An Introduction to Animal Research

Cite this chapter.

animal research paper introduction

  • James Kinross 3 &
  • Lord Ara Darzi 4  

2876 Accesses

Despite advances in computer modelling and bioinformatics, animal models remain a vital component of biomedical research. The growth in this area of work is in part due to the evolution next generation of biotechnologies, which more than ever necessitate the need for in vivo experimentation. An understanding of the principals of animal research therefore remains a necessity for medical researchers as it permits scientific analysis to be interpreted in a more critical and meaningful manner. Initiating and designing an animal experiment can be a daunting process, particularly as the law and legislation governing animal research is complex and new specialist skills must be acquired. This chapter reviews the principles of animal research and provides a practical resource for those researchers seeking to create robust animal experiments that ensure minimal suffering and maximal scientific validity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Available as EPUB and PDF
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

The American College of Laboratory Animal Medicine

Animal and Plant Health Inspection Service

Animal Welfare Act

Control of substances hazardous to health

European Coalition for Biomedical Research

The Food and Drug Agency

Health and Safety Executive

The Human Fertilisation and Embryology Authority

Institutional Animal Care and Use Committee

Individually ventilated cage

In vitro fertilisation

Laboratory animal allergy

Named animal care and welfare officer

National Institute for Clinical Excellence

Named veterinary surgeon

The Office of Laboratory Animal Welfare

Public Health Service

Personal License under the Scientific (Animal Procedures) Act 1986

Project License under the Scientific (Animal Procedures) Act 1986

Royal Society for the Prevention of Cruelty to Animals

Specified pathogen free

The United States Department of Agriculture

(2006) Animals (scientific procedures) inspectorate annual report. Home Office: Science, Research and Statistics, London

Google Scholar  

Davidson N (2006) Davidson review: implementation of EU legislation. http://wwwhm-treasurygovuk/independent_reviews/davidson_review/davidson_indexcfm

Fox JG, Cohen BJ, Loew FM (1984) Laboratory animal medicine. Academic press, New York

RDS, Understanding Animal Research in Medicine, Coalition for Medical Progress (2007) Medical advances and animal research: the contribution of animal science to the medical revolution: some case histories. Available at: http://www.pro-test.org.uk/MAAR.pdf

Foex BA (2007) The ethics of animal experimentation. Emerg Med J 24:750–751

Article   PubMed   Google Scholar  

Matfield M (2002) Animal experimentation: the continuing debate. Nat Rev Drug Discov 1:149–152

Rollin BE (2007) Animal research: a moral science. Talking Point on the use of animals in scientific research. EMBO Rep 8:521–525

Article   PubMed   CAS   Google Scholar  

Singer P (2006) In defense of animals: the second wave. Blackwell, Malden, MA

Croce P (1999) Vivisection or science? An investigation into testing drugs and safeguarding health. Zed Books, London

Schechter AN, Rettig RA (2002) Funding priorities for medical research. JAMA 288:832; author reply 832

Pound P, Ebrahim S, Sandercock P et al (2004) Where is the evidence that animal research benefits humans? BMJ 328:514–517

Perel P, Roberts I, Sena E et al (2007) Comparison of treatment effects between animal experiments and clinical trials: systematic review. BMJ 334:197

Mayor S (2007) UK regulatory body wants public consultation on human—animal hybrid research. BMJ 334:112

Anon (2007) Avoiding a chimaera quagmire. Nature 445:1

Article   Google Scholar  

Karpowicz P, Cohen CB, van der Kooy D (2004) It is ethical to transplant human stem cells into nonhuman embryos. Nat Med 10:331–335

Thompson SG (1994) Why sources of heterogeneity in meta-analysis should be investigated. BMJ 309:1351–1355

Auer JA, Goodship A, Arnoczky S et al (2007) Refining animal models in fracture research: seeking consensus in optimising both animal welfare and scientific validity for appropriate biomedical use. BMC Musculoskelet Disord 8:72

Sarker SK, Patel B (2007) Simulation and surgical training. Int J Clin Pract 61:2120–2125

Dolan K (2007) Laboratory animal law: legal control of the use of animals in research. Blackwell, New York

Book   Google Scholar  

Rice M (2007) Deadline approaches for animal experimentation directive. Eur J Cancer 43:1641

PubMed   Google Scholar  

Field K, Bailey M, Foresman LL et al (2007) Medical records for animals used in research, teaching, and testing: public statement from the American College of Laboratory Animal Medicine. ILAR J 48:37–41

