Lewis Vaughn.  How to Think about Weird Things: Critical Thinking for a New Age . McGraw-Hill Higher Education, 2002.
  • Null Hypothesis Examples
  • Examples of Independent and Dependent Variables
  • Difference Between Independent and Dependent Variables
  • The Difference Between Control Group and Experimental Group
  • Null Hypothesis Definition and Examples
  • Definition of a Hypothesis
  • What Are the Elements of a Good Hypothesis?
  • Six Steps of the Scientific Method
  • Independent Variable Definition and Examples
  • What Are Examples of a Hypothesis?
  • Understanding Simple vs Controlled Experiments
  • Scientific Method Flow Chart
  • Scientific Method Vocabulary Terms
  • What Is a Testable Hypothesis?
  • What 'Fail to Reject' Means in a Hypothesis Test
  • How To Design a Science Fair Experiment

Encyclopedia Britannica

  • Games & Quizzes
  • History & Society
  • Science & Tech
  • Biographies
  • Animals & Nature
  • Geography & Travel
  • Arts & Culture
  • On This Day
  • One Good Fact
  • New Articles
  • Lifestyles & Social Issues
  • Philosophy & Religion
  • Politics, Law & Government
  • World History
  • Health & Medicine
  • Browse Biographies
  • Birds, Reptiles & Other Vertebrates
  • Bugs, Mollusks & Other Invertebrates
  • Environment
  • Fossils & Geologic Time
  • Entertainment & Pop Culture
  • Sports & Recreation
  • Visual Arts
  • Demystified
  • Image Galleries
  • Infographics
  • Top Questions
  • Britannica Kids
  • Saving Earth
  • Space Next 50
  • Student Center

experiments disproving spontaneous generation

  • When did science begin?
  • Where was science invented?

Blackboard inscribed with scientific formulas and calculations in physics and mathematics

scientific hypothesis

Our editors will review what you’ve submitted and determine whether to revise the article.

  • National Center for Biotechnology Information - PubMed Central - On the scope of scientific hypotheses
  • LiveScience - What is a scientific hypothesis?
  • The Royal Society - Open Science - On the scope of scientific hypotheses

experiments disproving spontaneous generation

scientific hypothesis , an idea that proposes a tentative explanation about a phenomenon or a narrow set of phenomena observed in the natural world. The two primary features of a scientific hypothesis are falsifiability and testability, which are reflected in an “If…then” statement summarizing the idea and in the ability to be supported or refuted through observation and experimentation. The notion of the scientific hypothesis as both falsifiable and testable was advanced in the mid-20th century by Austrian-born British philosopher Karl Popper .

The formulation and testing of a hypothesis is part of the scientific method , the approach scientists use when attempting to understand and test ideas about natural phenomena. The generation of a hypothesis frequently is described as a creative process and is based on existing scientific knowledge, intuition , or experience. Therefore, although scientific hypotheses commonly are described as educated guesses, they actually are more informed than a guess. In addition, scientists generally strive to develop simple hypotheses, since these are easier to test relative to hypotheses that involve many different variables and potential outcomes. Such complex hypotheses may be developed as scientific models ( see scientific modeling ).

Depending on the results of scientific evaluation, a hypothesis typically is either rejected as false or accepted as true. However, because a hypothesis inherently is falsifiable, even hypotheses supported by scientific evidence and accepted as true are susceptible to rejection later, when new evidence has become available. In some instances, rather than rejecting a hypothesis because it has been falsified by new evidence, scientists simply adapt the existing idea to accommodate the new information. In this sense a hypothesis is never incorrect but only incomplete.

The investigation of scientific hypotheses is an important component in the development of scientific theory . Hence, hypotheses differ fundamentally from theories; whereas the former is a specific tentative explanation and serves as the main tool by which scientists gather data, the latter is a broad general explanation that incorporates data from many different scientific investigations undertaken to explore hypotheses.

Countless hypotheses have been developed and tested throughout the history of science . Several examples include the idea that living organisms develop from nonliving matter, which formed the basis of spontaneous generation , a hypothesis that ultimately was disproved (first in 1668, with the experiments of Italian physician Francesco Redi , and later in 1859, with the experiments of French chemist and microbiologist Louis Pasteur ); the concept proposed in the late 19th century that microorganisms cause certain diseases (now known as germ theory ); and the notion that oceanic crust forms along submarine mountain zones and spreads laterally away from them ( seafloor spreading hypothesis ).

Search for a topic!

  • Popular search:
  • Bio-inorganic Chemistry
  • Introduction to Experimentation in Chemistry ChemistAi Team
  • Conducting Controlled Procedures in Chemistry ChemistAi Team
  • How to Observe, Analyze, and Validate Chemical Reactions ChemistAi Team
  • Chemical Experimentation: Hypotheses and Theories ChemistAi Team
  • Setting up Experiments for Observing Chemical Reactions ChemistAi Team
  • Scientific Method in Chemistry: Hypothesis, Experimentation, and Analysis ChemistAi Team
  • Validating Theories through Controlled Procedures in Chemistry ChemistAi Team
  • Analyzing Results of Chemical Experiments ChemistAi Team
  • Experimentation Techniques for Chemical Reactions ChemistAi Team
  • Experimental Design in Chemistry ChemistAi Team
  • Safety Measures in Chemistry Experimentation ChemistAi Team
  • Interpreting Data From Chemical Experiments ChemistAi Team
  • The Role of Experimentation in Advancing Chemical Theory ChemistAi Team
  • Chemical Analysis and Validation in Experimentation ChemistAi Team

Experimental Chemistry: From Hypothesis to Conclusion

A topic from the subject of Experimentation in Chemistry.

avatar

  • 5 months ago

Introduction

Experimental chemistry, often referred as 'bench chemistry', is the study of chemical reactions, properties, structures, and theories through practical, hands-on experimentation. This guide walks you through the process, from forming a hypothesis to reaching a conclusion.

Basic Concepts

  • Hypothesis Formation: It involves formulating a scientific assumption regarding expected outcomes of a chemical experiment.
  • Experimental Design: Outlines the steps to be taken in conducting the experiment.
  • Execution: Actual performance of the experiment to collect data.
  • Analysis: Examination of results after the experiment.
  • Conclusion: Final determination of the experiment outcome against the initial hypothesis.

Equipment and Techniques

The tools and techniques used in experimental chemistry range from basic lab equipment to sophisticated instruments.

  • Basic Lab Equipment: Includes beakers, flasks, test tubes, pipettes, etc.
  • Advanced Instruments: Spectrometers, chromatographs, microscopes, and more.
  • Techniques: Titration, crystallization, distillation, centrifugation among others.

Types of Experiments

Different types of experiments help us understand various aspects of chemistry:

  • Qualitative Experiments: These investigate the quality of substances - what they are.
  • Quantitative Experiments: These measure quantities - how much of a substance is involved.
  • Organic Experiments: These involve the chemistry of carbon compounds (other than simple salts).
  • Inorganic Experiments: These study all elements and their compounds, excluding organic compounds.

Data Analysis

Involves interpretation of raw data gained from the experiment to deduce meaningful results. Mathematical and statistical techniques are used to validate hypothesis.

Applications

Experimental chemistry has countless applications:

  • Pharmaceuticals: For drug discovery and testing.
  • Industries: In production of dyes, polymers, ceramics, etc.
  • Food and Beverages: For quality and safety testing.
  • Environmental Science: In studying effects of chemicals on environment.

The conclusion sums up the results of the experiment, stating whether the hypothesis has been proved or disproved, and discussing any anomalies or implications.

Experimental chemistry involves the systematic process of testing scientific ideas or theories using experiments. It starts from making a hypothesis , undertaking experiments , collecting and analyzing data , and concludes with the inference or conclusion part. Each step plays a crucial role in the discovery and development of new concepts in chemistry.

A hypothesis is a proposed explanation made on the basis of limited evidence as a starting point for further investigation. It sets the direction for the experiment by predicting an anticipated outcome. A well-framed hypothesis is both testable and measurable.

Experimentation

The experimentation stage involves the design and implementation of tests to challenge the hypothesis. This includes control of variables, careful measurement, and accurate data collection.

  • Control of Variables: A good experiment maintains control over all the variables except the one being tested (independent variable).
  • Measurement: The process must involve precise measurement to ensure reliable results. Tools like beakers, Bunsen burners, pipettes and spectrophotometers may be used.
  • Data Collection: Proper data collection is critical as it will be used for analysis to support or refute the hypothesis.

The data analysis phase involves interpreting the data collected during the experiment. This can be done through various methods including statistical analysis, graphing and observing patterns or trends. The data should be reviewed and checked for any errors in measurement or collection.

The final step is drawing a conclusion based on the data analysis. The conclusion either supports or refutes the initial hypothesis. If the hypothesis is proven false, a new hypothesis may be developed and the process repeats. A conclusion also opens the way for further research and experiments.

In summary, experimental chemistry follows a process of hypothesis-experiment-data analysis-conclusion. By following this process, we can develop a thorough understanding of chemical processes and principles.

Experiment: The Effect of Temperature on Rate of Reaction

This experiment involves studying the effect of temperature on the rate of reaction between sodium thiosulfate solution and hydrochloric acid. The reaction produced is a precipitation reaction, resulting in a solution which turns 'cloudy'. The aim of the experiment is to determine how changing the temperature of the sodium thiosulfate solution affects the rate at which the reaction occurs.

  • Thermometer
  • Hydrochloric acid
  • Sodium thiosulfate solution
  • Conical flask
  • Heat source (water bath)
  • Heat up different amounts of sodium thiosulfate solution to various temperatures, being careful to note the starting temperatures.
  • Add the same amount of hydrochloric acid to each flask.
  • Start the stopwatch as soon as the acid is added.
  • Stop the timer when the solution turns fully opaque or 'cloudy'.
  • Record the time taken for this to occur for each temperature.

It is observed that as the temperature of the sodium thiosulfate solution increases, the time taken for the solution to turn 'cloudy' is lessened, indicating a faster reaction.

