Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Methodology

  • What Is a Case Study? | Definition, Examples & Methods

What Is a Case Study? | Definition, Examples & Methods

Published on May 8, 2019 by Shona McCombes . Revised on November 20, 2023.

A case study is a detailed study of a specific subject, such as a person, group, place, event, organization, or phenomenon. Case studies are commonly used in social, educational, clinical, and business research.

A case study research design usually involves qualitative methods , but quantitative methods are sometimes also used. Case studies are good for describing , comparing, evaluating and understanding different aspects of a research problem .

Table of contents

When to do a case study, step 1: select a case, step 2: build a theoretical framework, step 3: collect your data, step 4: describe and analyze the case, other interesting articles.

A case study is an appropriate research design when you want to gain concrete, contextual, in-depth knowledge about a specific real-world subject. It allows you to explore the key characteristics, meanings, and implications of the case.

Case studies are often a good choice in a thesis or dissertation . They keep your project focused and manageable when you don’t have the time or resources to do large-scale research.

You might use just one complex case study where you explore a single subject in depth, or conduct multiple case studies to compare and illuminate different aspects of your research problem.

Case study examples
Research question Case study
What are the ecological effects of wolf reintroduction? Case study of wolf reintroduction in Yellowstone National Park
How do populist politicians use narratives about history to gain support? Case studies of Hungarian prime minister Viktor Orbán and US president Donald Trump
How can teachers implement active learning strategies in mixed-level classrooms? Case study of a local school that promotes active learning
What are the main advantages and disadvantages of wind farms for rural communities? Case studies of three rural wind farm development projects in different parts of the country
How are viral marketing strategies changing the relationship between companies and consumers? Case study of the iPhone X marketing campaign
How do experiences of work in the gig economy differ by gender, race and age? Case studies of Deliveroo and Uber drivers in London

Prevent plagiarism. Run a free check.

Once you have developed your problem statement and research questions , you should be ready to choose the specific case that you want to focus on. A good case study should have the potential to:

  • Provide new or unexpected insights into the subject
  • Challenge or complicate existing assumptions and theories
  • Propose practical courses of action to resolve a problem
  • Open up new directions for future research

TipIf your research is more practical in nature and aims to simultaneously investigate an issue as you solve it, consider conducting action research instead.

Unlike quantitative or experimental research , a strong case study does not require a random or representative sample. In fact, case studies often deliberately focus on unusual, neglected, or outlying cases which may shed new light on the research problem.

Example of an outlying case studyIn the 1960s the town of Roseto, Pennsylvania was discovered to have extremely low rates of heart disease compared to the US average. It became an important case study for understanding previously neglected causes of heart disease.

However, you can also choose a more common or representative case to exemplify a particular category, experience or phenomenon.

Example of a representative case studyIn the 1920s, two sociologists used Muncie, Indiana as a case study of a typical American city that supposedly exemplified the changing culture of the US at the time.

While case studies focus more on concrete details than general theories, they should usually have some connection with theory in the field. This way the case study is not just an isolated description, but is integrated into existing knowledge about the topic. It might aim to:

  • Exemplify a theory by showing how it explains the case under investigation
  • Expand on a theory by uncovering new concepts and ideas that need to be incorporated
  • Challenge a theory by exploring an outlier case that doesn’t fit with established assumptions

To ensure that your analysis of the case has a solid academic grounding, you should conduct a literature review of sources related to the topic and develop a theoretical framework . This means identifying key concepts and theories to guide your analysis and interpretation.

There are many different research methods you can use to collect data on your subject. Case studies tend to focus on qualitative data using methods such as interviews , observations , and analysis of primary and secondary sources (e.g., newspaper articles, photographs, official records). Sometimes a case study will also collect quantitative data.

Example of a mixed methods case studyFor a case study of a wind farm development in a rural area, you could collect quantitative data on employment rates and business revenue, collect qualitative data on local people’s perceptions and experiences, and analyze local and national media coverage of the development.

The aim is to gain as thorough an understanding as possible of the case and its context.

Here's why students love Scribbr's proofreading services

Discover proofreading & editing

In writing up the case study, you need to bring together all the relevant aspects to give as complete a picture as possible of the subject.

How you report your findings depends on the type of research you are doing. Some case studies are structured like a standard scientific paper or thesis , with separate sections or chapters for the methods , results and discussion .

Others are written in a more narrative style, aiming to explore the case from various angles and analyze its meanings and implications (for example, by using textual analysis or discourse analysis ).

In all cases, though, make sure to give contextual details about the case, connect it back to the literature and theory, and discuss how it fits into wider patterns or debates.

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

  • Normal distribution
  • Degrees of freedom
  • Null hypothesis
  • Discourse analysis
  • Control groups
  • Mixed methods research
  • Non-probability sampling
  • Quantitative research
  • Ecological validity

Research bias

  • Rosenthal effect
  • Implicit bias
  • Cognitive bias
  • Selection bias
  • Negativity bias
  • Status quo bias

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

McCombes, S. (2023, November 20). What Is a Case Study? | Definition, Examples & Methods. Scribbr. Retrieved August 3, 2024, from https://www.scribbr.com/methodology/case-study/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, primary vs. secondary sources | difference & examples, what is a theoretical framework | guide to organizing, what is action research | definition & examples, "i thought ai proofreading was useless but..".

I've been using Scribbr for years now and I know it's a service that won't disappoint. It does a good job spotting mistakes”

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • J Med Libr Assoc
  • v.107(1); 2019 Jan

Distinguishing case study as a research method from case reports as a publication type

The purpose of this editorial is to distinguish between case reports and case studies. In health, case reports are familiar ways of sharing events or efforts of intervening with single patients with previously unreported features. As a qualitative methodology, case study research encompasses a great deal more complexity than a typical case report and often incorporates multiple streams of data combined in creative ways. The depth and richness of case study description helps readers understand the case and whether findings might be applicable beyond that setting.

Single-institution descriptive reports of library activities are often labeled by their authors as “case studies.” By contrast, in health care, single patient retrospective descriptions are published as “case reports.” Both case reports and case studies are valuable to readers and provide a publication opportunity for authors. A previous editorial by Akers and Amos about improving case studies addresses issues that are more common to case reports; for example, not having a review of the literature or being anecdotal, not generalizable, and prone to various types of bias such as positive outcome bias [ 1 ]. However, case study research as a qualitative methodology is pursued for different purposes than generalizability. The authors’ purpose in this editorial is to clearly distinguish between case reports and case studies. We believe that this will assist authors in describing and designating the methodological approach of their publications and help readers appreciate the rigor of well-executed case study research.

Case reports often provide a first exploration of a phenomenon or an opportunity for a first publication by a trainee in the health professions. In health care, case reports are familiar ways of sharing events or efforts of intervening with single patients with previously unreported features. Another type of study categorized as a case report is an “N of 1” study or single-subject clinical trial, which considers an individual patient as the sole unit of observation in a study investigating the efficacy or side effect profiles of different interventions. Entire journals have evolved to publish case reports, which often rely on template structures with limited contextualization or discussion of previous cases. Examples that are indexed in MEDLINE include the American Journal of Case Reports , BMJ Case Reports, Journal of Medical Case Reports, and Journal of Radiology Case Reports . Similar publications appear in veterinary medicine and are indexed in CAB Abstracts, such as Case Reports in Veterinary Medicine and Veterinary Record Case Reports .

As a qualitative methodology, however, case study research encompasses a great deal more complexity than a typical case report and often incorporates multiple streams of data combined in creative ways. Distinctions include the investigator’s definitions and delimitations of the case being studied, the clarity of the role of the investigator, the rigor of gathering and combining evidence about the case, and the contextualization of the findings. Delimitation is a term from qualitative research about setting boundaries to scope the research in a useful way rather than describing the narrow scope as a limitation, as often appears in a discussion section. The depth and richness of description helps readers understand the situation and whether findings from the case are applicable to their settings.

CASE STUDY AS A RESEARCH METHODOLOGY

Case study as a qualitative methodology is an exploration of a time- and space-bound phenomenon. As qualitative research, case studies require much more from their authors who are acting as instruments within the inquiry process. In the case study methodology, a variety of methodological approaches may be employed to explain the complexity of the problem being studied [ 2 , 3 ].

Leading authors diverge in their definitions of case study, but a qualitative research text introduces case study as follows:

Case study research is defined as a qualitative approach in which the investigator explores a real-life, contemporary bounded system (a case) or multiple bound systems (cases) over time, through detailed, in-depth data collection involving multiple sources of information, and reports a case description and case themes. The unit of analysis in the case study might be multiple cases (a multisite study) or a single case (a within-site case study). [ 4 ]

Methodologists writing core texts on case study research include Yin [ 5 ], Stake [ 6 ], and Merriam [ 7 ]. The approaches of these three methodologists have been compared by Yazan, who focused on six areas of methodology: epistemology (beliefs about ways of knowing), definition of cases, design of case studies, and gathering, analysis, and validation of data [ 8 ]. For Yin, case study is a method of empirical inquiry appropriate to determining the “how and why” of phenomena and contributes to understanding phenomena in a holistic and real-life context [ 5 ]. Stake defines a case study as a “well-bounded, specific, complex, and functioning thing” [ 6 ], while Merriam views “the case as a thing, a single entity, a unit around which there are boundaries” [ 7 ].

Case studies are ways to explain, describe, or explore phenomena. Comments from a quantitative perspective about case studies lacking rigor and generalizability fail to consider the purpose of the case study and how what is learned from a case study is put into practice. Rigor in case studies comes from the research design and its components, which Yin outlines as (a) the study’s questions, (b) the study’s propositions, (c) the unit of analysis, (d) the logic linking the data to propositions, and (e) the criteria for interpreting the findings [ 5 ]. Case studies should also provide multiple sources of data, a case study database, and a clear chain of evidence among the questions asked, the data collected, and the conclusions drawn [ 5 ].

Sources of evidence for case studies include interviews, documentation, archival records, direct observations, participant-observation, and physical artifacts. One of the most important sources for data in qualitative case study research is the interview [ 2 , 3 ]. In addition to interviews, documents and archival records can be gathered to corroborate and enhance the findings of the study. To understand the phenomenon or the conditions that created it, direct observations can serve as another source of evidence and can be conducted throughout the study. These can include the use of formal and informal protocols as a participant inside the case or an external or passive observer outside of the case [ 5 ]. Lastly, physical artifacts can be observed and collected as a form of evidence. With these multiple potential sources of evidence, the study methodology includes gathering data, sense-making, and triangulating multiple streams of data. Figure 1 shows an example in which data used for the case started with a pilot study to provide additional context to guide more in-depth data collection and analysis with participants.

An external file that holds a picture, illustration, etc.
Object name is jmla-107-1-f001.jpg

Key sources of data for a sample case study

VARIATIONS ON CASE STUDY METHODOLOGY

Case study methodology is evolving and regularly reinterpreted. Comparative or multiple case studies are used as a tool for synthesizing information across time and space to research the impact of policy and practice in various fields of social research [ 9 ]. Because case study research is in-depth and intensive, there have been efforts to simplify the method or select useful components of cases for focused analysis. Micro-case study is a term that is occasionally used to describe research on micro-level cases [ 10 ]. These are cases that occur in a brief time frame, occur in a confined setting, and are simple and straightforward in nature. A micro-level case describes a clear problem of interest. Reporting is very brief and about specific points. The lack of complexity in the case description makes obvious the “lesson” that is inherent in the case; although no definitive “solution” is necessarily forthcoming, making the case useful for discussion. A micro-case write-up can be distinguished from a case report by its focus on briefly reporting specific features of a case or cases to analyze or learn from those features.

DATABASE INDEXING OF CASE REPORTS AND CASE STUDIES

Disciplines such as education, psychology, sociology, political science, and social work regularly publish rich case studies that are relevant to particular areas of health librarianship. Case reports and case studies have been defined as publication types or subject terms by several databases that are relevant to librarian authors: MEDLINE, PsycINFO, CINAHL, and ERIC. Library, Information Science & Technology Abstracts (LISTA) does not have a subject term or publication type related to cases, despite many being included in the database. Whereas “Case Reports” are the main term used by MEDLINE’s Medical Subject Headings (MeSH) and PsycINFO’s thesaurus, CINAHL and ERIC use “Case Studies.”

Case reports in MEDLINE and PsycINFO focus on clinical case documentation. In MeSH, “Case Reports” as a publication type is specific to “clinical presentations that may be followed by evaluative studies that eventually lead to a diagnosis” [ 11 ]. “Case Histories,” “Case Studies,” and “Case Study” are all entry terms mapping to “Case Reports”; however, guidance to indexers suggests that “Case Reports” should not be applied to institutional case reports and refers to the heading “Organizational Case Studies,” which is defined as “descriptions and evaluations of specific health care organizations” [ 12 ].

PsycINFO’s subject term “Case Report” is “used in records discussing issues involved in the process of conducting exploratory studies of single or multiple clinical cases.” The Methodology index offers clinical and non-clinical entries. “Clinical Case Study” is defined as “case reports that include disorder, diagnosis, and clinical treatment for individuals with mental or medical illnesses,” whereas “Non-clinical Case Study” is a “document consisting of non-clinical or organizational case examples of the concepts being researched or studied. The setting is always non-clinical and does not include treatment-related environments” [ 13 ].

Both CINAHL and ERIC acknowledge the depth of analysis in case study methodology. The CINAHL scope note for the thesaurus term “Case Studies” distinguishes between the document and the methodology, though both use the same term: “a review of a particular condition, disease, or administrative problem. Also, a research method that involves an in-depth analysis of an individual, group, institution, or other social unit. For material that contains a case study, search for document type: case study.” The ERIC scope note for the thesaurus term “Case Studies” is simple: “detailed analyses, usually focusing on a particular problem of an individual, group, or organization” [ 14 ].

PUBLICATION OF CASE STUDY RESEARCH IN LIBRARIANSHIP

We call your attention to a few examples published as case studies in health sciences librarianship to consider how their characteristics fit with the preceding definitions of case reports or case study research. All present some characteristics of case study research, but their treatment of the research questions, richness of description, and analytic strategies vary in depth and, therefore, diverge at some level from the qualitative case study research approach. This divergence, particularly in richness of description and analysis, may have been constrained by the publication requirements.

As one example, a case study by Janke and Rush documented a time- and context-bound collaboration involving a librarian and a nursing faculty member [ 15 ]. Three objectives were stated: (1) describing their experience of working together on an interprofessional research team, (2) evaluating the value of the librarian role from librarian and faculty member perspectives, and (3) relating findings to existing literature. Elements that signal the qualitative nature of this case study are that the authors were the research participants and their use of the term “evaluation” is reflection on their experience. This reads like a case study that could have been enriched by including other types of data gathered from others engaging with this team to broaden the understanding of the collaboration.

As another example, the description of the academic context is one of the most salient components of the case study written by Clairoux et al., which had the objectives of (1) describing the library instruction offered and learning assessments used at a single health sciences library and (2) discussing the positive outcomes of instruction in that setting [ 16 ]. The authors focus on sharing what the institution has done more than explaining why this institution is an exemplar to explore a focused question or understand the phenomenon of library instruction. However, like a case study, the analysis brings together several streams of data including course attendance, online material page views, and some discussion of results from surveys. This paper reads somewhat in between an institutional case report and a case study.

The final example is a single author reporting on a personal experience of creating and executing the role of research informationist for a National Institutes of Health (NIH)–funded research team [ 17 ]. There is a thoughtful review of the informationist literature and detailed descriptions of the institutional context and the process of gaining access to and participating in the new role. However, the motivating question in the abstract does not seem to be fully addressed through analysis from either the reflective perspective of the author as the research participant or consideration of other streams of data from those involved in the informationist experience. The publication reads more like a case report about this informationist’s experience than a case study that explores the research informationist experience through the selection of this case.

All of these publications are well written and useful for their intended audiences, but in general, they are much shorter and much less rich in depth than case studies published in social sciences research. It may be that the authors have been constrained by word counts or page limits. For example, the submission category for Case Studies in the Journal of the Medical Library Association (JMLA) limited them to 3,000 words and defined them as “articles describing the process of developing, implementing, and evaluating a new service, program, or initiative, typically in a single institution or through a single collaborative effort” [ 18 ]. This definition’s focus on novelty and description sounds much more like the definition of case report than the in-depth, detailed investigation of a time- and space-bound problem that is often examined through case study research.

Problem-focused or question-driven case study research would benefit from the space provided for Original Investigations that employ any type of quantitative or qualitative method of analysis. One of the best examples in the JMLA of an in-depth multiple case study that was authored by a librarian who published the findings from her doctoral dissertation represented all the elements of a case study. In eight pages, she provided a theoretical basis for the research question, a pilot study, and a multiple case design, including integrated data from interviews and focus groups [ 19 ].

We have distinguished between case reports and case studies primarily to assist librarians who are new to research and critical appraisal of case study methodology to recognize the features that authors use to describe and designate the methodological approaches of their publications. For researchers who are new to case research methodology and are interested in learning more, Hancock and Algozzine provide a guide [ 20 ].

We hope that JMLA readers appreciate the rigor of well-executed case study research. We believe that distinguishing between descriptive case reports and analytic case studies in the journal’s submission categories will allow the depth of case study methodology to increase. We also hope that authors feel encouraged to pursue submitting relevant case studies or case reports for future publication.

Editor’s note: In response to this invited editorial, the Journal of the Medical Library Association will consider manuscripts employing rigorous qualitative case study methodology to be Original Investigations (fewer than 5,000 words), whereas manuscripts describing the process of developing, implementing, and assessing a new service, program, or initiative—typically in a single institution or through a single collaborative effort—will be considered to be Case Reports (formerly known as Case Studies; fewer than 3,000 words).

Organizing Your Social Sciences Research Assignments

  • Annotated Bibliography
  • Analyzing a Scholarly Journal Article
  • Group Presentations
  • Dealing with Nervousness
  • Using Visual Aids
  • Grading Someone Else's Paper
  • Types of Structured Group Activities
  • Group Project Survival Skills
  • Leading a Class Discussion
  • Multiple Book Review Essay
  • Reviewing Collected Works
  • Writing a Case Analysis Paper
  • Writing a Case Study
  • About Informed Consent
  • Writing Field Notes
  • Writing a Policy Memo
  • Writing a Reflective Paper
  • Writing a Research Proposal
  • Generative AI and Writing
  • Acknowledgments

A case study research paper examines a person, place, event, condition, phenomenon, or other type of subject of analysis in order to extrapolate  key themes and results that help predict future trends, illuminate previously hidden issues that can be applied to practice, and/or provide a means for understanding an important research problem with greater clarity. A case study research paper usually examines a single subject of analysis, but case study papers can also be designed as a comparative investigation that shows relationships between two or more subjects. The methods used to study a case can rest within a quantitative, qualitative, or mixed-method investigative paradigm.

Case Studies. Writing@CSU. Colorado State University; Mills, Albert J. , Gabrielle Durepos, and Eiden Wiebe, editors. Encyclopedia of Case Study Research . Thousand Oaks, CA: SAGE Publications, 2010 ; “What is a Case Study?” In Swanborn, Peter G. Case Study Research: What, Why and How? London: SAGE, 2010.

How to Approach Writing a Case Study Research Paper

General information about how to choose a topic to investigate can be found under the " Choosing a Research Problem " tab in the Organizing Your Social Sciences Research Paper writing guide. Review this page because it may help you identify a subject of analysis that can be investigated using a case study design.

However, identifying a case to investigate involves more than choosing the research problem . A case study encompasses a problem contextualized around the application of in-depth analysis, interpretation, and discussion, often resulting in specific recommendations for action or for improving existing conditions. As Seawright and Gerring note, practical considerations such as time and access to information can influence case selection, but these issues should not be the sole factors used in describing the methodological justification for identifying a particular case to study. Given this, selecting a case includes considering the following:

  • The case represents an unusual or atypical example of a research problem that requires more in-depth analysis? Cases often represent a topic that rests on the fringes of prior investigations because the case may provide new ways of understanding the research problem. For example, if the research problem is to identify strategies to improve policies that support girl's access to secondary education in predominantly Muslim nations, you could consider using Azerbaijan as a case study rather than selecting a more obvious nation in the Middle East. Doing so may reveal important new insights into recommending how governments in other predominantly Muslim nations can formulate policies that support improved access to education for girls.
  • The case provides important insight or illuminate a previously hidden problem? In-depth analysis of a case can be based on the hypothesis that the case study will reveal trends or issues that have not been exposed in prior research or will reveal new and important implications for practice. For example, anecdotal evidence may suggest drug use among homeless veterans is related to their patterns of travel throughout the day. Assuming prior studies have not looked at individual travel choices as a way to study access to illicit drug use, a case study that observes a homeless veteran could reveal how issues of personal mobility choices facilitate regular access to illicit drugs. Note that it is important to conduct a thorough literature review to ensure that your assumption about the need to reveal new insights or previously hidden problems is valid and evidence-based.
  • The case challenges and offers a counter-point to prevailing assumptions? Over time, research on any given topic can fall into a trap of developing assumptions based on outdated studies that are still applied to new or changing conditions or the idea that something should simply be accepted as "common sense," even though the issue has not been thoroughly tested in current practice. A case study analysis may offer an opportunity to gather evidence that challenges prevailing assumptions about a research problem and provide a new set of recommendations applied to practice that have not been tested previously. For example, perhaps there has been a long practice among scholars to apply a particular theory in explaining the relationship between two subjects of analysis. Your case could challenge this assumption by applying an innovative theoretical framework [perhaps borrowed from another discipline] to explore whether this approach offers new ways of understanding the research problem. Taking a contrarian stance is one of the most important ways that new knowledge and understanding develops from existing literature.
  • The case provides an opportunity to pursue action leading to the resolution of a problem? Another way to think about choosing a case to study is to consider how the results from investigating a particular case may result in findings that reveal ways in which to resolve an existing or emerging problem. For example, studying the case of an unforeseen incident, such as a fatal accident at a railroad crossing, can reveal hidden issues that could be applied to preventative measures that contribute to reducing the chance of accidents in the future. In this example, a case study investigating the accident could lead to a better understanding of where to strategically locate additional signals at other railroad crossings so as to better warn drivers of an approaching train, particularly when visibility is hindered by heavy rain, fog, or at night.
  • The case offers a new direction in future research? A case study can be used as a tool for an exploratory investigation that highlights the need for further research about the problem. A case can be used when there are few studies that help predict an outcome or that establish a clear understanding about how best to proceed in addressing a problem. For example, after conducting a thorough literature review [very important!], you discover that little research exists showing the ways in which women contribute to promoting water conservation in rural communities of east central Africa. A case study of how women contribute to saving water in a rural village of Uganda can lay the foundation for understanding the need for more thorough research that documents how women in their roles as cooks and family caregivers think about water as a valuable resource within their community. This example of a case study could also point to the need for scholars to build new theoretical frameworks around the topic [e.g., applying feminist theories of work and family to the issue of water conservation].

Eisenhardt, Kathleen M. “Building Theories from Case Study Research.” Academy of Management Review 14 (October 1989): 532-550; Emmel, Nick. Sampling and Choosing Cases in Qualitative Research: A Realist Approach . Thousand Oaks, CA: SAGE Publications, 2013; Gerring, John. “What Is a Case Study and What Is It Good for?” American Political Science Review 98 (May 2004): 341-354; Mills, Albert J. , Gabrielle Durepos, and Eiden Wiebe, editors. Encyclopedia of Case Study Research . Thousand Oaks, CA: SAGE Publications, 2010; Seawright, Jason and John Gerring. "Case Selection Techniques in Case Study Research." Political Research Quarterly 61 (June 2008): 294-308.

Structure and Writing Style

The purpose of a paper in the social sciences designed around a case study is to thoroughly investigate a subject of analysis in order to reveal a new understanding about the research problem and, in so doing, contributing new knowledge to what is already known from previous studies. In applied social sciences disciplines [e.g., education, social work, public administration, etc.], case studies may also be used to reveal best practices, highlight key programs, or investigate interesting aspects of professional work.

In general, the structure of a case study research paper is not all that different from a standard college-level research paper. However, there are subtle differences you should be aware of. Here are the key elements to organizing and writing a case study research paper.

I.  Introduction

As with any research paper, your introduction should serve as a roadmap for your readers to ascertain the scope and purpose of your study . The introduction to a case study research paper, however, should not only describe the research problem and its significance, but you should also succinctly describe why the case is being used and how it relates to addressing the problem. The two elements should be linked. With this in mind, a good introduction answers these four questions:

  • What is being studied? Describe the research problem and describe the subject of analysis [the case] you have chosen to address the problem. Explain how they are linked and what elements of the case will help to expand knowledge and understanding about the problem.
  • Why is this topic important to investigate? Describe the significance of the research problem and state why a case study design and the subject of analysis that the paper is designed around is appropriate in addressing the problem.
  • What did we know about this topic before I did this study? Provide background that helps lead the reader into the more in-depth literature review to follow. If applicable, summarize prior case study research applied to the research problem and why it fails to adequately address the problem. Describe why your case will be useful. If no prior case studies have been used to address the research problem, explain why you have selected this subject of analysis.
  • How will this study advance new knowledge or new ways of understanding? Explain why your case study will be suitable in helping to expand knowledge and understanding about the research problem.

Each of these questions should be addressed in no more than a few paragraphs. Exceptions to this can be when you are addressing a complex research problem or subject of analysis that requires more in-depth background information.

II.  Literature Review

The literature review for a case study research paper is generally structured the same as it is for any college-level research paper. The difference, however, is that the literature review is focused on providing background information and  enabling historical interpretation of the subject of analysis in relation to the research problem the case is intended to address . This includes synthesizing studies that help to:

  • Place relevant works in the context of their contribution to understanding the case study being investigated . This would involve summarizing studies that have used a similar subject of analysis to investigate the research problem. If there is literature using the same or a very similar case to study, you need to explain why duplicating past research is important [e.g., conditions have changed; prior studies were conducted long ago, etc.].
  • Describe the relationship each work has to the others under consideration that informs the reader why this case is applicable . Your literature review should include a description of any works that support using the case to investigate the research problem and the underlying research questions.
  • Identify new ways to interpret prior research using the case study . If applicable, review any research that has examined the research problem using a different research design. Explain how your use of a case study design may reveal new knowledge or a new perspective or that can redirect research in an important new direction.
  • Resolve conflicts amongst seemingly contradictory previous studies . This refers to synthesizing any literature that points to unresolved issues of concern about the research problem and describing how the subject of analysis that forms the case study can help resolve these existing contradictions.
  • Point the way in fulfilling a need for additional research . Your review should examine any literature that lays a foundation for understanding why your case study design and the subject of analysis around which you have designed your study may reveal a new way of approaching the research problem or offer a perspective that points to the need for additional research.
  • Expose any gaps that exist in the literature that the case study could help to fill . Summarize any literature that not only shows how your subject of analysis contributes to understanding the research problem, but how your case contributes to a new way of understanding the problem that prior research has failed to do.
  • Locate your own research within the context of existing literature [very important!] . Collectively, your literature review should always place your case study within the larger domain of prior research about the problem. The overarching purpose of reviewing pertinent literature in a case study paper is to demonstrate that you have thoroughly identified and synthesized prior studies in relation to explaining the relevance of the case in addressing the research problem.

III.  Method

In this section, you explain why you selected a particular case [i.e., subject of analysis] and the strategy you used to identify and ultimately decide that your case was appropriate in addressing the research problem. The way you describe the methods used varies depending on the type of subject of analysis that constitutes your case study.

If your subject of analysis is an incident or event . In the social and behavioral sciences, the event or incident that represents the case to be studied is usually bounded by time and place, with a clear beginning and end and with an identifiable location or position relative to its surroundings. The subject of analysis can be a rare or critical event or it can focus on a typical or regular event. The purpose of studying a rare event is to illuminate new ways of thinking about the broader research problem or to test a hypothesis. Critical incident case studies must describe the method by which you identified the event and explain the process by which you determined the validity of this case to inform broader perspectives about the research problem or to reveal new findings. However, the event does not have to be a rare or uniquely significant to support new thinking about the research problem or to challenge an existing hypothesis. For example, Walo, Bull, and Breen conducted a case study to identify and evaluate the direct and indirect economic benefits and costs of a local sports event in the City of Lismore, New South Wales, Australia. The purpose of their study was to provide new insights from measuring the impact of a typical local sports event that prior studies could not measure well because they focused on large "mega-events." Whether the event is rare or not, the methods section should include an explanation of the following characteristics of the event: a) when did it take place; b) what were the underlying circumstances leading to the event; and, c) what were the consequences of the event in relation to the research problem.

If your subject of analysis is a person. Explain why you selected this particular individual to be studied and describe what experiences they have had that provide an opportunity to advance new understandings about the research problem. Mention any background about this person which might help the reader understand the significance of their experiences that make them worthy of study. This includes describing the relationships this person has had with other people, institutions, and/or events that support using them as the subject for a case study research paper. It is particularly important to differentiate the person as the subject of analysis from others and to succinctly explain how the person relates to examining the research problem [e.g., why is one politician in a particular local election used to show an increase in voter turnout from any other candidate running in the election]. Note that these issues apply to a specific group of people used as a case study unit of analysis [e.g., a classroom of students].

If your subject of analysis is a place. In general, a case study that investigates a place suggests a subject of analysis that is unique or special in some way and that this uniqueness can be used to build new understanding or knowledge about the research problem. A case study of a place must not only describe its various attributes relevant to the research problem [e.g., physical, social, historical, cultural, economic, political], but you must state the method by which you determined that this place will illuminate new understandings about the research problem. It is also important to articulate why a particular place as the case for study is being used if similar places also exist [i.e., if you are studying patterns of homeless encampments of veterans in open spaces, explain why you are studying Echo Park in Los Angeles rather than Griffith Park?]. If applicable, describe what type of human activity involving this place makes it a good choice to study [e.g., prior research suggests Echo Park has more homeless veterans].

If your subject of analysis is a phenomenon. A phenomenon refers to a fact, occurrence, or circumstance that can be studied or observed but with the cause or explanation to be in question. In this sense, a phenomenon that forms your subject of analysis can encompass anything that can be observed or presumed to exist but is not fully understood. In the social and behavioral sciences, the case usually focuses on human interaction within a complex physical, social, economic, cultural, or political system. For example, the phenomenon could be the observation that many vehicles used by ISIS fighters are small trucks with English language advertisements on them. The research problem could be that ISIS fighters are difficult to combat because they are highly mobile. The research questions could be how and by what means are these vehicles used by ISIS being supplied to the militants and how might supply lines to these vehicles be cut off? How might knowing the suppliers of these trucks reveal larger networks of collaborators and financial support? A case study of a phenomenon most often encompasses an in-depth analysis of a cause and effect that is grounded in an interactive relationship between people and their environment in some way.

NOTE:   The choice of the case or set of cases to study cannot appear random. Evidence that supports the method by which you identified and chose your subject of analysis should clearly support investigation of the research problem and linked to key findings from your literature review. Be sure to cite any studies that helped you determine that the case you chose was appropriate for examining the problem.

IV.  Discussion

The main elements of your discussion section are generally the same as any research paper, but centered around interpreting and drawing conclusions about the key findings from your analysis of the case study. Note that a general social sciences research paper may contain a separate section to report findings. However, in a paper designed around a case study, it is common to combine a description of the results with the discussion about their implications. The objectives of your discussion section should include the following:

Reiterate the Research Problem/State the Major Findings Briefly reiterate the research problem you are investigating and explain why the subject of analysis around which you designed the case study were used. You should then describe the findings revealed from your study of the case using direct, declarative, and succinct proclamation of the study results. Highlight any findings that were unexpected or especially profound.

Explain the Meaning of the Findings and Why They are Important Systematically explain the meaning of your case study findings and why you believe they are important. Begin this part of the section by repeating what you consider to be your most important or surprising finding first, then systematically review each finding. Be sure to thoroughly extrapolate what your analysis of the case can tell the reader about situations or conditions beyond the actual case that was studied while, at the same time, being careful not to misconstrue or conflate a finding that undermines the external validity of your conclusions.

Relate the Findings to Similar Studies No study in the social sciences is so novel or possesses such a restricted focus that it has absolutely no relation to previously published research. The discussion section should relate your case study results to those found in other studies, particularly if questions raised from prior studies served as the motivation for choosing your subject of analysis. This is important because comparing and contrasting the findings of other studies helps support the overall importance of your results and it highlights how and in what ways your case study design and the subject of analysis differs from prior research about the topic.

Consider Alternative Explanations of the Findings Remember that the purpose of social science research is to discover and not to prove. When writing the discussion section, you should carefully consider all possible explanations revealed by the case study results, rather than just those that fit your hypothesis or prior assumptions and biases. Be alert to what the in-depth analysis of the case may reveal about the research problem, including offering a contrarian perspective to what scholars have stated in prior research if that is how the findings can be interpreted from your case.

Acknowledge the Study's Limitations You can state the study's limitations in the conclusion section of your paper but describing the limitations of your subject of analysis in the discussion section provides an opportunity to identify the limitations and explain why they are not significant. This part of the discussion section should also note any unanswered questions or issues your case study could not address. More detailed information about how to document any limitations to your research can be found here .

Suggest Areas for Further Research Although your case study may offer important insights about the research problem, there are likely additional questions related to the problem that remain unanswered or findings that unexpectedly revealed themselves as a result of your in-depth analysis of the case. Be sure that the recommendations for further research are linked to the research problem and that you explain why your recommendations are valid in other contexts and based on the original assumptions of your study.

V.  Conclusion

As with any research paper, you should summarize your conclusion in clear, simple language; emphasize how the findings from your case study differs from or supports prior research and why. Do not simply reiterate the discussion section. Provide a synthesis of key findings presented in the paper to show how these converge to address the research problem. If you haven't already done so in the discussion section, be sure to document the limitations of your case study and any need for further research.

The function of your paper's conclusion is to: 1) reiterate the main argument supported by the findings from your case study; 2) state clearly the context, background, and necessity of pursuing the research problem using a case study design in relation to an issue, controversy, or a gap found from reviewing the literature; and, 3) provide a place to persuasively and succinctly restate the significance of your research problem, given that the reader has now been presented with in-depth information about the topic.

Consider the following points to help ensure your conclusion is appropriate:

  • If the argument or purpose of your paper is complex, you may need to summarize these points for your reader.
  • If prior to your conclusion, you have not yet explained the significance of your findings or if you are proceeding inductively, use the conclusion of your paper to describe your main points and explain their significance.
  • Move from a detailed to a general level of consideration of the case study's findings that returns the topic to the context provided by the introduction or within a new context that emerges from your case study findings.

Note that, depending on the discipline you are writing in or the preferences of your professor, the concluding paragraph may contain your final reflections on the evidence presented as it applies to practice or on the essay's central research problem. However, the nature of being introspective about the subject of analysis you have investigated will depend on whether you are explicitly asked to express your observations in this way.

Problems to Avoid

Overgeneralization One of the goals of a case study is to lay a foundation for understanding broader trends and issues applied to similar circumstances. However, be careful when drawing conclusions from your case study. They must be evidence-based and grounded in the results of the study; otherwise, it is merely speculation. Looking at a prior example, it would be incorrect to state that a factor in improving girls access to education in Azerbaijan and the policy implications this may have for improving access in other Muslim nations is due to girls access to social media if there is no documentary evidence from your case study to indicate this. There may be anecdotal evidence that retention rates were better for girls who were engaged with social media, but this observation would only point to the need for further research and would not be a definitive finding if this was not a part of your original research agenda.

Failure to Document Limitations No case is going to reveal all that needs to be understood about a research problem. Therefore, just as you have to clearly state the limitations of a general research study , you must describe the specific limitations inherent in the subject of analysis. For example, the case of studying how women conceptualize the need for water conservation in a village in Uganda could have limited application in other cultural contexts or in areas where fresh water from rivers or lakes is plentiful and, therefore, conservation is understood more in terms of managing access rather than preserving access to a scarce resource.

Failure to Extrapolate All Possible Implications Just as you don't want to over-generalize from your case study findings, you also have to be thorough in the consideration of all possible outcomes or recommendations derived from your findings. If you do not, your reader may question the validity of your analysis, particularly if you failed to document an obvious outcome from your case study research. For example, in the case of studying the accident at the railroad crossing to evaluate where and what types of warning signals should be located, you failed to take into consideration speed limit signage as well as warning signals. When designing your case study, be sure you have thoroughly addressed all aspects of the problem and do not leave gaps in your analysis that leave the reader questioning the results.

Case Studies. Writing@CSU. Colorado State University; Gerring, John. Case Study Research: Principles and Practices . New York: Cambridge University Press, 2007; Merriam, Sharan B. Qualitative Research and Case Study Applications in Education . Rev. ed. San Francisco, CA: Jossey-Bass, 1998; Miller, Lisa L. “The Use of Case Studies in Law and Social Science Research.” Annual Review of Law and Social Science 14 (2018): TBD; Mills, Albert J., Gabrielle Durepos, and Eiden Wiebe, editors. Encyclopedia of Case Study Research . Thousand Oaks, CA: SAGE Publications, 2010; Putney, LeAnn Grogan. "Case Study." In Encyclopedia of Research Design , Neil J. Salkind, editor. (Thousand Oaks, CA: SAGE Publications, 2010), pp. 116-120; Simons, Helen. Case Study Research in Practice . London: SAGE Publications, 2009;  Kratochwill,  Thomas R. and Joel R. Levin, editors. Single-Case Research Design and Analysis: New Development for Psychology and Education .  Hilldsale, NJ: Lawrence Erlbaum Associates, 1992; Swanborn, Peter G. Case Study Research: What, Why and How? London : SAGE, 2010; Yin, Robert K. Case Study Research: Design and Methods . 6th edition. Los Angeles, CA, SAGE Publications, 2014; Walo, Maree, Adrian Bull, and Helen Breen. “Achieving Economic Benefits at Local Events: A Case Study of a Local Sports Event.” Festival Management and Event Tourism 4 (1996): 95-106.

Writing Tip

At Least Five Misconceptions about Case Study Research

Social science case studies are often perceived as limited in their ability to create new knowledge because they are not randomly selected and findings cannot be generalized to larger populations. Flyvbjerg examines five misunderstandings about case study research and systematically "corrects" each one. To quote, these are:

Misunderstanding 1 :  General, theoretical [context-independent] knowledge is more valuable than concrete, practical [context-dependent] knowledge. Misunderstanding 2 :  One cannot generalize on the basis of an individual case; therefore, the case study cannot contribute to scientific development. Misunderstanding 3 :  The case study is most useful for generating hypotheses; that is, in the first stage of a total research process, whereas other methods are more suitable for hypotheses testing and theory building. Misunderstanding 4 :  The case study contains a bias toward verification, that is, a tendency to confirm the researcher’s preconceived notions. Misunderstanding 5 :  It is often difficult to summarize and develop general propositions and theories on the basis of specific case studies [p. 221].

While writing your paper, think introspectively about how you addressed these misconceptions because to do so can help you strengthen the validity and reliability of your research by clarifying issues of case selection, the testing and challenging of existing assumptions, the interpretation of key findings, and the summation of case outcomes. Think of a case study research paper as a complete, in-depth narrative about the specific properties and key characteristics of your subject of analysis applied to the research problem.

Flyvbjerg, Bent. “Five Misunderstandings About Case-Study Research.” Qualitative Inquiry 12 (April 2006): 219-245.

  • << Previous: Writing a Case Analysis Paper
  • Next: Writing a Field Report >>
  • Last Updated: Jun 3, 2024 9:44 AM
  • URL: https://libguides.usc.edu/writingguide/assignments

Log in using your username and password

  • Search More Search for this keyword Advanced search
  • Latest content
  • Current issue
  • Write for Us
  • BMJ Journals

You are here

  • Volume 21, Issue 1
  • What is a case study?
  • Article Text
  • Article info
  • Citation Tools
  • Rapid Responses
  • Article metrics

Download PDF

  • Roberta Heale 1 ,
  • Alison Twycross 2
  • 1 School of Nursing , Laurentian University , Sudbury , Ontario , Canada
  • 2 School of Health and Social Care , London South Bank University , London , UK
  • Correspondence to Dr Roberta Heale, School of Nursing, Laurentian University, Sudbury, ON P3E2C6, Canada; rheale{at}laurentian.ca

https://doi.org/10.1136/eb-2017-102845

Statistics from Altmetric.com

Request permissions.