Hauser R, Marczak M, Karaszewski B et al (2008) A preliminary study for identifying olfactory markers of fear in the rat. Lab Anim (NY) 37:76–80

Vermeulen JK, de Vries A, Schlingmann F, Remie R. (1997) Food Deprivation: common sense or nonsense? Animal Tech 48:45–54

Levine S, Saltzman A (2000) Feeding sugar overnight maintains metabolic homeostasis in rats and is preferable to overnight starvation. Lab Anim 34:301–306

Brown C (2007) Endotracheal intubation in the dog. Lab Anim (NY) 36:23–24

Price H (2007) Intubating rabbits. Vet Rec 160:744

Spoelstra EN, Ince C, Koeman A et al (2007) A novel and simple method for endotracheal intubation of mice. Lab Anim 41:128–135

Buscaglia JM (2007) Animal laboratory endoscopic research: a fellow's perspective. Gastrointest Endosc 65:882–883

Fritscher-Ravens A, Patel K, Ghanbari A et al (2007) Natural orifice transluminal endoscopic surgery (NOTES) in the mediastinum: long-term survival animal experiments in transesoph-ageal access, including minor surgical procedures. Endoscopy 39:870–875

Radostits OM, Mayhew IG, Houston DM (2000) Veterinary clinical examination and diagnosis, 2nd edn. W.B. Saunders Company, Philadelphia

James Thomson et al, “Embryonic stem cell lines derived from human blastocysts,” Science 282:1145–1147, November 6, 1998

The National Academies' Guidelines for Human Embryonic Stem Cell Research. 2008. http://books.nap.edu/catalog.php?record_id=12260

Download references

Author information

Authors and affiliations.

Department of Biosurgery and Surgical Technology, Imperial College, 10th floor, QEQM, St. Mary's Hospital, Praed Street, London, W2 1NY, UK

James Kinross

The Department of Biosurgery and Surgical Technology, Imperial College London, 10th Floor, Queen Elizabeth the Queen Mother (QEQM) Building, Imperial College Healthcare NHS Trust, St Mary's Hospital Campus, Praed Street, London, W2 1NY, UK

Lord Ara Darzi

You can also search for this author in PubMed   Google Scholar

Editor information

Editors and affiliations.

Dept. Biosurgery & Surgical Technology, Imperial College London St. Mary's Hospital London, 10th floor QEQM Bldg. Praed Street, London, W2 1NY, United Kingdom

Thanos Athanasiou  & Ara Darzi  & 

UCSF Global Health Sciences, 3333 California Street, Suite 285, San Francisco L, CA, 94143-0443, USA

Haile Debas

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Kinross, J., Darzi, L.A. (2010). An Introduction to Animal Research. In: Athanasiou, T., Debas, H., Darzi, A. (eds) Key Topics in Surgical Research and Methodology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71915-1_17

Download citation

DOI : https://doi.org/10.1007/978-3-540-71915-1_17

Publisher Name : Springer, Berlin, Heidelberg

Print ISBN : 978-3-540-71914-4

Online ISBN : 978-3-540-71915-1

eBook Packages : Medicine Medicine (R0)

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

Research using animals: an overview

Around half the diseases in the world have no treatment. Understanding how the body works and how diseases progress, and finding cures, vaccines or treatments, can take many years of painstaking work using a wide range of research techniques. There is overwhelming scientific consensus worldwide that some research using animals is still essential for medical progress.

Animal research in the UK is strictly regulated. For more details on the regulations governing research using animals, go to the UK regulations page .

mouse being handled

Why is animal research necessary?

There is overwhelming scientific consensus worldwide that some animals are still needed in order to make medical progress.

Where animals are used in research projects, they are used as part of a range of scientific techniques. These might include human trials, computer modelling, cell culture, statistical techniques, and others. Animals are only used for parts of research where no other techniques can deliver the answer.

A living body is an extraordinarily complex system. You cannot reproduce a beating heart in a test tube or a stroke on a computer. While we know a lot about how a living body works, there is an enormous amount we simply don’t know: the interaction between all the different parts of a living system, from molecules to cells to systems like respiration and circulation, is incredibly complex. Even if we knew how every element worked and interacted with every other element, which we are a long way from understanding, a computer hasn’t been invented that has the power to reproduce all of those complex interactions - while clearly you cannot reproduce them all in a test tube.