Conclusion:

The experiment supports the hypothesis that an increase in temperature increases the rate of reaction. This effect can be explained by the collision theory, which postulates that an increase in temperature provides more kinetic energy to reactant molecules, allowing them to collide more frequently and with greater energy, thus increasing the rate of reaction.

The understanding of how temperature affects the rate of reaction is significant in many areas, notably in industrial processes where controlling the rate of chemical reactions is essential. This can include adjusting the temperature in reactors to optimize the production rate or controlling the temperature in refrigeration processes to slow down unwanted reactions.

Was this article helpful?

ChemistAi

Elevate Your Chemistry Experience

Revolutionize your scientific endeavors with cutting-edge Chemistry AI technology.

Writing a hypothesis and prediction

Part of Biology Working scientifically

  • A hypothesis is an idea about how something works that can be tested using experiments.
  • A prediction says what will happen in an experiment if the hypothesis is correct.

Why do scientists ask questions?

Show answer Hide answer

To help find things out and solve problems.

Watch this video about how to make a scientific prediction.

This video can not be played

To play this video you need to enable JavaScript in your browser.

While you are watching, look out for how different types of variables are identified and used to make a prediction

Video Transcript Video Transcript

Presenter 1: We are going to look at the two words "prediction" and "hypothesis". It's important to know the difference between them.

Presenter 2: A hypothesis is an idea about how something works that can be tested using experiments.

Presenter 1: A prediction is a statement of what we think will happen if the hypothesis is correct.

Presenter 2: So you use your hypothesis to make a prediction.

Student 1: I reckon, because there's more oxygen, it'll last longer. So, I'm thinking maybe 40 seconds?

Presenter 1: Here, my hypothesis is that the more air and oxygen candles have, the longer they stay alight.

Presenter 2: So, if my hypothesis is correct, then my prediction is that candles in larger measuring beakers will burn for longer.

Presenter 1: As the volume of air increases, then the time the candle takes to go out also increases. Our graph shows us the pattern in our results.

Presenter 2: The bigger the measuring beaker, the more air and the longer the candle burnt.

Presenter 1: So, we have seen an experiment looking at how long a candle burns under different beakers.

Presenter 2: We have formed a hypothesis and then we have tested it, looking at the difference between the meaning of the word "hypothesis" and the word "prediction".

What's the question?

Science is all about asking questions and then trying to find answers to them. For example:

  • Why are there so many different animals on Earth?
  • Why is the sky blue?
  • Will humans need to live on the moon?

Science can provide answers to some questions, by using observations close Observation Something that can be seen happening. and experiments. Data is collected to help answer these questions.

example of a hypothesis in chemistry

The scientific method is a useful way of guiding scientists through an investigation. A hypothesis is developed from an idea or question based on an observation . A prediction is then made, an experiment carried out to test this, then the results are analysed and conclusions can be drawn.

A prediction suggests that there is a relationship between which two types of variables?

Independent and dependent variables.

Prediction and hypothesis

A teenager rests their head on a desk, with books and laptop visible.

More on Working scientifically

Find out more by working through a topic

Planning an experiment

  • count 4 of 11

example of a hypothesis in chemistry

Maths skills for science

  • count 5 of 11

example of a hypothesis in chemistry

Drawing scientific apparatus

  • count 6 of 11

example of a hypothesis in chemistry

Observation and measurement skills

  • count 7 of 11

example of a hypothesis in chemistry

Study.com

In order to continue enjoying our site, we ask that you confirm your identity as a human. Thank you very much for your cooperation.

  • Science & Math
  • Sociology & Philosophy
  • Law & Politics

How to Write Hypothesis for Lab Report

  • How to Write Hypothesis for…

What Is a Real Hypothesis?

A hypothesis is a tentative statement that proposes a possible explanation for some phenomenon or event. A useful hypothesis is a testable statement that may include a prediction.

When Are Hypotheses Used?

The keyword is testable. That is, you will perform a test of how two variables might be related. This is when you are doing a real experiment. You are testing variables. Usually, a hypothesis is based on some previous observations such as noticing that in November many trees undergo color changes in their leaves and the average daily temperatures are dropping. Are these two events connected? How?

Any laboratory procedure you follow without a hypothesis is really not an experiment. It is just an exercise or demonstration of what is already known.

How Are Hypotheses Written?

  • Chocolate may cause pimples.
  • Salt in soil may affect plant growth.
  • Plant growth may be affected by the color of the light.
  • Bacterial growth may be affected by temperature.
  • Ultraviolet light may cause skin cancer.
  • The temperature may cause leaves to change color.

All of these are examples of hypotheses because they use the tentative word “may.”. However, their form is not particularly useful. Using the word may do not suggest how you would go about proving it. If these statements had not been written carefully, they may not have even been hypotheses at all. For example, if we say “Trees will change color when it gets cold.” we are making a prediction. Or if we write, “Ultraviolet light causes skin cancer.” could be a conclusion. One way to prevent making such easy mistakes is to formalize the form of the hypothesis.

Formalized Hypotheses example: If the incidence of skin cancer is related to exposure levels of ultraviolet light , then people with a high exposure to uv light will have a higher frequency of skin cancer.

If leaf color change is related to temperature , then exposing plants to low temperatures will result in changes in leaf color .

Notice that these statements contain the words, if and then. They are necessary for a formalized hypothesis. But not all if-then statements are hypotheses. For example, “If I play the lottery, then I will get rich.” This is a simple prediction. In a formalized hypothesis, a tentative relationship is stated. For example, if the frequency of winning is related to the frequency of buying lottery tickets . “Then” is followed by a prediction of what will happen if you increase or decrease the frequency of buying lottery tickets. If you always ask yourself that if one thing is related to another, then you should be able to test it.

Formalized hypotheses contain two variables. One is “independent” and the other is “dependent.” The independent variable is the one you, the “scientist” control, and the dependent variable is the one that you observe and/or measure the results. In the statements above the dependent variable is underlined and the independent variable is underlined and italicized .

The ultimate value of a formalized hypothesis is it forces us to think about what results we should look for in an experiment.

For the “ If, Then, Because ” hypothesis…you would use: “ IF pigs and humans share the same nutritional behaviors, THEN their internal organs should look relatively the same BECAUSE of similar function and composure.” That is an example. For the “If, Then, Because” you should follow this guideline:

IF X and Y both do or share this, THEN this should be found/confirmed, BECAUSE of this fact or logical assumption.

Example Question : How does the type of liquid (water, milk, or orange juice) given to a plant affect how tall the plant will grow? Hypothesis : If the plant is given water then the plant will grow the tallest because water helps the plant absorb the nutrients that the plant needs to survive.

Related Posts

  • Energy Content of Food Lab Report Answers
  • Phet Projectile Motion Lab: Lab Answers
  • Magnesium Oxide: Percent Yield Lab Report
  • How to Write a Formal Laboratory Report
  • Physics: Lab Report Style

16 Comments

How would I write a hypothesis about a flying pig lab?

your lab hypothesis should have been written before the experiment. The purpose of the hypothesis was to create a testable statement in which your experimental data would either support or reject. Having a hypothesis based on a logical assumption (regardless of whether your data supports it) is still correct. If there is a disagreement between your hypothesis and experimental data it should be addressed in the discussion.

So you can go ahead an choose a hypothesis for either increase or decrease of adipogenesis after the inducement of insulin and not be wrong….as long as it is correctly formatted (see examples above).

Hey, I am having trouble writing my hypothesis.. I am supposed to write a hypothesis about how much adipogenesis was produced after the inducement of insulin. However, after proceeding with the experiments the results were On/Off .. meaning it will increase, decrease, increase, etc.. so it wasnt a constant result. It was supposed to be increasing.

please help!!!

this is very helpful but i don’t know how i would structure my hypothesis. i’m supposed to come up with a hypothesis related to the topic ‘how does mass effect the stopping distance of a cart?’. Could you help?

Thank you so much, it really help alot.:)

This is a rather difficult usage of this construct. It would most likely follow

“If the empirical formula of (enter compound’s name) is (enter compound’s formula) then it would be expected that combustion of _________ would yield _________, because (enter your rationale)

Need more background info.

For the “If, then, because” hypothesis I am doing an experiment to determine the empirical formula by using combustion but I am unsure on how to formulate the hypothesis using this structure.

For the “If, Then, Because” hypothesis…you would use: “IF pigs and humans share the same nutritional behaviors, THEN their internal organs should look relatively the same BECAUSE of similar function and composure.” That is an example. For the “If, Then, Because” you should follow this guideline:

Thanks, really helpful. Just one question, what about the ‘because’ part? right after the ‘if’ and ‘then’ parts?

I really need help for onion skin lab hypothesis for class

@Lauren An if/and statement is not usually apart of the convention. What exactly do you need help with?

Is there such thing as a if/and statement? I am in 8th grade science an I need to know for my lab report due tomorrow.HELP!!!!

Would have been better if more examples were given

If the purpose of your lab is “To obtain dissecting skills in an observational lab,” you can’t really formulate a testable hypothesis for that. I’ll assume you are doing some kind of pig or frog dissection. Often teachers give general outlines of skills that students are meant to ascertain from an experiment which aren’t necessarily what the actual experiment is directly testing. Obviously to do the dissection lab you need to obtain dissection skills but testing that would be rather subjective unless the teacher provided you with standards or operationally defined “dissecting skills”. If I were you, I would obviously mention it in the introduction of your lab but I am not sure if your teacher wants you to actually format it as a hypothesis; you can ask your teacher for clarification. If making a hypothesis from each purpose was some arbitrary exercise assigned to you then, it could look like this:

“If a student has successful acquired dissection skills, then they will be able to complete this observational lab with satisfactory competence because they utilized these newly acquired skills.”