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.

What is it?

Case study is a research methodology, typically seen in social and life sciences. There is no one definition of case study research. 1 However, very simply… ‘a case study can be defined as an intensive study about a person, a group of people or a unit, which is aimed to generalize over several units’. 1 A case study has also been described as an intensive, systematic investigation of a single individual, group, community or some other unit in which the researcher examines in-depth data relating to several variables. 2

Often there are several similar cases to consider such as educational or social service programmes that are delivered from a number of locations. Although similar, they are complex and have unique features. In these circumstances, the evaluation of several, similar cases will provide a better answer to a research question than if only one case is examined, hence the multiple-case study. Stake asserts that the cases are grouped and viewed as one entity, called the quintain . 6  ‘We study what is similar and different about the cases to understand the quintain better’. 6

The steps when using case study methodology are the same as for other types of research. 6 The first step is defining the single case or identifying a group of similar cases that can then be incorporated into a multiple-case study. A search to determine what is known about the case(s) is typically conducted. This may include a review of the literature, grey literature, media, reports and more, which serves to establish a basic understanding of the cases and informs the development of research questions. Data in case studies are often, but not exclusively, qualitative in nature. In multiple-case studies, analysis within cases and across cases is conducted. Themes arise from the analyses and assertions about the cases as a whole, or the quintain, emerge. 6

Benefits and limitations of case studies

If a researcher wants to study a specific phenomenon arising from a particular entity, then a single-case study is warranted and will allow for a in-depth understanding of the single phenomenon and, as discussed above, would involve collecting several different types of data. This is illustrated in example 1 below.

Using a multiple-case research study allows for a more in-depth understanding of the cases as a unit, through comparison of similarities and differences of the individual cases embedded within the quintain. Evidence arising from multiple-case studies is often stronger and more reliable than from single-case research. Multiple-case studies allow for more comprehensive exploration of research questions and theory development. 6

Despite the advantages of case studies, there are limitations. The sheer volume of data is difficult to organise and data analysis and integration strategies need to be carefully thought through. There is also sometimes a temptation to veer away from the research focus. 2 Reporting of findings from multiple-case research studies is also challenging at times, 1 particularly in relation to the word limits for some journal papers.

Examples of case studies

Example 1: nurses’ paediatric pain management practices.

One of the authors of this paper (AT) has used a case study approach to explore nurses’ paediatric pain management practices. This involved collecting several datasets:

Observational data to gain a picture about actual pain management practices.

Questionnaire data about nurses’ knowledge about paediatric pain management practices and how well they felt they managed pain in children.

Questionnaire data about how critical nurses perceived pain management tasks to be.

These datasets were analysed separately and then compared 7–9 and demonstrated that nurses’ level of theoretical did not impact on the quality of their pain management practices. 7 Nor did individual nurse’s perceptions of how critical a task was effect the likelihood of them carrying out this task in practice. 8 There was also a difference in self-reported and observed practices 9 ; actual (observed) practices did not confirm to best practice guidelines, whereas self-reported practices tended to.

Example 2: quality of care for complex patients at Nurse Practitioner-Led Clinics (NPLCs)

The other author of this paper (RH) has conducted a multiple-case study to determine the quality of care for patients with complex clinical presentations in NPLCs in Ontario, Canada. 10 Five NPLCs served as individual cases that, together, represented the quatrain. Three types of data were collected including:

Review of documentation related to the NPLC model (media, annual reports, research articles, grey literature and regulatory legislation).

Interviews with nurse practitioners (NPs) practising at the five NPLCs to determine their perceptions of the impact of the NPLC model on the quality of care provided to patients with multimorbidity.

Chart audits conducted at the five NPLCs to determine the extent to which evidence-based guidelines were followed for patients with diabetes and at least one other chronic condition.

The three sources of data collected from the five NPLCs were analysed and themes arose related to the quality of care for complex patients at NPLCs. The multiple-case study confirmed that nurse practitioners are the primary care providers at the NPLCs, and this positively impacts the quality of care for patients with multimorbidity. Healthcare policy, such as lack of an increase in salary for NPs for 10 years, has resulted in issues in recruitment and retention of NPs at NPLCs. This, along with insufficient resources in the communities where NPLCs are located and high patient vulnerability at NPLCs, have a negative impact on the quality of care. 10

These examples illustrate how collecting data about a single case or multiple cases helps us to better understand the phenomenon in question. Case study methodology serves to provide a framework for evaluation and analysis of complex issues. It shines a light on the holistic nature of nursing practice and offers a perspective that informs improved patient care.

  • Gustafsson J
  • Calanzaro M
  • Sandelowski M

Competing interests None declared.

Provenance and peer review Commissioned; internally peer reviewed.

Read the full text or download the PDF:

case study as a scientific text

Designing and Conducting Case Studies

This guide examines case studies, a form of qualitative descriptive research that is used to look at individuals, a small group of participants, or a group as a whole. Researchers collect data about participants using participant and direct observations, interviews, protocols, tests, examinations of records, and collections of writing samples. Starting with a definition of the case study, the guide moves to a brief history of this research method. Using several well documented case studies, the guide then looks at applications and methods including data collection and analysis. A discussion of ways to handle validity, reliability, and generalizability follows, with special attention to case studies as they are applied to composition studies. Finally, this guide examines the strengths and weaknesses of case studies.

Definition and Overview

Case study refers to the collection and presentation of detailed information about a particular participant or small group, frequently including the accounts of subjects themselves. A form of qualitative descriptive research, the case study looks intensely at an individual or small participant pool, drawing conclusions only about that participant or group and only in that specific context. Researchers do not focus on the discovery of a universal, generalizable truth, nor do they typically look for cause-effect relationships; instead, emphasis is placed on exploration and description.

Case studies typically examine the interplay of all variables in order to provide as complete an understanding of an event or situation as possible. This type of comprehensive understanding is arrived at through a process known as thick description, which involves an in-depth description of the entity being evaluated, the circumstances under which it is used, the characteristics of the people involved in it, and the nature of the community in which it is located. Thick description also involves interpreting the meaning of demographic and descriptive data such as cultural norms and mores, community values, ingrained attitudes, and motives.

Unlike quantitative methods of research, like the survey, which focus on the questions of who, what, where, how much, and how many, and archival analysis, which often situates the participant in some form of historical context, case studies are the preferred strategy when how or why questions are asked. Likewise, they are the preferred method when the researcher has little control over the events, and when there is a contemporary focus within a real life context. In addition, unlike more specifically directed experiments, case studies require a problem that seeks a holistic understanding of the event or situation in question using inductive logic--reasoning from specific to more general terms.

In scholarly circles, case studies are frequently discussed within the context of qualitative research and naturalistic inquiry. Case studies are often referred to interchangeably with ethnography, field study, and participant observation. The underlying philosophical assumptions in the case are similar to these types of qualitative research because each takes place in a natural setting (such as a classroom, neighborhood, or private home), and strives for a more holistic interpretation of the event or situation under study.

Unlike more statistically-based studies which search for quantifiable data, the goal of a case study is to offer new variables and questions for further research. F.H. Giddings, a sociologist in the early part of the century, compares statistical methods to the case study on the basis that the former are concerned with the distribution of a particular trait, or a small number of traits, in a population, whereas the case study is concerned with the whole variety of traits to be found in a particular instance" (Hammersley 95).

Case studies are not a new form of research; naturalistic inquiry was the primary research tool until the development of the scientific method. The fields of sociology and anthropology are credited with the primary shaping of the concept as we know it today. However, case study research has drawn from a number of other areas as well: the clinical methods of doctors; the casework technique being developed by social workers; the methods of historians and anthropologists, plus the qualitative descriptions provided by quantitative researchers like LePlay; and, in the case of Robert Park, the techniques of newspaper reporters and novelists.

Park was an ex-newspaper reporter and editor who became very influential in developing sociological case studies at the University of Chicago in the 1920s. As a newspaper professional he coined the term "scientific" or "depth" reporting: the description of local events in a way that pointed to major social trends. Park viewed the sociologist as "merely a more accurate, responsible, and scientific reporter." Park stressed the variety and value of human experience. He believed that sociology sought to arrive at natural, but fluid, laws and generalizations in regard to human nature and society. These laws weren't static laws of the kind sought by many positivists and natural law theorists, but rather, they were laws of becoming--with a constant possibility of change. Park encouraged students to get out of the library, to quit looking at papers and books, and to view the constant experiment of human experience. He writes, "Go and sit in the lounges of the luxury hotels and on the doorsteps of the flophouses; sit on the Gold Coast settees and on the slum shakedowns; sit in the Orchestra Hall and in the Star and Garter Burlesque. In short, gentlemen [sic], go get the seats of your pants dirty in real research."

But over the years, case studies have drawn their share of criticism. In fact, the method had its detractors from the start. In the 1920s, the debate between pro-qualitative and pro-quantitative became quite heated. Case studies, when compared to statistics, were considered by many to be unscientific. From the 1930's on, the rise of positivism had a growing influence on quantitative methods in sociology. People wanted static, generalizable laws in science. The sociological positivists were looking for stable laws of social phenomena. They criticized case study research because it failed to provide evidence of inter subjective agreement. Also, they condemned it because of the few number of cases studied and that the under-standardized character of their descriptions made generalization impossible. By the 1950s, quantitative methods, in the form of survey research, had become the dominant sociological approach and case study had become a minority practice.

Educational Applications

The 1950's marked the dawning of a new era in case study research, namely that of the utilization of the case study as a teaching method. "Instituted at Harvard Business School in the 1950s as a primary method of teaching, cases have since been used in classrooms and lecture halls alike, either as part of a course of study or as the main focus of the course to which other teaching material is added" (Armisted 1984). The basic purpose of instituting the case method as a teaching strategy was "to transfer much of the responsibility for learning from the teacher on to the student, whose role, as a result, shifts away from passive absorption toward active construction" (Boehrer 1990). Through careful examination and discussion of various cases, "students learn to identify actual problems, to recognize key players and their agendas, and to become aware of those aspects of the situation that contribute to the problem" (Merseth 1991). In addition, students are encouraged to "generate their own analysis of the problems under consideration, to develop their own solutions, and to practically apply their own knowledge of theory to these problems" (Boyce 1993). Along the way, students also develop "the power to analyze and to master a tangled circumstance by identifying and delineating important factors; the ability to utilize ideas, to test them against facts, and to throw them into fresh combinations" (Merseth 1991).

In addition to the practical application and testing of scholarly knowledge, case discussions can also help students prepare for real-world problems, situations and crises by providing an approximation of various professional environments (i.e. classroom, board room, courtroom, or hospital). Thus, through the examination of specific cases, students are given the opportunity to work out their own professional issues through the trials, tribulations, experiences, and research findings of others. An obvious advantage to this mode of instruction is that it allows students the exposure to settings and contexts that they might not otherwise experience. For example, a student interested in studying the effects of poverty on minority secondary student's grade point averages and S.A.T. scores could access and analyze information from schools as geographically diverse as Los Angeles, New York City, Miami, and New Mexico without ever having to leave the classroom.

The case study method also incorporates the idea that students can learn from one another "by engaging with each other and with each other's ideas, by asserting something and then having it questioned, challenged and thrown back at them so that they can reflect on what they hear, and then refine what they say" (Boehrer 1990). In summary, students can direct their own learning by formulating questions and taking responsibility for the study.

Types and Design Concerns

Researchers use multiple methods and approaches to conduct case studies.

Types of Case Studies

Under the more generalized category of case study exist several subdivisions, each of which is custom selected for use depending upon the goals and/or objectives of the investigator. These types of case study include the following:

Illustrative Case Studies These are primarily descriptive studies. They typically utilize one or two instances of an event to show what a situation is like. Illustrative case studies serve primarily to make the unfamiliar familiar and to give readers a common language about the topic in question.

Exploratory (or pilot) Case Studies These are condensed case studies performed before implementing a large scale investigation. Their basic function is to help identify questions and select types of measurement prior to the main investigation. The primary pitfall of this type of study is that initial findings may seem convincing enough to be released prematurely as conclusions.

Cumulative Case Studies These serve to aggregate information from several sites collected at different times. The idea behind these studies is the collection of past studies will allow for greater generalization without additional cost or time being expended on new, possibly repetitive studies.

Critical Instance Case Studies These examine one or more sites for either the purpose of examining a situation of unique interest with little to no interest in generalizability, or to call into question or challenge a highly generalized or universal assertion. This method is useful for answering cause and effect questions.

Identifying a Theoretical Perspective

Much of the case study's design is inherently determined for researchers, depending on the field from which they are working. In composition studies, researchers are typically working from a qualitative, descriptive standpoint. In contrast, physicists will approach their research from a more quantitative perspective. Still, in designing the study, researchers need to make explicit the questions to be explored and the theoretical perspective from which they will approach the case. The three most commonly adopted theories are listed below:

Individual Theories These focus primarily on the individual development, cognitive behavior, personality, learning and disability, and interpersonal interactions of a particular subject.

Organizational Theories These focus on bureaucracies, institutions, organizational structure and functions, or excellence in organizational performance.

Social Theories These focus on urban development, group behavior, cultural institutions, or marketplace functions.

Two examples of case studies are used consistently throughout this chapter. The first, a study produced by Berkenkotter, Huckin, and Ackerman (1988), looks at a first year graduate student's initiation into an academic writing program. The study uses participant-observer and linguistic data collecting techniques to assess the student's knowledge of appropriate discourse conventions. Using the pseudonym Nate to refer to the subject, the study sought to illuminate the particular experience rather than to generalize about the experience of fledgling academic writers collectively.

For example, in Berkenkotter, Huckin, and Ackerman's (1988) study we are told that the researchers are interested in disciplinary communities. In the first paragraph, they ask what constitutes membership in a disciplinary community and how achieving membership might affect a writer's understanding and production of texts. In the third paragraph they state that researchers must negotiate their claims "within the context of his sub specialty's accepted knowledge and methodology." In the next paragraph they ask, "How is literacy acquired? What is the process through which novices gain community membership? And what factors either aid or hinder students learning the requisite linguistic behaviors?" This introductory section ends with a paragraph in which the study's authors claim that during the course of the study, the subject, Nate, successfully makes the transition from "skilled novice" to become an initiated member of the academic discourse community and that his texts exhibit linguistic changes which indicate this transition. In the next section the authors make explicit the sociolinguistic theoretical and methodological assumptions on which the study is based (1988). Thus the reader has a good understanding of the authors' theoretical background and purpose in conducting the study even before it is explicitly stated on the fourth page of the study. "Our purpose was to examine the effects of the educational context on one graduate student's production of texts as he wrote in different courses and for different faculty members over the academic year 1984-85." The goal of the study then, was to explore the idea that writers must be initiated into a writing community, and that this initiation will change the way one writes.

The second example is Janet Emig's (1971) study of the composing process of a group of twelfth graders. In this study, Emig seeks to answer the question of what happens to the self as a result educational stimuli in terms of academic writing. The case study used methods such as protocol analysis, tape-recorded interviews, and discourse analysis.

In the case of Janet Emig's (1971) study of the composing process of eight twelfth graders, four specific hypotheses were made:

  • Twelfth grade writers engage in two modes of composing: reflexive and extensive.
  • These differences can be ascertained and characterized through having the writers compose aloud their composition process.
  • A set of implied stylistic principles governs the writing process.
  • For twelfth grade writers, extensive writing occurs chiefly as a school-sponsored activity, or reflexive, as a self-sponsored activity.

In this study, the chief distinction is between the two dominant modes of composing among older, secondary school students. The distinctions are:

  • The reflexive mode, which focuses on the writer's thoughts and feelings.
  • The extensive mode, which focuses on conveying a message.

Emig also outlines the specific questions which guided the research in the opening pages of her Review of Literature , preceding the report.

Designing a Case Study

After considering the different sub categories of case study and identifying a theoretical perspective, researchers can begin to design their study. Research design is the string of logic that ultimately links the data to be collected and the conclusions to be drawn to the initial questions of the study. Typically, research designs deal with at least four problems:

  • What questions to study
  • What data are relevant
  • What data to collect
  • How to analyze that data

In other words, a research design is basically a blueprint for getting from the beginning to the end of a study. The beginning is an initial set of questions to be answered, and the end is some set of conclusions about those questions.

Because case studies are conducted on topics as diverse as Anglo-Saxon Literature (Thrane 1986) and AIDS prevention (Van Vugt 1994), it is virtually impossible to outline any strict or universal method or design for conducting the case study. However, Robert K. Yin (1993) does offer five basic components of a research design:

  • A study's questions.
  • A study's propositions (if any).
  • A study's units of analysis.
  • The logic that links the data to the propositions.
  • The criteria for interpreting the findings.

In addition to these five basic components, Yin also stresses the importance of clearly articulating one's theoretical perspective, determining the goals of the study, selecting one's subject(s), selecting the appropriate method(s) of collecting data, and providing some considerations to the composition of the final report.

Conducting Case Studies

To obtain as complete a picture of the participant as possible, case study researchers can employ a variety of approaches and methods. These approaches, methods, and related issues are discussed in depth in this section.

Method: Single or Multi-modal?

To obtain as complete a picture of the participant as possible, case study researchers can employ a variety of methods. Some common methods include interviews , protocol analyses, field studies, and participant-observations. Emig (1971) chose to use several methods of data collection. Her sources included conversations with the students, protocol analysis, discrete observations of actual composition, writing samples from each student, and school records (Lauer and Asher 1988).

Berkenkotter, Huckin, and Ackerman (1988) collected data by observing classrooms, conducting faculty and student interviews, collecting self reports from the subject, and by looking at the subject's written work.

A study that was criticized for using a single method model was done by Flower and Hayes (1984). In this study that explores the ways in which writers use different forms of knowing to create space, the authors used only protocol analysis to gather data. The study came under heavy fire because of their decision to use only one method.

Participant Selection

Case studies can use one participant, or a small group of participants. However, it is important that the participant pool remain relatively small. The participants can represent a diverse cross section of society, but this isn't necessary.

For example, the Berkenkotter, Huckin, and Ackerman (1988) study looked at just one participant, Nate. By contrast, in Janet Emig's (1971) study of the composition process of twelfth graders, eight participants were selected representing a diverse cross section of the community, with volunteers from an all-white upper-middle-class suburban school, an all-black inner-city school, a racially mixed lower-middle-class school, an economically and racially mixed school, and a university school.

Often, a brief "case history" is done on the participants of the study in order to provide researchers with a clearer understanding of their participants, as well as some insight as to how their own personal histories might affect the outcome of the study. For instance, in Emig's study, the investigator had access to the school records of five of the participants, and to standardized test scores for the remaining three. Also made available to the researcher was the information that three of the eight students were selected as NCTE Achievement Award winners. These personal histories can be useful in later stages of the study when data are being analyzed and conclusions drawn.

Data Collection

There are six types of data collected in case studies:

  • Archival records.
  • Interviews.
  • Direct observation.
  • Participant observation.

In the field of composition research, these six sources might be:

  • A writer's drafts.
  • School records of student writers.
  • Transcripts of interviews with a writer.
  • Transcripts of conversations between writers (and protocols).
  • Videotapes and notes from direct field observations.
  • Hard copies of a writer's work on computer.

Depending on whether researchers have chosen to use a single or multi-modal approach for the case study, they may choose to collect data from one or any combination of these sources.

Protocols, that is, transcriptions of participants talking aloud about what they are doing as they do it, have been particularly common in composition case studies. For example, in Emig's (1971) study, the students were asked, in four different sessions, to give oral autobiographies of their writing experiences and to compose aloud three themes in the presence of a tape recorder and the investigator.

In some studies, only one method of data collection is conducted. For example, the Flower and Hayes (1981) report on the cognitive process theory of writing depends on protocol analysis alone. However, using multiple sources of evidence to increase the reliability and validity of the data can be advantageous.

Case studies are likely to be much more convincing and accurate if they are based on several different sources of information, following a corroborating mode. This conclusion is echoed among many composition researchers. For example, in her study of predrafting processes of high and low-apprehensive writers, Cynthia Selfe (1985) argues that because "methods of indirect observation provide only an incomplete reflection of the complex set of processes involved in composing, a combination of several such methods should be used to gather data in any one study." Thus, in this study, Selfe collected her data from protocols, observations of students role playing their writing processes, audio taped interviews with the students, and videotaped observations of the students in the process of composing.

It can be said then, that cross checking data from multiple sources can help provide a multidimensional profile of composing activities in a particular setting. Sharan Merriam (1985) suggests "checking, verifying, testing, probing, and confirming collected data as you go, arguing that this process will follow in a funnel-like design resulting in less data gathering in later phases of the study along with a congruent increase in analysis checking, verifying, and confirming."

It is important to note that in case studies, as in any qualitative descriptive research, while researchers begin their studies with one or several questions driving the inquiry (which influence the key factors the researcher will be looking for during data collection), a researcher may find new key factors emerging during data collection. These might be unexpected patterns or linguistic features which become evident only during the course of the research. While not bearing directly on the researcher's guiding questions, these variables may become the basis for new questions asked at the end of the report, thus linking to the possibility of further research.

Data Analysis

As the information is collected, researchers strive to make sense of their data. Generally, researchers interpret their data in one of two ways: holistically or through coding. Holistic analysis does not attempt to break the evidence into parts, but rather to draw conclusions based on the text as a whole. Flower and Hayes (1981), for example, make inferences from entire sections of their students' protocols, rather than searching through the transcripts to look for isolatable characteristics.

However, composition researchers commonly interpret their data by coding, that is by systematically searching data to identify and/or categorize specific observable actions or characteristics. These observable actions then become the key variables in the study. Sharan Merriam (1988) suggests seven analytic frameworks for the organization and presentation of data:

  • The role of participants.
  • The network analysis of formal and informal exchanges among groups.
  • Historical.
  • Thematical.
  • Ritual and symbolism.
  • Critical incidents that challenge or reinforce fundamental beliefs, practices, and values.

There are two purposes of these frameworks: to look for patterns among the data and to look for patterns that give meaning to the case study.

As stated above, while most researchers begin their case studies expecting to look for particular observable characteristics, it is not unusual for key variables to emerge during data collection. Typical variables coded in case studies of writers include pauses writers make in the production of a text, the use of specific linguistic units (such as nouns or verbs), and writing processes (planning, drafting, revising, and editing). In the Berkenkotter, Huckin, and Ackerman (1988) study, for example, researchers coded the participant's texts for use of connectives, discourse demonstratives, average sentence length, off-register words, use of the first person pronoun, and the ratio of definite articles to indefinite articles.

Since coding is inherently subjective, more than one coder is usually employed. In the Berkenkotter, Huckin, and Ackerman (1988) study, for example, three rhetoricians were employed to code the participant's texts for off-register phrases. The researchers established the agreement among the coders before concluding that the participant used fewer off-register words as the graduate program progressed.

Composing the Case Study Report

In the many forms it can take, "a case study is generically a story; it presents the concrete narrative detail of actual, or at least realistic events, it has a plot, exposition, characters, and sometimes even dialogue" (Boehrer 1990). Generally, case study reports are extensively descriptive, with "the most problematic issue often referred to as being the determination of the right combination of description and analysis" (1990). Typically, authors address each step of the research process, and attempt to give the reader as much context as possible for the decisions made in the research design and for the conclusions drawn.

This contextualization usually includes a detailed explanation of the researchers' theoretical positions, of how those theories drove the inquiry or led to the guiding research questions, of the participants' backgrounds, of the processes of data collection, of the training and limitations of the coders, along with a strong attempt to make connections between the data and the conclusions evident.

Although the Berkenkotter, Huckin, and Ackerman (1988) study does not, case study reports often include the reactions of the participants to the study or to the researchers' conclusions. Because case studies tend to be exploratory, most end with implications for further study. Here researchers may identify significant variables that emerged during the research and suggest studies related to these, or the authors may suggest further general questions that their case study generated.

For example, Emig's (1971) study concludes with a section dedicated solely to the topic of implications for further research, in which she suggests several means by which this particular study could have been improved, as well as questions and ideas raised by this study which other researchers might like to address, such as: is there a correlation between a certain personality and a certain composing process profile (e.g. is there a positive correlation between ego strength and persistence in revising)?

Also included in Emig's study is a section dedicated to implications for teaching, which outlines the pedagogical ramifications of the study's findings for teachers currently involved in high school writing programs.

Sharan Merriam (1985) also offers several suggestions for alternative presentations of data:

  • Prepare specialized condensations for appropriate groups.
  • Replace narrative sections with a series of answers to open-ended questions.
  • Present "skimmer's" summaries at beginning of each section.
  • Incorporate headlines that encapsulate information from text.
  • Prepare analytic summaries with supporting data appendixes.
  • Present data in colorful and/or unique graphic representations.

Issues of Validity and Reliability

Once key variables have been identified, they can be analyzed. Reliability becomes a key concern at this stage, and many case study researchers go to great lengths to ensure that their interpretations of the data will be both reliable and valid. Because issues of validity and reliability are an important part of any study in the social sciences, it is important to identify some ways of dealing with results.

Multi-modal case study researchers often balance the results of their coding with data from interviews or writer's reflections upon their own work. Consequently, the researchers' conclusions become highly contextualized. For example, in a case study which looked at the time spent in different stages of the writing process, Berkenkotter concluded that her participant, Donald Murray, spent more time planning his essays than in other writing stages. The report of this case study is followed by Murray's reply, wherein he agrees with some of Berkenkotter's conclusions and disagrees with others.

As is the case with other research methodologies, issues of external validity, construct validity, and reliability need to be carefully considered.

Commentary on Case Studies

Researchers often debate the relative merits of particular methods, among them case study. In this section, we comment on two key issues. To read the commentaries, choose any of the items below:

Strengths and Weaknesses of Case Studies

Most case study advocates point out that case studies produce much more detailed information than what is available through a statistical analysis. Advocates will also hold that while statistical methods might be able to deal with situations where behavior is homogeneous and routine, case studies are needed to deal with creativity, innovation, and context. Detractors argue that case studies are difficult to generalize because of inherent subjectivity and because they are based on qualitative subjective data, generalizable only to a particular context.

Flexibility

The case study approach is a comparatively flexible method of scientific research. Because its project designs seem to emphasize exploration rather than prescription or prediction, researchers are comparatively freer to discover and address issues as they arise in their experiments. In addition, the looser format of case studies allows researchers to begin with broad questions and narrow their focus as their experiment progresses rather than attempt to predict every possible outcome before the experiment is conducted.

Emphasis on Context

By seeking to understand as much as possible about a single subject or small group of subjects, case studies specialize in "deep data," or "thick description"--information based on particular contexts that can give research results a more human face. This emphasis can help bridge the gap between abstract research and concrete practice by allowing researchers to compare their firsthand observations with the quantitative results obtained through other methods of research.

Inherent Subjectivity

"The case study has long been stereotyped as the weak sibling among social science methods," and is often criticized as being too subjective and even pseudo-scientific. Likewise, "investigators who do case studies are often regarded as having deviated from their academic disciplines, and their investigations as having insufficient precision (that is, quantification), objectivity and rigor" (Yin 1989). Opponents cite opportunities for subjectivity in the implementation, presentation, and evaluation of case study research. The approach relies on personal interpretation of data and inferences. Results may not be generalizable, are difficult to test for validity, and rarely offer a problem-solving prescription. Simply put, relying on one or a few subjects as a basis for cognitive extrapolations runs the risk of inferring too much from what might be circumstance.

High Investment

Case studies can involve learning more about the subjects being tested than most researchers would care to know--their educational background, emotional background, perceptions of themselves and their surroundings, their likes, dislikes, and so on. Because of its emphasis on "deep data," the case study is out of reach for many large-scale research projects which look at a subject pool in the tens of thousands. A budget request of $10,000 to examine 200 subjects sounds more efficient than a similar request to examine four subjects.

Ethical Considerations

Researchers conducting case studies should consider certain ethical issues. For example, many educational case studies are often financed by people who have, either directly or indirectly, power over both those being studied and those conducting the investigation (1985). This conflict of interests can hinder the credibility of the study.

The personal integrity, sensitivity, and possible prejudices and/or biases of the investigators need to be taken into consideration as well. Personal biases can creep into how the research is conducted, alternative research methods used, and the preparation of surveys and questionnaires.

A common complaint in case study research is that investigators change direction during the course of the study unaware that their original research design was inadequate for the revised investigation. Thus, the researchers leave unknown gaps and biases in the study. To avoid this, researchers should report preliminary findings so that the likelihood of bias will be reduced.

Concerns about Reliability, Validity, and Generalizability

Merriam (1985) offers several suggestions for how case study researchers might actively combat the popular attacks on the validity, reliability, and generalizability of case studies:

  • Prolong the Processes of Data Gathering on Site: This will help to insure the accuracy of the findings by providing the researcher with more concrete information upon which to formulate interpretations.
  • Employ the Process of "Triangulation": Use a variety of data sources as opposed to relying solely upon one avenue of observation. One example of such a data check would be what McClintock, Brannon, and Maynard (1985) refer to as a "case cluster method," that is, when a single unit within a larger case is randomly sampled, and that data treated quantitatively." For instance, in Emig's (1971) study, the case cluster method was employed, singling out the productivity of a single student named Lynn. This cluster profile included an advanced case history of the subject, specific examination and analysis of individual compositions and protocols, and extensive interview sessions. The seven remaining students were then compared with the case of Lynn, to ascertain if there are any shared, or unique dimensions to the composing process engaged in by these eight students.
  • Conduct Member Checks: Initiate and maintain an active corroboration on the interpretation of data between the researcher and those who provided the data. In other words, talk to your subjects.
  • Collect Referential Materials: Complement the file of materials from the actual site with additional document support. For example, Emig (1971) supports her initial propositions with historical accounts by writers such as T.S. Eliot, James Joyce, and D.H. Lawrence. Emig also cites examples of theoretical research done with regards to the creative process, as well as examples of empirical research dealing with the writing of adolescents. Specific attention is then given to the four stages description of the composing process delineated by Helmoltz, Wallas, and Cowley, as it serves as the focal point in this study.
  • Engage in Peer Consultation: Prior to composing the final draft of the report, researchers should consult with colleagues in order to establish validity through pooled judgment.

Although little can be done to combat challenges concerning the generalizability of case studies, "most writers suggest that qualitative research should be judged as credible and confirmable as opposed to valid and reliable" (Merriam 1985). Likewise, it has been argued that "rather than transplanting statistical, quantitative notions of generalizability and thus finding qualitative research inadequate, it makes more sense to develop an understanding of generalization that is congruent with the basic characteristics of qualitative inquiry" (1985). After all, criticizing the case study method for being ungeneralizable is comparable to criticizing a washing machine for not being able to tell the correct time. In other words, it is unjust to criticize a method for not being able to do something which it was never originally designed to do in the first place.

Annotated Bibliography

Armisted, C. (1984). How Useful are Case Studies. Training and Development Journal, 38 (2), 75-77.

This article looks at eight types of case studies, offers pros and cons of using case studies in the classroom, and gives suggestions for successfully writing and using case studies.

Bardovi-Harlig, K. (1997). Beyond Methods: Components of Second Language Teacher Education . New York: McGraw-Hill.

A compilation of various research essays which address issues of language teacher education. Essays included are: "Non-native reading research and theory" by Lee, "The case for Psycholinguistics" by VanPatten, and "Assessment and Second Language Teaching" by Gradman and Reed.

Bartlett, L. (1989). A Question of Good Judgment; Interpretation Theory and Qualitative Enquiry Address. 70th Annual Meeting of the American Educational Research Association. San Francisco.

Bartlett selected "quasi-historical" methodology, which focuses on the "truth" found in case records, as one that will provide "good judgments" in educational inquiry. He argues that although the method is not comprehensive, it can try to connect theory with practice.

Baydere, S. et. al. (1993). Multimedia conferencing as a tool for collaborative writing: a case study in Computer Supported Collaborative Writing. New York: Springer-Verlag.

The case study by Baydere et. al. is just one of the many essays in this book found in the series "Computer Supported Cooperative Work." Denley, Witefield and May explore similar issues in their essay, "A case study in task analysis for the design of a collaborative document production system."

Berkenkotter, C., Huckin, T., N., & Ackerman J. (1988). Conventions, Conversations, and the Writer: Case Study of a Student in a Rhetoric Ph.D. Program. Research in the Teaching of English, 22, 9-44.

The authors focused on how the writing of their subject, Nate or Ackerman, changed as he became more acquainted or familiar with his field's discourse community.

Berninger, V., W., and Gans, B., M. (1986). Language Profiles in Nonspeaking Individuals of Normal Intelligence with Severe Cerebral Palsy. Augmentative and Alternative Communication, 2, 45-50.

Argues that generalizations about language abilities in patients with severe cerebral palsy (CP) should be avoided. Standardized tests of different levels of processing oral language, of processing written language, and of producing written language were administered to 3 male participants (aged 9, 16, and 40 yrs).

Bockman, J., R., and Couture, B. (1984). The Case Method in Technical Communication: Theory and Models. Texas: Association of Teachers of Technical Writing.

Examines the study and teaching of technical writing, communication of technical information, and the case method in terms of those applications.

Boehrer, J. (1990). Teaching With Cases: Learning to Question. New Directions for Teaching and Learning, 42 41-57.

This article discusses the origins of the case method, looks at the question of what is a case, gives ideas about learning in case teaching, the purposes it can serve in the classroom, the ground rules for the case discussion, including the role of the question, and new directions for case teaching.

Bowman, W. R. (1993). Evaluating JTPA Programs for Economically Disadvantaged Adults: A Case Study of Utah and General Findings . Washington: National Commission for Employment Policy.

"To encourage state-level evaluations of JTPA, the Commission and the State of Utah co-sponsored this report on the effectiveness of JTPA Title II programs for adults in Utah. The technique used is non-experimental and the comparison group was selected from registrants with Utah's Employment Security. In a step-by-step approach, the report documents how non-experimental techniques can be applied and several specific technical issues can be addressed."

Boyce, A. (1993) The Case Study Approach for Pedagogists. Annual Meeting of the American Alliance for Health, Physical Education, Recreation and Dance. (Address). Washington DC.

This paper addresses how case studies 1) bridge the gap between teaching theory and application, 2) enable students to analyze problems and develop solutions for situations that will be encountered in the real world of teaching, and 3) helps students to evaluate the feasibility of alternatives and to understand the ramifications of a particular course of action.

Carson, J. (1993) The Case Study: Ideal Home of WAC Quantitative and Qualitative Data. Annual Meeting of the Conference on College Composition and Communication. (Address). San Diego.

"Increasingly, one of the most pressing questions for WAC advocates is how to keep [WAC] programs going in the face of numerous difficulties. Case histories offer the best chance for fashioning rhetorical arguments to keep WAC programs going because they offer the opportunity to provide a coherent narrative that contextualizes all documents and data, including what is generally considered scientific data. A case study of the WAC program, . . . at Robert Morris College in Pittsburgh demonstrates the advantages of this research method. Such studies are ideal homes for both naturalistic and positivistic data as well as both quantitative and qualitative information."

---. (1991). A Cognitive Process Theory of Writing. College Composition and Communication. 32. 365-87.

No abstract available.

Cromer, R. (1994) A Case Study of Dissociations Between Language and Cognition. Constraints on Language Acquisition: Studies of Atypical Children . Hillsdale: Lawrence Erlbaum Associates, 141-153.

Crossley, M. (1983) Case Study in Comparative and International Education: An Approach to Bridging the Theory-Practice Gap. Proceedings of the 11th Annual Conference of the Australian Comparative and International Education Society. Hamilton, NZ.

Case study research, as presented here, helps bridge the theory-practice gap in comparative and international research studies of education because it focuses on the practical, day-to-day context rather than on the national arena. The paper asserts that the case study method can be valuable at all levels of research, formation, and verification of theories in education.

Daillak, R., H., and Alkin, M., C. (1982). Qualitative Studies in Context: Reflections on the CSE Studies of Evaluation Use . California: EDRS

The report shows how the Center of the Study of Evaluation (CSE) applied qualitative techniques to a study of evaluation information use in local, Los Angeles schools. It critiques the effectiveness and the limitations of using case study, evaluation, field study, and user interview survey methodologies.

Davey, L. (1991). The Application of Case Study Evaluations. ERIC/TM Digest.

This article examines six types of case studies, the type of evaluation questions that can be answered, the functions served, some design features, and some pitfalls of the method.

Deutch, C. E. (1996). A course in research ethics for graduate students. College Teaching, 44, 2, 56-60.

This article describes a one-credit discussion course in research ethics for graduate students in biology. Case studies are focused on within the four parts of the course: 1) major issues, 2 )practical issues in scholarly work, 3) ownership of research results, and 4) training and personal decisions.

DeVoss, G. (1981). Ethics in Fieldwork Research. RIE 27p. (ERIC)

This article examines four of the ethical problems that can happen when conducting case study research: acquiring permission to do research, knowing when to stop digging, the pitfalls of doing collaborative research, and preserving the integrity of the participants.

Driscoll, A. (1985). Case Study of a Research Intervention: the University of Utah’s Collaborative Approach . San Francisco: Far West Library for Educational Research Development.

Paper presented at the annual meeting of the American Association of Colleges of Teacher Education, Denver, CO, March 1985. Offers information of in-service training, specifically case studies application.

Ellram, L. M. (1996). The Use of the Case Study Method in Logistics Research. Journal of Business Logistics, 17, 2, 93.

This article discusses the increased use of case study in business research, and the lack of understanding of when and how to use case study methodology in business.

Emig, J. (1971) The Composing Processes of Twelfth Graders . Urbana: NTCE.

This case study uses observation, tape recordings, writing samples, and school records to show that writing in reflexive and extensive situations caused different lengths of discourse and different clusterings of the components of the writing process.

Feagin, J. R. (1991). A Case For the Case Study . Chapel Hill: The University of North Carolina Press.

This book discusses the nature, characteristics, and basic methodological issues of the case study as a research method.

Feldman, H., Holland, A., & Keefe, K. (1989) Language Abilities after Left Hemisphere Brain Injury: A Case Study of Twins. Topics in Early Childhood Special Education, 9, 32-47.

"Describes the language abilities of 2 twin pairs in which 1 twin (the experimental) suffered brain injury to the left cerebral hemisphere around the time of birth and1 twin (the control) did not. One pair of twins was initially assessed at age 23 mo. and the other at about 30 mo.; they were subsequently evaluated in their homes 3 times at about 6-mo intervals."

Fidel, R. (1984). The Case Study Method: A Case Study. Library and Information Science Research, 6.

The article describes the use of case study methodology to systematically develop a model of online searching behavior in which study design is flexible, subject manner determines data gathering and analyses, and procedures adapt to the study's progressive change.

Flower, L., & Hayes, J. R. (1984). Images, Plans and Prose: The Representation of Meaning in Writing. Written Communication, 1, 120-160.

Explores the ways in which writers actually use different forms of knowing to create prose.

Frey, L. R. (1992). Interpreting Communication Research: A Case Study Approach Englewood Cliffs, N.J.: Prentice Hall.

The book discusses research methodologies in the Communication field. It focuses on how case studies bridge the gap between communication research, theory, and practice.

Gilbert, V. K. (1981). The Case Study as a Research Methodology: Difficulties and Advantages of Integrating the Positivistic, Phenomenological and Grounded Theory Approaches . The Annual Meeting of the Canadian Association for the Study of Educational Administration. (Address) Halifax, NS, Can.

This study on an innovative secondary school in England shows how a "low-profile" participant-observer case study was crucial to the initial observation, the testing of hypotheses, the interpretive approach, and the grounded theory.

Gilgun, J. F. (1994). A Case for Case Studies in Social Work Research. Social Work, 39, 4, 371-381.

This article defines case study research, presents guidelines for evaluation of case studies, and shows the relevance of case studies to social work research. It also looks at issues such as evaluation and interpretations of case studies.