While humans are used extensively in Oxford research, there are some things which it is ethically unacceptable to use humans for. There are also variables which you can control in a mouse (like diet, housing, clean air, humidity, temperature, and genetic makeup) that you could not control in human subjects.

Is it morally right to use animals for research?

Most people believe that in order to achieve medical progress that will save and improve lives, perhaps millions of lives, limited and very strictly regulated animal use is justified. That belief is reflected in the law, which allows for animal research only under specific circumstances, and which sets out strict regulations on the use and care of animals. It is right that this continues to be something society discusses and debates, but there has to be an understanding that without animals we can only make very limited progress against diseases like cancer, heart attack, stroke, diabetes, and HIV.

It’s worth noting that animal research benefits animals too: more than half the drugs used by vets were developed originally for human medicine. 

Aren’t animals too different from humans to tell us anything useful?

No. Just by being very complex living, moving organisms they share a huge amount of similarities with humans. Humans and other animals have much more in common than they have differences. Mice share over 90% of their genes with humans. A mouse has the same organs as a human, in the same places, doing the same things. Most of their basic chemistry, cell structure and bodily organisation are the same as ours. Fish and tadpoles share enough characteristics with humans to make them very useful in research. Even flies and worms are used in research extensively and have led to research breakthroughs (though these species are not regulated by the Home Office and are not in the Biomedical Sciences Building).

What does research using animals actually involve?

The sorts of procedures research animals undergo vary, depending on the research. Breeding a genetically modified mouse counts as a procedure and this represents a large proportion of all procedures carried out. So does having an MRI (magnetic resonance imaging) scan, something which is painless and which humans undergo for health checks. In some circumstances, being trained to go through a maze or being trained at a computer game also counts as a procedure. Taking blood or receiving medication are minor procedures that many species of animal can be trained to do voluntarily for a food reward. Surgery accounts for only a small minority of procedures. All of these are examples of procedures that go on in Oxford's Biomedical Sciences Building. 

Mouse pups

How many animals are used?

Figures for 2023 show numbers of animals that completed procedures, as declared to the Home Office using their five categories for the severity of the procedure.

# NHPs - Non Human Primates

Oxford also maintains breeding colonies to provide animals for use in experiments, reducing the need for unnecessary transportation of animals.

Figures for 2017 show numbers of animals bred for procedures that were killed or died without being used in procedures:

Why must primates be used?

Primates account for under half of one per cent (0.5%) of all animals housed in the Biomedical Sciences Building. They are only used where no other species can deliver the research answer, and we continually seek ways to replace primates with lower orders of animal, to reduce numbers used, and to refine their housing conditions and research procedures to maximise welfare.

However, there are elements of research that can only be carried out using primates because their brains are closer to human brains than mice or rats. They are used at Oxford in vital research into brain diseases like Alzheimer’s and Parkinson’s. Some are used in studies to develop vaccines for HIV and other major infections.

Primate in lab

What is done to primates?

The primates at Oxford spend most of their time in their housing. They are housed in groups with access to play areas where they can groom, forage for food, climb and swing.

Primates at Oxford involved in neuroscience studies would typically spend a couple of hours a day doing behavioural work. This is sitting in front of a computer screen doing learning and memory games for food rewards. No suffering is involved and indeed many of the primates appear to find the games stimulating. They come into the transport cage that takes them to the computer room entirely voluntarily.

After some time (a period of months) demonstrating normal learning and memory through the games, a primate would have surgery to remove a very small amount of brain tissue under anaesthetic. A full course of painkillers is given under veterinary guidance in the same way as any human surgical procedure, and the animals are up and about again within hours, and back with their group within a day. The brain damage is minor and unnoticeable in normal behaviour: the animal interacts normally with its group and exhibits the usual natural behaviours. In order to find out about how a disease affects the brain it is not necessary to induce the equivalent of full-blown disease. Indeed, the more specific and minor the brain area affected, the more focussed and valuable the research findings are.

The primate goes back to behavioural testing with the computers and differences in performance, which become apparent through these carefully designed games, are monitored.

At the end of its life the animal is humanely killed and its brain is studied and compared directly with the brains of deceased human patients. 

Primates at Oxford involved in vaccine studies would simply have a vaccination and then have monthly blood samples taken.

Housing for primates

How many primates does Oxford hold?

* From 2014 the Home Office changed the way in which animals/ procedures were counted. Figures up to and including 2013 were recorded when procedures began. Figures from 2014 are recorded when procedures end.

What’s the difference between ‘total held’ and ‘on procedure’?