For the “If, Then, Because” hypothesis…you pretty much have it. You would modify what you posted: “IF pigs and humans share the same nutritional behaviors, THEN their internal organs should look relatively the same BECAUSE of similar function and composure.” That is an example. For the “If, Then, Because” you should follow this guideline:

Thanks for this, it proved to be helpful. However, I do have a few questions. Obviously different teachers or instructors have their own requirements for their classes. How would you write an appropriate Question to follow each purpose in your lab report? For example: If the purpose was, “To obtain dissecting skills in an observational lab,” what question could you formulate with the purpose? (which is answered in the hypothesis)

And if a teacher requires the hypothesis to be in the format “If, Then, Because” how should this be written? I can actively complete the if and then, but I’m unsure how to incorporate the “because’ statement. For example, “If pigs and humans share the same nutritional behaviors, then their internal organs should function comparably and look relatively the same.” (how do i incorporate because?)

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

Post comment

example of a hypothesis in chemistry

Advertisement

Three Famous Hypotheses and How They Were Tested

  • Share Content on Facebook
  • Share Content on LinkedIn
  • Share Content on Flipboard
  • Share Content on Reddit
  • Share Content via Email

Art Hasler

Key Takeaways

  • Ivan Pavlov's experiment demonstrated conditioned responses in dogs.
  • Pavlov's work exemplifies the scientific method, starting with a hypothesis about conditioned responses and testing it through controlled experiments.
  • Pavlov's findings not only advanced an understanding of animal physiology but also laid foundational principles for behaviorism, a major school of thought in psychology that emphasizes the study of observable behaviors.

Coho salmon ( Oncorhynchus kisutch ) are amazing fish. Indigenous to the Pacific Northwest, they begin their lives in freshwater streams and then relocate to the open ocean. But when a Coho salmon reaches breeding age, it'll return to the waterway of its birth , sometimes traveling 400 miles (644 kilometers) to get there.

Enter the late Arthur Davis Hasler. While an ecologist and biologist at the University of Wisconsin, he was intrigued by the question of how these creatures find their home streams. And in 1960, he used a Hypothesis-Presentation.pdf">basic tenet of science — the hypothesis — to find out.

So what is a hypothesis? A hypothesis is a tentative, testable explanation for an observed phenomenon in nature. Hypotheses are narrow in scope — unlike theories , which cover a broad range of observable phenomena and draw from many different lines of evidence. Meanwhile, a prediction is a result you'd expect to get if your hypothesis or theory is accurate.

So back to 1960 and Hasler and those salmon. One unverified idea was that Coho salmon used eyesight to locate their home streams. Hasler set out to test this notion (or hypothesis). First, he rounded up several fish who'd already returned to their native streams. Next, he blindfolded some of the captives — but not all of them — before dumping his salmon into a faraway stretch of water. If the eyesight hypothesis was correct, then Hasler could expect fewer of the blindfolded fish to return to their home streams.

Things didn't work out that way. The fish without blindfolds came back at the same rate as their blindfolded counterparts. (Other experiments demonstrated that smell, and not sight, is the key to the species' homing ability.)

Although Hasler's blindfold hypothesis was disproven, others have fared better. Today, we're looking at three of the best-known experiments in history — and the hypotheses they tested.

Ivan Pavlov and His Dogs (1903-1935)

Isaac newton's radiant prisms (1665), robert paine's revealing starfish (1963-1969).

The Hypothesis : If dogs are susceptible to conditioned responses (drooling), then a dog who is regularly exposed to the same neutral stimulus (metronome/bell) before it receives food will associate this neutral stimulus with the act of eating. Eventually, the dog should begin to drool at a predictable rate when it encounters said stimulus — even before any actual food is offered.

The Experiment : A Nobel Prize-winner and outspoken critic of Soviet communism, Ivan Pavlov is synonymous with man's best friend . In 1903, the Russian-born scientist kicked off a decades-long series of experiments involving dogs and conditioned responses .

Offer a plate of food to a hungry dog and it'll salivate. In this context, the stimulus (the food) will automatically trigger a particular response (the drooling). The latter is an innate, unlearned reaction to the former.

By contrast, the rhythmic sound of a metronome or bell is a neutral stimulus. To a dog, the noise has no inherent meaning and if the animal has never heard it before, the sound won't provoke an instinctive reaction. But the sight of food sure will .

So when Pavlov and his lab assistants played the sound of the metronome/bell before feeding sessions, the researchers conditioned test dogs to mentally link metronomes/bells with mealtime. Due to repeated exposure, the noise alone started to make the dogs' mouths water before they were given food.

According to " Ivan Pavlov: A Russian Life in Science " by biographer Daniel P. Todes, Pavlov's big innovation here was his discovery that he could quantify the reaction of each pooch by measuring the amount of saliva it generated. Every canine predictably drooled at its own consistent rate when he or she encountered a personalized (and artificial) food-related cue.

Pavlov and his assistants used conditioned responses to look at other hypotheses about animal physiology, as well. In one notable experiment, a dog was tested on its ability to tell time . This particular pooch always received food when it heard a metronome click at the rate of 60 strokes per minute. But it never got any food after listening to a slower, 40-strokes-per-minute beat. Lo and behold, Pavlov's animal began to salivate in response to the faster rhythm — but not the slower one . So clearly, it could tell the two rhythmic beats apart.

The Verdict : With the right conditioning — and lots of patience — you can make a hungry dog respond to neutral stimuli by salivating on cue in a way that's both predictable and scientifically quantifiable.

Pavlov's dog

The Hypothesis : If white sunlight is a mixture of all the colors in the visible spectrum — and these travel at varying wavelengths — then each color will refract at a different angle when a beam of sunlight passes through a glass prism.

The Experiments : Color was a scientific mystery before Isaac Newton came along. During the summer of 1665, he started experimenting with glass prisms from the safety of a darkened room in Cambridge, England.

He cut a quarter-inch (0.63-centimeter) circular hole into one of the window shutters, allowing a single beam of sunlight to enter the place. When Newton held up a prism to this ray, an oblong patch of multicolored light was projected onto the opposite wall.

This contained segregated layers of red, orange, yellow, green, blue, indigo and violet light. From top to bottom, this patch measured 13.5 inches (33.65 centimeters) tall, yet it was only 2.6 inches (6.6 centimeters) across.

Newton deduced that these vibrant colors had been hiding within the sunlight itself, but the prism bent (or "refracted") them at different angles, which separated the colors out.

Still, he wasn't 100 percent sure. So Newton replicated the experiment with one small change. This time, he took a second prism and had it intercept the rainbow-like patch of light. Once the refracted colors entered the new prism, they recombined into a circular white sunbeam. In other words, Newton took a ray of white light, broke it apart into a bunch of different colors and then reassembled it. What a neat party trick!

The Verdict : Sunlight really is a blend of all the colors in the rainbow — and yes, these can be individually separated via light refraction.

Isaac Newton

The Hypothesis : If predators limit the populations of the organisms they attack, then we'd expect the prey species to become more common after the eradication of a major predator.

The Experiment : Meet Pisaster ochraceus , also known as the purple sea star (or the purple starfish if you prefer).

Using an extendable stomach , the creature feeds on mussels, limpets, barnacles, snails and other hapless victims. On some seaside rocks (and tidal pools) along the coast of Washington state, this starfish is the apex predator.

The animal made Robert Paine a scientific celebrity. An ecologist by trade, Paine was fascinated by the environmental roles of top predators. In June 1963, he kicked off an ambitious experiment along Washington state's Mukkaw Bay. For years on end, Paine kept a rocky section of this shoreline completely starfish-free.

It was hard work. Paine had to regularly pry wayward sea stars off "his" outcrop — sometimes with a crowbar. Then he'd chuck them into the ocean.

Before the experiment, Paine observed 15 different species of animals and algae inhabiting the area he decided to test. By June 1964 — one year after his starfish purge started — that number had dropped to eight .

Unchecked by purple sea stars, the barnacle population skyrocketed. Subsequently, these were replaced by California mussels , which came to dominate the terrain. By anchoring themselves to rocks in great numbers, the mussels edged out other life-forms. That made the outcrop uninhabitable to most former residents: Even sponges, anemones and algae — organisms that Pisaster ochraceus doesn't eat — were largely evicted.

All those species continued to thrive on another piece of shoreline that Paine left untouched. Later experiments convinced him that Pisaster ochraceus is a " keystone species ," a creature who exerts disproportionate influence over its environment. Eliminate the keystone and the whole system gets disheveled.

The Verdict : Apex predators don't just affect the animals that they hunt. Removing a top predator sets off a chain reaction that can fundamentally transform an entire ecosystem.

purple sea stars

Contrary to popular belief, Pavlov almost never used bells in his dog experiments. Instead, he preferred metronomes, buzzers, harmoniums and electric shocks.

Frequently Asked Questions

How can a hypothesis become a theory, what's the difference between a hypothesis and a prediction.

Please copy/paste the following text to properly cite this HowStuffWorks.com article:

What is a scientific hypothesis?

It's the initial building block in the scientific method.

A girl looks at plants in a test tube for a science experiment. What's her scientific hypothesis?

Hypothesis basics

What makes a hypothesis testable.

  • Types of hypotheses
  • Hypothesis versus theory

Additional resources

Bibliography.

A scientific hypothesis is a tentative, testable explanation for a phenomenon in the natural world. It's the initial building block in the scientific method . Many describe it as an "educated guess" based on prior knowledge and observation. While this is true, a hypothesis is more informed than a guess. While an "educated guess" suggests a random prediction based on a person's expertise, developing a hypothesis requires active observation and background research. 

The basic idea of a hypothesis is that there is no predetermined outcome. For a solution to be termed a scientific hypothesis, it has to be an idea that can be supported or refuted through carefully crafted experimentation or observation. This concept, called falsifiability and testability, was advanced in the mid-20th century by Austrian-British philosopher Karl Popper in his famous book "The Logic of Scientific Discovery" (Routledge, 1959).

A key function of a hypothesis is to derive predictions about the results of future experiments and then perform those experiments to see whether they support the predictions.

A hypothesis is usually written in the form of an if-then statement, which gives a possibility (if) and explains what may happen because of the possibility (then). The statement could also include "may," according to California State University, Bakersfield .