Glennan, S. L., Sharp-Bittner, M. A. & Tullos, D. C. (1991). Augmentative and Alternative Communication Training with a Nonspeaking Adult: Lessons from MH. Augmentative and Alternative Communication, 7, 240-7.

"A response-guided case study documented changes in a nonspeaking 36-yr-old man's ability to communicate using 3 trained augmentative communication modes. . . . Data were collected in videotaped interaction sessions between the nonspeaking adult and a series of adult speaking."

Graves, D. (1981). An Examination of the Writing Processes of Seven Year Old Children. Research in the Teaching of English, 15, 113-134.

Hamel, J. (1993). Case Study Methods . Newbury Park: Sage. .

"In a most economical fashion, Hamel provides a practical guide for producing theoretically sharp and empirically sound sociological case studies. A central idea put forth by Hamel is that case studies must "locate the global in the local" thus making the careful selection of the research site the most critical decision in the analytic process."

Karthigesu, R. (1986, July). Television as a Tool for Nation-Building in the Third World: A Post-Colonial Pattern, Using Malaysia as a Case-Study. International Television Studies Conference. (Address). London, 10-12.

"The extent to which Television Malaysia, as a national mass media organization, has been able to play a role in nation building in the post-colonial period is . . . studied in two parts: how the choice of a model of nation building determines the character of the organization; and how the character of the organization influences the output of the organization."

Kenny, R. (1984). Making the Case for the Case Study. Journal of Curriculum Studies, 16, (1), 37-51.

The article looks at how and why the case study is justified as a viable and valuable approach to educational research and program evaluation.

Knirk, F. (1991). Case Materials: Research and Practice. Performance Improvement Quarterly, 4 (1 ), 73-81.

The article addresses the effectiveness of case studies, subject areas where case studies are commonly used, recent examples of their use, and case study design considerations.

Klos, D. (1976). Students as Case Writers. Teaching of Psychology, 3.2, 63-66.

This article reviews a course in which students gather data for an original case study of another person. The task requires the students to design the study, collect the data, write the narrative, and interpret the findings.

Leftwich, A. (1981). The Politics of Case Study: Problems of Innovation in University Education. Higher Education Review, 13.2, 38-64.

The article discusses the use of case studies as a teaching method. Emphasis is on the instructional materials, interdisciplinarity, and the complex relationships within the university that help or hinder the method.

Mabrito, M. (1991, Oct.). Electronic Mail as a Vehicle for Peer Response: Conversations of High and Low Apprehensive Writers. Written Communication, 509-32.

McCarthy, S., J. (1955). The Influence of Classroom Discourse on Student Texts: The Case of Ella . East Lansing: Institute for Research on Teaching.

A look at how students of color become marginalized within traditional classroom discourse. The essay follows the struggles of one black student: Ella.

Matsuhashi, A., ed. (1987). Writing in Real Time: Modeling Production Processes Norwood, NJ: Ablex Publishing Corporation.

Investigates how writers plan to produce discourse for different purposes to report, to generalize, and to persuade, as well as how writers plan for sentence level units of language. To learn about planning, an observational measure of pause time was used" (ERIC).

Merriam, S. B. (1985). The Case Study in Educational Research: A Review of Selected Literature. Journal of Educational Thought, 19.3, 204-17.

The article examines the characteristics of, philosophical assumptions underlying the case study, the mechanics of conducting a case study, and the concerns about the reliability, validity, and generalizability of the method.

---. (1988). Case Study Research in Education: A Qualitative Approach San Francisco: Jossey Bass.

Merry, S. E., & Milner, N. eds. (1993). The Possibility of Popular Justice: A Case Study of Community Mediation in the United States . Ann Arbor: U of Michigan.

". . . this volume presents a case study of one experiment in popular justice, the San Francisco Community Boards. This program has made an explicit claim to create an alternative justice, or new justice, in the midst of a society ordered by state law. The contributors to this volume explore the history and experience of the program and compare it to other versions of popular justice in the United States, Europe, and the Third World."

Merseth, K. K. (1991). The Case for Cases in Teacher Education. RIE. 42p. (ERIC).

This monograph argues that the case method of instruction offers unique potential for revitalizing the field of teacher education.

Michaels, S. (1987). Text and Context: A New Approach to the Study of Classroom Writing. Discourse Processes, 10, 321-346.

"This paper argues for and illustrates an approach to the study of writing that integrates ethnographic analysis of classroom interaction with linguistic analysis of written texts and teacher/student conversational exchanges. The approach is illustrated through a case study of writing in a single sixth grade classroom during a single writing assignment."

Milburn, G. (1995). Deciphering a Code or Unraveling a Riddle: A Case Study in the Application of a Humanistic Metaphor to the Reporting of Social Studies Teaching. Theory and Research in Education, 13.

This citation serves as an example of how case studies document learning procedures in a senior-level economics course.

Milley, J. E. (1979). An Investigation of Case Study as an Approach to Program Evaluation. 19th Annual Forum of the Association for Institutional Research. (Address). San Diego.

The case study method merged a narrative report focusing on the evaluator as participant-observer with document review, interview, content analysis, attitude questionnaire survey, and sociogram analysis. Milley argues that case study program evaluation has great potential for widespread use.

Minnis, J. R. (1985, Sept.). Ethnography, Case Study, Grounded Theory, and Distance Education Research. Distance Education, 6.2.

This article describes and defines the strengths and weaknesses of ethnography, case study, and grounded theory.

Nunan, D. (1992). Collaborative language learning and teaching . New York: Cambridge University Press.

Included in this series of essays is Peter Sturman’s "Team Teaching: a case study from Japan" and David Nunan’s own "Toward a collaborative approach to curriculum development: a case study."

Nystrand, M., ed. (1982). What Writers Know: The Language, Process, and Structure of Written Discourse . New York: Academic Press.

Owenby, P. H. (1992). Making Case Studies Come Alive. Training, 29, (1), 43-46. (ERIC)

This article provides tips for writing more effective case studies.

---. (1981). Pausing and Planning: The Tempo of Writer Discourse Production. Research in the Teaching of English, 15 (2),113-34.

Perl, S. (1979). The Composing Processes of Unskilled College Writers. Research in the Teaching of English, 13, 317-336.

"Summarizes a study of five unskilled college writers, focusing especially on one of the five, and discusses the findings in light of current pedagogical practice and research design."

Pilcher J. and A. Coffey. eds. (1996). Gender and Qualitative Research . Brookfield: Aldershot, Hants, England.

This book provides a series of essays which look at gender identity research, qualitative research and applications of case study to questions of gendered pedagogy.

Pirie, B. S. (1993). The Case of Morty: A Four Year Study. Gifted Education International, 9 (2), 105-109.

This case study describes a boy from kindergarten through third grade with above average intelligence but difficulty in learning to read, write, and spell.

Popkewitz, T. (1993). Changing Patterns of Power: Social Regulation and Teacher Education Reform. Albany: SUNY Press.

Popkewitz edits this series of essays that address case studies on educational change and the training of teachers. The essays vary in terms of discipline and scope. Also, several authors include case studies of educational practices in countries other than the United States.

---. (1984). The Predrafting Processes of Four High- and Four Low Apprehensive Writers. Research in the Teaching of English, 18, (1), 45-64.

Rasmussen, P. (1985, March) A Case Study on the Evaluation of Research at the Technical University of Denmark. International Journal of Institutional Management in Higher Education, 9 (1).

This is an example of a case study methodology used to evaluate the chemistry and chemical engineering departments at the University of Denmark.

Roth, K. J. (1986). Curriculum Materials, Teacher Talk, and Student Learning: Case Studies in Fifth-Grade Science Teaching . East Lansing: Institute for Research on Teaching.

Roth offers case studies on elementary teachers, elementary school teaching, science studies and teaching, and verbal learning.

Selfe, C. L. (1985). An Apprehensive Writer Composes. When a Writer Can't Write: Studies in Writer's Block and Other Composing-Process Problems . (pp. 83-95). Ed. Mike Rose. NMY: Guilford.

Smith-Lewis, M., R. and Ford, A. (1987). A User's Perspective on Augmentative Communication. Augmentative and Alternative Communication, 3, 12-7.

"During a series of in-depth interviews, a 25-yr-old woman with cerebral palsy who utilized augmentative communication reflected on the effectiveness of the devices designed for her during her school career."

St. Pierre, R., G. (1980, April). Follow Through: A Case Study in Metaevaluation Research . 64th Annual Meeting of the American Educational Research Association. (Address).

The three approaches to metaevaluation are evaluation of primary evaluations, integrative meta-analysis with combined primary evaluation results, and re-analysis of the raw data from a primary evaluation.

Stahler, T., M. (1996, Feb.) Early Field Experiences: A Model That Worked. ERIC.

"This case study of a field and theory class examines a model designed to provide meaningful field experiences for preservice teachers while remaining consistent with the instructor's beliefs about the role of teacher education in preparing teachers for the classroom."

Stake, R. E. (1995). The Art of Case Study Research. Thousand Oaks: Sage Publications.

This book examines case study research in education and case study methodology.

Stiegelbauer, S. (1984) Community, Context, and Co-curriculum: Situational Factors Influencing School Improvements in a Study of High Schools. Presented at the annual meeting of the American Educational Research Association, New Orleans, LA.

Discussion of several case studies: one looking at high school environments, another examining educational innovations.

Stolovitch, H. (1990). Case Study Method. Performance And Instruction, 29, (9), 35-37.

This article describes the case study method as a form of simulation and presents guidelines for their use in professional training situations.

Thaller, E. (1994). Bibliography for the Case Method: Using Case Studies in Teacher Education. RIE. 37 p.

This bibliography presents approximately 450 citations on the use of case studies in teacher education from 1921-1993.

Thrane, T. (1986). On Delimiting the Senses of Near-Synonyms in Historical Semantics: A Case Study of Adjectives of 'Moral Sufficiency' in the Old English Andreas. Linguistics Across Historical and Geographical Boundaries: In Honor of Jacek Fisiak on the Occasion of his Fiftieth Birthday . Berlin: Mouton de Gruyter.

United Nations. (1975). Food and Agriculture Organization. Report on the FAO/UNFPA Seminar on Methodology, Research and Country: Case Studies on Population, Employment and Productivity . Rome: United Nations.

This example case study shows how the methodology can be used in a demographic and psychographic evaluation. At the same time, it discusses the formation and instigation of the case study methodology itself.

Van Vugt, J. P., ed. (1994). Aids Prevention and Services: Community Based Research . Westport: Bergin and Garvey.

"This volume has been five years in the making. In the process, some of the policy applications called for have met with limited success, such as free needle exchange programs in a limited number of American cities, providing condoms to prison inmates, and advertisements that depict same-sex couples. Rather than dating our chapters that deal with such subjects, such policy applications are verifications of the type of research demonstrated here. Furthermore, they indicate the critical need to continue community based research in the various communities threatened by acquired immuno-deficiency syndrome (AIDS) . . . "

Welch, W., ed. (1981, May). Case Study Methodology in Educational Evaluation. Proceedings of the Minnesota Evaluation Conference. Minnesota. (Address).

The four papers in these proceedings provide a comprehensive picture of the rationale, methodology, strengths, and limitations of case studies.

Williams, G. (1987). The Case Method: An Approach to Teaching and Learning in Educational Administration. RIE, 31p.

This paper examines the viability of the case method as a teaching and learning strategy in instructional systems geared toward the training of personnel of the administration of various aspects of educational systems.

Yin, R. K. (1993). Advancing Rigorous Methodologies: A Review of 'Towards Rigor in Reviews of Multivocal Literatures.' Review of Educational Research, 61, (3).

"R. T. Ogawa and B. Malen's article does not meet its own recommended standards for rigorous testing and presentation of its own conclusions. Use of the exploratory case study to analyze multivocal literatures is not supported, and the claim of grounded theory to analyze multivocal literatures may be stronger."

---. (1989). Case Study Research: Design and Methods. London: Sage Publications Inc.

This book discusses in great detail, the entire design process of the case study, including entire chapters on collecting evidence, analyzing evidence, composing the case study report, and designing single and multiple case studies.

Related Links

Consider the following list of related Web sites for more information on the topic of case study research. Note: although many of the links cover the general category of qualitative research, all have sections that address issues of case studies.

  • Sage Publications on Qualitative Methodology: Search here for a comprehensive list of new books being published about "Qualitative Methodology" http://www.sagepub.co.uk/
  • The International Journal of Qualitative Studies in Education: An on-line journal "to enhance the theory and practice of qualitative research in education." On-line submissions are welcome. http://www.tandf.co.uk/journals/tf/09518398.html
  • Qualitative Research Resources on the Internet: From syllabi to home pages to bibliographies. All links relate somehow to qualitative research. http://www.nova.edu/ssss/QR/qualres.html

Becker, Bronwyn, Patrick Dawson, Karen Devine, Carla Hannum, Steve Hill, Jon Leydens, Debbie Matuskevich, Carol Traver, & Mike Palmquist. (2005). Case Studies. Writing@CSU . Colorado State University. https://writing.colostate.edu/guides/guide.cfm?guideid=60

  • Privacy Policy

Research Method

Home » Case Study – Methods, Examples and Guide

Case Study – Methods, Examples and Guide

Table of Contents

Case Study Research

A case study is a research method that involves an in-depth examination and analysis of a particular phenomenon or case, such as an individual, organization, community, event, or situation.

It is a qualitative research approach that aims to provide a detailed and comprehensive understanding of the case being studied. Case studies typically involve multiple sources of data, including interviews, observations, documents, and artifacts, which are analyzed using various techniques, such as content analysis, thematic analysis, and grounded theory. The findings of a case study are often used to develop theories, inform policy or practice, or generate new research questions.

Types of Case Study

Types and Methods of Case Study are as follows:

Single-Case Study

A single-case study is an in-depth analysis of a single case. This type of case study is useful when the researcher wants to understand a specific phenomenon in detail.

For Example , A researcher might conduct a single-case study on a particular individual to understand their experiences with a particular health condition or a specific organization to explore their management practices. The researcher collects data from multiple sources, such as interviews, observations, and documents, and uses various techniques to analyze the data, such as content analysis or thematic analysis. The findings of a single-case study are often used to generate new research questions, develop theories, or inform policy or practice.

Multiple-Case Study

A multiple-case study involves the analysis of several cases that are similar in nature. This type of case study is useful when the researcher wants to identify similarities and differences between the cases.

For Example, a researcher might conduct a multiple-case study on several companies to explore the factors that contribute to their success or failure. The researcher collects data from each case, compares and contrasts the findings, and uses various techniques to analyze the data, such as comparative analysis or pattern-matching. The findings of a multiple-case study can be used to develop theories, inform policy or practice, or generate new research questions.

Exploratory Case Study

An exploratory case study is used to explore a new or understudied phenomenon. This type of case study is useful when the researcher wants to generate hypotheses or theories about the phenomenon.

For Example, a researcher might conduct an exploratory case study on a new technology to understand its potential impact on society. The researcher collects data from multiple sources, such as interviews, observations, and documents, and uses various techniques to analyze the data, such as grounded theory or content analysis. The findings of an exploratory case study can be used to generate new research questions, develop theories, or inform policy or practice.

Descriptive Case Study

A descriptive case study is used to describe a particular phenomenon in detail. This type of case study is useful when the researcher wants to provide a comprehensive account of the phenomenon.

For Example, a researcher might conduct a descriptive case study on a particular community to understand its social and economic characteristics. The researcher collects data from multiple sources, such as interviews, observations, and documents, and uses various techniques to analyze the data, such as content analysis or thematic analysis. The findings of a descriptive case study can be used to inform policy or practice or generate new research questions.

Instrumental Case Study

An instrumental case study is used to understand a particular phenomenon that is instrumental in achieving a particular goal. This type of case study is useful when the researcher wants to understand the role of the phenomenon in achieving the goal.

For Example, a researcher might conduct an instrumental case study on a particular policy to understand its impact on achieving a particular goal, such as reducing poverty. The researcher collects data from multiple sources, such as interviews, observations, and documents, and uses various techniques to analyze the data, such as content analysis or thematic analysis. The findings of an instrumental case study can be used to inform policy or practice or generate new research questions.

Case Study Data Collection Methods

Here are some common data collection methods for case studies:

Interviews involve asking questions to individuals who have knowledge or experience relevant to the case study. Interviews can be structured (where the same questions are asked to all participants) or unstructured (where the interviewer follows up on the responses with further questions). Interviews can be conducted in person, over the phone, or through video conferencing.

Observations

Observations involve watching and recording the behavior and activities of individuals or groups relevant to the case study. Observations can be participant (where the researcher actively participates in the activities) or non-participant (where the researcher observes from a distance). Observations can be recorded using notes, audio or video recordings, or photographs.

Documents can be used as a source of information for case studies. Documents can include reports, memos, emails, letters, and other written materials related to the case study. Documents can be collected from the case study participants or from public sources.

Surveys involve asking a set of questions to a sample of individuals relevant to the case study. Surveys can be administered in person, over the phone, through mail or email, or online. Surveys can be used to gather information on attitudes, opinions, or behaviors related to the case study.

Artifacts are physical objects relevant to the case study. Artifacts can include tools, equipment, products, or other objects that provide insights into the case study phenomenon.

How to conduct Case Study Research

Conducting a case study research involves several steps that need to be followed to ensure the quality and rigor of the study. Here are the steps to conduct case study research:

  • Define the research questions: The first step in conducting a case study research is to define the research questions. The research questions should be specific, measurable, and relevant to the case study phenomenon under investigation.
  • Select the case: The next step is to select the case or cases to be studied. The case should be relevant to the research questions and should provide rich and diverse data that can be used to answer the research questions.
  • Collect data: Data can be collected using various methods, such as interviews, observations, documents, surveys, and artifacts. The data collection method should be selected based on the research questions and the nature of the case study phenomenon.
  • Analyze the data: The data collected from the case study should be analyzed using various techniques, such as content analysis, thematic analysis, or grounded theory. The analysis should be guided by the research questions and should aim to provide insights and conclusions relevant to the research questions.
  • Draw conclusions: The conclusions drawn from the case study should be based on the data analysis and should be relevant to the research questions. The conclusions should be supported by evidence and should be clearly stated.
  • Validate the findings: The findings of the case study should be validated by reviewing the data and the analysis with participants or other experts in the field. This helps to ensure the validity and reliability of the findings.
  • Write the report: The final step is to write the report of the case study research. The report should provide a clear description of the case study phenomenon, the research questions, the data collection methods, the data analysis, the findings, and the conclusions. The report should be written in a clear and concise manner and should follow the guidelines for academic writing.

Examples of Case Study

Here are some examples of case study research:

  • The Hawthorne Studies : Conducted between 1924 and 1932, the Hawthorne Studies were a series of case studies conducted by Elton Mayo and his colleagues to examine the impact of work environment on employee productivity. The studies were conducted at the Hawthorne Works plant of the Western Electric Company in Chicago and included interviews, observations, and experiments.
  • The Stanford Prison Experiment: Conducted in 1971, the Stanford Prison Experiment was a case study conducted by Philip Zimbardo to examine the psychological effects of power and authority. The study involved simulating a prison environment and assigning participants to the role of guards or prisoners. The study was controversial due to the ethical issues it raised.
  • The Challenger Disaster: The Challenger Disaster was a case study conducted to examine the causes of the Space Shuttle Challenger explosion in 1986. The study included interviews, observations, and analysis of data to identify the technical, organizational, and cultural factors that contributed to the disaster.
  • The Enron Scandal: The Enron Scandal was a case study conducted to examine the causes of the Enron Corporation’s bankruptcy in 2001. The study included interviews, analysis of financial data, and review of documents to identify the accounting practices, corporate culture, and ethical issues that led to the company’s downfall.
  • The Fukushima Nuclear Disaster : The Fukushima Nuclear Disaster was a case study conducted to examine the causes of the nuclear accident that occurred at the Fukushima Daiichi Nuclear Power Plant in Japan in 2011. The study included interviews, analysis of data, and review of documents to identify the technical, organizational, and cultural factors that contributed to the disaster.

Application of Case Study

Case studies have a wide range of applications across various fields and industries. Here are some examples:

Business and Management

Case studies are widely used in business and management to examine real-life situations and develop problem-solving skills. Case studies can help students and professionals to develop a deep understanding of business concepts, theories, and best practices.

Case studies are used in healthcare to examine patient care, treatment options, and outcomes. Case studies can help healthcare professionals to develop critical thinking skills, diagnose complex medical conditions, and develop effective treatment plans.

Case studies are used in education to examine teaching and learning practices. Case studies can help educators to develop effective teaching strategies, evaluate student progress, and identify areas for improvement.

Social Sciences

Case studies are widely used in social sciences to examine human behavior, social phenomena, and cultural practices. Case studies can help researchers to develop theories, test hypotheses, and gain insights into complex social issues.

Law and Ethics

Case studies are used in law and ethics to examine legal and ethical dilemmas. Case studies can help lawyers, policymakers, and ethical professionals to develop critical thinking skills, analyze complex cases, and make informed decisions.

Purpose of Case Study

The purpose of a case study is to provide a detailed analysis of a specific phenomenon, issue, or problem in its real-life context. A case study is a qualitative research method that involves the in-depth exploration and analysis of a particular case, which can be an individual, group, organization, event, or community.

The primary purpose of a case study is to generate a comprehensive and nuanced understanding of the case, including its history, context, and dynamics. Case studies can help researchers to identify and examine the underlying factors, processes, and mechanisms that contribute to the case and its outcomes. This can help to develop a more accurate and detailed understanding of the case, which can inform future research, practice, or policy.

Case studies can also serve other purposes, including:

  • Illustrating a theory or concept: Case studies can be used to illustrate and explain theoretical concepts and frameworks, providing concrete examples of how they can be applied in real-life situations.
  • Developing hypotheses: Case studies can help to generate hypotheses about the causal relationships between different factors and outcomes, which can be tested through further research.
  • Providing insight into complex issues: Case studies can provide insights into complex and multifaceted issues, which may be difficult to understand through other research methods.
  • Informing practice or policy: Case studies can be used to inform practice or policy by identifying best practices, lessons learned, or areas for improvement.

Advantages of Case Study Research

There are several advantages of case study research, including:

  • In-depth exploration: Case study research allows for a detailed exploration and analysis of a specific phenomenon, issue, or problem in its real-life context. This can provide a comprehensive understanding of the case and its dynamics, which may not be possible through other research methods.
  • Rich data: Case study research can generate rich and detailed data, including qualitative data such as interviews, observations, and documents. This can provide a nuanced understanding of the case and its complexity.
  • Holistic perspective: Case study research allows for a holistic perspective of the case, taking into account the various factors, processes, and mechanisms that contribute to the case and its outcomes. This can help to develop a more accurate and comprehensive understanding of the case.
  • Theory development: Case study research can help to develop and refine theories and concepts by providing empirical evidence and concrete examples of how they can be applied in real-life situations.
  • Practical application: Case study research can inform practice or policy by identifying best practices, lessons learned, or areas for improvement.
  • Contextualization: Case study research takes into account the specific context in which the case is situated, which can help to understand how the case is influenced by the social, cultural, and historical factors of its environment.

Limitations of Case Study Research

There are several limitations of case study research, including:

  • Limited generalizability : Case studies are typically focused on a single case or a small number of cases, which limits the generalizability of the findings. The unique characteristics of the case may not be applicable to other contexts or populations, which may limit the external validity of the research.
  • Biased sampling: Case studies may rely on purposive or convenience sampling, which can introduce bias into the sample selection process. This may limit the representativeness of the sample and the generalizability of the findings.
  • Subjectivity: Case studies rely on the interpretation of the researcher, which can introduce subjectivity into the analysis. The researcher’s own biases, assumptions, and perspectives may influence the findings, which may limit the objectivity of the research.
  • Limited control: Case studies are typically conducted in naturalistic settings, which limits the control that the researcher has over the environment and the variables being studied. This may limit the ability to establish causal relationships between variables.
  • Time-consuming: Case studies can be time-consuming to conduct, as they typically involve a detailed exploration and analysis of a specific case. This may limit the feasibility of conducting multiple case studies or conducting case studies in a timely manner.
  • Resource-intensive: Case studies may require significant resources, including time, funding, and expertise. This may limit the ability of researchers to conduct case studies in resource-constrained settings.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Quasi-Experimental Design

Quasi-Experimental Research Design – Types...

Applied Research

Applied Research – Types, Methods and Examples

Basic Research

Basic Research – Types, Methods and Examples

Triangulation

Triangulation in Research – Types, Methods and...

Transformative Design

Transformative Design – Methods, Types, Guide

Experimental Research Design

Experimental Design – Types, Methods, Guide

Case study as a research method

Zaidah Zainal at Universiti Teknologi Malaysia

  • Universiti Teknologi Malaysia

Discover the world's research

  • 25+ million members
  • 160+ million publication pages
  • 2.3+ billion citations
  • Asma Nasser Alzahrani

Bongumusa Prince Makhoba

  • Zarmina Sharif
  • Muhammad Zeeshan

Azkia Muharom Albantani

  • Muhbib Abdul Wahab
  • Putri Amalia Farhati
  • TRANSPORT POLICY
  • Julien Baltazar

Ghada Bouillass

  • Hernán Espinoza-Acero
  • Tito Galarza-Minaya
  • Elisabete Vidal

Jelena Zascerinska

  • Jacqueline Scheepers

Martin Kühn

  • EDUC TECHNOL SOC

S. Gulsecen

  • Steven Mcdonough
  • TESOL QUART
  • ELLEN BLOCK
  • Donald T. Campbell
  • LAW SOC REV
  • George I. Lovell
  • Jacques Hamel
  • Stéphane Dufour
  • Dominic Fortin

Suzanne Taylor

  • Recruit researchers
  • Join for free
  • Login Email Tip: Most researchers use their institutional email address as their ResearchGate login Password Forgot password? Keep me logged in Log in or Continue with Google Welcome back! Please log in. Email · Hint Tip: Most researchers use their institutional email address as their ResearchGate login Password Forgot password? Keep me logged in Log in or Continue with Google No account? Sign up
  • Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Best Family Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Sweepstakes
  • Guided Meditations
  • Verywell Mind Insights
  • 2024 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

What Is a Case Study?

Weighing the pros and cons of this method of research

Verywell / Colleen Tighe

  • Pros and Cons

What Types of Case Studies Are Out There?

Where do you find data for a case study, how do i write a psychology case study.

A case study is an in-depth study of one person, group, or event. In a case study, nearly every aspect of the subject's life and history is analyzed to seek patterns and causes of behavior. Case studies can be used in many different fields, including psychology, medicine, education, anthropology, political science, and social work.

The point of a case study is to learn as much as possible about an individual or group so that the information can be generalized to many others. Unfortunately, case studies tend to be highly subjective, and it is sometimes difficult to generalize results to a larger population.

While case studies focus on a single individual or group, they follow a format similar to other types of psychology writing. If you are writing a case study, we got you—here are some rules of APA format to reference.  

At a Glance

A case study, or an in-depth study of a person, group, or event, can be a useful research tool when used wisely. In many cases, case studies are best used in situations where it would be difficult or impossible for you to conduct an experiment. They are helpful for looking at unique situations and allow researchers to gather a lot of˜ information about a specific individual or group of people. However, it's important to be cautious of any bias we draw from them as they are highly subjective.

What Are the Benefits and Limitations of Case Studies?

A case study can have its strengths and weaknesses. Researchers must consider these pros and cons before deciding if this type of study is appropriate for their needs.

One of the greatest advantages of a case study is that it allows researchers to investigate things that are often difficult or impossible to replicate in a lab. Some other benefits of a case study:

  • Allows researchers to capture information on the 'how,' 'what,' and 'why,' of something that's implemented
  • Gives researchers the chance to collect information on why one strategy might be chosen over another
  • Permits researchers to develop hypotheses that can be explored in experimental research

On the other hand, a case study can have some drawbacks:

  • It cannot necessarily be generalized to the larger population
  • Cannot demonstrate cause and effect
  • It may not be scientifically rigorous
  • It can lead to bias

Researchers may choose to perform a case study if they want to explore a unique or recently discovered phenomenon. Through their insights, researchers develop additional ideas and study questions that might be explored in future studies.

It's important to remember that the insights from case studies cannot be used to determine cause-and-effect relationships between variables. However, case studies may be used to develop hypotheses that can then be addressed in experimental research.

Case Study Examples

There have been a number of notable case studies in the history of psychology. Much of  Freud's work and theories were developed through individual case studies. Some great examples of case studies in psychology include:

  • Anna O : Anna O. was a pseudonym of a woman named Bertha Pappenheim, a patient of a physician named Josef Breuer. While she was never a patient of Freud's, Freud and Breuer discussed her case extensively. The woman was experiencing symptoms of a condition that was then known as hysteria and found that talking about her problems helped relieve her symptoms. Her case played an important part in the development of talk therapy as an approach to mental health treatment.
  • Phineas Gage : Phineas Gage was a railroad employee who experienced a terrible accident in which an explosion sent a metal rod through his skull, damaging important portions of his brain. Gage recovered from his accident but was left with serious changes in both personality and behavior.
  • Genie : Genie was a young girl subjected to horrific abuse and isolation. The case study of Genie allowed researchers to study whether language learning was possible, even after missing critical periods for language development. Her case also served as an example of how scientific research may interfere with treatment and lead to further abuse of vulnerable individuals.

Such cases demonstrate how case research can be used to study things that researchers could not replicate in experimental settings. In Genie's case, her horrific abuse denied her the opportunity to learn a language at critical points in her development.

This is clearly not something researchers could ethically replicate, but conducting a case study on Genie allowed researchers to study phenomena that are otherwise impossible to reproduce.

There are a few different types of case studies that psychologists and other researchers might use:

  • Collective case studies : These involve studying a group of individuals. Researchers might study a group of people in a certain setting or look at an entire community. For example, psychologists might explore how access to resources in a community has affected the collective mental well-being of those who live there.
  • Descriptive case studies : These involve starting with a descriptive theory. The subjects are then observed, and the information gathered is compared to the pre-existing theory.
  • Explanatory case studies : These   are often used to do causal investigations. In other words, researchers are interested in looking at factors that may have caused certain things to occur.
  • Exploratory case studies : These are sometimes used as a prelude to further, more in-depth research. This allows researchers to gather more information before developing their research questions and hypotheses .
  • Instrumental case studies : These occur when the individual or group allows researchers to understand more than what is initially obvious to observers.
  • Intrinsic case studies : This type of case study is when the researcher has a personal interest in the case. Jean Piaget's observations of his own children are good examples of how an intrinsic case study can contribute to the development of a psychological theory.

The three main case study types often used are intrinsic, instrumental, and collective. Intrinsic case studies are useful for learning about unique cases. Instrumental case studies help look at an individual to learn more about a broader issue. A collective case study can be useful for looking at several cases simultaneously.

The type of case study that psychology researchers use depends on the unique characteristics of the situation and the case itself.

There are a number of different sources and methods that researchers can use to gather information about an individual or group. Six major sources that have been identified by researchers are:

  • Archival records : Census records, survey records, and name lists are examples of archival records.
  • Direct observation : This strategy involves observing the subject, often in a natural setting . While an individual observer is sometimes used, it is more common to utilize a group of observers.
  • Documents : Letters, newspaper articles, administrative records, etc., are the types of documents often used as sources.
  • Interviews : Interviews are one of the most important methods for gathering information in case studies. An interview can involve structured survey questions or more open-ended questions.
  • Participant observation : When the researcher serves as a participant in events and observes the actions and outcomes, it is called participant observation.
  • Physical artifacts : Tools, objects, instruments, and other artifacts are often observed during a direct observation of the subject.

If you have been directed to write a case study for a psychology course, be sure to check with your instructor for any specific guidelines you need to follow. If you are writing your case study for a professional publication, check with the publisher for their specific guidelines for submitting a case study.

Here is a general outline of what should be included in a case study.

Section 1: A Case History

This section will have the following structure and content:

Background information : The first section of your paper will present your client's background. Include factors such as age, gender, work, health status, family mental health history, family and social relationships, drug and alcohol history, life difficulties, goals, and coping skills and weaknesses.

Description of the presenting problem : In the next section of your case study, you will describe the problem or symptoms that the client presented with.

Describe any physical, emotional, or sensory symptoms reported by the client. Thoughts, feelings, and perceptions related to the symptoms should also be noted. Any screening or diagnostic assessments that are used should also be described in detail and all scores reported.

Your diagnosis : Provide your diagnosis and give the appropriate Diagnostic and Statistical Manual code. Explain how you reached your diagnosis, how the client's symptoms fit the diagnostic criteria for the disorder(s), or any possible difficulties in reaching a diagnosis.

Section 2: Treatment Plan

This portion of the paper will address the chosen treatment for the condition. This might also include the theoretical basis for the chosen treatment or any other evidence that might exist to support why this approach was chosen.

  • Cognitive behavioral approach : Explain how a cognitive behavioral therapist would approach treatment. Offer background information on cognitive behavioral therapy and describe the treatment sessions, client response, and outcome of this type of treatment. Make note of any difficulties or successes encountered by your client during treatment.
  • Humanistic approach : Describe a humanistic approach that could be used to treat your client, such as client-centered therapy . Provide information on the type of treatment you chose, the client's reaction to the treatment, and the end result of this approach. Explain why the treatment was successful or unsuccessful.
  • Psychoanalytic approach : Describe how a psychoanalytic therapist would view the client's problem. Provide some background on the psychoanalytic approach and cite relevant references. Explain how psychoanalytic therapy would be used to treat the client, how the client would respond to therapy, and the effectiveness of this treatment approach.
  • Pharmacological approach : If treatment primarily involves the use of medications, explain which medications were used and why. Provide background on the effectiveness of these medications and how monotherapy may compare with an approach that combines medications with therapy or other treatments.

This section of a case study should also include information about the treatment goals, process, and outcomes.

When you are writing a case study, you should also include a section where you discuss the case study itself, including the strengths and limitiations of the study. You should note how the findings of your case study might support previous research. 

In your discussion section, you should also describe some of the implications of your case study. What ideas or findings might require further exploration? How might researchers go about exploring some of these questions in additional studies?

Need More Tips?

Here are a few additional pointers to keep in mind when formatting your case study:

  • Never refer to the subject of your case study as "the client." Instead, use their name or a pseudonym.
  • Read examples of case studies to gain an idea about the style and format.
  • Remember to use APA format when citing references .

Crowe S, Cresswell K, Robertson A, Huby G, Avery A, Sheikh A. The case study approach .  BMC Med Res Methodol . 2011;11:100.

Crowe S, Cresswell K, Robertson A, Huby G, Avery A, Sheikh A. The case study approach . BMC Med Res Methodol . 2011 Jun 27;11:100. doi:10.1186/1471-2288-11-100

Gagnon, Yves-Chantal.  The Case Study as Research Method: A Practical Handbook . Canada, Chicago Review Press Incorporated DBA Independent Pub Group, 2010.

Yin, Robert K. Case Study Research and Applications: Design and Methods . United States, SAGE Publications, 2017.

By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

Encyclopedia Britannica

  • History & Society
  • Science & Tech
  • Biographies
  • Animals & Nature
  • Geography & Travel
  • Arts & Culture
  • Games & Quizzes
  • On This Day
  • One Good Fact
  • New Articles
  • Lifestyles & Social Issues
  • Philosophy & Religion
  • Politics, Law & Government
  • World History
  • Health & Medicine
  • Browse Biographies
  • Birds, Reptiles & Other Vertebrates
  • Bugs, Mollusks & Other Invertebrates
  • Environment
  • Fossils & Geologic Time
  • Entertainment & Pop Culture
  • Sports & Recreation
  • Visual Arts
  • Demystified
  • Image Galleries
  • Infographics
  • Top Questions
  • Britannica Kids
  • Saving Earth
  • Space Next 50
  • Student Center
  • Introduction

The case study creation process

Types of case studies, benefits and limitations.

What is it like to never feel fear?

  • When did science begin?
  • Where was science invented?

Blackboard inscribed with scientific formulas and calculations in physics and mathematics

Our editors will review what you’ve submitted and determine whether to revise the article.

  • Academia - Case Study
  • Verywell Mind - What is a Case Study?
  • Simply Psychology - Case Study Research Method in Psychology
  • CORE - Case study as a research method
  • National Center for Biotechnology Information - PubMed Central - The case study approach
  • BMC Journals - Evidence-Based Nursing - What is a case study?
  • Table Of Contents

case study , detailed description and assessment of a specific situation in the real world created for the purpose of deriving generalizations and other insights from it. A case study can be about an individual, a group of people, an organization, or an event, among other subjects.

By focusing on a specific subject in its natural setting, a case study can help improve understanding of the broader features and processes at work. Case studies are a research method used in multiple fields, including business, criminology , education , medicine and other forms of health care, anthropology , political science , psychology , and social work . Data in case studies can be both qualitative and quantitative. Unlike experiments, where researchers control and manipulate situations, case studies are considered to be “naturalistic” because subjects are studied in their natural context . ( See also natural experiment .)

The creation of a case study typically involves the following steps:

  • The research question to be studied is defined, informed by existing literature and previous research. Researchers should clearly define the scope of the case, and they should compile a list of evidence to be collected as well as identify the nature of insights that they expect to gain from the case study.
  • Once the case is identified, the research team is given access to the individual, organization, or situation being studied. Individuals are informed of risks associated with participation and must provide their consent , which may involve signing confidentiality or anonymity agreements.
  • Researchers then collect evidence using multiple methods, which may include qualitative techniques, such as interviews, focus groups , and direct observations, as well as quantitative methods, such as surveys, questionnaires, and data audits. The collection procedures need to be well defined to ensure the relevance and accuracy of the evidence.
  • The collected evidence is analyzed to come up with insights. Each data source must be reviewed carefully by itself and in the larger context of the case study so as to ensure continued relevance. At the same time, care must be taken not to force the analysis to fit (potentially preconceived) conclusions. While the eventual case study may serve as the basis for generalizations, these generalizations must be made cautiously to ensure that specific nuances are not lost in the averages.
  • Finally, the case study is packaged for larger groups and publication. At this stage some information may be withheld, as in business case studies, to allow readers to draw their own conclusions. In scientific fields, the completed case study needs to be a coherent whole, with all findings and statistical relationships clearly documented.

What is it like to never feel fear?

Case studies have been used as a research method across multiple fields. They are particularly popular in the fields of law, business, and employee training; they typically focus on a problem that an individual or organization is facing. The situation is presented in considerable detail, often with supporting data, to discussion participants, who are asked to make recommendations that will solve the stated problem. The business case study as a method of instruction was made popular in the 1920s by instructors at Harvard Business School who adapted an approach used at Harvard Law School in which real-world cases were used in classroom discussions. Other business and law schools started compiling case studies as teaching aids for students. In a business school case study, students are not provided with the complete list of facts pertaining to the topic and are thus forced to discuss and compare their perspectives with those of their peers to recommend solutions.

In criminology , case studies typically focus on the lives of an individual or a group of individuals. These studies can provide particularly valuable insight into the personalities and motives of individual criminals, but they may suffer from a lack of objectivity on the part of the researchers (typically because of the researchers’ biases when working with people with a criminal history), and their findings may be difficult to generalize.

In sociology , the case-study method was developed by Frédéric Le Play in France during the 19th century. This approach involves a field worker staying with a family for a period of time, gathering data on the family members’ attitudes and interactions and on their income, expenditures, and physical possessions. Similar approaches have been used in anthropology . Such studies can sometimes continue for many years.

Case studies provide insight into situations that involve a specific entity or set of circumstances. They can be beneficial in helping to explain the causal relationships between quantitative indicators in a field of study, such as what drives a company’s market share. By introducing real-world examples, they also plunge the reader into an actual, concrete situation and make the concepts real rather than theoretical. They also help people study rare situations that they might not otherwise experience.