Primates (macaques) at Oxford would typically spend a couple of hours a day doing behavioural work, sitting in front of a computer screen doing learning and memory games for food rewards. This is non-invasive and done voluntarily for food rewards and does not count as a procedure. After some time (a period of months) demonstrating normal learning and memory through the games, a primate would have surgery under anaesthetic to remove a very small amount of brain tissue. The primate quickly returns to behavioural testing with the computers, and differences in performance, which become apparent through these carefully designed puzzles, are monitored. A primate which has had this surgery is counted as ‘on procedure’. Both stages are essential for research into understanding brain function which is necessary to develop treatments for conditions including Alzheimer’s, Parkinson’s and schizophrenia.

Why has the overall number held gone down?

Numbers vary year on year depending on the research that is currently undertaken. In general, the University is committed to reducing, replacing and refining animal research.

You say primates account for under 0.5% of animals, so that means you have at least 16,000 animals in the Biomedical Sciences Building in total - is that right?

Numbers change daily so we cannot give a fixed figure, but it is in that order.

Aren’t there alternative research methods?

There are very many non-animal research methods, all of which are used at the University of Oxford and many of which were pioneered here. These include research using humans; computer models and simulations; cell cultures and other in vitro work; statistical modelling; and large-scale epidemiology. Every research project which uses animals will also use other research methods in addition. Wherever possible non-animal research methods are used. For many projects, of course, this will mean no animals are needed at all. For others, there will be an element of the research which is essential for medical progress and for which there is no alternative means of getting the relevant information.

How have humans benefited from research using animals?

As the Department of Health states, research on animals has contributed to almost every medical advance of the last century.

Without animal research, medicine as we know it today wouldn't exist. It has enabled us to find treatments for cancer, antibiotics for infections (which were developed in Oxford laboratories), vaccines to prevent some of the most deadly and debilitating viruses, and surgery for injuries, illnesses and deformities.

Life expectancy in this country has increased, on average, by almost three months for every year of the past century. Within the living memory of many people diseases such as polio, tuberculosis, leukaemia and diphtheria killed or crippled thousands every year. But now, doctors are able to prevent or treat many more diseases or carry out life-saving operations - all thanks to research which at some stage involved animals.

Each year, millions of people in the UK benefit from treatments that have been developed and tested on animals. Animals have been used for the development of blood transfusions, insulin for diabetes, anaesthetics, anticoagulants, antibiotics, heart and lung machines for open heart surgery, hip replacement surgery, transplantation, high blood pressure medication, replacement heart valves, chemotherapy for leukaemia and life support systems for premature babies. More than 50 million prescriptions are written annually for antibiotics. 

We may have used animals in the past to develop medical treatments, but are they really needed in the 21st century?

Yes. While we are committed to reducing, replacing and refining animal research as new techniques make it possible to reduce the number of animals needed, there is overwhelming scientific consensus worldwide that some research using animals is still essential for medical progress. It only forms one element of a whole research programme which will use a range of other techniques to find out whatever possible without animals. Animals would be used for a specific element of the research that cannot be conducted in any alternative way.

How will humans benefit in future?

The development of drugs and medical technologies that help to reduce suffering among humans and animals depends on the carefully regulated use of animals for research. In the 21st century scientists are continuing to work on treatments for cancer, stroke, heart disease, HIV, malaria, tuberculosis, diabetes, neurodegenerative diseases like Alzheimer's and Parkinson’s, and very many more diseases that cause suffering and death. Genetically modified mice play a crucial role in future medical progress as understanding of how genes are involved in illness is constantly increasing. 

Loading metrics

Open Access

Essays articulate a specific perspective on a topic of broad interest to scientists.

See all article types »

A guide to open science practices for animal research

Contributed equally to this work with: Kai Diederich, Kathrin Schmitt

Affiliation German Federal Institute for Risk Assessment, German Centre for the Protection of Laboratory Animals (Bf3R), Berlin, Germany

* E-mail: [email protected]

ORCID logo

  • Kai Diederich, 
  • Kathrin Schmitt, 
  • Philipp Schwedhelm, 
  • Bettina Bert, 
  • Céline Heinl

PLOS

Published: September 15, 2022

  • https://doi.org/10.1371/journal.pbio.3001810
  • Reader Comments

Fig 1

Translational biomedical research relies on animal experiments and provides the underlying proof of practice for clinical trials, which places an increased duty of care on translational researchers to derive the maximum possible output from every experiment performed. The implementation of open science practices has the potential to initiate a change in research culture that could improve the transparency and quality of translational research in general, as well as increasing the audience and scientific reach of published research. However, open science has become a buzzword in the scientific community that can often miss mark when it comes to practical implementation. In this Essay, we provide a guide to open science practices that can be applied throughout the research process, from study design, through data collection and analysis, to publication and dissemination, to help scientists improve the transparency and quality of their work. As open science practices continue to evolve, we also provide an online toolbox of resources that we will update continually.