Here are some examples of hypothesis statements:

  • If garlic repels fleas, then a dog that is given garlic every day will not get fleas.
  • If sugar causes cavities, then people who eat a lot of candy may be more prone to cavities.
  • If ultraviolet light can damage the eyes, then maybe this light can cause blindness.

A useful hypothesis should be testable and falsifiable. That means that it should be possible to prove it wrong. A theory that can't be proved wrong is nonscientific, according to Karl Popper's 1963 book " Conjectures and Refutations ."

An example of an untestable statement is, "Dogs are better than cats." That's because the definition of "better" is vague and subjective. However, an untestable statement can be reworded to make it testable. For example, the previous statement could be changed to this: "Owning a dog is associated with higher levels of physical fitness than owning a cat." With this statement, the researcher can take measures of physical fitness from dog and cat owners and compare the two.

Types of scientific hypotheses

Elementary-age students study alternative energy using homemade windmills during public school science class.

In an experiment, researchers generally state their hypotheses in two ways. The null hypothesis predicts that there will be no relationship between the variables tested, or no difference between the experimental groups. The alternative hypothesis predicts the opposite: that there will be a difference between the experimental groups. This is usually the hypothesis scientists are most interested in, according to the University of Miami .

For example, a null hypothesis might state, "There will be no difference in the rate of muscle growth between people who take a protein supplement and people who don't." The alternative hypothesis would state, "There will be a difference in the rate of muscle growth between people who take a protein supplement and people who don't."

If the results of the experiment show a relationship between the variables, then the null hypothesis has been rejected in favor of the alternative hypothesis, according to the book " Research Methods in Psychology " (​​BCcampus, 2015). 

There are other ways to describe an alternative hypothesis. The alternative hypothesis above does not specify a direction of the effect, only that there will be a difference between the two groups. That type of prediction is called a two-tailed hypothesis. If a hypothesis specifies a certain direction — for example, that people who take a protein supplement will gain more muscle than people who don't — it is called a one-tailed hypothesis, according to William M. K. Trochim , a professor of Policy Analysis and Management at Cornell University.

Sometimes, errors take place during an experiment. These errors can happen in one of two ways. A type I error is when the null hypothesis is rejected when it is true. This is also known as a false positive. A type II error occurs when the null hypothesis is not rejected when it is false. This is also known as a false negative, according to the University of California, Berkeley . 

A hypothesis can be rejected or modified, but it can never be proved correct 100% of the time. For example, a scientist can form a hypothesis stating that if a certain type of tomato has a gene for red pigment, that type of tomato will be red. During research, the scientist then finds that each tomato of this type is red. Though the findings confirm the hypothesis, there may be a tomato of that type somewhere in the world that isn't red. Thus, the hypothesis is true, but it may not be true 100% of the time.

Scientific theory vs. scientific hypothesis

The best hypotheses are simple. They deal with a relatively narrow set of phenomena. But theories are broader; they generally combine multiple hypotheses into a general explanation for a wide range of phenomena, according to the University of California, Berkeley . For example, a hypothesis might state, "If animals adapt to suit their environments, then birds that live on islands with lots of seeds to eat will have differently shaped beaks than birds that live on islands with lots of insects to eat." After testing many hypotheses like these, Charles Darwin formulated an overarching theory: the theory of evolution by natural selection.

"Theories are the ways that we make sense of what we observe in the natural world," Tanner said. "Theories are structures of ideas that explain and interpret facts." 

  • Read more about writing a hypothesis, from the American Medical Writers Association.
  • Find out why a hypothesis isn't always necessary in science, from The American Biology Teacher.
  • Learn about null and alternative hypotheses, from Prof. Essa on YouTube .

Encyclopedia Britannica. Scientific Hypothesis. Jan. 13, 2022. https://www.britannica.com/science/scientific-hypothesis

Karl Popper, "The Logic of Scientific Discovery," Routledge, 1959.

California State University, Bakersfield, "Formatting a testable hypothesis." https://www.csub.edu/~ddodenhoff/Bio100/Bio100sp04/formattingahypothesis.htm  

Karl Popper, "Conjectures and Refutations," Routledge, 1963.

Price, P., Jhangiani, R., & Chiang, I., "Research Methods of Psychology — 2nd Canadian Edition," BCcampus, 2015.‌

University of Miami, "The Scientific Method" http://www.bio.miami.edu/dana/161/evolution/161app1_scimethod.pdf  

William M.K. Trochim, "Research Methods Knowledge Base," https://conjointly.com/kb/hypotheses-explained/  

University of California, Berkeley, "Multiple Hypothesis Testing and False Discovery Rate" https://www.stat.berkeley.edu/~hhuang/STAT141/Lecture-FDR.pdf  

University of California, Berkeley, "Science at multiple levels" https://undsci.berkeley.edu/article/0_0_0/howscienceworks_19

Sign up for the Live Science daily newsletter now

Get the world’s most fascinating discoveries delivered straight to your inbox.

Near-indestructible moss can survive gamma rays and liquid nitrogen

Earth from space: Green River winds through radioactive 'labyrinth of shadows'

The Milky Way will be visible without a telescope this summer. Here are the key nights to watch for.

Most Popular

example of a hypothesis in chemistry

Examples

Hypothesis If Then

Ai generator.

example of a hypothesis in chemistry

In the vast universe of scientific inquiries, the “if-then” hypothesis structure stands out as an essential tool, bridging observation and prediction. This format not only simplifies complex scientific theories but also provides clarity to young learners and budding scientists. Whether you’re experimenting in a professional lab or just in your backyard, understanding and crafting a Thesis statement succinct “if-then” hypothesis can be the key to unlocking the secrets of the world around us. Dive in to explore, write, and refine!

What is If Then Hypothesis?

The “If-Then” hypothesis is a predictive statement that sets up a cause-and-effect relationship between two variables. It’s structured such that the “If” portion introduces a condition or a cause, and the “Then” portion predicts the effect or outcome of that condition. This format helps in clearly establishing a link between the independent and dependent variables in an experiment.

What is an example of a Hypothesis If Then Statement?

For instance, let’s consider a basic experiment related to plant growth:

  • Hypothesis : If a plant is exposed to direct sunlight for at least 6 hours a day, then it will grow taller than a plant that is kept in the shade.

In this example, the exposure to sunlight (or the lack thereof) is the condition, while the growth of the plant is the predicted outcome. The statement concisely links the cause (sunlight exposure) to the effect (plant growth).

100 If Then Hypothesis Statement Examples

Hypothesis If Then Statement Examples

Size: 215 KB

The “If-Then” hypothesis elegantly captures a cause-and-effect relationship in scientific inquiries. This predictive format, with its concise clarity, bridges observation and anticipated outcome, guiding experiments in a myriad of domains.