Because case studies are in a “naturalistic” environment , they are limited in terms of research design: researchers lack control over what they are studying, which means that the results often cannot be reproduced. Also, care must be taken to stay within the bounds of the research question on which the case study is focusing. Other limitations to case studies revolve around the data collected. It may be difficult, for instance, for researchers to organize the large volume of data that can emerge from the study, and their analysis of the data must be carefully thought through to produce scientifically valid insights. The research methodology used to generate these insights is as important as the insights themselves, for the latter need to be seen in the proper context. Taken out of context, they may lead to erroneous conclusions. Like all scientific studies, case studies need to be approached objectively; personal bias or opinion may skew the research methods as well as the results. ( See also confirmation bias .)

Business case studies in particular have been criticized for approaching a problem or situation from a narrow perspective. Students are expected to come up with solutions for a problem based on the data provided. However, in real life, the situation is typically reversed: business managers face a problem and must then look for data to help them solve it.

Click through the PLOS taxonomy to find articles in your field.

For more information about PLOS Subject Areas, click here .

Loading metrics

Open Access

Peer-reviewed

Research Article

Gender on the Brain: A Case Study of Science Communication in the New Media Environment

* E-mail: [email protected]

Affiliation Division of Psychology & Language Sciences, University College London, London, United Kingdom

  • Cliodhna O’Connor, 
  • Helene Joffe

PLOS

  • Published: October 29, 2014
  • https://doi.org/10.1371/journal.pone.0110830
  • Reader Comments

Figure 1

Neuroscience research on sex difference is currently a controversial field, frequently accused of purveying a ‘neurosexism’ that functions to naturalise gender inequalities. However, there has been little empirical investigation of how information about neurobiological sex difference is interpreted within wider society. This paper presents a case study that tracks the journey of one high-profile study of neurobiological sex differences from its scientific publication through various layers of the public domain. A content analysis was performed to ascertain how the study was represented in five domains of communication: the original scientific article, a press release, the traditional news media, online reader comments and blog entries. Analysis suggested that scientific research on sex difference offers an opportunity to rehearse abiding cultural understandings of gender. In both scientific and popular contexts, traditional gender stereotypes were projected onto the novel scientific information, which was harnessed to demonstrate the factual truth and normative legitimacy of these beliefs. Though strains of misogyny were evident within the readers’ comments, most discussion of the study took pains to portray the sexes’ unique abilities as equal and ‘complementary’. However, this content often resembled a form of benevolent sexism, in which praise of women’s social-emotional skills compensated for their relegation from more esteemed trait-domains, such as rationality and productivity. The paper suggests that embedding these stereotype patterns in neuroscience may intensify their rhetorical potency by lending them the epistemic authority of science. It argues that the neuroscience of sex difference does not merely reflect, but can actively shape the gender norms of contemporary society.

Citation: O’Connor C, Joffe H (2014) Gender on the Brain: A Case Study of Science Communication in the New Media Environment. PLoS ONE 9(10): e110830. https://doi.org/10.1371/journal.pone.0110830

Editor: Thomas Boraud, Centre national de la recherche scientifique, France

Received: May 30, 2014; Accepted: September 2, 2014; Published: October 29, 2014

Copyright: © 2014 O’Connor, Joffe. This is an open-access article distributed under the terms of the Creative Commons Attribution License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability: The authors confirm that all data underlying the findings are fully available without restriction. All relevant data are within the paper and its Supporting Information files.

Funding: The research was supported by a grant (ref. TWCF 0025 / UAB 008) awarded under the ‘Uses and Abuses of Biology’ grants programme administered by the Faraday Institute at St. Edmund’s College, Cambridge ( http://www.uabgrants.org/ ). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing interests: The authors have declared that no competing interests exist.

Introduction

On 2 December 2013, the well-known scientific journal PNAS published an early online edition of an article entitled “ Sex differences in the structural connectome of the human brain ”, which purported to reveal “ fundamental sex differences ” in the structural connectivity of male and female brains [1] . In the days following its release, this article provoked a flurry of coverage in the international print and electronic media. These discussions afford an illuminating example of how neuroscience research on sex differentiation is interpreted and employed in contemporary society. The current paper traces how the ideas introduced in the original PNAS article evolved as they moved from the scientific into the public sphere. It presents a content analysis of the study’s depiction in five different domains of communication: the original scientific article, a press release, the traditional news media, online reader comments and blog entries. In so doing, it seeks to elucidate how the science of sex difference can influence public understandings of gender, as well as furnish insight into the dynamics of science communication in the new media environment.

Neuroscience and sex difference

The Ingalhalikar et al. [1] PNAS paper that sparked the current analysis reported an attempt to model the neural connectivity of the brains of 949 individuals using the technique of diffusion tensor imaging. Analysis detected significant differences between the connectivity patterns of males and females: briefly, males showed proportionally greater connectivity within each cerebral hemisphere and females greater connectivity across hemispheres. The authors suggested that this difference might underpin a range of sex differences in cognitive and behavioural abilities. The methodology and results of the study are elaborated in greater detail below.

The Ingalhalikar et al. [1] study emerged in the context of rising public attention to neuroscience, which is increasingly drawn into public debate about a wide range of social issues [2] – [5] . Social scientific analyses of this cultural trend have shown that neuroscientific concepts surface particularly frequently within efforts to articulate and explain intergroup differences [4] – [8] . These discussions frequently reconstitute social categories as biological ‘kinds’. The Ingalhalikar et al. [1] study is emblematic of this tradition, seeking to identify neurobiological variation between males and females in the hope of explaining differences in their psychological and behavioural characteristics. There are several sound reasons for screening neuroscientific data for sexual differentiation, chief among them remediating the historical underrepresentation of females in biomedical research, which has disadvantaged women in respect to disease understanding and treatment [9] – [12] . However, neuroscientific research on sexual dimorphism has recently elicited intense criticism from scholars in both natural and social sciences. These critics contend that the evidence-base for many claims of sex difference is plagued by bias and methodological weakness [13] – [18] .

Fine [19] has coined the term ‘neurosexism’ to describe the socio-political assumptions often embedded in the science of sex difference. Fine [19] and other critics allege that much sex difference research ultimately functions to sanction and sustain traditional gender relations. They argue that as these scientific ideas percolate through lay society, they reinforce stereotypes, reify gender binaries, legitimise the differential treatment of men and women in educational and professional contexts, and make gender inequalities appear natural and inevitable [14] , [26] , [20] – [23] . These posited societal repercussions are lent empirical support by social psychological research, which indicates that exposure to biological explanations of gender differences fosters greater endorsement of gender stereotypes [24] , [25] , stereotype-consistent behaviour [26] – [28] , sexist attitudes [29] , acceptance of gender inequality and support for discriminatory practices [30] . This evidence suggests that the social stakes of advances in the science of sex difference are high.

Science, values and identity

The contention that scientific research on sex differences can be influenced by and contribute to cultural biases contradicts an idealised view of science as necessarily a force for objectivity. Many empirical studies have shown that scientific research is an intrinsically social activity, which is shaped by identity, reputation, competition, politics and financial interests [31] – [33] . Furthermore, while internally science maintains elaborate systems of ‘checks and balances’ that deliberately (though not always successfully) try to expunge personal or cultural bias, no such restrictions limit its representation in the public sphere. Indeed, the mobilisation of prevailing values and beliefs may be the key mechanism that enables lay thinkers to make sense of abstract, unfamiliar scientific information. Social representations theory, a social psychological theory that investigates how scientific ideas assimilate into ‘common sense’, finds that when people engage with scientific information, the primary concern is not a veridical rendering of scientific ‘fact’, but developing a form of knowledge that coheres with a community’s cultural projects [34] , [35] . Social representations or ‘lay theories’ of science selectively reconstitute scientific information according to the ideological and pragmatic imperatives of particular social contexts [36] – [38] . As a result, the introduction of scientific ideas into public discourse is no guarantee of an impartial, classically ‘rational’ debate; indeed, the apparent neutrality of scientific concepts may make them more potent vehicles for ideological projects, lending socio-emotional values an ontological solidity and rhetorical force.

Much of the socio-emotional meaning that is projected onto scientific information revolves around issues of identity [39] , [40] . Research shows that humans have a deep-seated motivation to justify the social system in which they live, and their cognition is moulded by the desire to construe that system as good, just and legitimate [41] . This orientation shapes public reception of scientific information, which is often absorbed into efforts to preserve existing group hierarchies. For example, Joffe’s [42] – [45] research catalogues how the impetus to bolster intergroup divides drives social representations of health and environmental risks: these risks are consistently blamed on an outgroup’s deviant, irresponsible or repugnant behaviour, which reinforces the outgroup’s stigmatisation and symbolic distance from the self/ingroup. In the domain of gender, research has found that traditional gender stereotypes are superimposed upon representations of abstract scientific information, which serves to both habituate the unfamiliar scientific content and revitalise age-old cultural understandings by affording them fresh, scientific draping. For instance, in studies investigating lay accounts of the biology of conception, gametes were personified and ascribed the stereotypical attributes of gender categories, with the sperm described as stronger, harder and more dominant than the ovum [46] , [47] . These effects were strongest for individuals with more conservative sex-role orientations, which supports the proposition that people reconstruct scientific information in line with their socio-political commitments.

Science communication in the new media environment

Bangerter [47] presents evidence that the aforementioned saturation of biological accounts of fertilisation with everyday understandings of sex roles is a gradual process, which consolidates through repeated communicative exchanges. Understanding communication processes is therefore critical in understanding how social representations of scientific information develop. Traditionally, the mass media are conceptualised as the key vessel by which scientific information moves from the laboratory into the public sphere [48] – [50] . Ideas aired in the popular media have been the target of much prior criticism of ‘neurosexism’, with the logic that the narratives purveyed to a mass audience have the greatest potential for social harm. However, scrutiny of media accounts of neurobiological sex difference has thus far taken a largely anecdotal approach to the collection and analysis of media material. Debate about popular portrayals of sex difference would benefit from a more robust empirical foundation, which systematically documents the patterns visible in media responses to scientific claims of sex difference.

Additionally, a comprehensive account of how these ideas are transmitted through society requires attention to the shifting dynamics of the new media environment. Classical models of media influence present a rather simple process whereby information is produced by science and travels via the mass media into public consciousness. This notion of a linear, unidirectional flow of information is unsustainable in the new media environment, in which audiences do not merely ingest but actively produce media content. Recent years have seen a decline of science coverage in the traditional media, where dedicated science sections and reporters are increasingly rare [51] . Concurrently, there has been a major expansion of science content in social media, with scientists actively utilising social media platforms to publicise and critique research [52] – [55] . While the degree of public immersion in these online debates remains unclear, surveys indicate that the internet has become the default source laypeople consult when seeking information about science [56] . Though currently internet usage varies widely across socio-demographic divides, the importance of the new media for public communication of science will continue to grow as the ‘millennial’ generation ages and as internet access widens with economic development. Expanding media analysis to incorporate new media content is therefore critical in ensuring research on public engagement with science keeps pace with contemporary society.

As yet, there has been relatively little empirical research on representations of science in social media. The research that does exist has focused primarily on Twitter, employing computer algorithms to identify patterns in large volumes of individual tweets [57] – [59] . These studies provide an expansive overview of the distribution of communicative trends across time and populations. However, the automated nature of the computational analytic strategies typically deployed, together with the 140-character limit to contributions made via Twitter, mean that the insight offered into the meanings derived of scientific concepts is often relatively superficial.

Alternative new media platforms, which afford data that is richer in content, include blog posts and the comments that readers contribute to online news articles. Blog posts are typically produced by and for communities with a vested interest in the topic at hand, and selectively focus on the aspects of the topic that resonate with those interests. Much discussion of scientific issues in the so-called ‘blogosphere’ occurs within dedicated science blogs, where individuals with high levels of scientific expertise dissect scientific research itself and its portrayal in the mass media [52] , [60] . In contrast, reader comments stem from a more ‘general’ population, recording individuals’ spontaneous responses to information encountered in news websites. Research on this material has indicated that comments contain a greater diversity of content than traditional media reports, and are more likely to include moral or social judgement [61] – [64] . As such, comments may be a useful proxy for readers’ immediate, subjective responses to the scientific ideas presented in news articles. Though such content is produced by an unrepresentative minority of the population and may attract those with the most extreme perspectives, this in itself may furnish a useful indicator of the range of opinion on a given issue [61] . Additionally, though only small numbers of people contribute comments, their audience is much wider: research indicates that many readers of online articles also peruse the appended comments, and that this material influences their appraisal of the issues covered in the main text [65] . This electronic content may therefore provide a naturalistic complement to more traditional indices of public opinion, such as surveys and interviews.

The case study approach

Most studies of media coverage of science amass a diverse range of texts to discern the overarching trends in how a given scientific topic is represented. For example, several recent studies have undertaken broad overviews of press coverage of neuroscience, demonstrating that neuroscientific concepts are growing in prominence, applied to a wide variety of topics, and used to advance prevailing beliefs or ideologies [4] , [66] – [68] . These expansive studies offer valuable insight into the stock of frames that media outlets deploy in approaching information from a given scientific field. However, when many different scientific discussions are collapsed into a single dataset, the detail of how specific scientific ideas are interpreted and applied in popular contexts recedes from view. Further, restricting analysis to material from a single media platform (e.g. newspapers) affords a rather static picture of social representations of science, which does not capture how dynamics shift as the information moves between different communicative contexts.

One way of preserving this nuance is to adopt a case study approach that tracks how one scientific study evolves as it moves from its original scientific report through various media contexts. A case study design seeks to furnish an in-depth, holistic account of a single phenomenon, often by triangulating multiple sources of data [69] , [70] . It is particularly adept at capturing process ; its narrow focus means it can document direct relations between events, which can be difficult to discern with composite data [71] , [72] . While focusing on a single case impedes generalisability, in-depth understanding of the dynamics of one particular case can complement and enrich understanding of the average tendencies that traverse many cases [71] . Further, one instance is sufficient to falsify proposed universalities or provide ‘proof of concept’ that a given phenomenon is possible. For example, Brossard [73] uses an instance of scientific controversy to demonstrate the porous nature of the boundaries between science and the media, with scientists actively using the media to publicise and debate research. Seale [74] highlights the self-propagating nature of media information by tracking how a single statistic in a report on physician-assisted suicide was distorted by one media report and then recited by others as ‘fact’. A detailed investigation of one particular case can therefore be a potent means of exposing the naturalistic unfolding of the processes of science communication.

The current study

The current paper presents a case study of how representations of the Ingalhalikar et al. [1] research evolved in the month following its publication. It recruits the technique of content analysis to track how the research was construed in five domains: the original scientific article, the press release issued by the researchers’ university, the traditional news media, reader comments on online news articles, and blogs discussing the research. Importantly, the analysis does not seek to establish whether interpretations of the research are scientifically correct , but rather to discern the social and personal meanings that were extracted from the scientific information. Neither does it seek to ascribe blame for instances of bias, error or distortion, instead adopting a non-judgemental research attitude that simply catalogues the ideas that materialised in the data, without arbitrating as to their normative legitimacy [75] . This pragmatic approach best serves the research goals, which are twofold: to illuminate the process by which novel scientific information about sex differences assimilates into prevailing ‘common sense’ understandings of gender, and to shed light on the dynamics of science communication in the new media environment.

Methodology

Data collection, 1. original scientific article..

The PNAS article in which Ingalhalikar et al. [1] originally reported their results was downloaded from the journal website.

2. Press release.

The press release produced by the institution in which the research was conducted (University of Pennsylvania) was retrieved from the university website.

3. Traditional news articles.

The Nexis English language news database was searched for articles printed in the month following the publication of the PNAS article (02/12/13–02/01/14), which contained the keywords “Ingalhalikar OR Gur OR Verma OR Philadelphia OR Pennsylvania” AND “brain” AND “sex OR gender OR women OR female” (the search term incorporated just three of the authors’ surnames, which pilot research indicated were the names most frequently mentioned, because including all authors produced many irrelevant results due to the commonness of certain surnames). Results were not restricted geographically but all were written in English. Duplicated and irrelevant articles were removed from the sample, as were transcripts of television or radio shows and blog entries. The final sample included 87 articles that had been published in print newspapers or magazines, in newswires, or on the websites of established news outlets (e.g. BBC, Washington Post).

The same keyword query that was used in collecting the traditional news articles was entered into the Google Blogs Advanced Search function to source blogs mentioning the study, which were posted between 2 December 2013 and 2 January 2014. Results were harvested on 6 February 2014. The search engine was programmed to order results by relevance to the keywords and the search was capped at 200 results. Thirty-eight results were removed due to broken links, duplication or irrelevance, leaving a final sample of 162 blogs.

5. Readers’ comments.

Each article recovered in the traditional media sample was checked to ascertain whether it had an online equivalent and if so, whether it had a reader comment function. As of 23 January 2014, the online versions of 32 of the original 87 articles had comments appended. All comments that had been posted ( n  = 4,062) were copied into a text file. As the sample was very large, a random number generator was used to select 10% of the comments attached to each article for analysis. (If 10% of the comments for a particular article did not result in an integer, the figure was rounded to the nearest whole number. However, if the total number of comments attached to particular article was less than five, one comment was randomly selected for inclusion in the final sample. This ensured that each contributing article was nominally represented in the sample, even if at a higher proportion than 10%.) Automated ‘spam’ messages and empty or indecipherable comments were discarded. The final sample contained 420 individual comments.

Figure 1 demonstrates the number of data units in each corpus.

thumbnail

  • PPT PowerPoint slide
  • PNG larger image
  • TIFF original image

https://doi.org/10.1371/journal.pone.0110830.g001

Data analysis

All data were imported into the ATLAS.ti software programme for analysis. Data were analysed by means of content analysis, a technique for compressing large amounts of data into their analytically meaningful categories of content [76] , [77] . Content analysis has previously proven a powerful tool in researching media representations of both science [50] , [58] , [78] and gender [79] , [80] . All data were read through several times to develop a coding frame that captured the overarching features of the material. Each article, blog entry and comment was taken as a single data unit, to which multiple codes could be attached. To ensure comparability of the datasets, a common coding frame was applied to all five sources of data. The coding frame was sufficiently comprehensive that all data units could be coded with at least one code.

To evaluate the robustness of the coding frame, 20% of the data (the original article, the press release, 17 traditional articles, 32 blogs and 84 comments) was independently coded by an additional coder. These coding patterns were compared with those of the original coder using Cohen’s kappa analyses. The vast majority of codes showed good inter-coder reliability, with an average kappa value of .634 indicating ‘substantial’ agreement [81] . Codes with low reliability were modified or discarded.

After all data had been fully coded, frequency tables were produced indicating the proportion of articles or comments in which each code occurred. These frequency figures, which indicate how trends shifted as discussion moved across the different communicative contexts, are presented in the following section. It was not possible to statistically compare the code frequencies of the different datasets as the data did not meet the basic conditions for non-parametric analysis (because, for example, the original article and press release had only a single case, and the traditional articles and comments were not independent of each other). The relative frequency figures are therefore purely descriptive in nature. They supplement a qualitative account of the understandings and arguments contained within the respective code categories.

The forthcoming presentation of the results of the analysis is divided into six sections. It first presents a brief synopsis of the Ingalhalikar et al. [1] research. It then proceeds to detail how the different datasets treated (i) the suggested behavioural manifestations of the neuroconnectivity difference, (ii) the causality of the reported sex difference, (iii) the conceptual and linguistic framing of the ‘difference’ concept, (iv) the differential valuation of men and women, and (v) the findings’ relations to the gender politics of contemporary society.

The latter five sections will each commence with a graph depicting the relative prevalence of codes in the five datasets, followed by a qualitative account of the relevant material. When considering the proportions depicted in the frequency graphs, the unique contingencies of the five datasets should be kept in mind. As the original scientific article and press release had only one data unit, a code’s involvement in these data-sources can only be tabulated according to its presence (i.e. 100% prevalence) or absence (0% prevalence). In addition, the proportion figures for the comments data are typically lower than those for the blog or traditional media data, because individual comments were shorter and therefore contained fewer codes. Due to these discrepancies between the datasets, the code prevalence figures they reveal are not directly comparable. The graphs are therefore not intended to facilitate direct numerical comparisons, but to complement the qualitative analysis of the data by schematising how topics drifted in and out of focus between the various media contexts.

Synopsis of the scientific article

The Ingalhalikar et al. [1] paper described a study conducted by 10 researchers from the University of Pennsylvania and the Children’s Hospital of Philadelphia. Using diffusion tensor imaging, a technique that facilitates the visualisation of anatomical connections between different areas of the brain, the research modelled the structural connectomes (maps of the neural connections that traverse the brain) of the brains of 949 individuals aged between 8–22 years. Statistical analysis detected significant differences between the connectivity patterns of male and female participants. Males showed greater within-hemispheric connectivity and females greater between-hemispheric connectivity in all regions studied except for the cerebellum (a region involved in motor control), where the pattern was reversed. Sex differences were least pronounced in the youngest participants, which the authors interpreted as evidence of a divergence in the developmental trajectory of male and female brains during adolescence. Though the research did not collect any cognitive or behavioural data, the authors suggested that males’ greater within-hemispheric connectivity would link perception to action, conferring “ an efficient system for coordinated action ”, while females’ greater inter-hemispheric connectivity “ would facilitate integration of the analytical and sequential reasoning modes of the left hemisphere with the spatial, intuitive processing of information of the right hemisphere ”. They also speculated that the neuroconnectivity differences might underlie several cognitive and behavioural sex differences that their research team had detected in previous studies, though they did not present any statistical tests of the relationship between the neuroimaging data and these behavioural measures. The authors characterised their data as revealing “ fundamental sex differences in the structural architecture of the human brain ”. This, they argued, explains the phenomenon of “ adaptive complementarity ”, whereby males and females are endowed with distinct cognitive skills that suit them to divergent behavioural and social functions.

Having summarised the key features of the source article, the paper now moves on to elaborate the meanings that were derived of this scientific information across the different datasets. Note that the quotes provided throughout this section are identified in terms of the dataset from which they derive (PR  =  Press Release; T  =  Traditional media; B  =  Blogs; C  =  Comments) and the number assigned to that data unit in the relevant dataset (as recorded in the Supporting Information Files S1 – S3 ). All quotes are reprinted verbatim without correction of spelling or grammatical errors.

1. What are the behavioural manifestations of the sex difference in neuroconnectivity?

In both academic and popular contexts, a primary way in which the posited neural sex difference was made meaningful was via speculation about its functional effects. Could this difference between male and female brains explain sex differences in behaviour, emotion or cognition? Figure 2 displays the various behavioural domains that were suggested to show a sex difference that this research might explain. It records the proportion of data units from each dataset that mentioned the topics.

thumbnail

https://doi.org/10.1371/journal.pone.0110830.g002

Though no behavioural data were directly reported in the Ingalhalikar et al. [1] paper, it mentioned that previous research had identified six functional domains – sensorimotor skills, spatial navigation, intuition, memory, social cognition and attention – as loci of sex differentiation, with men showing greater affinity for sensorimotor and spatial cognition and the remaining four functions domains of female superiority. All six functions were carried through to the press release, and most retained their presence in the majority of popular articles. The exception to this was attention, whose prevalence in blogs and traditional articles was much lower than the other five functions. This may reflect the design of the press release, which mentioned attention relatively late in the text; media coverage may have relied disproportionately on the earlier paragraphs.

Perhaps more interesting than the behavioural domains that were mentioned in both scientific and popular contexts are those that were introduced anew in the popular media, without precedent in the original research paper. These show the media spontaneously projecting existing gender scripts onto the novel scientific information. Particularly salient in this regard were the two faculties of ‘multitasking’ and ‘single-task concentration’. These were often positioned as antithetical talents, with women cast as more competent at the former and men the latter. Though neither function was explicitly mentioned in the PNAS article, both were introduced in the press release in a sentence that was frequently reproduced in popular articles:

on average, men are more likely better at learning and performing a single task at hand, like cycling or navigating directions, whereas women have superior memory and social cognition skills, making them more equipped for multitasking and creating solutions that work for a group. [PR]

The press release’s claim that the results underpinned a female affinity for multitasking developed into a major focus for subsequent media coverage, monopolising the headlines of several traditional and blog articles. The implication that this was the ‘take-home’ message of the research is interesting, given that the researchers did not test multitasking abilities or indeed mention the concept in the PNAS report. Nevertheless, media articles hailed the advent of scientific ‘proof’ of an aptitude that has long been obvious to women themselves.

Women have known it for generations - and the proof has finally arrived. Scientists have found that the female brain is “hard-wired” to be better at multi-tasking. [T61]

Multitasking was the behavioural faculty that received most attention in the comments data. Reading a news article that referenced multitasking prompted female commenters to contemplate their personal experience of balancing personal, professional and domestic responsibilities, while males made jokes about their own attempts to juggle different tasks. The comments also showed a persistent trend wherein certain commenters would react to the suggestion of female superiority in multitasking by reconstituting multitasking as a negative attribute. These comments contended that distributed attention ultimately results in substandard performance, and argued that single-minded concentration was the more valuable skill.

You could argue that women are incapable of focusing on the job at hand---multi tasking often being a euphemism for never being able to complete anything. [C46∶10]

Thus, despite multitasking’s absence from the original scientific paper, it was introduced in the press release and found major currency in the popular media and comments.

The data also revealed a number of behavioural domains that were introduced exclusively in the popular media contexts, independently of any reference in either the press release or original article. Particularly salient among these was the dialectical pair of emotion and rationality. The finding of sex difference in connectivity was interpreted with reference to notions of hemispheric lateralisation, which delegated emotion to the right and logic to the left hemisphere of the brain. Within this framework, women’s greater inter-hemispheric connectivity implied that their thought process was more integrative of emotion, whereas the structural independence of men’s hemispheres produced a compartmentalisation of emotional and rational thought. Via such interpretations, newspapers, blogs and comments absorbed the research into a polarity that positioned women as fully emotional beings, and men as purveyors of pure rationality.

They are saying that women are more emotional thinkers on average and men tend to be more fact-based thinkers. [C64∶113]

Finally, the popular media also departed from the scientific article and press release in relating the research to the social distribution of labour. Articles and comments periodically suggested that the posited brain difference may explain women’s supposedly better parenting skills and the gendered division of domestic chores. Some of the attention to parenting could be traced to a quote attributed to one of the study authors, Ragini Verma, in which she claimed that, “w omen tend to be better than men at these kinds of skill which are linked with being good mothers ” [T83] . This quote was originally printed in Britain’s Independent newspaper (which carried the story on its front page) and was subsequently reproduced by several other news outlets. The focus on parenting in the popular press was therefore partly fuelled by interpretations offered by the researchers themselves. However, housework received no such leverage, and yet was mentioned in 5% traditional articles, 3% blogs and 3% comments. These data usually enlisted the research to claim that women are ‘wired’ to notice and remediate household disarray, with men laughingly dismissed as ineffective contributors to domestic labour.

Whereas the male brain is more wired for navigating outdoor activities, such as hunting woolly mammoths, the female brain is wired to notice more sensory detail. Men are less likely to notice dust, which, women tell me, is a mix of fine particles that settle on furniture. [T11]

In some corners of the data, men’s domestic failings were counterbalanced by their ‘breadwinning’ occupational role: 7% traditional articles, 6% blogs and 5% comments attributed sex differences in occupational achievement to neural inheritance. The traditional press resisted a presumption that men invariably triumphed in occupational domains, frequently arguing that women’s aptitude for multitasking and emotional intelligence suited them for leadership roles. In the comments, however, this shifted into a clear privileging of male occupational achievement. Particularly salient in the comments was the repeated appearance of provocative statements that women have a poor track record in ‘inventions’ or receipt of Nobel prizes, with the assumption that this reflected biologically-ordained inferiority.

C’mon Ladies, much as I love you all lets face facts. Men invented piratically everything you use and enjoy. The Telephone, The Computer, The Jet Engine, The Train, the Motor Car, Etc Etc the list is endless. Without us you would still be scratching around in caves so lets have no more of this nonsense and concentrate on your hand bags [C51∶3]

In summary, all sex-differentiated behavioural domains mentioned in the original article were carried through to the press release and popular media. However, the popular media expanded the scope of discussion by relating the research to behavioural domains that were not mentioned in the scientific article. The press release introduced the facilities of multi-tasking and single-task concentration, and these topics were enthusiastically adopted by popular articles and comments. Moreover, even without prompting by the press release, newspapers, blogs and comments acted autonomously to project prevailing understandings of gender differences – notably the emotion-rationality dualism and traditional role-divisions in domestic and occupational labour – onto their interpretations of the research findings.

2. What causes sex difference?

No data were identified that denied the premise that differences existed between male and female brains. However, in the popular media there was considerable debate regarding what caused the anatomical differences identified by Ingalhalikar et al. [1] . Figure 3 illustrates the attributional patterns that were detected in the data.

thumbnail

https://doi.org/10.1371/journal.pone.0110830.g003

Where a clear causal statement was produced, the attribution was usually to biology. Assertions of biological determination of sex differences occurred in one-quarter of traditional articles, over one-third of blogs and almost one-tenth of comments. The metaphor of ‘hard-wiring’ was frequently employed, conveying that sex-typed behaviour is natural and immutable.

Scientists have found that the female brain is ‘hard-wired’ to be better at multi-tasking. Men’s brains, in comparison, are better at concentrating on single complex tasks - whether it be reading a map or cooking a meal. [T61]

However, this stress on biological causality was far from absolute. In the traditional and blog data, reference to the causal power of socialisation also occurred in a sizeable minority of articles (14% and 15% respectively). Parenting, education and cultural expectations were among the social factors implicated in producing sex differences in behavioural and emotional tendencies.

Males develop improved spatial skills not because of an innate superiority but because they are expected and encouraged to be strong at sport, which requires expertise at catching and throwing. Similarly, it is anticipated that girls will be more emotional and talkative, and so their verbal skills are emphasised by teachers and parents. [T19]

Though attributions to social factors were relatively common in the traditional and blog articles, in frequency terms they were overshadowed by reference to biological causality. However, this imbalance disappeared in the comments data, which afforded equal emphasis to biology and socialisation. The comments were often embedded in a dialogical framework that positioned biological and cultural influence as conflicting explanations, and contained extended debates between commenters regarding the relative influence of each.

I think it has a lot more to do with upbringing and the pushing of gender roles on children from an early age. If it were caused by something as rigid and factual as brain structure, why would there be so many exceptions to these rules? [C9∶2] You suggest that the observed differences are the result of sexually dimorphic activities, yet what causes that divergence? It’s not simply cultural exposure. And even if it was, where, evolutionarily, did the cultural sexual dimorphism come from, except from differences in biology? [C1∶1]

These aspects of the data demonstrate the continued relevance of the nature-nurture debate within lay society. Assertions of biological causality were accompanied by rejections of socialisation, and vice versa. However, it is also important to note the steady presence of statements conveying a belief that nature and nurture interact in the formation of sexual identities. Reference to a biology-socialisation interaction materialised in 14% traditional articles, 17% blogs and 10% comments. This sometimes included direct reference to the scientific concept of neuroplasticity, particularly within the more specialist science blogs. Though Ingalhalikar et al. [1] did not offer this interpretation in the PNAS article, their finding that connectivity differences were stronger in older than younger cohorts was often recruited in support of a nature-nurture interaction, cast as evidence that social experience imprints itself on the brain.

Male and female brains showed few differences in connectivity up to the age of 13, but became more differentiated in 14- to 17-year-olds. So basically male and female brains start out the same, but social conditioning of behaviours leads to differences in the brain - because learning something changes the brain. [C64∶78]

Thus, the data revealed media sensitivity to the interactions between various causal factors: though biology was positioned as the proximal cause of gender-typed behaviour, these biological characteristics could be conceptualised as socially formed.

3. The framing of difference.

In much coverage of the Ingalhalikar et al. [1] research, it was apparent that the precise ways in which the sexes differed was secondary to the ‘proof’ that they were different. The unspecific concept of difference was meaningful in itself, independently of any explication of where exactly that difference lay. Figure 4 catalogues how the idea of difference was conceptually and linguistically framed in the data.

thumbnail

https://doi.org/10.1371/journal.pone.0110830.g004

Firstly, a pattern that was prominent throughout the data was specific attention to the extent or strength of difference. In the scientific article and press release, and in almost half of traditional and blog articles, men and women’s brains were not merely ‘different’: they were ‘starkly’, ‘completely’ or ‘fundamentally’ different. These strong adjectives constituted the gap between the sexes as profound. This gap was further stressed through use of metaphor, which was a particularly salient feature of traditional media dialogue. Almost one-quarter of traditional articles employed metaphors that positioned men and women as spatially distant – ‘poles apart’ or ‘on different planets’, or via the oft-repeated cliché ‘men are from Mars, women from Venus’. Another metaphorical pattern, present in one-sixth of traditional articles, drew a taxonomic separation between the sexes, portraying them as ‘different species’.

The differences between the genders were so profound that men and women might almost be separate species. [B16]

In considering the study’s implications for interpersonal relations, the purported sex differences were generally portrayed as producing harmonious inter-sex relationships. This perspective was firmly instantiated in the original scientific article, which cast the observed connectivity differences as a demonstration of inter-sex ‘complementarity’. The characterisation of sex differences as complementary resurfaced in the press release and in over one-third of news articles and blogs - far exceeding the attention afforded to the prospect that sex differences could produce inter-sex conflict or miscommunication, which was mentioned in just 5% newspaper and 2% blog articles. The data posited that a combination of male and female brains produced a formidable team, with each sex’s unique talents compensating for the other’s weaknesses. Difference was thereby cast as a positive phenomenon that merited celebration.

men and women are different, and we should celebrate our differences rather than pretend they are not so. [T11]

Numerous writers pointed out that difference in specific skills did not connote difference in global worth, and explicitly dissociated the concepts of equality and sameness. Arguments that personal attributes can be different, but equally valued represented an attempt to reconcile the research with the principle of gender equality.

We can be equal without having to be identical. [C19∶7]

However, despite this nominal affirmation of the ideal of equality, parity of esteem was deployed rather selectively within discussion of male-female difference. The posited ‘equal but different’ dispositions positioned men and women in firmly traditional sex roles, with women the emotional, empathic carers and men the single-minded, rational breadwinners. Little data considered whether choices that transgressed these biologically-grounded role divisions might merit equal respect. Additionally, in a handful of blogs and comments, the concept of sexual complementarity was recruited into debate on same-sex unions. Several blogs written for religious or politically conservative audiences seized on the researchers’ use of the term ‘complementarity’ to cast homosexual relationships as intrinsically deficient, and unsuitable contexts for rearing children.

Using science to help the world better understand how man and woman are equal and yet different, as opposed to equal and therefore interchangeable in role and function, has far reaching implications. Not least because it adds strength to the Catholic claim that the complementary differences between men and women, when combined together in love, are essential to the true definition of marriage. The different brains of men and women leading them to bring different gifts to this unique procreative union. This research is welcome then for it helps us better understand the different roles mothers and fathers play in the development of the young. [B143]

Thus, most commentary constituted sex difference as profound and celebrated this as a positive dimension of human relationships. However, in certain corners of the data this legitimised the marginalisation of individuals or families who did not accord with traditional sex-role divides.

4. Differential valuation of the two sexes.

It might be expected that the proposition that male and female brains were different would prompt questions about which was ‘better’. Figure 5 collates the instances in which privilege was granted to one sex.

thumbnail

https://doi.org/10.1371/journal.pone.0110830.g005

In accordance with the aforementioned principle that both sexes’ distinctive abilities were equally valuable, most of the data refrained from positioning one sex as superior. The most consistent, ‘default’ perspective was to portray the research as casting both sexes in a favourable light. The scientific article, press release, and most traditional and blog articles were careful to point out that men and women each have areas in which they excel.

males were more inclined to excel at completing one single-focused job, while females were more apt to multi-task. Thus, the idea of males being superior navigators and directors, while women excel in the areas of social competency and memory-retention may actually be rooted in scientific principles. [B149]

However, these dynamics shifted in the comments. Firstly, comments were more likely than the other datasets to express a preference for one sex over the other. This occurred in 13% comments, as opposed to 6% traditional articles and 7% blogs, while only 1% comments adopted the standard media perspective that the research complimented both sexes. Secondly, on the rare occasions when traditional and blog articles did privilege one sex, it was more likely to be women: 5% traditional and 5% blog articles favoured women, as opposed to 1% traditional and 2% blog articles who favoured men. However, when comments expressed a preference, it was usually to the advantage of the male sex: 9% of comments clearly privileged men, relative to the 4% who favoured women. Numerous commenters objected to the positing of female advantage in particular skills and left comments defending male superiority.

the fact is that men are performing better than women in each and every field in reality especially in India inspite of the fact that women get all sorts of facilities and reservations in India. So men are much superior to women whether it is single- tasking or multi- tasking.These research do not mean anything in reality. they are just for time pass to make women feel good and proud. [C47∶1]

Further reinforcing the more partisan nature of the comments was their inclusion of overtly pejorative statements towards one or the other sex. While overall prevalence of derogatory statements was fairly similar between the comments, blogs and traditional articles (around 6%), when broken down between insults levelled at men and women, the data reproduced the patterns visible for expressions of preference towards one sex. The pejorative statements present in the traditional and blog data were usually directed towards men, and were generally packaged in a light-hearted or ironic tone. In the comments, pejorative statements were almost entirely directed towards women, and the language was more hostile than the jokes that occurred at men’s expense.

What about PMS, when a woman can become a complete and utter 2@? [C9∶3]

In summary, while the vast majority of data was careful not to privilege one sex over the other, the comments were more prone to favouritism towards one sex, usually men.

5. Gender politics.

Notably, the research was not approached as a neutral, detached instance of scientific inquiry; it was made meaningful by embedding it in its wider societal context. Figure 6 schematises the ways in which the media related the research findings to the gender politics of contemporary society.

thumbnail

https://doi.org/10.1371/journal.pone.0110830.g006

Throughout the data, the research was represented as a vindication of the factual truth and normative legitimacy of established gender stereotypes. Such statements occurred in the first sentence of the press release (“ A new brain connectivity study from Penn Medicine […] found striking differences in the neural wiring of men and women that’s lending credence to some commonly-held beliefs about their behavior” [PR] ) and in over one third of traditional and nearly half of blog articles. Though the original PNAS article contained no direct reference to stereotyping, journalists obtained quotes remarking on the data’s correspondence with cultural stereotypes from two of the researchers, Ragini Verma ( “I was surprised that it matched a lot of the stereotypes that we think we have in our heads” [T64] ) and Ruben Gur ( “‘As much as we hate stereotypes,’ Prof. Gur said, ‘a lot of them have some kernel of truth in them’” [T52] ). The depiction of stereotypes that thereby emerged marginalised the role of history, cultural institutions or individual bias: stereotypes simply originated in material fact.

Science has now proved that the male brain and the female brain are wired differently. What are blithely called sexual stereotypes have a basis in neuroanatomy. [B51]

In 10% blogs, 5% traditional articles and 3% comments, this validation of stereotypical sex differences was heralded as a welcome corrective to so-called ‘political correctness’. The latter term was usually used in a dismissive way to signify a socially powerful ideology, enforced by a ‘liberal elite’, which forbade the acknowledgement of any difference between the sexes. Its critics harnessed the epistemic authority of science to depict political correctness as a wilful denial of reality.

Scientists are just beginning to trace the connections between genes, brains, and life trajectories. It is still politically fashionable to deny gender and population differences in cognition. But then, cold reality has always been a different kettle of fish than political correctness. [B41]

As well as posing a challenge to political correctness, the research was also intermittently characterised as a repudiation of feminist ideals. When feminism was mentioned, it was usually in a markedly negative tone; indeed, only one blog and two comments made an explicitly supportive statement regarding feminism. Particularly in blogs, the language used when speaking of feminists was often derogatory, portraying them as deluded or irrational and dubbing them “fembots” [B153] , “obnoxious whining feminist cranks” [B68] and “tedious bores” [B154] . Numerous bloggers and commenters believed that feminist theory insisted that men and women are biologically identical, and expected that this research would therefore spark a “feminist outcry” [T35] . They welcomed the disruption they believed this research would pose to feminist agendas.