  • Plant Growth : If a plant receives fertilizer, then it will grow faster than one without fertilizer.
  • Melting Points : If ice is exposed to temperatures above 0°C, then it will melt.
  • Battery Life : If a battery is used continuously, then it will drain faster than if used intermittently.
  • Sleep & Performance : If a person sleeps less than 6 hours a night, then their cognitive performance will decrease.
  • Diet & Weight : If an individual consumes more calories than they burn, then they will gain weight.
  • Hydration : If a person drinks less than 8 glasses of water daily, then they may experience dehydration.
  • Light & Vision : If a room is darkened, then the pupils of one’s eyes will dilate.
  • Sugar & Energy : If children consume sugary drinks, then they will show increased levels of energy.
  • Study Habits : If a student revises regularly, then they will retain more information than those who cram.
  • Exercise & Health : If a person exercises three times a week, then their cardiovascular health will improve.
  • Noise & Concentration : If a room is noisy, then people inside will find it harder to concentrate.
  • Medication & Pain : If an individual takes painkillers, then they will report reduced pain levels.
  • Soil Quality : If soil is rich in nutrients, then plants grown in it will be healthier.
  • Reading & Vocabulary : If a child reads daily, then their vocabulary will expand faster than a non-reading peer.
  • Social Media : If a teenager spends over 5 hours on social media, then they may experience decreased sleep quality.
  • Sunscreen : If sunscreen is applied, then the chances of getting sunburned decrease.
  • Coffee & Alertness : If an individual drinks coffee in the morning, then they will feel more alert.
  • Music & Productivity : If calming music is played in the workplace, then employees will be more productive.
  • Temperature & Metabolism : If the ambient temperature is cold, then a person’s metabolism will increase.
  • Pets & Stress : If an individual owns a pet, then their stress levels might decrease.
  • Vegetation & Air Quality : If trees are planted in an urban area, then air quality will improve.
  • Vaccination : If a child is vaccinated, then they will have a reduced risk of contracting certain diseases.
  • E-learning : If students use e-learning platforms, then they will have flexible study hours.
  • Recycling : If a community adopts recycling, then landfill waste will decrease.
  • Fast Food : If an individual eats fast food regularly, then their cholesterol levels might rise.
  • UV Light : If UV light is shone on a glow-in-the-dark material, then it will glow more brightly.
  • Brushing Teeth : If a child brushes their teeth twice daily, then they will have fewer cavities than those who don’t.
  • Bird Migration : If the climate becomes colder, then certain birds will migrate to warmer regions.
  • Space Exploration : If astronauts go without gravity for long periods, then their bone density will decrease.
  • Plastic Pollution : If we reduce single-use plastic consumption, then the amount of plastic in the ocean will decrease.
  • Books & Imagination : If a child reads fantasy novels, then their imaginative skills will be enhanced.
  • AI & Efficiency : If companies use artificial intelligence in operations, then their efficiency will improve.
  • Video Games : If children play violent video games, then they might exhibit aggressive behavior.
  • Healthy Diet : If someone consumes a balanced diet, then their overall health will benefit.
  • Deforestation : If forests are cleared at the current rate, then global temperatures will rise due to reduced carbon sequestration.
  • Renewable Energy : If a country invests in renewable energy, then its carbon footprint will decrease.
  • Exercise & Mood : If an individual engages in regular physical activity, then their mood will generally improve.
  • Microplastics : If microplastics enter the water system, then marine life will be at risk.
  • Language Learning : If a person practices a new language daily, then they will become fluent faster.
  • Organic Farming : If farmers use organic methods, then the pesticide residue in the food will decrease.
  • Remote Work : If employees work remotely, then office costs will reduce.
  • Yoga & Flexibility : If someone practices yoga regularly, then their flexibility will increase.
  • Public Transport : If a city improves its public transportation system, then traffic congestion will decrease.
  • Meditation & Stress : If an individual meditates daily, then their stress levels will be lower.
  • Fish & Omega-3 : If someone includes fish in their diet weekly, then their omega-3 fatty acid intake will be adequate.
  • Smartphones & Sleep : If a person uses their smartphone before bed, then their sleep quality might decrease.
  • Waste Segregation : If households segregate waste, then recycling processes will be more efficient.
  • E-Books : If students use e-books instead of paper ones, then paper consumption will decrease.
  • Carpooling : If more people adopt carpooling, then urban air quality will improve due to fewer car emissions.
  • Digital Payments : If digital payment systems are adopted widely, then cash handling costs will reduce.
  • Online Learning : If students engage in online learning platforms, then their access to diverse educational resources will increase.
  • Tree Planting : If a community plants more trees in urban areas, then the air quality will improve due to increased oxygen output.
  • Pet Ownership : If an individual adopts a pet, then they may experience reduced feelings of loneliness.
  • Recycling : If recycling is made mandatory in cities, then landfill waste will decrease significantly.
  • Natural Cleaners : If households use natural cleaning agents, then water pollution from residential areas will decrease.
  • Solar Panels : If a house installs solar panels, then its electricity bill will decrease.
  • Music & Productivity : If workers listen to instrumental music while working, then their productivity might increase.
  • Healthy Breakfast : If someone eats a nutritious breakfast daily, then their energy levels throughout the day will be higher.
  • Water Conservation : If individuals reduce their shower time by 5 minutes, then significant water conservation can be achieved annually.
  • Learning Instruments : If a child learns a musical instrument, then their cognitive and motor skills may improve.
  • Reusable Bags : If shoppers use reusable bags, then the demand for plastic bags will reduce.
  • Public Libraries : If a city invests in public libraries, then the literacy rate of its citizens may rise.
  • Organ Donation : If awareness about organ donation increases, then the waiting list for organ transplants will decrease.
  • Green Spaces : If urban areas increase green spaces, then residents’ mental well-being may improve.
  • Sleep & Memory : If a student gets at least 8 hours of sleep, then their memory retention might be better.
  • Digital Detox : If someone takes a weekly digital detox day, then their stress levels may decrease.
  • Composting : If households start composting kitchen waste, then the amount of organic waste in landfills will reduce.
  • Gardening & Health : If individuals engage in gardening activities, then they might experience improved mental health.
  • Flu Vaccination : If a person gets a flu shot annually, then their chances of getting influenza will reduce.
  • Hand Washing : If people wash their hands regularly, then the spread of common diseases may decrease.
  • Diverse Diet : If someone consumes a diverse range of vegetables, then they will have a better nutrient intake.
  • Physical Books : If a student reads from physical books instead of screens, then they might have better sleep patterns.
  • Mindfulness & Anxiety : If an individual practices mindfulness exercises, then their anxiety levels may decrease.
  • Green Vehicles : If a city promotes the use of electric vehicles, then air pollution levels will reduce.
  • Walking & Health : If someone walks 10,000 steps daily, then their cardiovascular health might improve.
  • Art & Creativity : If children are exposed to art classes from a young age, then their creative thinking skills may enhance.
  • Dark Chocolate : If someone consumes dark chocolate regularly, then their antioxidant intake may increase.
  • Yoga & Flexibility : If an individual practices yoga thrice a week, then their flexibility and posture may improve.
  • Cooking at Home : If families cook meals at home more frequently, then their intake of processed foods might decrease.
  • Local Tourism : If local tourism is promoted, then a region’s economy can benefit due to increased business opportunities.
  • Reading Aloud : If parents read aloud to their children every night, then the children’s vocabulary and comprehension skills might expand.
  • Public Transportation : If cities improve their public transportation system, then the number of cars on the road might decrease.
  • Indoor Plants : If a person keeps indoor plants in their workspace, then their concentration and productivity may enhance due to better air quality.
  • Bird Watching : If an individual engages in bird watching, then their patience and observation skills might develop.
  • Biking to Work : If employees bike to work, then their cardiovascular health can improve and their carbon footprint might reduce.
  • Aquariums & Stress : If someone spends time watching fish in an aquarium, then their stress levels may decrease.
  • Meditation & Focus : If an individual meditates daily, then their attention span and focus might increase.
  • Learning Languages : If a student learns a new language, then their cognitive flexibility and memory retention may improve.
  • Community Gardens : If neighborhoods establish community gardens, then residents may benefit from fresh produce and community bonding.
  • Journaling : If someone journals their thoughts regularly, then their self-awareness and emotional processing might improve.
  • Volunteering : If an individual volunteers once a month, then their sense of purpose and community connection may strengthen.
  • Eco-friendly Products : If consumers prefer eco-friendly products, then industries might adopt more sustainable manufacturing practices.
  • Limiting Screen Time : If children limit their screen time to an hour a day, then their physical activity levels and sleep patterns may benefit.
  • Outdoor Play : If kids play outdoors regularly, then their motor skills and social interactions might develop better.
  • Therapy & Mental Health : If someone attends therapy sessions, then they may experience improved mental well-being and coping strategies.
  • Natural Light : If workspaces are designed to allow more natural light, then employee morale and productivity might rise.
  • Water Intake : If a person drinks at least 8 glasses of water daily, then their hydration levels and skin health may improve.
  • Classical Music : If students listen to classical music while studying, then their concentration might increase.
  • Home Composting : If households adopt composting, then garden soil quality might improve and organic waste in landfills may reduce.
  • Green Roofs : If buildings adopt green roofs, then urban heat islands might decrease, and biodiversity may benefit.

Hypothesis If Then Statement Examples in Research

The crux of experimental research revolves around predicting an outcome. An ‘If-Then’ hypothesis format succinctly conveys anticipated cause-and-effect relationships, enabling clearer comprehension and assessment.

  • DNA Sequencing : If we utilize CRISPR technology for DNA sequencing, then the accuracy of detecting genetic mutations may increase.
  • Drug Efficiency : If a new drug compound is introduced to malignant cells in vitro, then the proliferation rate of these cells might decrease.
  • Digital Learning : If students are exposed to AI-driven educational tools, then their academic performance might significantly improve.
  • Nano-technology : If nanoparticles are used in drug delivery, then the targeting of specific cells may become more efficient.
  • Quantum Computing : If quantum bits replace traditional bits in computing, then the processing speed might witness a revolutionary acceleration.

Hypothesis If Then Statement Examples about Climate Change

Understanding climate change necessitates predicting outcomes based on varied actions or occurrences. These hypotheses present potential scenarios in the vast realm of climate studies.

  • Deforestation : If deforestation rates continue at the current pace, then global carbon dioxide levels will rise significantly.
  • Solar Energy : If solar energy adoption increases by 50% in the next decade, then global reliance on fossil fuels might decrease considerably.
  • Ocean Temperatures : If the world’s oceans warm by another degree Celsius, then coral bleaching events may become twice as frequent.
  • Carbon Taxation : If a global carbon tax is implemented, then emissions from industries might see a drastic reduction.
  • Melting Ice Caps : If polar ice caps continue to melt at the current rate, then sea levels might rise to submerge several coastal cities by 2100.

Hypothesis If Then Statement Examples in Psychology

Psychology delves into understanding behaviors and mental processes. Formulating hypotheses in an ‘If-Then’ structure can streamline experimental setups and interpretations.

  • Mindfulness Meditation : If individuals practice daily mindfulness meditation, then symptoms of anxiety and stress may decrease.
  • Social Media : If teenagers spend over five hours daily on social media, then their self-esteem levels might drop.
  • Cognitive Behavioral Therapy : If patients with depression undergo cognitive-behavioral therapy, then their coping mechanisms may strengthen.
  • Sleep and Memory : If adults get less than six hours of sleep nightly, then their memory retention might deteriorate faster.
  • Nature Exposure : If urban residents are exposed to natural settings weekly, then their mental well-being might improve.

Alternative If Then Hypothesis Statement Examples

Sometimes, researchers propose alternate scenarios to challenge or complement existing beliefs. These hypotheses capture such alternative insights.

  • Vitamin Intake : If individuals consume Vitamin C supplements daily, then their immunity might not necessarily strengthen, contradicting popular belief.
  • Digital Detox : If tech professionals take a monthly digital detox day, then their productivity may not diminish, countering the notion that constant connectivity boosts efficiency.
  • Organic Foods : If consumers solely eat organic foods, then their overall health markers might remain unchanged, challenging the health superiority of organic diets.
  • Exercise Routines : If gym-goers switch to calisthenics from weight training, then muscle mass gain might remain consistent, offering an alternative to traditional gym workouts.
  • E-learning : If students transition from classroom learning to e-learning platforms, then their academic performance may not necessarily drop, challenging the indispensability of physical classrooms.

Hypothesis If Then Statement Examples in Biology

In biology, the interaction of living organisms and their environments often leads to distinct outcomes. The ‘If-Then’ hypothesis structure can efficiently predict these outcomes based on varying factors.

  • Cell Division : If a cell is exposed to radiation, then the rate of its division might decrease significantly.
  • Plant Growth : If plants are provided with blue light, then their growth rate might be faster compared to those exposed to red light.
  • Enzyme Activity : If the temperature of a reaction involving enzymes rises by 10°C, then the activity of the enzymes might double.
  • Animal Behavior : If nocturnal animals are exposed to continuous artificial light, then their feeding and reproductive behaviors might be disrupted.
  • Genetic Modification : If crops are genetically modified for drought resistance, then their yield in arid regions might increase substantially.

Hypothesis If Then Statement Examples in Chemistry

The realm of chemistry is filled with reactions and interactions. Predicting outcomes based on specific conditions is crucial, and the ‘If-Then’ hypothesis structure provides clarity in such predictions.

  • Acid-Base Reactions : If a solution has a pH below 7, then it might turn blue litmus paper red, indicating its acidic nature.
  • Temperature and Reaction Rate : If the temperature of a chemical reaction is increased, then the rate of that reaction might speed up.
  • Metal Reactivity : If zinc metal is placed in copper sulfate solution, then it might displace the copper, indicating its higher reactivity.
  • Organic Synthesis : If an alkene is treated with bromine water, then the solution might decolorize, suggesting the presence of a double bond.
  • Electrolysis : If an aqueous solution of sodium chloride undergoes electrolysis, then chlorine gas might be released at the anode.

Hypothesis If Then Statement Examples in Physics

Physics examines the fundamental principles governing our universe. ‘If-Then’ hypotheses help in determining cause-and-effect relationships amidst complex physical phenomena.

  • Gravity : If an object is dropped from a certain height in a vacuum, then it might accelerate at 9.81 m/s^2, irrespective of its mass.
  • Refraction : If light travels from air into water, then it might bend towards the normal due to the change in speed.
  • Magnetism : If a magnetic field is applied to a moving charged particle, then the particle might experience a force perpendicular to its direction of motion.
  • Thermal Expansion : If a metal rod is heated, then it might expand due to the increased kinetic energy of its atoms.
  • Quantum Mechanics : If an electron is observed in a quantum system, then its wave function might collapse, determining its position.

What is an if-then because hypothesis?

An “if-then-because” hypothesis is a structured statement that predicts the outcome of an experiment based on a proposed cause and effect scenario. The structure usually goes as follows: “If [I do this specific action], then [this particular result will occur] because [of this scientific reason].”

For example: “If I water plants with sugar water, then they will grow taller than the ones watered with plain water because sugar provides additional nutrients to the plants.”

This type of simple hypothesis statement not only predicts the outcome but also provides a reasoning for the expected outcome, thereby setting the groundwork for the experimental procedure and its subsequent analysis.

Is a hypothesis typically an if-then statement?

Yes, a hypothesis is often framed as an “if-then” statement, especially in experimental studies. This format succinctly presents a proposed cause and its expected effect. By specifying a relationship between two variables, it offers clarity to the hypothesis and makes the intended testing straightforward. However, while common, not all hypotheses are written in the “if-then” format.

Is an if-then statement a hypothesis or prediction?

An “if-then” statement can be both a hypothesis and a prediction. However, their contexts differ:

  • Hypothesis: It is a tentative explanation for an observation or phenomenon that can be tested experimentally. When written in the “if-then” format, it usually predicts a relationship between variables based on theoretical understanding.Example: “If a plant is given caffeine, then it will grow faster.”
  • Prediction: It is a specific, testable statement about what will happen under particular conditions. It is based on the hypothesis and narrows down the expected outcomes of an experiment.Example: “If a bean plant is watered with a 1% caffeine solution daily, then after one month, it will be 10% taller than plants watered with plain water.”

How do you write an If Then Hypothesis Statement? – A Step by Step Guide

  • Identify the Variables: Determine the independent variable (the factor you’ll change) and the dependent variable (the factor you’ll measure).
  • Frame the Relationship: Using your understanding of the topic, establish a potential relationship between the identified variables.
  • Start with “If”: Begin your hypothesis with “If” followed by your independent variable.
  • Follow with “Then”: After stating your independent variable, include “then” followed by the potential outcome or change in the dependent variable you expect.
  • Review for Clarity: Ensure your hypothesis is clear, concise, and testable. It should state a specific relationship between the variables.

Tips for Writing If Then Hypothesis

  • Be Specific: Ensure your variables are clearly defined. Instead of “If I water plants more,” use “If I water plants twice daily.”
  • Ensure Testability: Your hypothesis should propose a relationship that can be tested through an experiment.
  • Avoid Conclusions: A hypothesis is a prediction, not a conclusion. It shouldn’t state a known fact but should be based on prior knowledge.
  • Use Simple Language: Especially when the audience might not have a deep understanding of the topic. Keeping it straightforward ensures comprehension.
  • Revise and Refine: After drafting your hypothesis, revisit it to check for clarity, specificity, and relevance to the research question at hand.

Twitter

Text prompt

  • Instructive
  • Professional

10 Examples of Public speaking

20 Examples of Gas lighting

  • Scientific Methods

What is Hypothesis?

We have heard of many hypotheses which have led to great inventions in science. Assumptions that are made on the basis of some evidence are known as hypotheses. In this article, let us learn in detail about the hypothesis and the type of hypothesis with examples.

example of a hypothesis in chemistry

A hypothesis is an assumption that is made based on some evidence. This is the initial point of any investigation that translates the research questions into predictions. It includes components like variables, population and the relation between the variables. A research hypothesis is a hypothesis that is used to test the relationship between two or more variables.

Characteristics of Hypothesis

Following are the characteristics of the hypothesis:

  • The hypothesis should be clear and precise to consider it to be reliable.
  • If the hypothesis is a relational hypothesis, then it should be stating the relationship between variables.
  • The hypothesis must be specific and should have scope for conducting more tests.
  • The way of explanation of the hypothesis must be very simple and it should also be understood that the simplicity of the hypothesis is not related to its significance.

Sources of Hypothesis

Following are the sources of hypothesis:

  • The resemblance between the phenomenon.
  • Observations from past studies, present-day experiences and from the competitors.
  • Scientific theories.
  • General patterns that influence the thinking process of people.

Types of Hypothesis

There are six forms of hypothesis and they are:

  • Simple hypothesis
  • Complex hypothesis
  • Directional hypothesis
  • Non-directional hypothesis
  • Null hypothesis
  • Associative and casual hypothesis

Simple Hypothesis

It shows a relationship between one dependent variable and a single independent variable. For example – If you eat more vegetables, you will lose weight faster. Here, eating more vegetables is an independent variable, while losing weight is the dependent variable.

Complex Hypothesis

It shows the relationship between two or more dependent variables and two or more independent variables. Eating more vegetables and fruits leads to weight loss, glowing skin, and reduces the risk of many diseases such as heart disease.

Directional Hypothesis

It shows how a researcher is intellectual and committed to a particular outcome. The relationship between the variables can also predict its nature. For example- children aged four years eating proper food over a five-year period are having higher IQ levels than children not having a proper meal. This shows the effect and direction of the effect.

Non-directional Hypothesis

It is used when there is no theory involved. It is a statement that a relationship exists between two variables, without predicting the exact nature (direction) of the relationship.

Null Hypothesis

It provides a statement which is contrary to the hypothesis. It’s a negative statement, and there is no relationship between independent and dependent variables. The symbol is denoted by “H O ”.

Associative and Causal Hypothesis

Associative hypothesis occurs when there is a change in one variable resulting in a change in the other variable. Whereas, the causal hypothesis proposes a cause and effect interaction between two or more variables.

Examples of Hypothesis

Following are the examples of hypotheses based on their types:

  • Consumption of sugary drinks every day leads to obesity is an example of a simple hypothesis.
  • All lilies have the same number of petals is an example of a null hypothesis.
  • If a person gets 7 hours of sleep, then he will feel less fatigue than if he sleeps less. It is an example of a directional hypothesis.

Functions of Hypothesis

Following are the functions performed by the hypothesis:

  • Hypothesis helps in making an observation and experiments possible.
  • It becomes the start point for the investigation.
  • Hypothesis helps in verifying the observations.
  • It helps in directing the inquiries in the right direction.

How will Hypothesis help in the Scientific Method?

Researchers use hypotheses to put down their thoughts directing how the experiment would take place. Following are the steps that are involved in the scientific method:

  • Formation of question
  • Doing background research
  • Creation of hypothesis
  • Designing an experiment
  • Collection of data
  • Result analysis
  • Summarizing the experiment
  • Communicating the results

Frequently Asked Questions – FAQs

What is hypothesis.

A hypothesis is an assumption made based on some evidence.

Give an example of simple hypothesis?

What are the types of hypothesis.

Types of hypothesis are:

  • Associative and Casual hypothesis

State true or false: Hypothesis is the initial point of any investigation that translates the research questions into a prediction.

Define complex hypothesis..

A complex hypothesis shows the relationship between two or more dependent variables and two or more independent variables.

Quiz Image

Put your understanding of this concept to test by answering a few MCQs. Click ‘Start Quiz’ to begin!

Select the correct answer and click on the “Finish” button Check your score and answers at the end of the quiz

Visit BYJU’S for all Physics related queries and study materials

Your result is as below

Request OTP on Voice Call

PHYSICS Related Links

Leave a Comment Cancel reply

Your Mobile number and Email id will not be published. Required fields are marked *

Post My Comment

example of a hypothesis in chemistry

Register with BYJU'S & Download Free PDFs

Register with byju's & watch live videos.

NASA Logo

Suggested Searches

  • Climate Change
  • Expedition 64
  • Mars perseverance
  • SpaceX Crew-2
  • International Space Station
  • View All Topics A-Z

Humans in Space

Earth & climate.

  • The Solar System

The Universe

Aeronautics, learning resources, news & events.