It is important, however, to also highlight the pockets of data that objected to these socially conservative interpretations of the research. A small but consistent strand of argument, which was mostly aired within blogs, expressed unease about the social implications of the research, particularly its potential to perpetuate gender stereotypes and inequalities. Critics worried that the PNAS article and its popular interpretations would function as a form of self-fulfilling prophecy, shaping expectations of gender-typical behaviour to which individuals and institutions would gradually adapt.

Every “women are intrinsically worse at [numeracy/spatial skills/science/intense focus]” story contributes to the systematic discrimination against them in technical fields, and every “men are intrinsically worse at [communicating/emotional literacy/relationships]” story lowers the bar for acceptance of bad behaviour from men. [B47]

These data displayed sensitivity to issues of gender inequality, with 9% blogs, 8% traditional articles and 4% comments mentioning historical or current discrimination against women. However, it should be noted that the positing of systematic discrimination against women was not uncontroversial: 6% blogs and 2% comments explicitly denied that women faced discrimination, while 3% of comments asserted that a disproportionate focus on remediating female disadvantage effectively amounted to discrimination against men.

with the new double standard, only women are allowed to have superior abilities, not men. You see this constantly in films, television, the press, everywhere. [C87∶34]

In summary, the research was not seen as arcane scientific information, but as a discovery with direct repercussions for gender identities and relations. It validated abiding sex stereotypes and was drawn into ongoing disputes between different cultural and ideological communities. It also catalysed debate about social issues external to the research itself, such as patterns of discrimination against men and women.

This analysis tracked the journey of one high-profile study of neurobiological sex differences from its scientific publication through various layers of the public domain. It adopted an innovative empirical approach, which combined multiple sources of scientific, traditional and new media data to capture how dialogue about the Ingalhalikar et al. [1] study unfolded in the month following its publication. The analysis showed that scientific research on sex difference is embedded within the wider terrain of gender politics, and illustrated how scientific claims can be absorbed into the social psychological processes that sustain gender stereotypes, norms and values. It also furnished an original insight into the dynamics of science communication in the contemporary media environment, demonstrating how media representations are diversified by the involvement of new media outlets, which broaden the range of agents who can impose their cultural agendas and conceptual frameworks onto the scientific information. Scientific information is thereby consolidated as a form of social knowledge that wields direct implications for understanding self, others and society.

How do science, gender and media intersect in contemporary society?

The data as a whole illuminate the process by which meaning was progressively derived from the premise that male and female brains show anatomical differences. The dispassionate terminology with which the identified sex differences were interpreted in the original scientific article (e.g. “ coordinated action ”, “ integration of the analytical and sequential reasoning […] with the spatial, intuitive processing of information ”) was transformed in the press release into terms that resonated with abiding gender stereotypes (“ navigating direction ”, “ multitasking ”). Despite the absence of any cognitive or behavioural data in the Ingalhalikar et al. [1] paper, the traditional media rendered these behavioural phenomena the primary focus of the research study. The comments and blogs then set about contextualising these biologically-grounded behavioural differences in relation to personal and community experience. The journey of information from scientific journal through the various layers of public reception was characterised by the evolution of increasingly diversified, personalised and politicised meaning.

In discussing the saturation of scientific knowledge with personal and cultural meaning, it is important to avoid a framework that sets ‘pure’ science against a contaminated public sphere [35] , [82] , [83] . Sex difference research is initiated, funded and published in a society that deems it interesting and/or valuable, and the data produced are interpreted with reference to the gender dynamics of that society. While appraisal of the technical elements of Ingalhalikar et al.’s [1] research is outside the scope of this paper, it is worth noting that several aspects of their written account extrapolated beyond the information that their data strictly communicated. These include the description of sex differences as “ fundamental ”, the assertion that the connectivity differences underpin an inter-sex “ complementarity ”, and speculation about the functional effects of these neural differences, despite the lack of correlating behavioural data. Additionally, it is notable that some features of media coverage, which outwardly appear to depart from the original scientific information, were fuelled by quotes that the researchers themselves apparently provided to journalists (for example, regarding the results’ correspondence with traditional stereotypes or implications for parenting ability). Previous research has also implicated scientists’ informal communications with journalists in the interpretative leaps that characterise some media coverage [84] . This accords with Brossard’s [73] depiction of the porous boundaries between science and society: scientists are also citizens of a society, and the social currency of their research depends on its resonance with cultural categories and values.

The press release was a particularly important site for articulating the study’s relation to societal interests. Consistent with previous research [85] – [88] , the analysis suggested that the press release was pivotal in shaping the foci and framing of subsequent media coverage, as it was often journalists’ sole source of information about the study. This meant that information that was lost between the scientific article and its press release rarely resurfaced in subsequent discussion of the study, while topics that were newly introduced in the press release (e.g. multitasking) could develop into focal points of media accounts of the research. Crucially, the very first sentence of the press release established that the core significance of the research was that it “ lend[s] credence to some commonly-held beliefs about [men and women’s] behavior ”. This construal of the research as a vindication of gender stereotypes became a dominant frame for much media commentary. For those involved in public communication of science, it may be important to know that the press release can be a ‘point of no return’ in the evolution of social representations of a research study.

However, despite the press release’s importance in cuing particular interpretations, it did not entirely constrain the range of meanings offered by the popular media. The data showed that in making sense of this new study, the media cultivated entirely original readings of the results, for example relating them to gendered divisions of labour. The data therefore provide a naturalistic analogue for previous experimental findings that prevailing gender stereotypes are spontaneously projected onto abstract scientific information [46] , [47] . Scientific developments in the biology of sex provide an opportunity to rehearse abiding cultural understandings of gender identities, even if the research itself contributes no information about the dimension of identity in question.

As well as elaborating the characteristics of within-group identities, scientific research on sex difference resonates with the psychological impulse to consolidate the boundaries between social categories. In accordance with previous research showing that scientific knowledge can be deployed to fortify intergroup divides [42] , the current data revealed enthusiastic reception for the premise that men and women are fundamentally different ‘kinds’ of person. Underlining the sheer fact of difference often took precedence over elucidating the precise ways in which that difference manifested, and the breadth of difference was accentuated through dramatic vocabulary and metaphors. This stress on categorical difference fuelled a strictly binary construal of gender, which marginalised individuals whose identity or behaviour might transgress this dichotomy.

Research in psychological essentialism indicates that such striving for discrete, impermeable category boundaries often accompanies the stigmatisation of one category, whose disfavoured traits are constituted as intrinsic, natural and inevitable [89] , [90] . As such, it might be expected that the demonstration that male and female brains are different would spark aspersions about the inferiority of one brain ‘type’. Here, there were striking stylistic differences between the different data-sources. The traditional media typically oriented toward a tactful, diplomatic tone, carefully refraining from allusions to the superiority of one gender. On the rare occasions when the traditional media did privilege one gender, it was more likely to be women, reflecting sensitivity to a cultural context in which discrimination against women is more heavily proscribed. However, this preferential emphasis on female talents sometimes triggered a backlash in the comments, which would accuse the media of anti-male bias and attempt to devalue the alleged manifestations of female superiority (e.g. in casting multitasking as an inefficient, undisciplined strategy). As a source of data, comments were unadulterated by the political delicacy that constrained the traditional media and (to some extent) blogs, and exposed a latent misogyny that continues to mark public reception of scientific information about sex difference.

However, despite the relatively stronger presence of sexual animosity in the comments data, this still characterised only a small minority of comments. It is important to emphasise that across the data as a whole, the predominant message taken from the research was that neural sex differences made for complementary behavioural tendencies, with most data assiduously framing men and women’s unique abilities as equally valuable. In casting the sexes as ‘different but equal’, writers explicitly invoked egalitarian principles (even while simultaneously making disparaging remarks about feminism). While this attests to a widespread deference to the ideal of gender equality, such nominal endorsement of egalitarian values does not necessarily signify genuine parity of esteem. Social psychological research shows that despite widespread opprobrium of gender discrimination, sexist attitudes persist in contemporary society, albeit in more subtle forms. Modern sexism is primarily distinguished by its benevolent tone, manifesting, for example, in praise of stereotypically ‘feminine’ traits such as warmth or kindness [91] , [92] . Though such ascriptions are superficially positive, they communicate restrictive role-norms and legitimise the devaluation of women’s ability in other, more socially valued trait-domains. In particular, women’s advantage in social-emotional traits often comes at the expense of their perceived competence or agency, which justifies their exclusion from socially powerful positions [93] .

The characteristics ascribed to men and women in the Ingalhalikar et al. [1] paper and its media coverage tended to correspond with these patterns of stereotype content. Men were portrayed as logical, focused and physically competent actors, while women’s strengths lay in emotional intelligence, social skills and caring. A possible exception to this were the memory and attention skills that purportedly befitted women to multitasking. However, though the traditional media and blogs mostly construed multitasking as a cognitive asset, in the comments it was frequently dismissed as a fruitless or trivial facility. For certain lay populations, ‘multitasking’ connoted haphazard, disorganised thinking, which was contrasted with the control and efficiency of stereotypically masculine thought. As such, the way in which skills were distributed between male and female brains could legitimately fit the pattern of ‘complementary stereotyping’, in which celebration of a group’s performance in low-status domains compensates for their relegation from more socially- and materially-rewarded dimensions [94] .

If neuroscience research on sex differences is mobilised to purvey complementary gender stereotypes, what implications might this have for wider society? Experimental social psychological research suggests that complementary stereotypes are effective mechanisms for obscuring gender inequality and inculcating acceptance of the systems that perpetuate it [95] . This would imply that as this media content circulates through society, the complementary stereotypes embedded within it may bolster gender inequalities. The rooting of complementary stereotypes in biology may further intensify the system justification effect: previous experiments suggest that essentialist representations of gender categories, which portray gender differences as natural and immutable, are efficient means of satisfying system justification motives [30] , [96] . Moreover, the stereotypes promulgated by the current data can avail of the epistemological authority that science holds in contemporary society, as well as the persuasive nature of neuroscientific language and imagery specifically [97] , [98] . Thus, this media content has several properties that, when synthesised, may cement the social psychological processes that perpetuate gender inequality.

However, while the above experimental literature on complementary stereotypes is informative in considering the social ramifications of this month of real-world media activity, it is also important not to be overly deterministic in extrapolating from effects produced in controlled laboratory conditions. In this data, it was notable that despite strong cues from the scientific article and press release, lay commentary did not seize on biology as the exclusive determinant of gender differences. This was particularly salient in the comments data, which afforded equal attention to biological and social factors in elaborating the reported neural sex differences. Such nuances are important in highlighting that in naturalistic environments, mere exposure to reports of biological sex difference does not invariably inculcate strong belief in biological determinism. As previous research has shown, lay populations can cultivate multifactorial narratives in which biology, behaviour and socialisation mutually influence each other [99] – [101] . In addition, a small but robust strand of data directly problematised the assumptions or agendas of sex difference research, positing that it may exacerbate stereotypes and prejudice. This resonates with the emerging empirical consensus that despite the traditional media’s enthusiastic uptake of neuroscientific frames, in everyday social contexts neuroscience often elicits ambivalence, and can be rejected, remodelled or ignored [102] , [103] . These critical, multidimensional properties of lay representation mean that the social psychological effects of these scientific messages are unlikely to be monolithic.

Reflections on the study design

This analysis is unique in its comparison of material published across five sources of scientific, traditional and new media. Its concentration on a single case of science communication limits the extent of extrapolation that is possible. However, the analysis compensated in depth for what it lacked in breadth. Juxtaposing the different datasets highlighted how the unique exigencies and affordances of each communicative context were imprinted on the content it generated. The traditional media drew heavily on the press release to communicate a rather standardised account of the research to a mass audience; blogs showed a more localised accommodation of the research to the various communities with which blogs were affiliated; readers’ comments documented how individuals related scientific information about sex difference to their personal experience of gender roles and relations. Collating multiple data-sources offered a comprehensive, holistic overview of the communicative processes triggered by a new scientific report, revealing dynamics that would certainly be missed by analyses constrained to one media domain.

In particular, the inclusion of reader comments considerably enriches conventional media analysis paradigms. A perennial challenge in media analysis involves determining the extent to which media content can function as a meaningful index of public opinion, given empirical evidence that media and audience representations of scientific issues often diverge [42] , [104] , [105] . While comments are obviously unrepresentative of the entire range of public response, as an initial inroad into the difficult question of audience reception they offer a convenient source of data. Their naturalistic quality is a major empirical advantage, offering a rare unmediated glimpse into spontaneous social responses.

If the empirical potential of online content is to be exploited in future research, the development of reliable, consistent procedures for data collection and analysis is critical. A particularly useful resource would be a means of distinguishing the socio-demographic characteristics of the individuals or groups who produce internet content. Previous research indicates that responses to scientific ideas segment across social identities: for example, Morton et al. [106] report that people prefer scientific articles that favour their own gender, with men particularly hostile to pro-female articles; while Brescoll and LaFrance [24] find that politically conservative news outlets emphasise biological causality of sex differences proportionally more than liberally-inclined publications. In this study, informal observation of the data intimated many instances where information was selectively embraced, adapted or discredited in line with prior identity commitments. However, the heterogeneity of the data involved and the anonymous nature of much internet commentary made it impossible to reliably categorise data units according to such variables as author’s gender, culture or political orientation. Innovation in this capacity would instigate real progress in this field, facilitating a genuinely social psychological understanding of internet material.

Despite some scholars’ calls for a moratorium on sex difference research [14] , it seems unlikely that science or society will lose interest in searching for sex in the brain. Indeed, both the National Institutes of Health and the European Commission’s Horizon 2020 funding programmes have recently introduced policies that mandate grantees to explicitly consider the sex/gender dimensions of their research. While these decisions are guided by the commendable aim of ensuring equitable distribution of scientific advances, a socially responsible science also requires sensitivity to the social contexts in which it will be mobilised, and the social effects it may incite therein. Empirical research that tracks the sociocultural ripple-effects generated by scientific knowledge about sex difference is therefore critical. Such data would also contribute to conceptual development in social psychology, documenting how social understandings of gender interact with new knowledge, institutions and modes of communication. The nexus of science, gender and media represents a rich terrain for future research.

Supporting Information

Traditional media articles included in the analysis.

https://doi.org/10.1371/journal.pone.0110830.s001

Blog posts included in the analysis.

https://doi.org/10.1371/journal.pone.0110830.s002

Comments included in the analysis.

https://doi.org/10.1371/journal.pone.0110830.s003

Author Contributions

Conceived and designed the experiments: CoC HJ. Performed the experiments: CoC. Analyzed the data: CoC. Contributed to the writing of the manuscript: CoC HJ.

  • View Article
  • Google Scholar
  • 2. Choudhury S, Slaby J, editors (2012) Critical neuroscience: A handbook of the social and cultural contexts of neuroscience. Chichester: Wiley-Blackwell.
  • 5. Rose N, Abi-Rached JM (2013) Neuro: The new brain sciences and the management of the mind. Princeton, NJ: Princeton University Press.
  • 7. Dumit J (2004) Picturing personhood: Brain scans and biomedical identity. Princeton, NJ: Princeton University Press.
  • 15. Jordan-Young R (2010) Brain storm: The flaws in the science of sex differences. Cambridge, MA: Harvard University Press.
  • 19. Fine C (2010) Delusions of gender. London: Icon Books.
  • 20. Bluhm R, Jacobson AJ, Maibom HL, editors (2012) Neurofeminism: Issues at the intersection of feminist theory and cognitive science. New York, NY: Palgrave Macmillan.
  • 22. Fausto-Sterling A (2000) Sexing the body: Gender politics and the construction of sexuality. New York, NY: Basic Books.
  • 32. Latour B, Woolgar S (1986) Laboratory life: The construction of scientific facts. Princeton, NJ: Princeton University Press.
  • 43. Joffe H (1999) Risk and ‘the Other’. Cambridge: Cambridge University Press.
  • 56. National Science Board (2012) Science and engineering indicators 2012. Arlington, VA: National Science Foundation.
  • 71. Gerring J (2007) Case study reseach: Principles and practices. Cambridge: Cambridge University Press.
  • 72. Yin RK (2009) Case study research: Design and methods. London: Sage.
  • 76. Bauer MW (2000) Classical content analysis: A review. In: Bauer MW, Gaskell G, editors. Qualitative researching with text, image and sound: A practical handbook. London: Sage. pp. 131–151.
  • 77. Krippendorf K (2004) Content analysis: An introduction to its methodology. London: Sage.
  • Publications
  • Conferences & Events
  • Professional Learning
  • Science Standards
  • Awards & Competitions
  • Instructional Materials
  • Free Resources
  • American Rescue Plan
  • For Preservice Teachers

NCCSTS Case Collection

  • Science and STEM Education Jobs
  • Interactive eBooks+
  • Digital Catalog
  • Regional Product Representatives
  • e-Newsletters
  • Bestselling Books
  • Latest Books
  • Popular Book Series
  • Submit Book Proposal
  • Web Seminars
  • National Conference • New Orleans 24
  • Leaders Institute • New Orleans 24
  • Exhibits & Sponsorship
  • Submit a Proposal
  • Conference Reviewers
  • Past Conferences
  • Latest Resources
  • Professional Learning Units & Courses
  • For Districts
  • Online Course Providers
  • Schools & Districts
  • College Professors & Students
  • The Standards
  • Teachers and Admin
  • eCYBERMISSION
  • Toshiba/NSTA ExploraVision
  • Junior Science & Humanities Symposium
  • Teaching Awards
  • Climate Change
  • Earth & Space Science
  • New Science Teachers
  • Early Childhood
  • Middle School
  • High School
  • Postsecondary
  • Informal Education
  • Journal Articles
  • Lesson Plans
  • e-newsletters
  • Science & Children
  • Science Scope
  • The Science Teacher
  • Journal of College Sci. Teaching
  • Connected Science Learning
  • NSTA Reports
  • Next-Gen Navigator
  • Science Update
  • Teacher Tip Tuesday
  • Trans. Sci. Learning

MyNSTA Community

  • My Collections

Case Study Listserv

Permissions & Guidelines

Submit a Case Study

Resources & Publications

Enrich your students’ educational experience with case-based teaching

The NCCSTS Case Collection, created and curated by the National Center for Case Study Teaching in Science, on behalf of the University at Buffalo, contains over a thousand peer-reviewed case studies on a variety of topics in all areas of science.

Cases (only) are freely accessible; subscription is required for access to teaching notes and answer keys.

Subscribe Today

Browse Case Studies

Latest Case Studies

NSF logo

Development of the NCCSTS Case Collection was originally funded by major grants to the University at Buffalo from the National Science Foundation , The Pew Charitable Trusts , and the U.S. Department of Education .

  • Open access
  • Published: 27 June 2011

The case study approach

  • Sarah Crowe 1 ,
  • Kathrin Cresswell 2 ,
  • Ann Robertson 2 ,
  • Guro Huby 3 ,
  • Anthony Avery 1 &
  • Aziz Sheikh 2  

BMC Medical Research Methodology volume  11 , Article number:  100 ( 2011 ) Cite this article

793k Accesses

1084 Citations

43 Altmetric

Metrics details

The case study approach allows in-depth, multi-faceted explorations of complex issues in their real-life settings. The value of the case study approach is well recognised in the fields of business, law and policy, but somewhat less so in health services research. Based on our experiences of conducting several health-related case studies, we reflect on the different types of case study design, the specific research questions this approach can help answer, the data sources that tend to be used, and the particular advantages and disadvantages of employing this methodological approach. The paper concludes with key pointers to aid those designing and appraising proposals for conducting case study research, and a checklist to help readers assess the quality of case study reports.

Peer Review reports

Introduction

The case study approach is particularly useful to employ when there is a need to obtain an in-depth appreciation of an issue, event or phenomenon of interest, in its natural real-life context. Our aim in writing this piece is to provide insights into when to consider employing this approach and an overview of key methodological considerations in relation to the design, planning, analysis, interpretation and reporting of case studies.

The illustrative 'grand round', 'case report' and 'case series' have a long tradition in clinical practice and research. Presenting detailed critiques, typically of one or more patients, aims to provide insights into aspects of the clinical case and, in doing so, illustrate broader lessons that may be learnt. In research, the conceptually-related case study approach can be used, for example, to describe in detail a patient's episode of care, explore professional attitudes to and experiences of a new policy initiative or service development or more generally to 'investigate contemporary phenomena within its real-life context' [ 1 ]. Based on our experiences of conducting a range of case studies, we reflect on when to consider using this approach, discuss the key steps involved and illustrate, with examples, some of the practical challenges of attaining an in-depth understanding of a 'case' as an integrated whole. In keeping with previously published work, we acknowledge the importance of theory to underpin the design, selection, conduct and interpretation of case studies[ 2 ]. In so doing, we make passing reference to the different epistemological approaches used in case study research by key theoreticians and methodologists in this field of enquiry.

This paper is structured around the following main questions: What is a case study? What are case studies used for? How are case studies conducted? What are the potential pitfalls and how can these be avoided? We draw in particular on four of our own recently published examples of case studies (see Tables 1 , 2 , 3 and 4 ) and those of others to illustrate our discussion[ 3 – 7 ].

What is a case study?

A case study is a research approach that is used to generate an in-depth, multi-faceted understanding of a complex issue in its real-life context. It is an established research design that is used extensively in a wide variety of disciplines, particularly in the social sciences. A case study can be defined in a variety of ways (Table 5 ), the central tenet being the need to explore an event or phenomenon in depth and in its natural context. It is for this reason sometimes referred to as a "naturalistic" design; this is in contrast to an "experimental" design (such as a randomised controlled trial) in which the investigator seeks to exert control over and manipulate the variable(s) of interest.

Stake's work has been particularly influential in defining the case study approach to scientific enquiry. He has helpfully characterised three main types of case study: intrinsic , instrumental and collective [ 8 ]. An intrinsic case study is typically undertaken to learn about a unique phenomenon. The researcher should define the uniqueness of the phenomenon, which distinguishes it from all others. In contrast, the instrumental case study uses a particular case (some of which may be better than others) to gain a broader appreciation of an issue or phenomenon. The collective case study involves studying multiple cases simultaneously or sequentially in an attempt to generate a still broader appreciation of a particular issue.

These are however not necessarily mutually exclusive categories. In the first of our examples (Table 1 ), we undertook an intrinsic case study to investigate the issue of recruitment of minority ethnic people into the specific context of asthma research studies, but it developed into a instrumental case study through seeking to understand the issue of recruitment of these marginalised populations more generally, generating a number of the findings that are potentially transferable to other disease contexts[ 3 ]. In contrast, the other three examples (see Tables 2 , 3 and 4 ) employed collective case study designs to study the introduction of workforce reconfiguration in primary care, the implementation of electronic health records into hospitals, and to understand the ways in which healthcare students learn about patient safety considerations[ 4 – 6 ]. Although our study focusing on the introduction of General Practitioners with Specialist Interests (Table 2 ) was explicitly collective in design (four contrasting primary care organisations were studied), is was also instrumental in that this particular professional group was studied as an exemplar of the more general phenomenon of workforce redesign[ 4 ].

What are case studies used for?

According to Yin, case studies can be used to explain, describe or explore events or phenomena in the everyday contexts in which they occur[ 1 ]. These can, for example, help to understand and explain causal links and pathways resulting from a new policy initiative or service development (see Tables 2 and 3 , for example)[ 1 ]. In contrast to experimental designs, which seek to test a specific hypothesis through deliberately manipulating the environment (like, for example, in a randomised controlled trial giving a new drug to randomly selected individuals and then comparing outcomes with controls),[ 9 ] the case study approach lends itself well to capturing information on more explanatory ' how ', 'what' and ' why ' questions, such as ' how is the intervention being implemented and received on the ground?'. The case study approach can offer additional insights into what gaps exist in its delivery or why one implementation strategy might be chosen over another. This in turn can help develop or refine theory, as shown in our study of the teaching of patient safety in undergraduate curricula (Table 4 )[ 6 , 10 ]. Key questions to consider when selecting the most appropriate study design are whether it is desirable or indeed possible to undertake a formal experimental investigation in which individuals and/or organisations are allocated to an intervention or control arm? Or whether the wish is to obtain a more naturalistic understanding of an issue? The former is ideally studied using a controlled experimental design, whereas the latter is more appropriately studied using a case study design.

Case studies may be approached in different ways depending on the epistemological standpoint of the researcher, that is, whether they take a critical (questioning one's own and others' assumptions), interpretivist (trying to understand individual and shared social meanings) or positivist approach (orientating towards the criteria of natural sciences, such as focusing on generalisability considerations) (Table 6 ). Whilst such a schema can be conceptually helpful, it may be appropriate to draw on more than one approach in any case study, particularly in the context of conducting health services research. Doolin has, for example, noted that in the context of undertaking interpretative case studies, researchers can usefully draw on a critical, reflective perspective which seeks to take into account the wider social and political environment that has shaped the case[ 11 ].

How are case studies conducted?

Here, we focus on the main stages of research activity when planning and undertaking a case study; the crucial stages are: defining the case; selecting the case(s); collecting and analysing the data; interpreting data; and reporting the findings.

Defining the case

Carefully formulated research question(s), informed by the existing literature and a prior appreciation of the theoretical issues and setting(s), are all important in appropriately and succinctly defining the case[ 8 , 12 ]. Crucially, each case should have a pre-defined boundary which clarifies the nature and time period covered by the case study (i.e. its scope, beginning and end), the relevant social group, organisation or geographical area of interest to the investigator, the types of evidence to be collected, and the priorities for data collection and analysis (see Table 7 )[ 1 ]. A theory driven approach to defining the case may help generate knowledge that is potentially transferable to a range of clinical contexts and behaviours; using theory is also likely to result in a more informed appreciation of, for example, how and why interventions have succeeded or failed[ 13 ].

For example, in our evaluation of the introduction of electronic health records in English hospitals (Table 3 ), we defined our cases as the NHS Trusts that were receiving the new technology[ 5 ]. Our focus was on how the technology was being implemented. However, if the primary research interest had been on the social and organisational dimensions of implementation, we might have defined our case differently as a grouping of healthcare professionals (e.g. doctors and/or nurses). The precise beginning and end of the case may however prove difficult to define. Pursuing this same example, when does the process of implementation and adoption of an electronic health record system really begin or end? Such judgements will inevitably be influenced by a range of factors, including the research question, theory of interest, the scope and richness of the gathered data and the resources available to the research team.

Selecting the case(s)

The decision on how to select the case(s) to study is a very important one that merits some reflection. In an intrinsic case study, the case is selected on its own merits[ 8 ]. The case is selected not because it is representative of other cases, but because of its uniqueness, which is of genuine interest to the researchers. This was, for example, the case in our study of the recruitment of minority ethnic participants into asthma research (Table 1 ) as our earlier work had demonstrated the marginalisation of minority ethnic people with asthma, despite evidence of disproportionate asthma morbidity[ 14 , 15 ]. In another example of an intrinsic case study, Hellstrom et al.[ 16 ] studied an elderly married couple living with dementia to explore how dementia had impacted on their understanding of home, their everyday life and their relationships.

For an instrumental case study, selecting a "typical" case can work well[ 8 ]. In contrast to the intrinsic case study, the particular case which is chosen is of less importance than selecting a case that allows the researcher to investigate an issue or phenomenon. For example, in order to gain an understanding of doctors' responses to health policy initiatives, Som undertook an instrumental case study interviewing clinicians who had a range of responsibilities for clinical governance in one NHS acute hospital trust[ 17 ]. Sampling a "deviant" or "atypical" case may however prove even more informative, potentially enabling the researcher to identify causal processes, generate hypotheses and develop theory.

In collective or multiple case studies, a number of cases are carefully selected. This offers the advantage of allowing comparisons to be made across several cases and/or replication. Choosing a "typical" case may enable the findings to be generalised to theory (i.e. analytical generalisation) or to test theory by replicating the findings in a second or even a third case (i.e. replication logic)[ 1 ]. Yin suggests two or three literal replications (i.e. predicting similar results) if the theory is straightforward and five or more if the theory is more subtle. However, critics might argue that selecting 'cases' in this way is insufficiently reflexive and ill-suited to the complexities of contemporary healthcare organisations.

The selected case study site(s) should allow the research team access to the group of individuals, the organisation, the processes or whatever else constitutes the chosen unit of analysis for the study. Access is therefore a central consideration; the researcher needs to come to know the case study site(s) well and to work cooperatively with them. Selected cases need to be not only interesting but also hospitable to the inquiry [ 8 ] if they are to be informative and answer the research question(s). Case study sites may also be pre-selected for the researcher, with decisions being influenced by key stakeholders. For example, our selection of case study sites in the evaluation of the implementation and adoption of electronic health record systems (see Table 3 ) was heavily influenced by NHS Connecting for Health, the government agency that was responsible for overseeing the National Programme for Information Technology (NPfIT)[ 5 ]. This prominent stakeholder had already selected the NHS sites (through a competitive bidding process) to be early adopters of the electronic health record systems and had negotiated contracts that detailed the deployment timelines.

It is also important to consider in advance the likely burden and risks associated with participation for those who (or the site(s) which) comprise the case study. Of particular importance is the obligation for the researcher to think through the ethical implications of the study (e.g. the risk of inadvertently breaching anonymity or confidentiality) and to ensure that potential participants/participating sites are provided with sufficient information to make an informed choice about joining the study. The outcome of providing this information might be that the emotive burden associated with participation, or the organisational disruption associated with supporting the fieldwork, is considered so high that the individuals or sites decide against participation.

In our example of evaluating implementations of electronic health record systems, given the restricted number of early adopter sites available to us, we sought purposively to select a diverse range of implementation cases among those that were available[ 5 ]. We chose a mixture of teaching, non-teaching and Foundation Trust hospitals, and examples of each of the three electronic health record systems procured centrally by the NPfIT. At one recruited site, it quickly became apparent that access was problematic because of competing demands on that organisation. Recognising the importance of full access and co-operative working for generating rich data, the research team decided not to pursue work at that site and instead to focus on other recruited sites.

Collecting the data

In order to develop a thorough understanding of the case, the case study approach usually involves the collection of multiple sources of evidence, using a range of quantitative (e.g. questionnaires, audits and analysis of routinely collected healthcare data) and more commonly qualitative techniques (e.g. interviews, focus groups and observations). The use of multiple sources of data (data triangulation) has been advocated as a way of increasing the internal validity of a study (i.e. the extent to which the method is appropriate to answer the research question)[ 8 , 18 – 21 ]. An underlying assumption is that data collected in different ways should lead to similar conclusions, and approaching the same issue from different angles can help develop a holistic picture of the phenomenon (Table 2 )[ 4 ].

Brazier and colleagues used a mixed-methods case study approach to investigate the impact of a cancer care programme[ 22 ]. Here, quantitative measures were collected with questionnaires before, and five months after, the start of the intervention which did not yield any statistically significant results. Qualitative interviews with patients however helped provide an insight into potentially beneficial process-related aspects of the programme, such as greater, perceived patient involvement in care. The authors reported how this case study approach provided a number of contextual factors likely to influence the effectiveness of the intervention and which were not likely to have been obtained from quantitative methods alone.

In collective or multiple case studies, data collection needs to be flexible enough to allow a detailed description of each individual case to be developed (e.g. the nature of different cancer care programmes), before considering the emerging similarities and differences in cross-case comparisons (e.g. to explore why one programme is more effective than another). It is important that data sources from different cases are, where possible, broadly comparable for this purpose even though they may vary in nature and depth.

Analysing, interpreting and reporting case studies

Making sense and offering a coherent interpretation of the typically disparate sources of data (whether qualitative alone or together with quantitative) is far from straightforward. Repeated reviewing and sorting of the voluminous and detail-rich data are integral to the process of analysis. In collective case studies, it is helpful to analyse data relating to the individual component cases first, before making comparisons across cases. Attention needs to be paid to variations within each case and, where relevant, the relationship between different causes, effects and outcomes[ 23 ]. Data will need to be organised and coded to allow the key issues, both derived from the literature and emerging from the dataset, to be easily retrieved at a later stage. An initial coding frame can help capture these issues and can be applied systematically to the whole dataset with the aid of a qualitative data analysis software package.

The Framework approach is a practical approach, comprising of five stages (familiarisation; identifying a thematic framework; indexing; charting; mapping and interpretation) , to managing and analysing large datasets particularly if time is limited, as was the case in our study of recruitment of South Asians into asthma research (Table 1 )[ 3 , 24 ]. Theoretical frameworks may also play an important role in integrating different sources of data and examining emerging themes. For example, we drew on a socio-technical framework to help explain the connections between different elements - technology; people; and the organisational settings within which they worked - in our study of the introduction of electronic health record systems (Table 3 )[ 5 ]. Our study of patient safety in undergraduate curricula drew on an evaluation-based approach to design and analysis, which emphasised the importance of the academic, organisational and practice contexts through which students learn (Table 4 )[ 6 ].

Case study findings can have implications both for theory development and theory testing. They may establish, strengthen or weaken historical explanations of a case and, in certain circumstances, allow theoretical (as opposed to statistical) generalisation beyond the particular cases studied[ 12 ]. These theoretical lenses should not, however, constitute a strait-jacket and the cases should not be "forced to fit" the particular theoretical framework that is being employed.

When reporting findings, it is important to provide the reader with enough contextual information to understand the processes that were followed and how the conclusions were reached. In a collective case study, researchers may choose to present the findings from individual cases separately before amalgamating across cases. Care must be taken to ensure the anonymity of both case sites and individual participants (if agreed in advance) by allocating appropriate codes or withholding descriptors. In the example given in Table 3 , we decided against providing detailed information on the NHS sites and individual participants in order to avoid the risk of inadvertent disclosure of identities[ 5 , 25 ].

What are the potential pitfalls and how can these be avoided?

The case study approach is, as with all research, not without its limitations. When investigating the formal and informal ways undergraduate students learn about patient safety (Table 4 ), for example, we rapidly accumulated a large quantity of data. The volume of data, together with the time restrictions in place, impacted on the depth of analysis that was possible within the available resources. This highlights a more general point of the importance of avoiding the temptation to collect as much data as possible; adequate time also needs to be set aside for data analysis and interpretation of what are often highly complex datasets.

Case study research has sometimes been criticised for lacking scientific rigour and providing little basis for generalisation (i.e. producing findings that may be transferable to other settings)[ 1 ]. There are several ways to address these concerns, including: the use of theoretical sampling (i.e. drawing on a particular conceptual framework); respondent validation (i.e. participants checking emerging findings and the researcher's interpretation, and providing an opinion as to whether they feel these are accurate); and transparency throughout the research process (see Table 8 )[ 8 , 18 – 21 , 23 , 26 ]. Transparency can be achieved by describing in detail the steps involved in case selection, data collection, the reasons for the particular methods chosen, and the researcher's background and level of involvement (i.e. being explicit about how the researcher has influenced data collection and interpretation). Seeking potential, alternative explanations, and being explicit about how interpretations and conclusions were reached, help readers to judge the trustworthiness of the case study report. Stake provides a critique checklist for a case study report (Table 9 )[ 8 ].

Conclusions

The case study approach allows, amongst other things, critical events, interventions, policy developments and programme-based service reforms to be studied in detail in a real-life context. It should therefore be considered when an experimental design is either inappropriate to answer the research questions posed or impossible to undertake. Considering the frequency with which implementations of innovations are now taking place in healthcare settings and how well the case study approach lends itself to in-depth, complex health service research, we believe this approach should be more widely considered by researchers. Though inherently challenging, the research case study can, if carefully conceptualised and thoughtfully undertaken and reported, yield powerful insights into many important aspects of health and healthcare delivery.

Yin RK: Case study research, design and method. 2009, London: Sage Publications Ltd., 4

Google Scholar  

Keen J, Packwood T: Qualitative research; case study evaluation. BMJ. 1995, 311: 444-446.

Article   CAS   PubMed   PubMed Central   Google Scholar  

Sheikh A, Halani L, Bhopal R, Netuveli G, Partridge M, Car J, et al: Facilitating the Recruitment of Minority Ethnic People into Research: Qualitative Case Study of South Asians and Asthma. PLoS Med. 2009, 6 (10): 1-11.

Article   Google Scholar  

Pinnock H, Huby G, Powell A, Kielmann T, Price D, Williams S, et al: The process of planning, development and implementation of a General Practitioner with a Special Interest service in Primary Care Organisations in England and Wales: a comparative prospective case study. Report for the National Co-ordinating Centre for NHS Service Delivery and Organisation R&D (NCCSDO). 2008, [ http://www.sdo.nihr.ac.uk/files/project/99-final-report.pdf ]

Robertson A, Cresswell K, Takian A, Petrakaki D, Crowe S, Cornford T, et al: Prospective evaluation of the implementation and adoption of NHS Connecting for Health's national electronic health record in secondary care in England: interim findings. BMJ. 2010, 41: c4564-

Pearson P, Steven A, Howe A, Sheikh A, Ashcroft D, Smith P, the Patient Safety Education Study Group: Learning about patient safety: organisational context and culture in the education of healthcare professionals. J Health Serv Res Policy. 2010, 15: 4-10. 10.1258/jhsrp.2009.009052.

Article   PubMed   Google Scholar  

van Harten WH, Casparie TF, Fisscher OA: The evaluation of the introduction of a quality management system: a process-oriented case study in a large rehabilitation hospital. Health Policy. 2002, 60 (1): 17-37. 10.1016/S0168-8510(01)00187-7.

Stake RE: The art of case study research. 1995, London: Sage Publications Ltd.

Sheikh A, Smeeth L, Ashcroft R: Randomised controlled trials in primary care: scope and application. Br J Gen Pract. 2002, 52 (482): 746-51.

PubMed   PubMed Central   Google Scholar  

King G, Keohane R, Verba S: Designing Social Inquiry. 1996, Princeton: Princeton University Press

Doolin B: Information technology as disciplinary technology: being critical in interpretative research on information systems. Journal of Information Technology. 1998, 13: 301-311. 10.1057/jit.1998.8.

George AL, Bennett A: Case studies and theory development in the social sciences. 2005, Cambridge, MA: MIT Press

Eccles M, the Improved Clinical Effectiveness through Behavioural Research Group (ICEBeRG): Designing theoretically-informed implementation interventions. Implementation Science. 2006, 1: 1-8. 10.1186/1748-5908-1-1.

Article   PubMed Central   Google Scholar  

Netuveli G, Hurwitz B, Levy M, Fletcher M, Barnes G, Durham SR, Sheikh A: Ethnic variations in UK asthma frequency, morbidity, and health-service use: a systematic review and meta-analysis. Lancet. 2005, 365 (9456): 312-7.

Sheikh A, Panesar SS, Lasserson T, Netuveli G: Recruitment of ethnic minorities to asthma studies. Thorax. 2004, 59 (7): 634-

CAS   PubMed   PubMed Central   Google Scholar  

Hellström I, Nolan M, Lundh U: 'We do things together': A case study of 'couplehood' in dementia. Dementia. 2005, 4: 7-22. 10.1177/1471301205049188.

Som CV: Nothing seems to have changed, nothing seems to be changing and perhaps nothing will change in the NHS: doctors' response to clinical governance. International Journal of Public Sector Management. 2005, 18: 463-477. 10.1108/09513550510608903.

Lincoln Y, Guba E: Naturalistic inquiry. 1985, Newbury Park: Sage Publications

Barbour RS: Checklists for improving rigour in qualitative research: a case of the tail wagging the dog?. BMJ. 2001, 322: 1115-1117. 10.1136/bmj.322.7294.1115.

Mays N, Pope C: Qualitative research in health care: Assessing quality in qualitative research. BMJ. 2000, 320: 50-52. 10.1136/bmj.320.7226.50.

Mason J: Qualitative researching. 2002, London: Sage

Brazier A, Cooke K, Moravan V: Using Mixed Methods for Evaluating an Integrative Approach to Cancer Care: A Case Study. Integr Cancer Ther. 2008, 7: 5-17. 10.1177/1534735407313395.

Miles MB, Huberman M: Qualitative data analysis: an expanded sourcebook. 1994, CA: Sage Publications Inc., 2

Pope C, Ziebland S, Mays N: Analysing qualitative data. Qualitative research in health care. BMJ. 2000, 320: 114-116. 10.1136/bmj.320.7227.114.