NASA’s Webb Captures Celestial Fireworks Around Forming Star

NASA’s Webb Captures Celestial Fireworks Around Forming Star

This artist’s concept depicts an asteroid drifting through space

NASA Asteroid Experts Create Hypothetical Impact Scenario for Exercise

six red dots in this composite picture indicate the location of six sequential detections of the first near-Earth object

NASA’s NEOWISE Infrared Heritage Will Live On

  • Search All NASA Missions
  • A to Z List of Missions
  • Upcoming Launches and Landings
  • Spaceships and Rockets
  • Communicating with Missions
  • James Webb Space Telescope
  • Hubble Space Telescope
  • Why Go to Space
  • Commercial Space
  • Destinations
  • Living in Space
  • Explore Earth Science
  • Earth, Our Planet
  • Earth Science in Action
  • Earth Multimedia
  • Earth Science Researchers
  • Pluto & Dwarf Planets
  • Asteroids, Comets & Meteors
  • The Kuiper Belt
  • The Oort Cloud
  • Skywatching
  • The Search for Life in the Universe
  • Black Holes
  • The Big Bang
  • Dark Energy & Dark Matter
  • Earth Science
  • Planetary Science
  • Astrophysics & Space Science
  • The Sun & Heliophysics
  • Biological & Physical Sciences
  • Lunar Science
  • Citizen Science
  • Astromaterials
  • Aeronautics Research
  • Human Space Travel Research
  • Science in the Air
  • NASA Aircraft
  • Flight Innovation
  • Supersonic Flight
  • Air Traffic Solutions
  • Green Aviation Tech
  • Drones & You
  • Technology Transfer & Spinoffs
  • Space Travel Technology
  • Technology Living in Space
  • Manufacturing and Materials
  • Science Instruments
  • For Kids and Students
  • For Educators
  • For Colleges and Universities
  • For Professionals
  • Science for Everyone
  • Requests for Exhibits, Artifacts, or Speakers
  • STEM Engagement at NASA
  • NASA's Impacts
  • Centers and Facilities
  • Directorates
  • Organizations
  • People of NASA
  • Internships
  • Our History
  • Doing Business with NASA
  • Get Involved
  • Aeronáutica
  • Ciencias Terrestres
  • Sistema Solar
  • All NASA News
  • Video Series on NASA+
  • Newsletters
  • Social Media
  • Media Resources
  • Upcoming Launches & Landings
  • Virtual Events
  • Sounds and Ringtones
  • Interactives
  • STEM Multimedia

Amendment 25: New Opportunity: C.27 Lucy in the L4 Trojans Participating Scientist Program.

Amendment 25: New Opportunity: C.27 Lucy in the L4 Trojans Participating Scientist Program.

A temperature map of Phoenix, Arizona on June 19, 2024, showing various areas with temperature ranges from 124°F to above 140°F. The map includes neighborhoods and landmarks like Sky Harbor Airport.

NASA’s ECOSTRESS Maps Burn Risk Across Phoenix Streets

Expedition 71 Flight Engineer and NASA astronaut Mike Barratt processes brain organoid samples inside the Life Science Glovebox for a neurodegenerative disorder study. Doctors will use the results from the investigation to learn how protect a crew member’s central nervous system and provide treatments for neurodegenerative conditions on Earth.

NASA Shares Use Requirements with Commercial Destination Partners

Behind the Scenes of a NASA ‘Moonwalk’ in the Arizona Desert

Behind the Scenes of a NASA ‘Moonwalk’ in the Arizona Desert

A view of SpaceX's Crew Dragon spacecraft docked to the International Space Station.

In Space Production Applications News

Alphabet Soup: NASA’s GOLD Finds Surprising C, X Shapes in Atmosphere

Alphabet Soup: NASA’s GOLD Finds Surprising C, X Shapes in Atmosphere

Smoke billows from the fires burning in Florida in 1998

The 1998 Florida Firestorm and NASA’s Kennedy Space Center

A series of images showing different rotational views of asteroid 4179 Toutatis taken from radar data, against a black background. The asteroid appears irregular in shape.

NASA’s Planetary Radar Tracks Two Large Asteroid Close Approaches

What’s Up: July 2024 Skywatching Tips from NASA

What’s Up: July 2024 Skywatching Tips from NASA

A woman seen reflected in a large mirror

Bente Eegholm: Ensuring Space Telescopes Have Stellar Vision

Hubble Examines an Active Galaxy Near the Lion’s Heart

Hubble Examines an Active Galaxy Near the Lion’s Heart

B.12 Heliophysics Data Environment Enhancements (HDEE) POC Change

B.12 Heliophysics Data Environment Enhancements (HDEE) POC Change

Selfie over the shoulder of a person flying in an airplane. Our the side window over the shoulder of the person is a second airplane in flight.

A Wartime Necessity

A man in a tan flight suit with black boots sits in a black seat on top of a metal platform below. He is strapped into the seat and wears a black headset and black, large goggles. He is tilted in the seat where the left side is angled down and the right side is angled up due to the motion of the simulator seat.

NASA Prepares for Air Taxi Passenger Comfort Studies

SWO

Slow Your Student’s ‘Summer Slide’ and Beat Boredom With NASA STEM

Four NASA personnel in black jumpsuits stand outside and smile with their arms outstretched. The background features a bright blue sky with scattered clouds and some buildings.

Mission Success: HERA Crew Successfully Completes 45-Day Simulated Journey to Mars 

NASA Astronaut Official Portrait Frank Rubio

Astronauta de la NASA Frank Rubio

2021 Astronaut Candidates Stand in Recognition

Diez maneras en que los estudiantes pueden prepararse para ser astronautas

Astronaut Marcos Berrios

Astronauta de la NASA Marcos Berríos

Surprising phosphate finding in nasa’s osiris-rex asteroid sample.

Mineral fragment from OSIRIS-REx's asteroid Bennu sample, seen against a black background. The pieces are predominantly gray, with notable light blue hues flecked throughout. The biggest fragment, triangular, is about a millimeter on a side.

Goddard Digital Team

A phosphate surprise, from a young solar system, hints at life’s building blocks, what’s next.

  • Early analysis of the asteroid Bennu sample returned by NASA’s OSIRIS-REx mission has revealed dust rich in carbon, nitrogen, and organic compounds, all of which are essential components for life as we know it. Dominated by clay minerals, particularly serpentine, the sample mirrors the type of rock found at mid-ocean ridges on Earth.
  • The magnesium-sodium phosphate found in the sample hints that the asteroid could have splintered off from an ancient, small, primitive ocean world. The phosphate was a surprise to the team because the mineral had not been detected by the OSIRIS-REx spacecraft while at Bennu.
  • While a similar phosphate was found in the asteroid Ryugu sample delivered by JAXA’s (Japan Aerospace Exploration Agency) Hayabusa2 mission in 2020, the magnesium-sodium phosphate detected in the Bennu sample stands out for its purity (that is, the lack of other materials included in the mineral) and the size of its grains, unprecedented in any meteorite sample.

Scientists have eagerly awaited the opportunity to dig into the 4.3-ounce (121.6-gram) pristine asteroid Bennu sample collected by NASA’s OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, and Security – Regolith Explorer) mission since it was delivered to Earth last fall. They hoped the material would hold secrets of the solar system’s past and the prebiotic chemistry that might have led to the origin of life on Earth. An early analysis of the Bennu sample, published June 26 in Meteoritics & Planetary Science , demonstrates this excitement was warranted.

The OSIRIS-REx Sample Analysis Team found that Bennu contains the original ingredients that formed our solar system. The asteroid’s dust is rich in carbon and nitrogen, as well as organic compounds, all of which are essential components for life as we know it. The sample also contains magnesium-sodium phosphate, which was a surprise to the research team, because it wasn’t seen in the remote sensing data collected by the spacecraft at Bennu. Its presence in the sample hints that the asteroid could have splintered off from a long-gone, tiny, primitive ocean world.

Analysis of the Bennu sample unveiled intriguing insights into the asteroid’s composition. Dominated by clay minerals, particularly serpentine, the sample mirrors the type of rock found at mid-ocean ridges on Earth, where material from the mantle, the layer beneath Earth’s crust, encounters water.

This interaction doesn’t just result in clay formation; it also gives rise to a variety of minerals like carbonates, iron oxides, and iron sulfides. But the most unexpected discovery is the presence of water-soluble phosphates. These compounds are components of biochemistry for all known life on Earth today.

example of a hypothesis in chemistry

While a similar phosphate was found in the asteroid Ryugu sample delivered by JAXA’s (Japan Aerospace Exploration Agency) Hayabusa2 mission in 2020, the magnesium-sodium phosphate detected in the Bennu sample stands out for its purity — that is, the lack of other materials in the mineral — and the size of its grains, unprecedented in any meteorite sample.

The finding of magnesium-sodium phosphates in the Bennu sample raises questions about the geochemical processes that concentrated these elements and provides valuable clues about Bennu’s historic conditions.

“The presence and state of phosphates, along with other elements and compounds on Bennu, suggest a watery past for the asteroid,” said Dante Lauretta, co-lead author of the paper and principal investigator for OSIRIS-REx at the University of Arizona, Tucson. “Bennu potentially could have once been part of a wetter world. Although, this hypothesis requires further investigation.”

“OSIRIS-REx gave us exactly what we hoped: a large pristine asteroid sample rich in nitrogen and carbon from a formerly wet world,” said Jason Dworkin , a co-author on the paper and the OSIRIS-REx project scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.

Despite its possible history of interaction with water, Bennu remains a chemically primitive asteroid, with elemental proportions closely resembling those of the Sun.

“The sample we returned is the largest reservoir of unaltered asteroid material on Earth right now,” said Lauretta.

This composition offers a glimpse into the early days of our solar system, over 4.5 billion years ago. These rocks have retained their original state, having neither melted nor resolidified since their inception, affirming their ancient origins.

The team has confirmed the asteroid is rich in carbon and nitrogen. These elements are crucial in understanding the environments where Bennu’s materials originated and the chemical processes that transformed simple elements into complex molecules, potentially laying the groundwork for life on Earth.

“These findings underscore the importance of collecting and studying material from asteroids like Bennu — especially low-density material that would typically burn up upon entering Earth’s atmosphere,” said Lauretta. “This material holds the key to unraveling the intricate processes of solar system formation and the prebiotic chemistry that could have contributed to life emerging on Earth.”

Dozens more labs in the United States and around the world will receive portions of the Bennu sample from NASA’s Johnson Space Center in Houston in the coming months, and many more scientific papers describing analyses of the Bennu sample are expected in the next few years from the OSIRIS-REx Sample Analysis Team.

“The Bennu samples are tantalizingly beautiful extraterrestrial rocks,” said Harold Connolly, co-lead author on the paper and OSIRIS-REx mission sample scientist at Rowan University in Glassboro, New Jersey. “Each week, analysis by the OSIRIS-REx Sample Analysis Team provides new and sometimes surprising findings that are helping place important constraints on the origin and evolution of Earth-like planets.”

Launched on Sept. 8, 2016, the OSIRIS-REx spacecraft traveled to near-Earth asteroid Bennu and collected a sample of rocks and dust from the surface. OSIRIS-REx, the first U.S. mission to collect a sample from an asteroid, delivered the sample to Earth on Sept. 24, 2023.

NASA’s Goddard Space Flight Center in Greenbelt, Maryland, provided overall mission management, systems engineering, and the safety and mission assurance for OSIRIS-REx. Dante Lauretta of the University of Arizona, Tucson, is the principal investigator. The university leads the science team and the mission’s science observation planning and data processing. Lockheed Martin Space in Littleton, Colorado, built the spacecraft and provided flight operations. Goddard and KinetX Aerospace were responsible for navigating the OSIRIS-REx spacecraft. Curation for OSIRIS-REx takes place at NASA Johnson. International partnerships on this mission include the OSIRIS-REx Laser Altimeter instrument from CSA (Canadian Space Agency) and asteroid sample science collaboration with JAXA’s Hayabusa2 mission. OSIRIS-REx is the third mission in NASA’s New Frontiers Program, managed by NASA’s Marshall Space Flight Center in Huntsville, Alabama, for the agency’s Science Mission Directorate in Washington.

Find more information about NASA’s OSIRIS-REx mission at:

https://www.nasa.gov/osiris-rex

By Mikayla Mace Kelley University of Arizona, Tucson

News Media Contacts

Karen Fox / Erin Morton NASA Headquarters, Washington 202-385-1287 / 202-805-9393 [email protected]  /  [email protected]  

Rani Gran NASA’s Goddard Space Flight Center, Greenbelt, Md. 301-332-6975 [email protected]

Related Terms

  • OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer)
  • Astrobiology
  • Goddard Space Flight Center
  • Johnson Space Center

IMAGES

  1. 😎 How to write a hypothesis for chemistry. Scientific Hypothesis

    example of a hypothesis in chemistry

  2. PPT

    example of a hypothesis in chemistry

  3. PPT

    example of a hypothesis in chemistry

  4. Scientific hypothesis

    example of a hypothesis in chemistry

  5. how to write a good hypothesis for a science experiment

    example of a hypothesis in chemistry

  6. Hypothesis

    example of a hypothesis in chemistry

VIDEO

  1. Concept of Hypothesis

  2. Proportion Hypothesis Testing, example 2

  3. Proper Lab Report Format and Expectations

  4. Class 11 Chemistry: Chapter 5

  5. Chapter 8: Introduction to Hypothesis Testing (Section 8-2, 8-3, and 8-4)

  6. Statistics: Hypothesis Testing

COMMENTS

  1. Hypothesis Examples

    Here are some research hypothesis examples: If you leave the lights on, then it takes longer for people to fall asleep. If you refrigerate apples, they last longer before going bad. If you keep the curtains closed, then you need less electricity to heat or cool the house (the electric bill is lower). If you leave a bucket of water uncovered ...

  2. 1.3: Hypothesis, Theories, and Laws

    A hypothesis is a tentative explanation that can be tested by further investigation. A theory is a well-supported explanation of observations. A scientific law is a statement that summarizes the relationship between variables. An experiment is a controlled method of testing a hypothesis.

  3. What Are Examples of a Hypothesis?

    Examples of Null Hypotheses. Hyperactivity is unrelated to eating sugar. All daisies have the same number of petals. The number of pets in a household is unrelated to the number of people living in it. A person's preference for a shirt is unrelated to its color.

  4. Scientific Hypothesis Examples

    Scientific Hypothesis Examples . Hypothesis: All forks have three tines. This would be disproven if you find any fork with a different number of tines. Hypothesis: There is no relationship between smoking and lung cancer.While it is difficult to establish cause and effect in health issues, you can apply statistics to data to discredit or support this hypothesis.

  5. 1.3: Hypothesis, Theories, and Laws

    Henry Agnew (UC Davis) 1.3: Hypothesis, Theories, and Laws is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by LibreTexts. Although all of us have taken science classes throughout the course of our study, many people have incorrect or misleading ideas about some of the most important and basic principles in ...

  6. How to Write a Strong Hypothesis

    Developing a hypothesis (with example) Step 1. Ask a question. Writing a hypothesis begins with a research question that you want to answer. The question should be focused, specific, and researchable within the constraints of your project. Example: Research question.

  7. What Is a Hypothesis? The Scientific Method

    A hypothesis (plural hypotheses) is a proposed explanation for an observation. The definition depends on the subject. In science, a hypothesis is part of the scientific method. It is a prediction or explanation that is tested by an experiment. Observations and experiments may disprove a scientific hypothesis, but can never entirely prove one.

  8. Scientific hypothesis

    hypothesis. science. scientific hypothesis, an idea that proposes a tentative explanation about a phenomenon or a narrow set of phenomena observed in the natural world. The two primary features of a scientific hypothesis are falsifiability and testability, which are reflected in an "If…then" statement summarizing the idea and in the ...

  9. A Strong Hypothesis

    Keep in mind that writing the hypothesis is an early step in the process of doing a science project. The steps below form the basic outline of the Scientific Method: Ask a Question. Do Background Research. Construct a Hypothesis. Test Your Hypothesis by Doing an Experiment. Analyze Your Data and Draw a Conclusion.

  10. Experimental Chemistry: From Hypothesis to Conclusion

    The conclusion either supports or refutes the initial hypothesis. If the hypothesis is proven false, a new hypothesis may be developed and the process repeats. A conclusion also opens the way for further research and experiments. In summary, experimental chemistry follows a process of hypothesis-experiment-data analysis-conclusion.

  11. How to Formulate a Hypothesis for an Experiment

    Steps for Formulating a Hypothesis for an Experiment. Step 1: State the question your experiment is looking to answer. Step 2: Identify your independent and dependant variables. Step 3: Write an ...

  12. 1.4: The Scientific Method- How Chemists Think

    The scientific method is a method of investigation involving experimentation and observation to acquire new knowledge, solve problems, and answer questions. The key steps in the scientific method include the following: Step 1: Make observations. Step 2: Formulate a hypothesis. Step 3: Test the hypothesis through experimentation.

  13. Science Hypothesis

    Example of a hypothesis statement in science: "If the temperature of water increases, then the rate of plant growth will also increase." This hypothesis predicts a cause-and-effect relationship between water temperature and plant growth, which can be tested through controlled experiments. ... Chemistry: If the concentration of a reactant ...

  14. Writing a Hypothesis for Your Science Fair Project

    A hypothesis is a tentative, testable answer to a scientific question. Once a scientist has a scientific question she is interested in, the scientist reads up to find out what is already known on the topic. Then she uses that information to form a tentative answer to her scientific question. Sometimes people refer to the tentative answer as "an ...

  15. Writing a hypothesis and prediction

    Below are two examples of a prediction based on a hypothesis: Hypothesis 1. Prediction 1. Sunlight is necessary for seeds to grow. Seeds grown in bags wrapped in aluminium foil will make shorter ...

  16. Hypothesis ( Read )

    The word hypothesis can be defined as an "educated guess." For example, it might be an educated guess about why a natural event occurs. But not all hypotheses—even those about the natural world—are scientific hypotheses. What makes a statement a scientific hypothesis rather than just an educated guess? A scientific hypothesis must meet two ...

  17. Formulating a Hypothesis for an Experiment Practice

    AP Chemistry Skills Practice. 1. A student wants to know if it is faster to walk to his class or to drive his car. What would be the best hypothesis to determine which is the fastest? 2. A student ...

  18. How to Write Hypothesis for Lab Report

    A hypothesis is a tentative statement that proposes a possible explanation for some phenomenon or event. A useful hypothesis is a testable statement that may include a prediction. When Are Hypotheses Used? The keyword is testable. That is, you will perform a test of how two variables might be related. This is when you are doing a real experiment.

  19. Three Famous Hypotheses and How They Were Tested

    A hypothesis is a tentative, testable explanation for an observed phenomenon in nature. Hypotheses are narrow in scope — unlike theories, which cover a broad range of observable phenomena and draw from many different lines of evidence. Meanwhile, a prediction is a result you'd expect to get if your hypothesis or theory is accurate.

  20. What is a scientific hypothesis?

    A scientific hypothesis is a tentative, testable explanation for a phenomenon in the natural world. It's the initial building block in the scientific method. Many describe it as an "educated guess ...

  21. Hypothesis If Then

    The "If-Then" hypothesis is a predictive statement that sets up a cause-and-effect relationship between two variables. It's structured such that the "If" portion introduces a condition or a cause, and the "Then" portion predicts the effect or outcome of that condition. This format helps in clearly establishing a link between the ...

  22. What is Hypothesis

    Functions of Hypothesis. Following are the functions performed by the hypothesis: Hypothesis helps in making an observation and experiments possible. It becomes the start point for the investigation. Hypothesis helps in verifying the observations. It helps in directing the inquiries in the right direction.

  23. Surprising Phosphate Finding in NASA's OSIRIS-REx Asteroid Sample

    Although, this hypothesis requires further investigation." "OSIRIS-REx gave us exactly what we hoped: a large pristine asteroid sample rich in nitrogen and carbon from a formerly wet world," said Jason Dworkin, a co-author on the paper and the OSIRIS-REx project scientist at NASA's Goddard Space Flight Center in Greenbelt, Maryland.

  24. Surprising phosphate finding in NASA's OSIRIS-REx asteroid sample

    Early analysis of the asteroid Bennu sample returned by NASA's OSIRIS-REx mission has revealed dust rich in carbon, nitrogen, and organic compounds, all of which are essential components for life ...

  25. Risk assessment of small organoarsenic species in food

    The European Commission asked EFSA for a risk assessment on small organoarsenic species in food. For monomethylarsonic acid MMA(V), decreased body weight resulting from diarrhoea in rats was identified as the critical endpoint and a BMDL 10 of 18.2 mg MMA(V)/kg body weight (bw) per day (equivalent to 9.7 mg As/kg bw per day) was calculated as a reference point (RP).