Cresswell KM, Worth A, Sheikh A: Actor-Network Theory and its role in understanding the implementation of information technology developments in healthcare. BMC Med Inform Decis Mak. 2010, 10 (1): 67-10.1186/1472-6947-10-67.

Article   PubMed   PubMed Central   Google Scholar  

Malterud K: Qualitative research: standards, challenges, and guidelines. Lancet. 2001, 358: 483-488. 10.1016/S0140-6736(01)05627-6.

Article   CAS   PubMed   Google Scholar  

Yin R: Case study research: design and methods. 1994, Thousand Oaks, CA: Sage Publishing, 2

Yin R: Enhancing the quality of case studies in health services research. Health Serv Res. 1999, 34: 1209-1224.

Green J, Thorogood N: Qualitative methods for health research. 2009, Los Angeles: Sage, 2

Howcroft D, Trauth E: Handbook of Critical Information Systems Research, Theory and Application. 2005, Cheltenham, UK: Northampton, MA, USA: Edward Elgar

Book   Google Scholar  

Blakie N: Approaches to Social Enquiry. 1993, Cambridge: Polity Press

Doolin B: Power and resistance in the implementation of a medical management information system. Info Systems J. 2004, 14: 343-362. 10.1111/j.1365-2575.2004.00176.x.

Bloomfield BP, Best A: Management consultants: systems development, power and the translation of problems. Sociological Review. 1992, 40: 533-560.

Shanks G, Parr A: Positivist, single case study research in information systems: A critical analysis. Proceedings of the European Conference on Information Systems. 2003, Naples

Pre-publication history

The pre-publication history for this paper can be accessed here: http://www.biomedcentral.com/1471-2288/11/100/prepub

Download references

Acknowledgements

We are grateful to the participants and colleagues who contributed to the individual case studies that we have drawn on. This work received no direct funding, but it has been informed by projects funded by Asthma UK, the NHS Service Delivery Organisation, NHS Connecting for Health Evaluation Programme, and Patient Safety Research Portfolio. We would also like to thank the expert reviewers for their insightful and constructive feedback. Our thanks are also due to Dr. Allison Worth who commented on an earlier draft of this manuscript.

Author information

Authors and affiliations.

Division of Primary Care, The University of Nottingham, Nottingham, UK

Sarah Crowe & Anthony Avery

Centre for Population Health Sciences, The University of Edinburgh, Edinburgh, UK

Kathrin Cresswell, Ann Robertson & Aziz Sheikh

School of Health in Social Science, The University of Edinburgh, Edinburgh, UK

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Sarah Crowe .

Additional information

Competing interests.

The authors declare that they have no competing interests.

Authors' contributions

AS conceived this article. SC, KC and AR wrote this paper with GH, AA and AS all commenting on various drafts. SC and AS are guarantors.

Rights and permissions

This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article.

Crowe, S., Cresswell, K., Robertson, A. et al. The case study approach. BMC Med Res Methodol 11 , 100 (2011). https://doi.org/10.1186/1471-2288-11-100

Download citation

Received : 29 November 2010

Accepted : 27 June 2011

Published : 27 June 2011

DOI : https://doi.org/10.1186/1471-2288-11-100

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Case Study Approach
  • Electronic Health Record System
  • Case Study Design
  • Case Study Site
  • Case Study Report

BMC Medical Research Methodology

ISSN: 1471-2288

case study as a scientific text

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Methodology
  • Case Study | Definition, Examples & Methods

Case Study | Definition, Examples & Methods

Published on 5 May 2022 by Shona McCombes . Revised on 30 January 2023.

A case study is a detailed study of a specific subject, such as a person, group, place, event, organisation, or phenomenon. Case studies are commonly used in social, educational, clinical, and business research.

A case study research design usually involves qualitative methods , but quantitative methods are sometimes also used. Case studies are good for describing , comparing, evaluating, and understanding different aspects of a research problem .

Table of contents

When to do a case study, step 1: select a case, step 2: build a theoretical framework, step 3: collect your data, step 4: describe and analyse the case.

A case study is an appropriate research design when you want to gain concrete, contextual, in-depth knowledge about a specific real-world subject. It allows you to explore the key characteristics, meanings, and implications of the case.

Case studies are often a good choice in a thesis or dissertation . They keep your project focused and manageable when you don’t have the time or resources to do large-scale research.

You might use just one complex case study where you explore a single subject in depth, or conduct multiple case studies to compare and illuminate different aspects of your research problem.

Case study examples
Research question Case study
What are the ecological effects of wolf reintroduction? Case study of wolf reintroduction in Yellowstone National Park in the US
How do populist politicians use narratives about history to gain support? Case studies of Hungarian prime minister Viktor Orbán and US president Donald Trump
How can teachers implement active learning strategies in mixed-level classrooms? Case study of a local school that promotes active learning
What are the main advantages and disadvantages of wind farms for rural communities? Case studies of three rural wind farm development projects in different parts of the country
How are viral marketing strategies changing the relationship between companies and consumers? Case study of the iPhone X marketing campaign
How do experiences of work in the gig economy differ by gender, race, and age? Case studies of Deliveroo and Uber drivers in London

Prevent plagiarism, run a free check.

Once you have developed your problem statement and research questions , you should be ready to choose the specific case that you want to focus on. A good case study should have the potential to:

  • Provide new or unexpected insights into the subject
  • Challenge or complicate existing assumptions and theories
  • Propose practical courses of action to resolve a problem
  • Open up new directions for future research

Unlike quantitative or experimental research, a strong case study does not require a random or representative sample. In fact, case studies often deliberately focus on unusual, neglected, or outlying cases which may shed new light on the research problem.

If you find yourself aiming to simultaneously investigate and solve an issue, consider conducting action research . As its name suggests, action research conducts research and takes action at the same time, and is highly iterative and flexible. 

However, you can also choose a more common or representative case to exemplify a particular category, experience, or phenomenon.

While case studies focus more on concrete details than general theories, they should usually have some connection with theory in the field. This way the case study is not just an isolated description, but is integrated into existing knowledge about the topic. It might aim to:

  • Exemplify a theory by showing how it explains the case under investigation
  • Expand on a theory by uncovering new concepts and ideas that need to be incorporated
  • Challenge a theory by exploring an outlier case that doesn’t fit with established assumptions

To ensure that your analysis of the case has a solid academic grounding, you should conduct a literature review of sources related to the topic and develop a theoretical framework . This means identifying key concepts and theories to guide your analysis and interpretation.

There are many different research methods you can use to collect data on your subject. Case studies tend to focus on qualitative data using methods such as interviews, observations, and analysis of primary and secondary sources (e.g., newspaper articles, photographs, official records). Sometimes a case study will also collect quantitative data .

The aim is to gain as thorough an understanding as possible of the case and its context.

In writing up the case study, you need to bring together all the relevant aspects to give as complete a picture as possible of the subject.

How you report your findings depends on the type of research you are doing. Some case studies are structured like a standard scientific paper or thesis, with separate sections or chapters for the methods , results , and discussion .

Others are written in a more narrative style, aiming to explore the case from various angles and analyse its meanings and implications (for example, by using textual analysis or discourse analysis ).

In all cases, though, make sure to give contextual details about the case, connect it back to the literature and theory, and discuss how it fits into wider patterns or debates.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

McCombes, S. (2023, January 30). Case Study | Definition, Examples & Methods. Scribbr. Retrieved 30 July 2024, from https://www.scribbr.co.uk/research-methods/case-studies/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, correlational research | guide, design & examples, a quick guide to experimental design | 5 steps & examples, descriptive research design | definition, methods & examples.

  • Browse All Articles
  • Newsletter Sign-Up

case study as a scientific text

  • 02 Aug 2024

How a Mission to Cut Food Waste Launched a Multimillion-Dollar Venture

Josh Domingues put purpose before profit when he created the Flashfood app to sell less-than-perfect groceries at discounted prices. A case study by Reza Satchu explores Domingues' successes and failures, and what other social entrepreneurs can learn.

case study as a scientific text

  • 18 Jun 2024
  • Research & Ideas

Industrial Decarbonization: Confronting the Hard Challenges of Cement

CEOs in construction and heavy industries must prioritize innovative abatement strategies to meet rising global demand for cement while reducing emissions. Research by Gunther Glenk offers an economic framework for identifying emission reduction options.

case study as a scientific text

  • 11 Jun 2024
  • In Practice

The Harvard Business School Faculty Summer Reader 2024

What's on your vacation reading list? Harvard Business School faculty members plan to explore not only sober themes, such as philosophy and climate policy, but classic mysteries and hip-hop history.

case study as a scientific text

  • 04 Jun 2024
  • Cold Call Podcast

How One Insurtech Firm Formulated a Strategy for Climate Change

The Insurtech firm Hippo was facing two big challenges related to climate change: major loss ratios and rate hikes. The company used technologically empowered services to create its competitive edge, along with providing smart home packages, targeting risk-friendly customers, and using data-driven pricing. But now CEO and president Rick McCathron needed to determine how the firm’s underwriting model could account for the effects of high-intensity weather events. Harvard Business School professor Lauren Cohen discusses how Hippo could adjust its strategy to survive a new era of unprecedented weather catastrophes in his case, “Hippo: Weathering the Storm of the Home Insurance Crisis.”

case study as a scientific text

  • 23 Apr 2024

Getting to Net Zero: The Climate Standards and Ecosystem the World Needs Now

What can companies and regulators do as climate predictions grow grimmer? They should measure impact, strengthen environmental institutions, and look to cities to lead, say Robert Kaplan, Shirley Lu, and Rosabeth Moss Kanter.

case study as a scientific text

  • 22 Apr 2024

When Does Impact Investing Make the Biggest Impact?

More investors want to back businesses that contribute to social change, but are impact funds the only approach? Research by Shawn Cole, Leslie Jeng, Josh Lerner, Natalia Rigol, and Benjamin Roth challenges long-held assumptions about impact investing and reveals where such funds make the biggest difference.

case study as a scientific text

  • 18 Mar 2024

When It Comes to Climate Regulation, Energy Companies Take a More Nuanced View

Many assume that major oil and gas companies adamantly oppose climate-friendly regulation, but that's not true. A study of 30 years of corporate advocacy by Jonas Meckling finds that energy companies have backed clean-energy efforts when it aligns with their business interests.

case study as a scientific text

  • 12 Mar 2024

How Used Products Can Unlock New Markets: Lessons from Apple's Refurbished iPhones

The idea of reselling old smartphones might have seemed risky for a company known for high-end devices, but refurbished products have become a major profit stream for Apple and an environmental victory. George Serafeim examines Apple's circular model in a case study, and offers insights for other industries.

case study as a scientific text

  • 27 Feb 2024

How Could Harvard Decarbonize Its Supply Chain?

Harvard University aims to be fossil-fuel neutral by 2026 and totally free of fossil fuels by 2050. As part of this goal, the university is trying to decarbonize its supply chain and considers replacing cement with a low-carbon substitute called Pozzotive®, made with post-consumer recycled glass. A successful pilot project could jump start Harvard’s initiative to reduce embodied carbon emissions, but it first needs credible information about the magnitude and validity of potential carbon reductions. Harvard Business School professor emeritus Robert Kaplan and assistant professor Shirley Lu discuss the flow of emissions along the supply chain of Harvard University’s construction projects, the different methods of measuring carbon emissions, including the E-liability approach, and the opportunity to leverage blockchain technology to facilitate the flow of comparable and reliable emissions information in the case, “Harvard University and Urban Mining Industries: Decarbonizing the Supply Chain.”

case study as a scientific text

  • 30 Jan 2024

Can Second-Generation Ethanol Production Help Decarbonize the World?

Raízen, a bioenergy company headquartered in São Paulo, is Brazil’s leader in sugar and ethanol production and the world’s leading ethanol trader. Since its creation in 2011, the company had primarily produced first-generation ethanol (E1G) from sugarcane, a crop that can also be used to produce sugar. In 2015, Raízen also started to produce second-generation ethanol (E2G), a biofuel derived from residual and waste materials, such as cane bagasse and straw – which don’t compete with food production. The company’s growth strategy focused on developing and boosting a low carbon portfolio that focused on E2G, based on the belief that Raízen—and Brazil—could help the world decarbonize and profit from the energy transition. Paula Kovarsky, Raízen’s chief strategy and sustainability officer, was confident the company could become a global green energy champion. But after the board’s approval for the first round of E2G investments, she faced a complex challenge: how to expand the market for second-generation ethanol and other sugar-cane waste biofuels, in order to ensure Raízen’s long-term growth? Harvard Business School professor Gunnar Trumbull and Kovarsky discuss the company’s strategy for bringing second-generation ethanol to the world in the case, “Raízen: Helping to Decarbonize the World?”

case study as a scientific text

  • 29 Jan 2024

Do Disasters Rally Support for Climate Action? It's Complicated.

Reactions to devastating wildfires in the Amazon show the contrasting realities for people living in areas vulnerable to climate change. Research by Paula Rettl illustrates the political ramifications that arise as people weigh the economic tradeoffs of natural disasters.

case study as a scientific text

  • 17 Jan 2024

Are Companies Getting Away with 'Cheap Talk' on Climate Goals?

Many companies set emissions targets with great fanfare—and never meet them, says research by Shirley Lu and colleagues. But what if investors held businesses accountable for achieving their climate plans?

case study as a scientific text

  • 09 Jan 2024

Could Clean Hydrogen Become Affordable at Scale by 2030?

The cost to produce hydrogen could approach the $1-per-kilogram target set by US regulators by 2030, helping this cleaner energy source compete with fossil fuels, says research by Gunther Glenk and colleagues. But planned global investments in hydrogen production would need to come to fruition to reach full potential.

case study as a scientific text

  • 02 Jan 2024

Should Businesses Take a Stand on Societal Issues?

Should businesses take a stand for or against particular societal issues? And how should leaders determine when and how to engage on these sensitive matters? Harvard Business School Senior Lecturer Hubert Joly, who led the electronics retailer Best Buy for almost a decade, discusses examples of corporate leaders who had to determine whether and how to engage with humanitarian crises, geopolitical conflict, racial justice, climate change, and more in the case, “Deciding When to Engage on Societal Issues.”

case study as a scientific text

10 Trends to Watch in 2024

Employees may seek new approaches to balance, even as leaders consider whether to bring more teams back to offices or make hybrid work even more flexible. These are just a few trends that Harvard Business School faculty members will be following during a year when staffing, climate, and inclusion will likely remain top of mind.

case study as a scientific text

  • 19 Sep 2023

What Chandrayaan-3 Says About India's Entrepreneurial Approach to Space

India reached an unexplored part of the moon despite its limited R&D funding compared with NASA and SpaceX. Tarun Khanna discusses the significance of the landing, and the country's advancements in data and digital technology.

case study as a scientific text

  • 12 Sep 2023
  • What Do You Think?

Who Gets the Loudest Voice in DEI Decisions?

Business leaders are wrestling with how to manage their organizations' commitment to diversity, equity, and inclusion. If you were a CEO, which constituency would you consider most: your employees, customers, or investors? asks James Heskett. Open for comment; 0 Comments.

case study as a scientific text

  • 26 Jul 2023

STEM Needs More Women. Recruiters Often Keep Them Out

Tech companies and programs turn to recruiters to find top-notch candidates, but gender bias can creep in long before women even apply, according to research by Jacqueline Ng Lane and colleagues. She highlights several tactics to make the process more equitable.

case study as a scientific text

  • 18 Jul 2023

Will Global Demand for Oil Peak This Decade?

The International Energy Agency expects the world's oil demand to start to ebb in the coming years. However, Joseph Lassiter and Lauren Cohen say the outlook will likely be more complex, especially as poor and fast-growing regions seek energy sources for their economies.

case study as a scientific text

  • 28 Apr 2023

Sweden’s Northvolt Electric Battery Maker: A Startup with a Mission

In Stockholm, Sweden an upstart battery maker, Northvolt, is trying to recreate the value chain for European car manufacturers making the switch to EVs. With two founders from Tesla and two experienced financiers at the helm, the company seems bound for success. But can they partner with government, scale fast enough, and truly be part of the climate solution? Harvard Business School professor George Serafeim discusses what it takes to scale a business—the right people, in the right place, at the right time—with the aim of providing a climate solution in the case, “Northvolt, Building Batteries to Fight Climate Change.” As part of a new first-year MBA course at Harvard Business School, this case examines the central question: what is the social purpose of the firm?

Scientific understanding in biomedical research

  • Original Research
  • Open access
  • Published: 02 August 2024
  • Volume 204 , article number  66 , ( 2024 )

Cite this article

You have full access to this open access article

case study as a scientific text

  • Somogy Varga   ORCID: orcid.org/0000-0001-9383-7843 1 , 2  

59 Accesses

Explore all metrics

Motivated by a recent trend that advocates a reassessment of the aim of medical science and clinical practice, this paper investigates the epistemic aims of biomedical research. Drawing on contemporary discussions in epistemology and the philosophy of science, along with a recent study on scurvy, this paper (1) explores the concept of understanding as the aim of scientific inquiry and (2) establishes a framework that will guide the examination of its forms in biomedical research. Using the case of Tuberculosis (TB), (3) it is argued that grasping a mechanistic explanation is crucial for reaching a threshold of understanding at which we may speak of an objectual, biomedical understanding of TB.

Avoid common mistakes on your manuscript.

Within just a few years, multiple editorials in prominent medical journals have issued a call to reflect on the aim of clinical medicine and medical science. Focusing on the latter matter, in a 2013 editorial, the editors of The Lancet clarified that they frequently confront not only queries about the rationale behind specific scientific studies but also broader inquiries regarding the overarching aim of medical science, which includes both clinical and medical laboratory research. They contend that the moment has come to rethink our approach to conducting and incentivizing research, and for this, “we need to remind ourselves about the real purpose of research” (The Lancet, 2013 , p. 347; see also Thornton, 2013 ). The authors express concern that a significant portion of the vast sums allocated annually to biomedical research fails to meet its true objectives. This shortfall is attributed not only to deficiencies in research design and methodology but also to a lack of “clinical meaningfulness.” Specifically, they highlight that many research projects pose questions that are not sufficiently aligned with clinical medicine and relevant to the treatment, control, prevention, or prediction of diseases. The authors note that the issues extend beyond merely reducing the potential impact of biomedical research; they suggest a fundamental misunderstanding of the very purpose of biomedical research, implying that such studies may not truly qualify as medical . Footnote 1

This short Lancet piece highlights significant, yet often overlooked, questions concerning the epistemic aim of medical research. This paper will address these questions, positing that medical science is fundamentally engaged in inquiries aimed at achieving what we shall refer to as biomedical understanding . To investigate and clarify what such understanding amounts to, the paper takes inspiration from two sources. On the one hand, it draws on contemporary discussions in philosophy of science and epistemology, which have seen a renewed interest in understanding as a distinct cognitive accomplishment (Grimm, 2021 ; Baumberger et al., 2017 ), as the epistemic aim of scientific inquiry, and the measure of progress (see e.g., Potochnik, 2015 ; De Regt & Dieks, 2005 ; Elgin, 2017 ). Acknowledging that what constitutes proper understanding can depend on the field, as noted by scholars in the field (Strevens, 2010 ; De Regt et al., 2009 ), this paper aims to specifically articulate what understanding entails within medical science. On the other hand, this paper draws on and employs several distinctions from a recent study on scurvy (Varga, 2023 ). However, while that study focused on a noncommunicable condition stemming from severe dietary deficiencies, this paper shifts our focus to Tuberculosis (TB), a multifaceted and emblematic infectious disease often accompanied by stigma (WHO, 2023 ). TB, which is one of the oldest known infectious diseases, is caused by the bacterium Mycobacterium tuberculosis (Kapur et al., 1994 ; Daniel, 2006 ). The bacteria are transmitted when an infected individual coughs, sneezes, or speaks, allowing another person to breathe in the pathogens. Symptoms of TB can include coughing, chest pain, fatigue, fever, and night sweats and although the condition is treatable with antibiotics it remains a major global health concern.

The paper is organized as follows. It (1) explores the idea of understanding as the aim of scientific inquiry and (2) lays down a framework of understanding that will subsequently guide our exploration of its forms in medicine. Using the case of Tuberculosis (TB), (3) it is argued that grasping a mechanistic explanation is crucial for reaching a threshold of understanding at which we may speak of an objectual, biomedical understanding of TB. If evidence can be gathered to support this argument, it would align with the previously mentioned research on a noncommunicable disease (scurvy), suggesting a recurring pattern across various contexts of medical research.

1 The aim of scientific inquiry: constitutive aim and truth

Scientific inquiries can be viewed as extensions of our day-to-day endeavors to gather information albeit executed in a more systematic manner (see e.g., Kelp, 2021 ). They are goal-directed activities, implying that there is some aim that inquiry strives to accomplish. It is quite natural to assume that this description also fits medical science; however, before delving into the question of what constitutes the epistemic aim of medical science, it is crucial to first briefly clarify what medical science refers to. What sets medical science apart and qualifies something as specifically medical science, rather than just science in general?

Medical science, which includes clinical research and laboratory research in medicine, is fundamentally based on the life sciences. Over the past two centuries, it has extensively leveraged discoveries in biology that have identified cellular, genetic, and molecular entities and processes that help explain the development and course of diseases. While some aspects of medical science may not differ essentially from laboratory sciences within contributing disciplines such as biology, biochemistry, and physiology, medical science cannot simply be reduced to the sum of these fields. One reason is that medical research is only deemed properly medical when it has a specific practical orientation—that is, when it is driven by the goal of contributing to clinical medicine, which primarily focuses on the diagnosis, prevention, and treatment of disease. Without this practical focus, research might be more accurately described as biological rather than medical. Take, for example, large-scale laboratory research that aims to chart the functions of specific limbic structures in the brain. Without a practical focus on clinical applications or health outcomes, such research might be more accurately described as neurobiological rather than medical. Of course, this research could potentially yield benefits for clinical medicine in the future, but without a direct and immediate practical orientation, it would not be classified as medical research. Moreover, if we were to classify such research as medical merely based on potential future benefits, the distinction between medical and non-medical research would collapse.

Of course, this practical orientation toward health outcomes is a characteristic that biomedical research shares with related fields such as public health. However, their epistemic aims are directed towards different objectives: biomedical research typically focuses on the biological and physiological aspects of diseases at a molecular or cellular level, aiming to elucidate disease mechanisms and develop new treatments, whereas public health is primarily concerned with improving the health of populations through prevention strategies, health education, surveillance, and improving access to health care. Public health aims encompass a wide array of objectives: ensuring safe environments by controlling hazards in air, water, and food, enhancing host resistance through balanced nutrition and immunization, promoting health-supportive behaviors, and improving equitable access to health and social services (White et al., 2013 ; Munthe, 2008 ). Footnote 2

Although both fields are dedicated to conducting research with the final aim to improve health outcomes, they operate with different priorities and methodologies, each aligned with their distinct epistemic goals. A biomedical researcher might delve into the genetic factors that contribute to the resistance of TB to antibiotics, focusing on molecular and cellular details. In contrast, public health initiatives may not require such knowledge; instead, they often concentrate on understanding societal or other health factors that hinder the implementation of vaccination programs or public campaigns aimed at increasing awareness and prevention of TB.

Having briefly clarified at least some of the aspects that set medical science apart, we can now turn to the question of its aim. As we begin to explore this, it is worth considering how plausible it is to claim that scientific inquiries in medicine are driven by a single aim. This consideration is crucial because the diversity of methods, approaches, and priorities within medical science suggests that its objectives might not be unified under a single overarching aim. In response, it is important to clarify that for the purposes of this paper, we do not assert that medical science is driven by a single aim. Instead, among potentially other aims, our objective is to explore the nature of medical science’s epistemic aim , which also determines what counts as progress at least in this limited sense. Thus, very roughly, if A is the aim of inquiry, then medical science makes progress when A accumulates or increases (for a discussion, see Bird, 2007 ; Varga, 2024 ).

So what is the epistemic aim of scientific inquiry in medicine? According to a plausible suggestion, the aim is simply to discover truths about health and disease and correct past errors (e.g., false beliefs about diseases like scurvy or depression being caused by humoral imbalance) that were based on tradition, cognitive errors, ideologies, or religious dogma. Correspondingly, progress consists in a cumulative acquisition of true beliefs. For example, until the nineteenth century, the prevailing belief was that TB was inherited or caused by environmental factors such as bad air or poor living conditions. But already in 1720, the English physician Benjamin Marten hypothesized that TB and its symptomatic lesions in the lungs are caused by “species of Animalcula or wonderfully minute living Creatures” that can be transmitted “by very frequently conversing so nearly as to draw inpart of the breath he emits from the lungs” (cited in Cambau & Drancourt, 2014 ; Daniel, 2006 ). Supporting this hypothesis, in 1865, the French physician Jean-Antoine Villemin provided experimental evidence that TB could be transmitted. He observed that TB was more prevalent in people living close and in poorly ventilated buildings, and he noted that while TB was common among troops in barracks, it decreased during military campaigns when soldiers were not housed (Daniel et al., 1994 ). Thus, Marten and Villemin unearthed truths regarding TB, rectified previous mistakes, and aided in the ongoing accumulation of accurate beliefs, which constitutes progress.

On its face, the suggestion that the aim of medical research is simply to discover truths is plausible. After all, it is often said that scientific inquiries are in the “truth business” (Pennock, 2019 ; Lipton, 2004 ), and it is difficult to imagine that contemporary medical science would be able to achieve what it does if its claims would not at least roughly correspond to how the world actually is. Nonetheless, the acquisition of true beliefs does not seem sufficient to constitute progress. Footnote 3 Take, for instance, a scenario where Marten and Villemin arrived at the same conclusion through unreliable methods and, coincidentally, the theory they came to accept happened to be true. In that case, Marten and Villemin would have acquired a true belief, but it would not have counted as genuine progress. What would be lacking is suitable justification for holding the relevant belief. In other words, the belief that they would have acquired would not qualify as knowledge .

1.1 Knowledge and understanding

What we learn from these considerations is that progress not only requires that our beliefs and theories be true but that we have attained adequate reasons for forming them. If this is correct, then it seems safe to conclude that the aim of inquiry is not merely truth, but knowledge (achieved by reliable means), which would mean that progress consists in the increase not of true beliefs, but of knowledge. Although this correction marks an improvement, it is necessary to supply some clarifications and caveats.

First, the aim of inquiry cannot simply be the mere accumulation of knowledge. Medical science has an expansive range of questions at its disposal, and it could potentially attain a vast pool of knowledge, but much of this potential knowledge might be trivial or inconsequential, lacking the impact or significance to be deemed progress. Imagine that researchers could come to know everything about some minor and transient symptom (e.g., a slight, transient change in nail coloration or longitudinal nail ridging) observed in a small subset of TB patients that are known not to have bearing on the disease’s diagnosis, progression, or response to treatment. While detailed knowledge of these symptoms might add to the clinical descriptions of TB, the reason this gained knowledge is not considered significant or constitutive of true progress likely stems from its limited impact on key areas of TB research and clinical management. It lacks the potential to advance our understanding of TB (or indeed other medically relevant conditions), uncover new treatment targets, enhance diagnostic methods, or deepen our understanding of disease transmission and resistance mechanisms.

If we accept this line of reasoning, then the aim of inquiry in medicine cannot be simply to amass knowledge, but rather a selective process that prioritizes the acquisition of certain kinds of significant knowledge. Hence, part of the scientific endeavor involves a critical evaluation process to identify which pieces of knowledge are significant and worth pursuing. This selection process is fundamental to progress, ensuring that scientific efforts are directed toward areas of genuine importance and potential impact (Kitcher, 2001 ; Dupré, 2016 ). Identifying and focusing on significant knowledge, therefore, becomes a crucial aspect of the scientific method, guiding researchers in making meaningful advancements rather than merely expanding the repository of human knowledge.

While the aim of inquiry is significant knowledge, the selection process to identify which pieces of knowledge count as significant cannot be extracted from nature and is largely relative to specific interests. As Kitcher ( 2001 , 61) stated regarding scientific inquiry in general, “significant science must be understood in the context of a particular group with particular practical interests and a particular history”. In the context of TB, it is far more plausible to suggest that what constitutes significant knowledge is closely interwoven with practical concerns related to the understanding and treatment of TB.

Having discussed the issue of significance, we are now faced with a final challenge that questions the notion that the goal of inquiry in medical science is best described as the pursuit of knowledge. In recent years, numerous philosophers of science have contended that framing the aim of inquiry in terms of understanding offers significant benefits over viewing progress merely as an accumulation of knowledge. The advantage with comprehending progress in terms of increased understanding is that it avoids the challenges faced by accounts measuring scientific progress in terms of knowledge (see e.g., Elgin, 2007 , 2017 ; De Regt & Dieks, 2005 ; Potochnik, 2017 ). Footnote 4 First, traditional accounts have problems explaining the significance of certain pragmatic virtues (e.g., simplicity) that do not affect the truth of claims, theories, and explanations. In contrast, an account of progress based on the notion of understanding does not face this problem, as these pragmatic virtues clearly affect the ability to understand (Dellsén, 2016 ). Second, traditional accounts of progress as knowledge accumulation have problems explaining abstractions, approximations, and idealizations. For example, in medicine, physiological accounts often offer idealized and simplified descriptions of organs and their functions (Ereshefsky, 2009 ). These provide computational tractability and improve understanding, but they also include aspects that are, strictly taken, inaccurate or false. However, such falsehoods are, as Elgin ( 2017 ) puts it, “felicitous”: although they involve false representations, they also exemplify significant aspects of phenomena in a tractable manner. Several philosophers have argued that science can increase understanding and contribute to progress even if it involves departing from the truth (e.g., Elgin, 2009a , b ; Strevens, 2017 ; Potochnik, 2015 ).

On an account of progress in terms of knowledge, the presence of manifest falsehoods seems incompatible with progress. However, an account of progress in terms of understanding fares better here, since understanding is compatible with a limited number of falsehoods, which are outweighed by practical advantages. Strevens argues that idealized models can provide understanding, but in a somewhat more limited way, showing why some causal factors are difference-makers and others are not (Strevens, 2017 ). Potochnik ( 2017 , 102; 2015 ) holds that while idealizations cannot be true or approximately true, they can be epistemically acceptable. Because such idealizations are rampant in science and they always detract from the truth, truth does not seem to be a good candidate for describing the aim of science. However, given that idealizations can support understanding, it is more adequate to suppose that understanding is what science aims at.

The latter is not susceptible to such worries, because, in contradistinction to knowledge, understanding is only quasi-factive: it can survive false beliefs if they are not absolutely vital to the phenomenon in question. For example, Marten hypothesized that TB was caused by “species of Animalcula or wonderfully minute living Creatures” (Doetsch, 1978 ; Daniel et al., 1994 ). Strictly taken, this is false: TB was not caused by such small creatures, but by the Mycobacterium tuberculosis bacteria, which Marten had no knowledge of. Nevertheless, it is hard to deny that some progress occurred and an increase in the (objectual) understanding of TB had been obtained.

In all, as opposed to truth or knowledge, the epistemic aim of scientific inquiry is best comprehended as understanding. Comprehending progress in terms of increased understanding dovetails more closely with the pragmatic nature of medicine and has the advantage of being resistant to some of the problems that haunt accounts that comprehend progress as knowledge accumulation. If the epistemic goal of inquiry is best framed as seeking understanding, this raises questions about what understanding is in medical research. The following sections will initially delve into theories of understanding, followed by an examination of the specific nature of understanding within the realm of medicine.

2 Forms of understanding

The debates on understanding have focused on three types of understanding: propositional understanding (understanding that something is the case), explanatory understanding (understanding why something is the case), and objectual understanding (understanding a particular topic or subject matter) (see e.g., Kvanvig, 2003 ; Hannon, 2021 ; Grimm, 2021 ). Footnote 5 In what follows, we are going to be focusing on explanatory and objectual understanding, in part because propositional understanding is often largely reducible to propositional knowledge or explanatory understanding. For example, saying “he understands that he needs to come to TB screening” could amount to the attribution of propositional knowledge (“he knows that he needs to come to TB screening”) or to explanatory understanding (“he understands why it is important for him to come to TB screening”). Of course, there are many other examples of how the term “understanding” is used. But many of them are either reducible to claims about knowledge, objectual understanding or explanatory understanding. For example, when we say that a person really understands how x works, then we are attributing to this person some degree of objectual understanding of x.

To illustrate the difference between knowledge and understanding, consider the example of TB. A student of medicine may attend a lecture on infectious diseases and come to know from a reliable source that TB is caused by Mycobacterium tuberculosis. Accepting the testimony from a reliable source and even double checking it in an encyclopedia of infectious diseases, the student gains causal knowledge. But while the student now knows a proposition that picks out the cause of TB, that is not enough for explanatory understanding, which not only requires knowledge of what caused the effect, but also grasping how that cause brings about the effect (Kvanvig, 2003 ; Pritchard, 2010a ), which many take to involves a type of “skill” (see e.g., De Regt, 2017 ). Understanding does not only require the possession of a theory or model, but also the skill or ability to use it to discern the causal relationship involved. One way to comprehend the difference is that unless explanatory understanding about how cause and effect are related is attained, she will be unable to address what-if-things-had-been-different questions or predict the outcomes of potential interventions (Grimm, 2011 ).

For another example, consider an utterly false theory leading to correct results. Charles Locock’s mid-19th century discovery of the anticonvulsant effect of potassium bromide. Locock, a physician working in London, shared the widely accepted theory among his contemporaries of a causal relationship between masturbation, convulsions, and epilepsy (Ban, 2006 ). As bromides were known to reduce the sex drive, Locock reasoned that the ingestion of potassium bromides would control convulsions by reducing the rate of masturbation. His account of the drug’s effectiveness was published in The Lancet in 1857, and subsequent independent studies confirmed potassium bromide’s antiepileptic efficacy, albeit evidently not by reducing masturbation frequency. Through observations and inference to the best explanation, Locock had attained knowledge that potassium bromide reduced convulsions, and such knowledge allowed the introduction of a relatively effective antiepileptic treatment into medical practice.

Still, in an important sense, such causal knowledge does not properly close the inquiry, which would require grasping a correct explanation and attaining understanding of what happens and how cause and effect are related. Locock did not understand why potassium bromide was effective, why it failed to be effective in some people, and so on. This meant that he lacked the ability to improve the efficiency of the intervention, since he was unable to counterfactually anticipate the effects of changes he could have made with respect to the treatment. More precisely, the lack of understanding means that Locock was unable to (i) predict the changes that would occur if the factors cited as explanatory were different and (ii) to draw correct inferences about similar situations under slightly varied conditions.

2.1 Explanatory and objectual understanding

Objectual and explanatory understanding differ in several ways (Kvanvig, 2003 , 2009 ; Hannon, 2019 , 2021 ). Explanatory understanding involves grasping why something is the case (e.g., uncovering the causal mechanisms or reasons behind phenomena) and its scope is less expansive than that of objectual understanding (Hannon, 2021 ). Objectual understanding, usually expressed using the verb “understands”, followed by a noun, as in the phrase “she understands TB”, entails a comprehensive grasp of a particular topic or subject matter, which includes incorporating these causal explanations into a broader context. While explanatory understanding is often necessary, it is not sufficient for objectual understanding, which requires integrating these explanatory insights within a larger framework.

To illustrate the difference, imagine that our student has now acquired knowledge of a vast number of isolated facts about TB, such that her peers would not hesitate to say that she has knowledge about TB. Nonetheless, this would not imply that the student understands TB, which would attribute to the student a more profound penetration of TB, a sort of epistemic acquaintance that is more profound than knowing particular propositions (Kvanvig, 2003 , p. 191; Strevens, 2017 ). Her objectual understanding of TB is gradable and can always become more profound along various dimensions (Bengson, 2017 ).

Often, achieving (full) objectual understanding is the aim of inquiry, and reaching it justifiably concludes the investigation of the topic (Kvanvig, 2013 ). If we think of medical research, objectual understanding seems to better capture the primary aim of inquiry and the conditions under which it can be concluded. To take the example of TB, researchers not only want to understand why it arises or why certain characteristic biochemical reactions occur but also why it leads to the characteristic symptoms, why it has varied effects on individuals, how it relates to other conditions, and so on. Even though single research projects cannot take on such a large task, the ultimate goal seems to go beyond obtaining explanatory understanding of features of TB to systematically understanding TB , which means attaining some level of coherence and completeness in terms of knowledge, as well as in taxonomies and classifications.

A prevalent perspective posits that achieving objectual understanding marks the endpoint of inquiry and legitimately closes the investigation into the subject (Kvanvig, 2013 ; Carter and Gordon 2014). This perspective aligns well with medicine, where an objectual understanding of a condition, rather than just its explanation, is often the ultimate aim. In their pursuit of understanding TB, researchers aim to grasp not just its origins, but also its manifestations, correlations with other conditions, its varied effects on individuals, and the most useful systematic categorization of its characteristic symptoms and signs.

Some argue that objectual understanding is not merely a subset of explanatory understanding, in part because it is possible to achieve objectual understanding of indeterministic systems where explanatory relations do not obtain (Kvanvig, 2009 ). But even if this turns out to be false (see e.g., Khalifa, 2013 , ch. 4), maintaining this distinction conserves the intuition that when we attribute to somebody objectual understanding of a subject matter (as opposed to explanatory understanding), we imply that the agent’s epistemic commitments relevant to the subject matter form a coherent network. Also, the distinction upholds the idea that objectual understanding’s factivity requirement is more lenient, making it less susceptible to peripheral falsehoods compared to explanatory understanding (see e.g., Elgin, 2017 ; Bamberger, Beisbart, & Brun 2017; Kvanvig, 2009 ).

2.2 Grasping explanations and context-dependency

Both explanatory and objectual understanding go beyond mere knowledge by encompassing an additional cognitive achievement, often referred to as a form of “grasping” (e.g., de Regt, 2009 ; Strevens, 2017 ; Grimm, 2014 ; Elgin, 2017 ; for a critique, see Khalifa, 2013 , ch. 3). The objects of grasping are “explanatory and other coherence-making relationships” (Kvanvig, 2003 , p. 192). There is no clear agreement on the precise meaning of “grasping” (Hannon, 2019 ), but for our purposes we might conceptualize it as a form of cognitive control that agents develop through the active engagement of their epistemic agency in delineating conceptual and explanatory links. Importantly, while grasping enables agents to mentally map a relational assembly (Grimm, 2014 ), it is not reducible to the experience of understanding (e.g., an “aha” moment): good explanations do not necessarily trigger a sense of understanding, while inadequate explanations sometimes do (Trout, 2002 ). While philosophers commonly concur that what is being grasped are explanations, aligning with the notion that the primary purpose of scientific explanation is to foster understanding (Lipton, 2001 ), opinions differ on what kind of explanations lead to understanding, such as deductive-nomological explanations (Hempel & Oppenheim, 1948 ), or mechanistic explanations, which explain phenomena by specifying the mechanisms that produce them (Salmon, 1984 ; Machamer et al., 2000 ). Footnote 6

Importantly, what counts as understanding, is – at least in a limited sense – context-sensitive . This can be interpreted in several ways. First, some argue that understanding is context-sensitive in the sense that the criteria for understanding can evolve even within a single scientific discipline (for historical examples, see De Regt, 2017 ; De Regt et al., 2009 ). This is in part because the capacity of an explanation to lead to understanding is partially contingent upon the disciplinary background and knowledge of individuals seeking to understand.

Second, and more importantly for our aims here, some hold that context-sensitivity is linked to the nature and aim of the particular scientific inquiry. For example, Craver ( 2013 ; Kendler et al., 2011 ) contends that mechanistic explanations are inherently contextual and “perspectival”, as they are framed within a specific explanatory framework that is chosen based on explanatory interests. While this point may be limited to mechanistic explanations, there are indications that objectual understanding displays some context-sensitivity across scientific fields. To illustrate this with a medical example, consider the study of cholesterol metabolism in medical science and chemistry. In medical science, a significant level of objectual understanding of cholesterol metabolism arguably encompasses an understanding of how cholesterol levels are regulated (e.g., by diet, genetics) and how they can be modified through interventions or lifestyle changes to reduce the risk of disease. From the perspective of chemistry, objectual understanding of cholesterol metabolism does not necessarily relate to cardiovascular health but instead focuses on explaining the biochemical pathways of cholesterol breakdown and synthesis, elucidating the precise molecular interactions involved. Thus, what constitutes some sufficient level of objectual understanding in medicine might differ from that in chemistry, primarily because the explanatory goals and interests in medicine are intrinsically tied to practical applications and clinical medicine. There is no inherent tension between context-sensitivity and objectual understanding: even if the threshold for sufficient objectual understanding can be consistent across disciplines, the kinds of explanations needed to reach this understanding vary according to the specific context and the explanatory, practical and other goals of each field.

3 Biomedical understanding

While the presented account of understanding does not purport to capture the intricacies of philosophical debates on the topic, it serves as a basis for exploring what it means to possess objectual understanding of a disease within the medical field. This will be referred to as biomedical understanding (see Varga, 2023 , 2024 ). To grasp what biomedical understanding entails, let us revisit the history of TB research.

Before the 19th century, tuberculosis (TB) was thought to result from heredity or environmental causes like bad air. Marten’s initial hypothesis that “minute living creatures” could spread TB was later validated by Villemin, who in 1865 provided experimental evidence of TB’s transmissibility. He linked its higher incidence to crowded, inadequately ventilated environments and noted a decrease in TB cases among soldiers when they were not confined to cramped barracks (Daniel et al., 1994 ; Bynum, 2012 ). Moreover, by removing liquid from tuberculous cavities of individuals who had died of TB and injecting it into healthy animals, Villemin successfully transmitted the disease from humans to rabbits, from cows to rabbits, and from rabbits to rabbits. Throughout his studies, he used the same amount of liquid and animals of similar origin, age, and habitat conditions, such that “everything indeed other than inoculation, were identical” (Villemin 1868/2015 , 257). While not all animals developed symptoms, autopsies three months later revealed that the vast majority developed extensive TB with massive dissemination of tubercles to the organs (Villemin 1868/2015 ; Barnes, 2000 ).

Clearly, Villemin’s findings helped distinguish between variables that had a direct effect on the development of TB and those that were correlated with it (e.g., certain professions, poverty, poor living conditions). However, while Villemin attained an important piece of explanatory understanding, it would be unwarranted to say that he obtained objectual understanding of TB in any noteworthy sense. Given that the explanatory goals and interests in medicine are closely tied to practical applications, such a claim might seem excessive because the explanatory understanding Villemin obtained did not form a coherent network that would have allowed him to consider how possible medical interventions could limit control the progression and spread of TB. After all, Villemin did not understand under what conditions TB developed, how it transmitted, and what the agent of the disease was, except that the tubercle (nodular lesion) contained it.

Let us now look closer at some shortcomings that could have prevented him from attaining objectual understanding of TB in any substantial sense. The first shortcoming stems from an incomplete understanding of the causal agent. Villemin lacked comprehension with respect to two critical aspects of the causal connection: stability and specificity (see Woodward, 2010 ). A causal link between the injected substance and TB is considered stable if the counterfactual dependence remains consistent across various background situations. Villemin’s studies did not provide much evidence with respect to stability, because they did not involve testing under different background circumstances. In addition, specificity refers to the grain level of counterfactual dependencies between the inoculated substance and TB. Because Villemin inoculated the same amount of substance in each case, his studies offered no knowledge about the extent to which the intensity of tuberculization depends on the amount of substance inoculated. Villemin had no way of determining whether the counterfactual dependencies between the inoculated substance and TB are fine-grained, in which case intervention on the inoculated substance would enable more precise control over how TB develops.

Moreover, Villemin’s incomplete understanding of the causal agent prevented him from ruling out the possibility that experimentally induced tuberculosis might follow a different pathway from ordinary TB or could even be a distinct disease altogether. When injecting liquids from organisms that succumbed from TB, one could argue that the effects obtained were not due to TB, but to the injection containing some “cadaveric material.” Although Villemin could show that the number and extent of lesions on the lungs are not correlated with the number and extent of lesions developed at the injection site, he himself noted a crucial limitation: “should we consider the entire chain of phenomena observed in experimental tuberculosis as the result of a traumatism due to inoculation? This is an enigma that we cannot resolve” (Villemin 1868/2015 , 259).

The second shortcoming concerns a lack of knowledge about the relevant mechanism. The causal knowledge Villemin attained did not permit “tracing” the causal process (Steel, 2008 ), which would have assisted grasping coherence-making relationships and comprehending how the elements of TB are configured. This seems to necessitate some degree of explanatory understanding and discerning the mechanism that is responsible for linking cause and effect. A mechanism for phenomenon P consists of parts and processes that are structured in a way such that they are responsible for P (Glennan et al., 2021 ). Explanations in the biomedical sciences are most frequently mechanistic, explaining a disease by identifying the spatiotemporal structure of a mechanism that is responsible for that disease and its symptoms (Thagard, 2005 ; Darrason, 2018 ; Williamson, 2019 ). Villemin’s study establishes a coarse-grained difference-making relationship, but it does not amount to biomedical understanding because it fails to discern the correct mechanism.

We could say that the lack of such a mechanism has crucially impacted Villemin’s ability to gather sufficient evidence for explanatory understanding. There are two possibilities here, depending on which thesis one subscribes to regarding the role of mechanisms in establishing causal claims (for discussions, see Russo & Williamson, 2007 ; Illari, 2011 ; Williamson, 2019 ). According to a strong thesis, establishing a causal relationship requires not only difference-making evidence but also evidence of a mechanism composed by entities (such as proteins) and processes (such as protein expression) that together link cause and effect. If one accepts the strong thesis, then Villemin has not met the criteria for establishing a causal relationship because he had no knowledge of the mechanism. According to a weaker thesis, difference-making can serve as evidence for a causal relationship. However, evidence of a mechanism, combined with difference-making evidence, significantly increases certainty that the observed correlation is not merely spurious and that the effect can be attributed to the experimental intervention rather than to confounding variables.

Having examined these two shortcomings, it appears likely that each has contributed to the failure to attain objectual understanding. However, it is unclear whether any of these factors are essential for achieving objectual understanding. In the sections that follow, we will explore the historical development of tuberculosis research to further investigate this issue.

3.1 Koch and beyond

A significant breakthrough with respect to the first two shortcomings came with Robert Koch’s 1882 discovery of the bacterium Mycobacterium tuberculosis (MTB) as the causative agent of TB (Keshavjee & Farmer, 2012 ). Footnote 7 Koch formalized a set of “postulates” for establishing causation, which required (a) coincidence of bacteria and disease, (b) isolation of bacteria in a pure culture, and (c) induction of disease by inoculation with bacteria from pure culture. As to (a), Koch was able to show that the MTB were always present in TB (but not in normal states), that they preceded tubercle formation, and that their number covaried with TB being progressive or quiescent. As to (b), Koch managed to isolate individual colonies of MTB in pure culture that allowed studying their growth characteristics. As to (c), he inoculated animals with MTB obtained from various origins (induced disease, spontaneous disease, and artificial culture). Koch found that injections led to the formation of tubercles with similar characteristics, and the number of tubercles corresponded to the amount of the inoculum used (Blevins & Bronze, 2010 ).

While Koch’s postulates can be interpreted in various ways (e.g., Broadbent, 2009 ), some have argued that Koch’s experimental distinction of causal from correlational relationships are best captured by the interventionist account of causation (Ross & Woodward, 2016 ). Interventionism posits that causal relationships are those that can be potentially harnessed for manipulation and control: very roughly, if intervening on C reliably leads to changes in E, then C is the cause of E. Woodward ( 2003 ) outlines the necessary and sufficient criteria for establishing causation as follows: C causes E if and only if (i) there is some possible intervention on C such that (ii) were this intervention to occur, there would be an association or correlation between C and E. The account highlights idealized experimental intervention as appropriate for the purposes of determining whether C causes E, as it eliminates possibility of confounding. As the induced change is not correlated with potential confounders, the presence of a correlation between C and E upon intervention on C means that C has a causal influence on E.

Interventionism fits Koch’s postulates, particularly his emphasis on (c), i.e., the induction of disease into a healthy animal by inoculation with bacteria from pure culture. In fact, Koch clearly maintains that determining causality between MTB and TB “can only be decided by inoculating pure bacilli,” thus step (c) (quoted in Ross & Woodward, 2016 , p. 44). Footnote 8 Of course, (b) can be seen as a procedure to ensure that (c) obtains the characteristics of a proper intervention: it excludes the possibility that confounding factors are contained in the inoculated material. Causal claims can only be established if the intervention is associated with a change in the incidence of TB (e.g., its presence, absence, rate of occurrence). In accordance with (M), if the inoculation of substances had not led to the occurrence of disease, Koch would not have identified them as the cause of the disease.

Although the discovery of the causal agent addressed the first shortcoming in Villemin’s research, it alone was insufficient to resolve the second shortcoming concerning the mechanism. However, this is clearly a significant issue, in part because it connects with important questions from a clinical perspective. Without an understanding of the mechanism, questions about what holds together the symptoms of TB, whether certain characteristics (e.g., diarrhea) are parts of TB or caused by TB, how MTB is disseminated to other organs, why most individuals with latent infection do not develop the disease, cannot be answered.

3.2 Twentieth-century discoveries

In the twentieth century, a notable breakthrough came with the identification of the mechanism through which MTB interacts intricately with the host’s immune system, leading to TB. Roughly, when MTB reaches the lungs, it is taken up by macrophages, which are immune cells that engulf and destroy foreign particles. However, MTB is able to survive and replicate within the macrophages, which leads to the formation of granulomas that surround the infected macrophages to contain the infection. MTB is sometimes able to resist destruction and containment, eventually causing the macrophages to burst and release more bacteria into the surrounding tissue. The infected tissue becomes inflamed, leading to the formation of the characteristic lesions, or granulomas, in the lungs and other organs. The granulomas can restrict the infection, leading to a latent TB infection, or they can break down, releasing MTB into the lungs, where it can be coughed up and spread to others (for reviews, see Delogu et al., 2013 ; Yan et al., 2022 ).

The mechanism was elucidated over several decades through the significant contributions of numerous researchers. Therefore, it is challenging to pinpoint exactly when and by which researchers a threshold was crossed, marking a stage at which we may speak of researchers having attained objectual understanding of TB. However, once a mechanistic explanation became available that referenced the configuration and activities of component entities, and identified both the normal functioning of macrophages and how MTB disrupts this process, it seems quite intuitive to say that researchers had achieved a significant level of objectual, biomedical understanding of TB. Researchers have progressed beyond merely explaining various aspects of TB; they have crossed a threshold into systematically, objectually understanding TB .

Of course, while this assertion may seem intuitively appealing, it alone raises a crucial question: what is it about mechanistic explanations that renders them necessary for achieving a significant level of objectual understanding? In what follows, the aim will be to show that mechanistic explanations have enabled achieving a level of coherence and integration, offering clear potential to refine theoretical frameworks and clinical practices, and to facilitate the development of more comprehensive taxonomies and classifications. But before doing so, it is worth emphasizing that a sufficient level of objectual biomedical understanding of TB has been achieved, not merely by grasping the relevant mechanistic explanations, but also by integrating this with other pieces of knowledge and understanding already obtained.

For this, we may start by noting how a mechanistic explanation not only overcomes the second shortcoming observed in the research of Villemin and Koch but also enables new insights that carry profound implications for diagnosis, treatment, and prevention strategies, directly affecting patient care and public health initiatives. This underscores an earlier argument that what constitutes a sufficient level of objectual understanding in medicine is context-sensitive and closely linked to a practical orientation. Let us now review a couple of important implications for research and clinical settings.

First, grasping the relevant mechanistic explanation, researchers were able to chart a much more fine-grained intricate web of counterfactual dependencies, which paves the road towards enhanced intervention possibilities concerning TB. Researchers can formulate new hypotheses around potential interventions, such as enhancing the macrophages’ capability to eradicate MTB or inhibiting MTB’s ability to prevent acidification within macrophages (for a review of current research, see e.g., Bo et al., 2023 ).

Second, comprehending the mechanism significantly enhances the ability to interpret and address a range of clinically relevant issues. It provides a unified view of TB, clarifying how its various elements are interrelated, and explaining how seemingly disparate symptoms are interconnected through a common cause. This comprehensive insight into the relationships between TB symptoms and the disease process improves diagnostic accuracy and aids in refining diagnostic criteria. It enables healthcare providers to more effectively differentiate TB from other conditions with similar symptoms, thereby reducing the risk of misdiagnosis. Moreover, this understanding is crucial in explaining why some individuals with latent TB infections do not progress to active disease, a key factor in managing public health risks.

Overall, comprehending the mechanism of TB has facilitated a significant milestone, crossing a threshold into what we may describe as an objectual, biomedical understanding of TB. This had key implications for identifying new treatment targets, enhancing diagnostic methods, and deepening our knowledge of disease transmission and resistance mechanisms—all of which are vital for improving clinical interventions and formulating effective public health strategies. Crossing this threshold is an important milestone, but it is entirely consistent with recognizing that further exploration and deeper understanding may still be necessary. It does not in any way imply that researchers have reached a final stage in their inquiry that would conclude investigation into TB. Indeed, as researcher recognize, many questions remain (for a recent review, see e.g., Bloom, 2023 ; WHO, 2023 ), driving increasingly detailed and nuanced insights to continuously refine existing approaches to treatment and prevention.

4 Concluding remarks

In light of the recent calls to reexamine the foundational aims of medicine, both in research and clinical practice, this paper emphasizes the importance of understanding as a unifying aim in these domains. As underscored by recent editorials cited in the introduction, there is an imperative to revisit not only the practical aims that medicine seeks, but also its epistemic aims. This is particularly salient in a time when the very essence of what constitutes medical science and clinical medicine is under scrutiny. Accordingly, this paper concentrated on the relevant epistemic aims. By exploring different forms of understanding, the paper uses TB as a focal point to argue that a grasp of mechanistic explanations is crucial for reaching a threshold of understanding at which we may speak of an objectual understanding of TB.

An important limitation of this paper is its focus on a single case: TB. Consequently, there are notable constraints on the breadth of conclusions that can be drawn. However, there are at least some reasons to believe that the findings may have broader applicability. One such reason is that an earlier study on noncommunicable diseases (Varga, 2023 ) have reached similar conclusion. That study revealed that in the case of scurvy, a mechanistic explanation of the condition is necessary for biomedical understanding, but this is not sufficient for understanding in a clinical setting. This earlier study, which examined an emblematic noncommunicable disease, reached a similar conclusion to the current study that focuses on a representative communicable disease. This suggests a potential pattern across various contexts of biomedical research. That said, additional research is required to reinforce this point by investigating whether these conclusions are applicable across a wide spectrum of diseases, including those that are rarer and less prominent. Additionally, it is worth noting that this might differ significantly for conditions where mechanistic explanations have proven challenging to establish. Mental disorders could serve as critical test cases to explore the applicability of our findings in contexts where the underlying mechanisms are less understood.

Interestingly, in an editorial published by the British Medical Journal (Marshall et al., 2018 ) the editors prompt a similar reflection on the purpose of clinical medicine. They challenge the prevailing emphasis on disease-centric care and encourage contemplation of whether a holistic therapeutic relationship with patients might better align with the true aim of medical practice. Though published separately, these editorials collectively highlight a growing movement towards a critical reevaluation of the aims and priorities of both medical science and clinical medicine. The question has sparked considerable interest, with various competing accounts proposing that there is a single, overarching aim (e.g., Broadbent, 2019 ) whereas others suggesting that medicine has multiple aims (e.g., Boorse, 2016 ; Brody & Miller, 1998 ; Schramme, 2017 ).

Munthe ( 2008 ) advocates for an integrated, multidimensional model, highlighting that recent decades have seen the introduction of new objectives focusing on autonomy and equality.

See Bird ( 2019 ) for a helpful discussion of an example from physics.

Other accounts maintain that progress in science occurs when theories come nearer to the truth or when it accumulates solutions to scientific puzzles that are neutral about questions of truth. For a critical review, see Bird ( 2007 ).

Practical understanding (“understanding-how”) typically involves skillful behaviors, relies often on non-propositional knowledge, and is neither explanatory nor susceptible to Gettier-style objections (Bengson, 2017 ). For example, a person may lack the resources to explain the workings of a device but may understand how the device works by way of her skill to adeptly use it.

A mechanism is typically defined as “a structure performing a function in virtue of its component parts, component operations, and their organization” (Bechtel & Abrahamsen, 2005 , p. 423).

For his research, Koch earned the Nobel Prize in 1905.

It makes sense to think that had Koch adhered to a view of causation as merely regularities involving necessary and sufficient conditions that could be discerned through observation, he would not have emphasized (c).

Ban, T. A. (2006). The role of serendipity in drug discovery. Dialogues in Clinical Neuroscience , 8:3 , 335–344.

Article   Google Scholar  

Barnes, D. S. (2000). Historical perspectives on the etiology of tuberculosis. Microbes and Infection , 2 (4), 431–440.

Baumberger, C., Beisbart, C., & Brun, G. (2017). What is understanding? An overview of recent debates in epistemology and philosophy of science. In Grimm, S., Bamberger, C, and Ammon, S. (Ed.). (2017). Explaining understanding: New perspectives from epistemology and philosophy of science London: Routledge. 1–34.

Bechtel, W., & Abrahamsen, A. (2005). Explanation: A mechanist alternative. Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences , 36 (2), 4214–4241.

Bengson, J. (2017). The unity of understanding. In S. Grimm (Ed.), Making sense of the world: New essays on the philosophy of understanding (pp. 14–53). Oxford University Press.

Bird, A. (2007). What Is Scientific Progress? Nous , 41(1), 64–89.

Bird, A. (2019). The aim of belief and the aim of science. Theoria: An International Journal for Theory History and Foundations of Science , 34 (2), 1711–1793.

Google Scholar  

Blevins, S. M., & Bronze, M. S. (2010). Robert Koch and the ‘golden age’ of bacteriology. International Journal of Infectious Diseases , 14 (9), e744–e751.

Bloom, B. R. (2023). A half-century of research on tuberculosis: Successes and challenges. Journal of Experimental Medicine , 220 (9), e20230859.

Bo, H., Moure, U. A. E., Yang, Y., Pan, J., Li, L., Wang, M., & Cui, H. (2023). Mycobacterium tuberculosis-macrophage interaction: Molecular updates. Frontiers in Cellular and Infection Microbiology , 13 , 1062963.

Boorse, C. (2016). Goals of Medicine. In É. Giroux (Ed.), Naturalism in the Philosophy of Health (pp. 145–177). Springer International Publishing Carter and Gordon 2014).

Broadbent, A. (2009). Causation and models of disease in epidemiology. Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences , 40 (4), 302–311.

Broadbent, A. (2019). Philosophy of medicine . Oxford University Press.

Brody, H., & Miller, F. G. (1998). The internal morality of medicine: Explication and application to managed care. The Journal of Medicine and Philosophy , 23 (4), 384–410.

Bynum, H. (2012). Spitting blood: The history of tuberculosis . OUP Oxford.

Cambau, E., & Drancourt, M. (2014). Steps towards the discovery of Mycobacterium tuberculosis by Robert Koch, 1882. Clinical Microbiology and Infection , 20 (3), 196–201.

Craver, C. F. (2013). Functions and mechanisms: A perspectivalist view. Functions: Selection and mechanisms (pp. 133–158). Springer Netherlands.

Daniel, T. M. (2006). The history of tuberculosis. Respiratory Medicine , 100 (11), 1862–1870.

Daniel, T. M., Bates, J. H., & Downes, K. A. (1994). History of tuberculosis. In T. M. Daniel (Ed.), Tuberculosis: Pathogenesis, Protection, and control (pp. 13–24). American Society for Microbiology.

Darrason, M. (2018). Mechanistic and topological explanations in medicine: The case of medical genetics and network medicine. Synthese , 195 (1), 147–173.

De Regt, H. W. (2009). The epistemic value of understanding. Philosophy of Science , 76 (5), 585–597.

De Regt, H. W. (2017). Understanding scientific understanding . Oxford University Press.

De Regt, H. W., & Dieks, D. (2005). A contextual approach to scientific understanding. Synthese , 144 (1), 137–170.

De Regt, H. W., Leonelli, S., & Eigner, K. (2009). Focusing on scientific understanding. In, De Regt, H. W., Leonelli, S., and Eigner, K. (2009) Scientific understanding: Philosophical perspectives , Pittsburgh: University of Pittsburgh Press. 1–17.

Dellsén, F. (2016). Scientific progress: Knowledge versus understanding. Studies in History and Philosophy of Science Part A , 56 , 72–83.

Delogu, G., Sali, M., & Fadda, G. (2013). The biology of mycobacterium tuberculosis infection. Mediterranean Journal of Hematology and Infectious Diseases , 5 (1).

Doetsch, R. N. (1978). Benjamin Marten and his new theory of consumptions. Microbiological Reviews , 42 (3), 521–528.

Dupré, J. (2016). Towarda political philosophy of science. In M. Couch (Ed.), The philosophy of Philip Kitcher . Oxford University Press.

Elgin, C. (2007). Understanding and the facts. Philosophical Studies , 132 (1), 334–332.

Elgin, C. (2009a). Is understanding factive? In A. Haddock, A. Millar, & D. Pritchard (Eds.), Epistemic value (pp. 3223–3230). Oxford University Press.

Elgin, C. (2009b). Exemplification, idealization, and understanding. In M. Suárez (Ed.), Fictions in Science: Essays on idealization and modelling (pp. 779–770). Routledge.

Elgin, C. Z. (2017). True enough . MIT Press.

Ereshefsky, M. (2009). Defining ‘health’ and ‘disease’. Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences , 40 (3), 221–227.

Glennan, S., Illari, P., & Weber, E. (2021). Six theses on mechanisms and mechanistic science. Journal for General Philosophy of Science , 1–19.

Grimm, S. (2011). Understanding In S. Bernecker and D. Pritchard (Eds.), The Routledge Companion to Epistemology. New York: Routledge.

Grimm, S. (2014). Understanding as knowledge of causes. In A. Fairweather (Ed.), Virtue Epistemology Naturalized: Bridges between Virtue Epistemology and Philosophy of Science . Springer.

Grimm, S. (2021). Understanding, The Stanford Encyclopedia of Philosophy (Summer 2021 Edition), Edward N. Zalta (Ed.), https://plato.stanford.edu/archives/sum2021/entries/understanding/ .

Hannon, M. (2019). What’s the point of knowledge? A function-first Epistemology . Oxford University Press.

Hannon, M. (2021). Recent work in the epistemology of understanding. American Philosophical Quarterly , 58 (3), 269–290.

Hempel, C. G., & Oppenheim, P. (1948). Studies in the logic of explanation. Philosophy of Science , 15 (2), 1351–1375.

Illari, P., & McKay (2011). Disambiguating the russo–Williamson Thesis. International Studies in the Philosophy of Science , 25 , 139–157.

Kapur, V., Whittam, T. S., & Musser, J. M. (1994). Is Mycobacterium tuberculosis 15000 years old? Journal of Infectious Diseases , 170 , 1348–1349.

Kelp, C. (2021). Inquiry, knowledge and understanding. Synthese , 198 (7), 1583–1593.

Kendler, K. S., Zachar, P., & Craver, C. (2011). What kinds of things are Psychiatric disorders? Psychological Medicine , 41 (6), 1143–1115.

Keshavjee, S., & Farmer, P. E. (2012). Tuberculosis, drug resistance, and the history of modern medicine. New England Journal of Medicine , 367 (10), 931–936.

Khalifa, K. (2013). The role of explanation in understanding. The British Journal for the Philosophy of Science , 64 (1), 161–187.

Kitcher, P. (2001). Science, truth, and democracy . Oxford University Press.

Kvanvig, J. L. (2003). The value of knowledge and the pursuit of understanding . Cambridge University Press.

Kvanvig, J. (2009). The value of understanding. In A. Haddock, A. Millar, & D. Pritchard (Eds.), Epistemic value (pp. 95–111). Oxford University Press.

Kvanvig, J. (2013). Curiosity and the response-dependent special value of understanding. Knowledge, virtue and action: Putting epistemic virtues to work, 151–174.

Lipton, P. (2001). What good is an explanation? In G. Hon, & S. S. Rakover (Eds.), Explanation: Theoretical approaches and applications (pp. 53–59). Springer Science and Business Media.

Lipton, P. (2004). Inference to the best explanation . Routledge.

Machamer, P., Darden, L., & Craver, C. F. (2000). Thinking about mechanisms. Philosophy of Science , 67 (1), 12–15.

Marshall, M., Cornwell, J., & Collins, A. (2018). Rethinking medicine. bmj , 363 .

Munthe, C. (2008). The goals of publichealth: An integrated, multidimensional model. Public Health Ethics , 1 (1), 39–52.

Pennock, R. T. (2019). An instinct for truth: Curiosity and the moral character of science . MIT Press.

Potochnik, A. (2015). The diverse aims of science. Studies in History and Philosophy of Science Part A , 53 , 71–80.

Potochnik, A. (2017). Idealization and the aims of Science . University of Chicago Press.

Pritchard, D. (2010a). Knowledge and understanding., in Pritchard, D., Millar, A., and Haddock, A. (2010), The Nature and Value of. Knowledge: Three Investigations. Oxford: Oxford University Press

Ross, L. N., & Woodward, J. F. (2016). Koch’s postulates: An interventionist perspective. Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences , 59 , 35–46.

Russo, F., & Williamson, J. (2007). Interpreting causality in the Health sciences. International Studies in the Philosophy of Science , 21 , 157–170.

Salmon, W. C. (1984). Scientific explanation and the causal structure of the world . Princeton University Press.

Schramme, T. (2017). Goals of Medicine. In T. Schramme, & S. Edwards (Eds.), Handbook of the philosophy of Medicine (pp. 121–128). Springer Netherlands.

Steel, D. (2008). Across the boundaries, Extrapolation in Biology and Social Science . Oxford University Press.

Strevens, M. (2010). Varieties of Understanding. In: Pacific Division meeting of the American Philosophical Association , San Francisco, CA, March (Vol. 31).

Strevens, M. (2017). How idealizations provide understanding. In S. R. Grimm (Ed.), Explaining understanding: New perspectives from epistemology and philosophy of science . Routledge, Taylor and Francis Group.

Thagard, P. (2005). What is a medical theory? Studies in Multidisciplinarity , 3 , 476–472.

The Lancet. (2013). What is the purpose of medical research? The Lancet , 381 (9864), 347.

Thornton, H. (2013). We need to askwhat is the purpose of research? BMJ , 347 .

Trout, J. D. (2002). Scientific explanation and the sense of understanding. Philosophy of Science , 69 (2), 2122–2133.

Varga, S. (2023). Understanding in Medicine. Erkenntnis . https://doi.org/10.1007/s10670-023-00665-8 .

Varga, S. (2024). Science, Medicine, and the aims of Inquiry: A philosophical analysis . Cambridge University Press.

Villemin, D. J. (1868/2015). On the virulence and specificity of tuberculosis. The International Journal of Tuberculosis and Lung Disease , 19 (3), 256–266.

White, F., Stallones, L., & Last, J. (2013). History, aims, and Methods of Public Health. In F. White, L. Stallones, & J. M. Last (Eds.), Global public health: Ecological foundations . Oxford University Press.

WHO. (2023). Global tuberculosis report 2023 . World Health Organization.

Williamson, J. (2019). Establishing Causal claims in Medicine. International Studies in the Philosophy of Science , 32 (1), 33–61.

Woodward, J. (2003). Making things happen: A theory of causal explanation . Oxford University Press.

Woodward, J. (2010). Causation in Biology: Stability, specificity, and the choice of levels of explanation. Biology and Philosophy , 25 (3), 287–318.

Yan, W., Zheng, Y., Dou, C., Zhang, G., Arnaout, T., & Cheng, W. (2022). The pathogenic mechanism of Mycobacterium tuberculosis: Implication for new drug development. Molecular Biomedicine , 3 (1), 48.

Download references

Open access funding provided by Aarhus Universitet.

Open access funding provided by Aarhus Universitet

Author information

Authors and affiliations.

Department of Philosophy and History of Ideas, Aarhus University, Aarhus, Denmark

Somogy Varga

The Centre for Philosophy of Epidemiology, Medicine and Public Health, University of Johannesburg, Johannesburg, South Africa

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Somogy Varga .

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Varga, S. Scientific understanding in biomedical research. Synthese 204 , 66 (2024). https://doi.org/10.1007/s11229-024-04694-w

Download citation

Received : 12 October 2023

Accepted : 28 June 2024

Published : 02 August 2024

DOI : https://doi.org/10.1007/s11229-024-04694-w

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Understanding
  • Biomedical research
  • Tuberculosis
  • Clinical medicine
  • Find a journal
  • Publish with us
  • Track your research

Grab your spot at the free arXiv Accessibility Forum

Help | Advanced Search

Computer Science > Computation and Language

Title: fine grained human evaluation for english-to-chinese machine translation: a case study on scientific text.

Abstract: Recent research suggests that neural machine translation (MT) in the news domain has reached human-level performance, but for other professional domains, it is far below the level. In this paper, we conduct a fine-grained systematic human evaluation for four widely used Chinese-English NMT systems on scientific abstracts which are collected from published journals and books. Our human evaluation results show that all the systems return with more than 10\% error rates on average, which requires much post editing effort for real academic use. Furthermore, we categorize six main error types and and provide some real examples. Our findings emphasise the needs that research attention in the MT community should be shifted from short text generic translation to professional machine translation and build large scale bilingual corpus for these specific domains.
Comments: 12 pages, 3 tables
Subjects: Computation and Language (cs.CL)
Cite as: [cs.CL]
  (or [cs.CL] for this version)
  Focus to learn more arXiv-issued DOI via DataCite

Submission history

Access paper:.

  • Other Formats

license icon

References & Citations

  • Google Scholar
  • Semantic Scholar

DBLP - CS Bibliography

Bibtex formatted citation.

BibSonomy logo

Bibliographic and Citation Tools

Code, data and media associated with this article, recommenders and search tools.

  • Institution

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs .

Information

  • Author Services

Initiatives

You are accessing a machine-readable page. In order to be human-readable, please install an RSS reader.

All articles published by MDPI are made immediately available worldwide under an open access license. No special permission is required to reuse all or part of the article published by MDPI, including figures and tables. For articles published under an open access Creative Common CC BY license, any part of the article may be reused without permission provided that the original article is clearly cited. For more information, please refer to https://www.mdpi.com/openaccess .

Feature papers represent the most advanced research with significant potential for high impact in the field. A Feature Paper should be a substantial original Article that involves several techniques or approaches, provides an outlook for future research directions and describes possible research applications.

Feature papers are submitted upon individual invitation or recommendation by the scientific editors and must receive positive feedback from the reviewers.

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Original Submission Date Received: .

  • Active Journals
  • Find a Journal
  • Proceedings Series
  • For Authors
  • For Reviewers
  • For Editors
  • For Librarians
  • For Publishers
  • For Societies
  • For Conference Organizers
  • Open Access Policy
  • Institutional Open Access Program
  • Special Issues Guidelines
  • Editorial Process
  • Research and Publication Ethics
  • Article Processing Charges
  • Testimonials
  • Preprints.org
  • SciProfiles
  • Encyclopedia

land-logo

Article Menu

case study as a scientific text

  • Subscribe SciFeed
  • Recommended Articles
  • Google Scholar
  • on Google Scholar
  • Table of Contents

Find support for a specific problem in the support section of our website.

Please let us know what you think of our products and services.

Visit our dedicated information section to learn more about MDPI.

JSmol Viewer

An approach for mapping ecotourism suitability using machine learning: a case study of zhangjiajie, china.

case study as a scientific text

1. Introduction

2. study area and data, 2.1. study area, 2.2. data source, 3.1. framework, 3.2. machine learning, 3.2.1. random forest (rf), 3.2.2. xtreme gradient boosting (xgboost), 3.2.3. support vector machine (svm), 3.2.4. adaptive boosting (adaboost), 3.3. feature processing.

FeatureProcessingDescriptionReference
Ecological environment
( )
NDVI denote the red and green bands in remote sensing data, respectively.[ ]
TemperatureKriging interpolation and maskingAffects the variability of natural landscapes.[ ]
PrecipitationKriging interpolation and maskingAffects vegetation ecology and scenic safety.[ ]
HumidityKirchhoff transformAffects vegetation growth and distribution, which directly affect landscape ecology.[ ]
Land useResample and maskingAffects the scale and quality of ecotourism.[ ]
Geology and landforms
( )
GeologyResample and maskingReflects the region’s geological environment.[ ]
ElevationResampleReflects surface altitude conditions.[ ]
SlopeSurface analysisReflects surface microstructure.[ ]
AspectSurface analysisReflects surface mountain ecology.[ ]
Relief denote the maximum and minimum elevation per unit area, respectively.[ ]
Humanities and society
( )
PopulationResample and maskingInfluences the layout of ecotourism development and resource allocation.[ ]
Nighttime light intensity (NILI)Resample and maskingIt is highly correlated with economic development.[ ]
Road network density (ROND) denote the road lengths and unit sizes, respectively.[ ]
Distance from roads (DISO)Euclidean distanceUsed to measure regional transport accessibility.[ ]
Distance from settlements (DISS)Euclidean distanceIt serves as a crucial support node and stakeholder in the advancement of ecotourism.[ ]
Resource availability
( )
Aesthetic landscape value (ALSV)Kriging interpolation and maskingComprehensively reflects the region’s natural and human landscapes.[ ]
BiodiversityKriging interpolation and maskingA prerequisite for the development of ecotourism.[ ]
Soil conservation capacity (SOCC)Kriging interpolation and maskingIts strength directly affects the sustainable development of ecotourism.[ , ]
Forest ageResample and maskingReflects vegetated landscape resources.[ ]
Distance from river (DISI)Euclidean distanceProvides water and ecological support.[ ]

4.1. Feature Correlation Analysis

4.2. model evaluation, 4.3. mapping results of the models, 4.4. comprehensive results, 4.5. result verification, 4.6. contributions of features, 5. discussion, 5.1. model’s fractional anisotropy, 5.2. impact of land policy, 5.3. applied range and limitations, 5.4. future work, 6. conclusions, author contributions, data availability statement, acknowledgments, conflicts of interest.

  • Gigović, L.; Pamučar, D.; Lukić, D.; Marković, S. GIS-Fuzzy DEMATEL MCDA model for the evaluation of the sites for ecotourism development: A case study of “Dunavski ključ” region, Serbia. Land Use Policy 2016 , 58 , 348–365. [ Google Scholar ] [ CrossRef ]
  • Kaymaz, Ç.K.; Çakır, Ç.; Birinci, S.; Kızılkan, Y. GIS-Fuzzy DEMATEL MCDA model in the evaluation of the areas for ecotourism development: A case study of “Uzundere”, Erzurum-Turkey. Appl. Geogr. 2021 , 136 , 102577. [ Google Scholar ] [ CrossRef ]
  • Ronizi, S.R.A.; Mokarram, M.; Negahban, S. Utilizing multi-criteria decision to determine the best location for the ecotourism in the east and central of Fars province, Iran. Land Use Policy 2020 , 99 , 105095. [ Google Scholar ] [ CrossRef ]
  • Yee, J.Y.; Loc, H.H.; Le Poh, Y.; Vo-Thanh, T.; Park, E. Socio-geographical evaluation of ecosystem services in an ecotourism destination: PGIS application in Tram Chim National Park, Vietnam. J. Environ. Manag. 2021 , 291 , 112656. [ Google Scholar ] [ CrossRef ]
  • Mileti, F.A.; Miranda, P.; Langella, G.; Pacciarelli, M.; De Michele, C.; Manna, P.; Bancheri, M.; Terribile, F. A geospatial decision support system for ecotourism: A case study in the Campania region of Italy. Land Use Policy 2022 , 118 , 106131. [ Google Scholar ] [ CrossRef ]
  • Tajer, E.; Demir, S. Ecotourism strategy of UNESCO city in Iran: Applying a new quantitative method integrated with BWM. J. Clean. Prod. 2022 , 376 , 134284. [ Google Scholar ] [ CrossRef ]
  • Hafezi, F.; Bijani, M.; Gholamrezai, S.; Savari, M.; Panzer-Krause, S. Towards sustainable community-based ecotourism: A qualitative content analysis. Sci. Total Environ. 2023 , 891 , 164411. [ Google Scholar ] [ CrossRef ]
  • Brightsmith, D.J.; Stronza, A.; Holle, K. Ecotourism, conservation biology, and volunteer tourism: A mutually beneficial triumvirate. Biol. Conserv. 2008 , 141 , 2832–2842. [ Google Scholar ] [ CrossRef ]
  • Santarem, F.; Campos, J.C.; Pereira, P.; Hamidou, D.; Saarinen, J.; Brito, J.C. Using multivariate statistics to assess ecotourism potential of water-bodies: A case-study in Mauritania. Tour. Manag. 2018 , 67 , 34–46. [ Google Scholar ] [ CrossRef ]
  • Ayhan, Ç.K.; Taşlı, T.C.Z.; Özkök, F.; Tatlı, H. Land use suitability analysis of rural tourism activities: Yenice, Turkey. Tour. Manag. 2020 , 76 , 103949. [ Google Scholar ] [ CrossRef ]
  • Dhami, I.; Deng, J.; Burns, R.C.; Pierskalla, C. Identifying and mapping forest-based ecotourism areas in West Virginia–Incorporating visitors’ preferences. Tour. Manag. 2014 , 42 , 165–176. [ Google Scholar ] [ CrossRef ]
  • Jeong, J.S.; García-Moruno, L.; Hernández-Blanco, J.; Jaraíz-Cabanillas, F.J. An operational method to supporting siting decisions for sustainable rural second home planning in ecotourism sites. Land Use Policy 2014 , 41 , 550–560. [ Google Scholar ] [ CrossRef ]
  • Ghasemi, M.; Charrahy, Z.; González-García, A. Mapping cultural ecosystem services provision: An integrated model of recreation and ecotourism opportunities. Land Use Policy 2023 , 131 , 106732. [ Google Scholar ] [ CrossRef ]
  • Ambecha, A.B.; Melka, G.A.; Gemeda, D.O. Ecotourism site suitability evaluation using geospatial technologies: A case of Andiracha district, Ethiopia. Spat. Inf. Res. 2020 , 28 , 559–568. [ Google Scholar ] [ CrossRef ]
  • Zabihi, H.; Alizadeh, M.; Wolf, I.D.; Karami, M.; Ahmad, A.; Salamian, H. A GIS-based fuzzy-analytic hierarchy process (F-AHP) for ecotourism suitability decision making: A case study of Babol in Iran. Tour. Manag. Perspect. 2020 , 36 , 100726. [ Google Scholar ] [ CrossRef ]
  • Fadafan, F.K.; Soffianian, A.; Pourmanafi, S.; Morgan, M. Assessing ecotourism in a mountainous landscape using GIS–MCDA approaches. Appl. Geogr. 2022 , 147 , 102743. [ Google Scholar ] [ CrossRef ]
  • Ruano, M.; Huang, C.-Y.; Nguyen, P.-H.; Nguyen, L.-A.T.; Le, H.-Q.; Tran, L.-C. Enhancing sustainability in Belize’s ecotourism sector: A fuzzy Delphi and fuzzy DEMATEL Investigation of Key Indicators. Mathematics 2023 , 11 , 2816. [ Google Scholar ] [ CrossRef ]
  • Li, Y.; Zhang, S.; Han, J.; Zhao, Y.; Han, Q.; Wu, L.; Wang, X.; Qiu, Z.; Zou, T.; Fan, C. A study of the temporal and spatial variations in the suitability of the environment in Chinese cities for tourism and in strategies for optimizing the environment. Int. J. Digit. Earth 2022 , 15 , 527–552. [ Google Scholar ] [ CrossRef ]
  • Thompson, B.S. Ecotourism anywhere? The lure of ecotourism and the need to scrutinize the potential competitiveness of ecotourism developments. Tour. Manag. 2022 , 92 , 104568. [ Google Scholar ] [ CrossRef ]
  • Lee, J.-H. Conflict mapping toward ecotourism facility foundation using spatial Q methodology. Tour. Manag. 2019 , 72 , 69–77. [ Google Scholar ] [ CrossRef ]
  • Cao, H.J.; Wang, M.; Su, S.L.; Kang, M.J. Explicit quantification of coastal cultural ecosystem services: A novel approach based on the content and sentimental analysis of social media. Ecol. Indic. 2022 , 137 , 108756. [ Google Scholar ] [ CrossRef ]
  • Kim, Y.; Kim, C.-K.; Lee, D.K.; Lee, H.-W.; Andrada, R.I.T. Quantifying nature-based tourism in protected areas in developing countries by using social big data. Tour. Manag. 2019 , 72 , 249–256. [ Google Scholar ] [ CrossRef ]
  • Zhang, X.; Zhao, T.; Xu, H.; Liu, W.; Wang, J.; Chen, X.; Liu, L. GLC_FCS30D: The first global 30-m land-cover dynamic monitoring product with a fine classification system from 1985 to 2022 using dense time-series Landsat imagery and continuous change-detection method. Earth Syst. Sci. Data Discuss. 2023 , 16 , 1353–1381. [ Google Scholar ] [ CrossRef ]
  • Cheng, K.; Chen, Y.; Xiang, T.; Yang, H.; Liu, W.; Ren, Y.; Guan, H.; Hu, T.; Ma, Q.; Guo, Q. 2020 forest age map for China with 30 m resolution. Earth Syst. Sci. Data Discuss. 2023 , 16 , 803–819. [ Google Scholar ] [ CrossRef ]
  • Bai, J.; Li, Y.; Li, J.; Yang, X.; Jiang, Y.; Xia, S.-T. Multinomial random forest. Pattern Recognit. 2022 , 122 , 108331. [ Google Scholar ] [ CrossRef ]
  • Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [ Google Scholar ]
  • Tavakkoli Piralilou, S.; Einali, G.; Ghorbanzadeh, O.; Nachappa, T.G.; Gholamnia, K.; Blaschke, T.; Ghamisi, P. A Google Earth Engine approach for wildfire susceptibility prediction fusion with remote sensing data of different spatial resolutions. Remote Sens. 2022 , 14 , 672. [ Google Scholar ] [ CrossRef ]
  • Freund, Y.; Schapire, R.E. A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 1997 , 55 , 119–139. [ Google Scholar ] [ CrossRef ]
  • Xing, H.-J.; Liu, W.-T.; Wang, X.-Z. Bounded exponential loss function based AdaBoost ensemble of OCSVMs. Pattern Recognit. 2024 , 148 , 110191. [ Google Scholar ] [ CrossRef ]
  • Guo, J.; Rong, Y.; Zhu, J.; Yan, Y.; Du, J.; Zheng, L.; Zhao, Y. Industrial development zoning with dual objectives of spatial development suitability and ecosystem service value a case study in Xiaonanhai Hydropower Station basin. Ecol. Indic. 2024 , 158 , 111522. [ Google Scholar ] [ CrossRef ]
  • Chung, L.-W.; Chao, C.-L.; Liao, M.-C.; Kao, C.-W.; Lu, D.-J. Effectiveness and appropriateness of core areas in an integrated protected area: A case study of Ecological Protected Areas in Yangmingshan National Park, Taiwan. Environ. Sci. Policy 2023 , 145 , 175–187. [ Google Scholar ] [ CrossRef ]
  • Qu, Y.; Wang, S.; Tian, Y.; Jiang, G.; Zhou, T.; Meng, L. Territorial spatial planning for regional high-quality development–An analytical framework for the identification, mediation and transmission of potential land utilization conflicts in the Yellow River Delta. Land Use Policy 2023 , 125 , 106462. [ Google Scholar ]
  • Sobhani, P.; Esmaeilzadeh, H.; Wolf, I.D.; Deljouei, A.; Marcu, M.V.; Sadeghi, S.M.M. Evaluating the ecological security of ecotourism in protected area based on the DPSIR model. Ecol. Indic. 2023 , 155 , 110957. [ Google Scholar ] [ CrossRef ]
  • Wang, L.; Huang, L.; Cao, W.; Zhai, J.; Fan, J. Assessing grassland cultural ecosystem services supply and demand for promoting the sustainable realization of grassland cultural values. Sci. Total Environ. 2024 , 912 , 169255. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Qiu, Y.; Zhou, A.; Li, M.; Guo, Y.; Ma, C. Territorial spatial usage regulation based on resources endowment and sustainable development: A case of Wuhan, China. J. Clean. Prod. 2023 , 385 , 135771. [ Google Scholar ] [ CrossRef ]
  • Li, J.; He, H.; Chen, L.; Sun, R. Long-time Series Dataset of Soil Conservation Capacity Preventing Water Erosion in China (1992–2019). Earth Syst. Sci. Data Discuss. 2022 , 2022 , 1–24. [ Google Scholar ]

Click here to enlarge figure

DataYearResolutionSourceDescription
DEM202330 × 30 m (accessed on 15 April 2023)Basic data for terrain analysis.
Landsat 8202330 × 30 m (accessed on 8 March 2024)Used to calculate remote sensing indices such as the NDVI.
Geology1957–19951:200,000 (accessed on 12 March 2024)Used to characterize the regional geological environment.
Nighttime light2019130 × 130 m (accessed on 13 March 2024)The resolution of other data sources was too low; however, the Luojia1-01 data were only updated to 2019.
Meteorology1980–20221 × 1 km (accessed on 14 March 2024)Used to calculate the multi-year average temperature and precipitation.
Land use [ ]202230 × 30 m (accessed on 16 March 2024)The status of land use is a prerequisite and basis for ecotourism planning.
OSM2023- (accessed on 1 May 2024)Road data were extracted to calculate features such as road network density.
WorldPop2020100 × 100 m (accessed on 17 March 2024)Global high-resolution population distribution dataset.
POI2023- (accessed on 31 December 2023)Crawled using Python web crawling techniques.
Ecological value2000–20201 × 1 km (accessed on 18 March 2024)Five years of data (2000, 2005, 2010, 2015, and 2020) were averaged.
Forest age [ ]202030 × 30 m (accessed on 20 March 2024)To obtain the 2023 data, a value of 3 was added to the existing raster data.
MetricsAccuracyPrecisionRecallF AUC
RF0.89370.89590.87570.88280.9610
SVM0.87170.86780.86140.86260.9355
XGBoost0.92070.91760.91730.91540.9721
AdaBoost0.89380.87520.91300.89090.9603
The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

Huang, Q.; Zhou, C.; Li, M.; Ma, Y.; Hua, S. An Approach for Mapping Ecotourism Suitability Using Machine Learning: A Case Study of Zhangjiajie, China. Land 2024 , 13 , 1188. https://doi.org/10.3390/land13081188

Huang Q, Zhou C, Li M, Ma Y, Hua S. An Approach for Mapping Ecotourism Suitability Using Machine Learning: A Case Study of Zhangjiajie, China. Land . 2024; 13(8):1188. https://doi.org/10.3390/land13081188

Huang, Qin, Chen Zhou, Manchun Li, Yu Ma, and Song Hua. 2024. "An Approach for Mapping Ecotourism Suitability Using Machine Learning: A Case Study of Zhangjiajie, China" Land 13, no. 8: 1188. https://doi.org/10.3390/land13081188

Article Metrics

Article access statistics, further information, mdpi initiatives, follow mdpi.

MDPI

Subscribe to receive issue release notifications and newsletters from MDPI journals

Point Loma logo

Organizing Your Social Sciences Research Paper: Writing a Case Study

  • Purpose of Guide
  • Design Flaws to Avoid
  • Independent and Dependent Variables
  • Glossary of Research Terms
  • Narrowing a Topic Idea
  • Broadening a Topic Idea
  • Extending the Timeliness of a Topic Idea
  • Academic Writing Style
  • Choosing a Title
  • Making an Outline
  • Paragraph Development
  • Executive Summary
  • The C.A.R.S. Model
  • Background Information
  • The Research Problem/Question
  • Theoretical Framework
  • Citation Tracking
  • Content Alert Services
  • Evaluating Sources
  • Reading Research Effectively
  • Primary Sources
  • Secondary Sources
  • Tiertiary Sources
  • What Is Scholarly vs. Popular?
  • Qualitative Methods
  • Quantitative Methods
  • Using Non-Textual Elements
  • Limitations of the Study
  • Common Grammar Mistakes
  • Writing Concisely
  • Avoiding Plagiarism
  • Footnotes or Endnotes?
  • Further Readings
  • Annotated Bibliography
  • Dealing with Nervousness
  • Using Visual Aids
  • Grading Someone Else's Paper
  • Types of Structured Group Activities
  • Group Project Survival Skills
  • Multiple Book Review Essay
  • Reviewing Collected Essays
  • Writing a Case Study
  • About Informed Consent
  • Writing Field Notes
  • Writing a Policy Memo
  • Writing a Research Proposal
  • Bibliography

The term case study refers to both a method of analysis and a specific research design for examining a problem, both of which are used in most circumstances to generalize across populations. This tab focuses on the latter--how to design and organize a research paper in the social sciences that analyzes a specific case.

A case study research paper examines a person, place, event, phenomenon, or other type of subject of analysis in order to extrapolate  key themes and results that help predict future trends, illuminate previously hidden issues that can be applied to practice, and/or provide a means for understanding an important research problem with greater clarity. A case study paper usually examines a single subject of analysis, but case study papers can also be designed as a comparative investigation that shows relationships between two or among more than two subjects. The methods used to study a case can rest within a quantitative, qualitative, or mixed-method investigative paradigm.

Case Studies . Writing@CSU. Colorado State University; Mills, Albert J. , Gabrielle Durepos, and Eiden Wiebe, editors. Encyclopedia of Case Study Research . Thousand Oaks, CA: SAGE Publications, 2010 ; “What is a Case Study?” In Swanborn, Peter G. Case Study Research: What, Why and How? London: SAGE, 2010.

How to Approach Writing a Case Study Research Paper

General information about how to choose a topic to investigate can be found under the " Choosing a Research Problem " tab in this writing guide. Review this page because it may help you identify a subject of analysis that can be investigated using a single case study design.

However, identifying a case to investigate involves more than choosing the research problem . A case study encompasses a problem contextualized around the application of in-depth analysis, interpretation, and discussion, often resulting in specific recommendations for action or for improving existing conditions. As Seawright and Gerring note, practical considerations such as time and access to information can influence case selection, but these issues should not be the sole factors used in describing the methodological justification for identifying a particular case to study. Given this, selecting a case includes considering the following:

  • Does the case represent an unusual or atypical example of a research problem that requires more in-depth analysis? Cases often represent a topic that rests on the fringes of prior investigations because the case may provide new ways of understanding the research problem. For example, if the research problem is to identify strategies to improve policies that support girl's access to secondary education in predominantly Muslim nations, you could consider using Azerbaijan as a case study rather than selecting a more obvious nation in the Middle East. Doing so may reveal important new insights into recommending how governments in other predominantly Muslim nations can formulate policies that support improved access to education for girls.
  • Does the case provide important insight or illuminate a previously hidden problem? In-depth analysis of a case can be based on the hypothesis that the case study will reveal trends or issues that have not been exposed in prior research or will reveal new and important implications for practice. For example, anecdotal evidence may suggest drug use among homeless veterans is related to their patterns of travel throughout the day. Assuming prior studies have not looked at individual travel choices as a way to study access to illicit drug use, a case study that observes a homeless veteran could reveal how issues of personal mobility choices facilitate regular access to illicit drugs. Note that it is important to conduct a thorough literature review to ensure that your assumption about the need to reveal new insights or previously hidden problems is valid and evidence-based.
  • Does the case challenge and offer a counter-point to prevailing assumptions? Over time, research on any given topic can fall into a trap of developing assumptions based on outdated studies that are still applied to new or changing conditions or the idea that something should simply be accepted as "common sense," even though the issue has not been thoroughly tested in practice. A case may offer you an opportunity to gather evidence that challenges prevailing assumptions about a research problem and provide a new set of recommendations applied to practice that have not been tested previously. For example, perhaps there has been a long practice among scholars to apply a particular theory in explaining the relationship between two subjects of analysis. Your case could challenge this assumption by applying an innovative theoretical framework [perhaps borrowed from another discipline] to the study a case in order to explore whether this approach offers new ways of understanding the research problem. Taking a contrarian stance is one of the most important ways that new knowledge and understanding develops from existing literature.
  • Does the case provide an opportunity to pursue action leading to the resolution of a problem? Another way to think about choosing a case to study is to consider how the results from investigating a particular case may result in findings that reveal ways in which to resolve an existing or emerging problem. For example, studying the case of an unforeseen incident, such as a fatal accident at a railroad crossing, can reveal hidden issues that could be applied to preventative measures that contribute to reducing the chance of accidents in the future. In this example, a case study investigating the accident could lead to a better understanding of where to strategically locate additional signals at other railroad crossings in order to better warn drivers of an approaching train, particularly when visibility is hindered by heavy rain, fog, or at night.
  • Does the case offer a new direction in future research? A case study can be used as a tool for exploratory research that points to a need for further examination of the research problem. A case can be used when there are few studies that help predict an outcome or that establish a clear understanding about how best to proceed in addressing a problem. For example, after conducting a thorough literature review [very important!], you discover that little research exists showing the ways in which women contribute to promoting water conservation in rural communities of Uganda. A case study of how women contribute to saving water in a particular village can lay the foundation for understanding the need for more thorough research that documents how women in their roles as cooks and family caregivers think about water as a valuable resource within their community throughout rural regions of east Africa. The case could also point to the need for scholars to apply feminist theories of work and family to the issue of water conservation.

Eisenhardt, Kathleen M. “Building Theories from Case Study Research.” Academy of Management Review 14 (October 1989): 532-550; Emmel, Nick. Sampling and Choosing Cases in Qualitative Research: A Realist Approach . Thousand Oaks, CA: SAGE Publications, 2013; Gerring, John. “What Is a Case Study and What Is It Good for?” American Political Science Review 98 (May 2004): 341-354; Mills, Albert J. , Gabrielle Durepos, and Eiden Wiebe, editors. Encyclopedia of Case Study Research . Thousand Oaks, CA: SAGE Publications, 2010; Seawright, Jason and John Gerring. "Case Selection Techniques in Case Study Research." Political Research Quarterly 61 (June 2008): 294-308.

Structure and Writing Style

The purpose of a paper in the social sciences designed around a case study is to thoroughly investigate a subject of analysis in order to reveal a new understanding about the research problem and, in so doing, contributing new knowledge to what is already known from previous studies. In applied social sciences disciplines [e.g., education, social work, public administration, etc.], case studies may also be used to reveal best practices, highlight key programs, or investigate interesting aspects of professional work. In general, the structure of a case study research paper is not all that different from a standard college-level research paper. However, there are subtle differences you should be aware of. Here are the key elements to organizing and writing a case study research paper.

I.  Introduction

As with any research paper, your introduction should serve as a roadmap for your readers to ascertain the scope and purpose of your study . The introduction to a case study research paper, however, should not only describe the research problem and its significance, but you should also succinctly describe why the case is being used and how it relates to addressing the problem. The two elements should be linked. With this in mind, a good introduction answers these four questions:

  • What was I studying? Describe the research problem and describe the subject of analysis you have chosen to address the problem. Explain how they are linked and what elements of the case will help to expand knowledge and understanding about the problem.
  • Why was this topic important to investigate? Describe the significance of the research problem and state why a case study design and the subject of analysis that the paper is designed around is appropriate in addressing the problem.
  • What did we know about this topic before I did this study? Provide background that helps lead the reader into the more in-depth literature review to follow. If applicable, summarize prior case study research applied to the research problem and why it fails to adequately address the research problem. Describe why your case will be useful. If no prior case studies have been used to address the research problem, explain why you have selected this subject of analysis.
  • How will this study advance new knowledge or new ways of understanding? Explain why your case study will be suitable in helping to expand knowledge and understanding about the research problem.

Each of these questions should be addressed in no more than a few paragraphs. Exceptions to this can be when you are addressing a complex research problem or subject of analysis that requires more in-depth background information.

II.  Literature Review

The literature review for a case study research paper is generally structured the same as it is for any college-level research paper. The difference, however, is that the literature review is focused on providing background information and  enabling historical interpretation of the subject of analysis in relation to the research problem the case is intended to address . This includes synthesizing studies that help to:

  • Place relevant works in the context of their contribution to understanding the case study being investigated . This would include summarizing studies that have used a similar subject of analysis to investigate the research problem. If there is literature using the same or a very similar case to study, you need to explain why duplicating past research is important [e.g., conditions have changed; prior studies were conducted long ago, etc.].
  • Describe the relationship each work has to the others under consideration that informs the reader why this case is applicable . Your literature review should include a description of any works that support using the case to study the research problem and the underlying research questions.
  • Identify new ways to interpret prior research using the case study . If applicable, review any research that has examined the research problem using a different research design. Explain how your case study design may reveal new knowledge or a new perspective or that can redirect research in an important new direction.
  • Resolve conflicts amongst seemingly contradictory previous studies . This refers to synthesizing any literature that points to unresolved issues of concern about the research problem and describing how the subject of analysis that forms the case study can help resolve these existing contradictions.
  • Point the way in fulfilling a need for additional research . Your review should examine any literature that lays a foundation for understanding why your case study design and the subject of analysis around which you have designed your study may reveal a new way of approaching the research problem or offer a perspective that points to the need for additional research.
  • Expose any gaps that exist in the literature that the case study could help to fill . Summarize any literature that not only shows how your subject of analysis contributes to understanding the research problem, but how your case contributes to a new way of understanding the problem that prior research has failed to do.
  • Locate your own research within the context of existing literature [very important!] . Collectively, your literature review should always place your case study within the larger domain of prior research about the problem. The overarching purpose of reviewing pertinent literature in a case study paper is to demonstrate that you have thoroughly identified and synthesized prior studies in the context of explaining the relevance of the case in addressing the research problem.

III.  Method

In this section, you explain why you selected a particular subject of analysis to study and the strategy you used to identify and ultimately decide that your case was appropriate in addressing the research problem. The way you describe the methods used varies depending on the type of subject of analysis that frames your case study.

If your subject of analysis is an incident or event . In the social and behavioral sciences, the event or incident that represents the case to be studied is usually bounded by time and place, with a clear beginning and end and with an identifiable location or position relative to its surroundings. The subject of analysis can be a rare or critical event or it can focus on a typical or regular event. The purpose of studying a rare event is to illuminate new ways of thinking about the broader research problem or to test a hypothesis. Critical incident case studies must describe the method by which you identified the event and explain the process by which you determined the validity of this case to inform broader perspectives about the research problem or to reveal new findings. However, the event does not have to be a rare or uniquely significant to support new thinking about the research problem or to challenge an existing hypothesis. For example, Walo, Bull, and Breen conducted a case study to identify and evaluate the direct and indirect economic benefits and costs of a local sports event in the City of Lismore, New South Wales, Australia. The purpose of their study was to provide new insights from measuring the impact of a typical local sports event that prior studies could not measure well because they focused on large "mega-events." Whether the event is rare or not, the methods section should include an explanation of the following characteristics of the event: a) when did it take place; b) what were the underlying circumstances leading to the event; c) what were the consequences of the event.

If your subject of analysis is a person. Explain why you selected this particular individual to be studied and describe what experience he or she has had that provides an opportunity to advance new understandings about the research problem. Mention any background about this person which might help the reader understand the significance of his/her experiences that make them worthy of study. This includes describing the relationships this person has had with other people, institutions, and/or events that support using him or her as the subject for a case study research paper. It is particularly important to differentiate the person as the subject of analysis from others and to succinctly explain how the person relates to examining the research problem.

If your subject of analysis is a place. In general, a case study that investigates a place suggests a subject of analysis that is unique or special in some way and that this uniqueness can be used to build new understanding or knowledge about the research problem. A case study of a place must not only describe its various attributes relevant to the research problem [e.g., physical, social, cultural, economic, political, etc.], but you must state the method by which you determined that this place will illuminate new understandings about the research problem. It is also important to articulate why a particular place as the case for study is being used if similar places also exist [i.e., if you are studying patterns of homeless encampments of veterans in open spaces, why study Echo Park in Los Angeles rather than Griffith Park?]. If applicable, describe what type of human activity involving this place makes it a good choice to study [e.g., prior research reveals Echo Park has more homeless veterans].

If your subject of analysis is a phenomenon. A phenomenon refers to a fact, occurrence, or circumstance that can be studied or observed but with the cause or explanation to be in question. In this sense, a phenomenon that forms your subject of analysis can encompass anything that can be observed or presumed to exist but is not fully understood. In the social and behavioral sciences, the case usually focuses on human interaction within a complex physical, social, economic, cultural, or political system. For example, the phenomenon could be the observation that many vehicles used by ISIS fighters are small trucks with English language advertisements on them. The research problem could be that ISIS fighters are difficult to combat because they are highly mobile. The research questions could be how and by what means are these vehicles used by ISIS being supplied to the militants and how might supply lines to these vehicles be cut? How might knowing the suppliers of these trucks from overseas reveal larger networks of collaborators and financial support? A case study of a phenomenon most often encompasses an in-depth analysis of a cause and effect that is grounded in an interactive relationship between people and their environment in some way.

NOTE:   The choice of the case or set of cases to study cannot appear random. Evidence that supports the method by which you identified and chose your subject of analysis should be linked to the findings from the literature review. Be sure to cite any prior studies that helped you determine that the case you chose was appropriate for investigating the research problem.

IV.  Discussion

The main elements of your discussion section are generally the same as any research paper, but centered around interpreting and drawing conclusions about the key findings from your case study. Note that a general social sciences research paper may contain a separate section to report findings. However, in a paper designed around a case study, it is more common to combine a description of the findings with the discussion about their implications. The objectives of your discussion section should include the following:

Reiterate the Research Problem/State the Major Findings Briefly reiterate the research problem you are investigating and explain why the subject of analysis around which you designed the case study were used. You should then describe the findings revealed from your study of the case using direct, declarative, and succinct proclamation of the study results. Highlight any findings that were unexpected or especially profound.

Explain the Meaning of the Findings and Why They are Important Systematically explain the meaning of your case study findings and why you believe they are important. Begin this part of the section by repeating what you consider to be your most important or surprising finding first, then systematically review each finding. Be sure to thoroughly extrapolate what your analysis of the case can tell the reader about situations or conditions beyond the actual case that was studied while, at the same time, being careful not to misconstrue or conflate a finding that undermines the external validity of your conclusions.

Relate the Findings to Similar Studies No study in the social sciences is so novel or possesses such a restricted focus that it has absolutely no relation to previously published research. The discussion section should relate your case study results to those found in other studies, particularly if questions raised from prior studies served as the motivation for choosing your subject of analysis. This is important because comparing and contrasting the findings of other studies helps to support the overall importance of your results and it highlights how and in what ways your case study design and the subject of analysis differs from prior research about the topic.

Consider Alternative Explanations of the Findings It is important to remember that the purpose of social science research is to discover and not to prove. When writing the discussion section, you should carefully consider all possible explanations for the case study results, rather than just those that fit your hypothesis or prior assumptions and biases. Be alert to what the in-depth analysis of the case may reveal about the research problem, including offering a contrarian perspective to what scholars have stated in prior research.

Acknowledge the Study's Limitations You can state the study's limitations in the conclusion section of your paper but describing the limitations of your subject of analysis in the discussion section provides an opportunity to identify the limitations and explain why they are not significant. This part of the discussion section should also note any unanswered questions or issues your case study could not address. More detailed information about how to document any limitations to your research can be found here .

Suggest Areas for Further Research Although your case study may offer important insights about the research problem, there are likely additional questions related to the problem that remain unanswered or findings that unexpectedly revealed themselves as a result of your in-depth analysis of the case. Be sure that the recommendations for further research are linked to the research problem and that you explain why your recommendations are valid in other contexts and based on the original assumptions of your study.

V.  Conclusion

As with any research paper, you should summarize your conclusion in clear, simple language; emphasize how the findings from your case study differs from or supports prior research and why. Do not simply reiterate the discussion section. Provide a synthesis of key findings presented in the paper to show how these converge to address the research problem. If you haven't already done so in the discussion section, be sure to document the limitations of your case study and needs for further research.

The function of your paper's conclusion is to: 1)  restate the main argument supported by the findings from the analysis of your case; 2) clearly state the context, background, and necessity of pursuing the research problem using a case study design in relation to an issue, controversy, or a gap found from reviewing the literature; and, 3) provide a place for you to persuasively and succinctly restate the significance of your research problem, given that the reader has now been presented with in-depth information about the topic.

Consider the following points to help ensure your conclusion is appropriate:

  • If the argument or purpose of your paper is complex, you may need to summarize these points for your reader.
  • If prior to your conclusion, you have not yet explained the significance of your findings or if you are proceeding inductively, use the conclusion of your paper to describe your main points and explain their significance.
  • Move from a detailed to a general level of consideration of the case study's findings that returns the topic to the context provided by the introduction or within a new context that emerges from your case study findings.

Note that, depending on the discipline you are writing in and your professor's preferences, the concluding paragraph may contain your final reflections on the evidence presented applied to practice or on the essay's central research problem. However, the nature of being introspective about the subject of analysis you have investigated will depend on whether you are explicitly asked to express your observations in this way.

Problems to Avoid

Overgeneralization One of the goals of a case study is to lay a foundation for understanding broader trends and issues applied to similar circumstances. However, be careful when drawing conclusions from your case study. They must be evidence-based and grounded in the results of the study; otherwise, it is merely speculation. Looking at a prior example, it would be incorrect to state that a factor in improving girls access to education in Azerbaijan and the policy implications this may have for improving access in other Muslim nations is due to girls access to social media if there is no documentary evidence from your case study to indicate this. There may be anecdotal evidence that retention rates were better for girls who were on social media, but this observation would only point to the need for further research and would not be a definitive finding if this was not a part of your original research agenda.

Failure to Document Limitations No case is going to reveal all that needs to be understood about a research problem. Therefore, just as you have to clearly state the limitations of a general research study , you must describe the specific limitations inherent in the subject of analysis. For example, the case of studying how women conceptualize the need for water conservation in a village in Uganda could have limited application in other cultural contexts or in areas where fresh water from rivers or lakes is plentiful and, therefore, conservation is understood differently than preserving access to a scarce resource.

Failure to Extrapolate All Possible Implications Just as you don't want to over-generalize from your case study findings, you also have to be thorough in the consideration of all possible outcomes or recommendations derived from your findings. If you do not, your reader may question the validity of your analysis, particularly if you failed to document an obvious outcome from your case study research. For example, in the case of studying the accident at the railroad crossing to evaluate where and what types of warning signals should be located, you failed to take into consideration speed limit signage as well as warning signals. When designing your case study, be sure you have thoroughly addressed all aspects of the problem and do not leave gaps in your analysis.

Case Studies . Writing@CSU. Colorado State University; Gerring, John. Case Study Research: Principles and Practices . New York: Cambridge University Press, 2007; Merriam, Sharan B. Qualitative Research and Case Study Applications in Education . Rev. ed. San Francisco, CA: Jossey-Bass, 1998; Miller, Lisa L. “The Use of Case Studies in Law and Social Science Research.” Annual Review of Law and Social Science 14 (2018): TBD; Mills, Albert J., Gabrielle Durepos, and Eiden Wiebe, editors. Encyclopedia of Case Study Research . Thousand Oaks, CA: SAGE Publications, 2010; Putney, LeAnn Grogan. "Case Study." In Encyclopedia of Research Design , Neil J. Salkind, editor. (Thousand Oaks, CA: SAGE Publications, 2010), pp. 116-120; Simons, Helen. Case Study Research in Practice . London: SAGE Publications, 2009;  Kratochwill,  Thomas R. and Joel R. Levin, editors. Single-Case Research Design and Analysis: New Development for Psychology and Education .  Hilldsale, NJ: Lawrence Erlbaum Associates, 1992; Swanborn, Peter G. Case Study Research: What, Why and How? London : SAGE, 2010; Yin, Robert K. Case Study Research: Design and Methods . 6th edition. Los Angeles, CA, SAGE Publications, 2014; Walo, Maree, Adrian Bull, and Helen Breen. “Achieving Economic Benefits at Local Events: A Case Study of a Local Sports Event.” Festival Management and Event Tourism 4 (1996): 95-106.

Writing Tip

At Least Five Misconceptions about Case Study Research

Social science case studies are often perceived as limited in their ability to create new knowledge because they are not randomly selected and findings cannot be generalized to larger populations. Flyvbjerg examines five misunderstandings about case study research and systematically "corrects" each one. To quote, these are:

Misunderstanding 1 :  General, theoretical [context-independent knowledge is more valuable than concrete, practical (context-dependent) knowledge. Misunderstanding 2 :  One cannot generalize on the basis of an individual case; therefore, the case study cannot contribute to scientific development. Misunderstanding 3 :  The case study is most useful for generating hypotheses; that is, in the first stage of a total research process, whereas other methods are more suitable for hypotheses testing and theory building. Misunderstanding 4 :  The case study contains a bias toward verification, that is, a tendency to confirm the researcher’s preconceived notions. Misunderstanding 5 :  It is often difficult to summarize and develop general propositions and theories on the basis of specific case studies [p. 221].

While writing your paper, think introspectively about how you addressed these misconceptions because to do so can help you strengthen the validity and reliability of your research by clarifying issues of case selection, the testing and challenging of existing assumptions, the interpretation of key findings, and the summation of case outcomes. Think of a case study research paper as a complete, in-depth narrative about the specific properties and key characteristics of your subject of analysis applied to the research problem.

Flyvbjerg, Bent. “Five Misunderstandings About Case-Study Research.” Qualitative Inquiry 12 (April 2006): 219-245.

  • << Previous: Reviewing Collected Essays
  • Next: Writing a Field Report >>
  • Last Updated: Jan 17, 2023 10:50 AM
  • URL: https://libguides.pointloma.edu/ResearchPaper

IMAGES

  1. (PDF) How to Write a Scientific Article

    case study as a scientific text

  2. 100+ Case Study Thesis Statement Examples, How to Write, Tips

    case study as a scientific text

  3. Case Study

    case study as a scientific text

  4. (PDF) How to write a laboratory-based case study for the Journal

    case study as a scientific text

  5. 49 Free Case Study Templates ( + Case Study Format Examples + )

    case study as a scientific text

  6. A Case Study as a Research Technique

    case study as a scientific text

VIDEO

  1. Day 2: Basics of Scientific Research Writing (Batch 18)

  2. #best time for study # scientific research#motivation# learners#

  3. Case Study 2: Chapter 2

  4. Science History English Pun Riddle, Which president was given money to study scientific data?

  5. دورة كاملة في الاكسل (10)

  6. Master Command of Evidence on the Digital SAT: Solve Scientific Text Questions with Ease!

COMMENTS

  1. Guidelines to the writing of case studies

    It is best to simply tell the story and let the outcome speak for itself. With these points in mind, let's begin the process of writing the case study: Title page: Title: The title page will contain the full title of the article. Remember that many people may find our article by searching on the internet.

  2. The case study approach

    A case study is a research approach that is used to generate an in-depth, multi-faceted understanding of a complex issue in its real-life context. It is an established research design that is used extensively in a wide variety of disciplines, particularly in the social sciences. A case study can be defined in a variety of ways (Table (Table5),5 ...

  3. What Is a Case Study?

    Revised on November 20, 2023. A case study is a detailed study of a specific subject, such as a person, group, place, event, organization, or phenomenon. Case studies are commonly used in social, educational, clinical, and business research. A case study research design usually involves qualitative methods, but quantitative methods are ...

  4. Distinguishing case study as a research method from case reports as a

    VARIATIONS ON CASE STUDY METHODOLOGY. Case study methodology is evolving and regularly reinterpreted. Comparative or multiple case studies are used as a tool for synthesizing information across time and space to research the impact of policy and practice in various fields of social research [].Because case study research is in-depth and intensive, there have been efforts to simplify the method ...

  5. Writing a Case Study

    The purpose of a paper in the social sciences designed around a case study is to thoroughly investigate a subject of analysis in order to reveal a new understanding about the research problem and, in so doing, contributing new knowledge to what is already known from previous studies. In applied social sciences disciplines [e.g., education, social work, public administration, etc.], case ...

  6. What is a case study?

    Case study is a research methodology, typically seen in social and life sciences. There is no one definition of case study research.1 However, very simply… 'a case study can be defined as an intensive study about a person, a group of people or a unit, which is aimed to generalize over several units'.1 A case study has also been described as an intensive, systematic investigation of a ...

  7. Guide: Designing and Conducting Case Studies

    The Case Study Method: A Case Study. Library and Information Science Research, 6. The article describes the use of case study methodology to systematically develop a model of online searching behavior in which study design is flexible, subject manner determines data gathering and analyses, and procedures adapt to the study's progressive change.

  8. Case Study Methodology of Qualitative Research: Key Attributes and

    A case study is one of the most commonly used methodologies of social research. This article attempts to look into the various dimensions of a case study research strategy, the different epistemological strands which determine the particular case study type and approach adopted in the field, discusses the factors which can enhance the effectiveness of a case study research, and the debate ...

  9. Case Study Method: A Step-by-Step Guide for Business Researchers

    Although case studies have been discussed extensively in the literature, little has been written about the specific steps one may use to conduct case study research effectively (Gagnon, 2010; Hancock & Algozzine, 2016).Baskarada (2014) also emphasized the need to have a succinct guideline that can be practically followed as it is actually tough to execute a case study well in practice.

  10. Case Study

    Defnition: A case study is a research method that involves an in-depth examination and analysis of a particular phenomenon or case, such as an individual, organization, community, event, or situation. It is a qualitative research approach that aims to provide a detailed and comprehensive understanding of the case being studied.

  11. PDF Using Case Studies as a Scientific Method: Advantages and ...

    Abstract: The case study as a scientific method is, and has been for a long time, a subject of heavy discussion in the scientific community. Some scientists disregard the study completely and argue that it's nothing more than story-telling, while others claim that the case study is the most relevant research method there is.

  12. (PDF) Case study as a research method

    Definition of case study. Case study method enables a researcher to closely examine the data within a specific context. In most cases, a case study method selects a small geograph ical area or a ...

  13. Case Study: Definition, Examples, Types, and How to Write

    A case study is an in-depth study of one person, group, or event. In a case study, nearly every aspect of the subject's life and history is analyzed to seek patterns and causes of behavior. Case studies can be used in many different fields, including psychology, medicine, education, anthropology, political science, and social work.

  14. Case study

    A case study is a detailed description and assessment of a specific situation in the real world, often for the purpose of deriving generalizations and other insights about the subject of the case study. Case studies can be about an individual, a group of people, an organization, or an event, and they are used in multiple fields, including business, health care, anthropology, political science ...

  15. Gender on the Brain: A Case Study of Science Communication in ...

    One way of preserving this nuance is to adopt a case study approach that tracks how one scientific study evolves as it moves from its original scientific report through various media contexts. A case study design seeks to furnish an in-depth, holistic account of a single phenomenon, often by triangulating multiple sources of data [69] , [70] .

  16. 1.1: Case Study: Why Should You Learn About Science?

    A scientific theory is at the pinnacle of explanations in science. A theory is a broad explanation for many phenomena that is widely accepted because it is supported by a great deal of evidence. An example of a theory in human biology is the germ theory of disease. It took more than two centuries of research to provide enough evidence that ...

  17. NCCSTS Case Studies

    The NCCSTS Case Collection, created and curated by the National Center for Case Study Teaching in Science, on behalf of the University at Buffalo, contains over a thousand peer-reviewed case studies on a variety of topics in all areas of science. Cases (only) are freely accessible; subscription is required for access to teaching notes and ...

  18. The case study approach

    A case study is a research approach that is used to generate an in-depth, multi-faceted understanding of a complex issue in its real-life context. It is an established research design that is used extensively in a wide variety of disciplines, particularly in the social sciences. A case study can be defined in a variety of ways (Table 5 ), the ...

  19. sample case study: Topics by Science.gov

    Case Study: Writing a Journal Case Study. ERIC Educational Resources Information Center. Prud'homme-Genereux, Annie. 2016-01-01. This column provides original articles on innovations in case study teaching, assessment of the method, as well as case studies with teaching notes. This month's issue describes incorporating a journal article into the classroom by first converting it into a case study.

  20. Case Study

    A case study is a detailed study of a specific subject, such as a person, group, place, event, organisation, or phenomenon. Case studies are commonly used in social, educational, clinical, and business research. A case study research design usually involves qualitative methods, but quantitative methods are sometimes also used.

  21. Science: Articles, Research, & Case Studies on Science

    by Desmond Dodd. Many assume that major oil and gas companies adamantly oppose climate-friendly regulation, but that's not true. A study of 30 years of corporate advocacy by Jonas Meckling finds that energy companies have backed clean-energy efforts when it aligns with their business interests. 12 Mar 2024. HBS Case.

  22. Academic accountability to local communities and society through

    We built upon and adapted the Programme Science framework to apply it to a feasibility study of the introduction of HPV self-sampling into a regional women's health programme in Peru: Project HOPE . Precisely, during the phases of strategic planning, programme implementation and programme management and evaluation, we worked closely with local ...

  23. Scientific understanding in biomedical research

    Motivated by a recent trend that advocates a reassessment of the aim of medical science and clinical practice, this paper investigates the epistemic aims of biomedical research. Drawing on contemporary discussions in epistemology and the philosophy of science, along with a recent study on scurvy, this paper (1) explores the concept of understanding as the aim of scientific inquiry and (2 ...

  24. [2110.14766] Fine Grained Human Evaluation for English-to-Chinese

    Download a PDF of the paper titled Fine Grained Human Evaluation for English-to-Chinese Machine Translation: A Case Study on Scientific Text, by Ming Liu and 2 other authors Download PDF Abstract: Recent research suggests that neural machine translation (MT) in the news domain has reached human-level performance, but for other professional ...

  25. A Theory of Change Evaluation of Doctoral Admission Methods: A Case

    Case study: The university's reform pathway. This case study unfolds at a science and engineering university with a strong reputation in China's "Double First-Class" initiative 1. This university commenced doctoral education in 1998 and currently offers three doctoral programs under the discipline of engineering science, specializing in ...

  26. IJGI

    Assessing healthy cities is a crucial strategy for realizing the concept of "health in all policies". However, most current quantitative assessment methods for healthy cities are predominantly city-level and often overlook intra-urban evaluations. Building on the concept of geographic spatial case-based reasoning (CBR), we present an innovative healthy city spatial case-based reasoning ...

  27. Enriching IAM Scenarios for Effective pLCA Integration: a clinker case

    To test and evaluate the approach, a case study is conducted for the cement industry. This industry was selected, as it has a high environmental impact, being responsible for about 7% of global CO 2 emissions (IEA, 2018). Despite this, the resolution of the cement industry in IAMs is often too low for pLCA.

  28. Nonsurgical treatment of bilateral vocal fold paralysis: a case study

    All subjects Allied Health Cardiology & Cardiovascular Medicine Dentistry Emergency Medicine & Critical Care Endocrinology & Metabolism Environmental Science General Medicine Geriatrics Infectious Diseases Medico-legal Neurology Nursing Nutrition Obstetrics & Gynecology Oncology Orthopaedics & Sports Medicine Otolaryngology Palliative Medicine ...

  29. Land

    The assessment of ecotourism suitability is crucial for sustainable regional development and is seen as an effective strategy to achieve both environmental protection and economic growth. One of the key challenges in land research is effectively identifying potential ecotourism resources while balancing regional protection and development. This study mapped the suitability of ecotourism in ...

  30. Writing a Case Study

    Misunderstanding 2: One cannot generalize on the basis of an individual case; therefore, the case study cannot contribute to scientific development. Misunderstanding 3 : The case study is most useful for generating hypotheses; that is, in the first stage of a total research process, whereas other methods are more suitable for hypotheses testing ...