Citation: Diederich K, Schmitt K, Schwedhelm P, Bert B, Heinl C (2022) A guide to open science practices for animal research. PLoS Biol 20(9): e3001810. https://doi.org/10.1371/journal.pbio.3001810

Copyright: © 2022 Diederich et al. This is an open access article distributed under the terms of the Creative Commons Attribution License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The authors received no specific funding for this work.

Competing interests: I have read the journal’s policy and the authors of this manuscript have the following competing interests: All authors are employed at the German Federal Institute for Risk Assessment and part of the German Centre for the Protection of Laboratory Animals (Bf3R) which developed and hosts animalstudyregistry.org , a preregistration platform for animal studies and animaltestinfo.de, a database for non-technical project summaries (NTS) of approved animal study protocols within Germany.

Abbreviations: CC, Creative Commons; CIRS-LAS, critical incident reporting system in laboratory animal science; COVID-19, Coronavirus Disease 2019; DOAJ, Directory of Open Access Journals; DOI, digital object identifier; EDA, Experimental Design Assistant; ELN, electronic laboratory notebook; EU, European Union; IMSR, International Mouse Strain Resource; JISC, Joint Information Systems Committee; LIMS, laboratory information management system; MGI, Mouse Genome Informatics; NC3Rs, National Centre for the Replacement, Refinement and Reduction of Animals in Research; NTS, non-technical summary; RRID, Research Resource Identifier

Introduction

Over the past decade, the quality of published scientific literature has been repeatedly called into question by the failure of large replication studies or meta-analyses to demonstrate sufficient translation from experimental research into clinical successes [ 1 – 5 ]. At the same time, the open science movement has gained more and more advocates across various research areas. By sharing all of the information collected during the research process with colleagues and with the public, scientists can improve collaborations within their field and increase the reproducibility and trustworthiness of their work [ 6 ]. Thus, the International Reproducibility Networks have called for more open research [ 7 ].

However, open science practices have not been adopted to the same degree in all research areas. In psychology, which was strongly affected by the so-called reproducibility crisis, the open science movement initiated real practical changes leading to a broad implementation of practices such as preregistration or sharing of data and material [ 8 – 10 ]. By contrast, biomedical research is still lagging behind. Open science might be of high value for research in general, but in translational biomedical research, it is an ethical obligation. It is the responsibility of the scientist to transparently share all data collected to ensure that clinical research can adequately evaluate the risks and benefits of a potential treatment. When Russell and Burch published “The Principles of Humane Experimental Technique” in 1959, scientists started to implement their 3Rs principle to answer the ethical dilemma of animal welfare in the face of scientific progress [ 11 ]. By replacing animal experiments wherever possible, reducing the number of animals to a strict minimum, and refining the procedures where animals have still to be used, this ethical dilemma was addressed. However, in recent years, whether the 3Rs principle is sufficient to fully address ethical concerns about animal experiments has been questioned [ 12 ].

Most people tolerate the use of animals for scientific purposes only under the basic assumption that the knowledge gained will advance research in crucial areas. This implies that performed experiments are reported in a way that enables peers to benefit from the collected data. However, recent studies suggest that a large proportion of animal experiments are never actually published. For example, scientists working within the European Union (EU) have to write an animal study protocol for approval by the competent authorities of the respective country before performing an animal experiment [ 13 ]. In these protocols, scientists have to describe the planned study and justify every animal required for the project. By searching for publications resulting from approved animal study protocols from 2 German University Medical Centers, Wieschowski and colleagues found that only 53% of approved protocols led to a publication after 6 years [ 14 ]. Using a similar approach, Van der Naald and colleagues determined a publication rate of 60% at the Utrecht Medical Center [ 15 ]. In a follow-up survey, the respective researchers named so-called “negative” or null-hypothesis results as the main cause for not publishing outcomes [ 15 ]. The current scientific system is shaped by publishers, funders, and institutions and motivates scientists to publish novel, surprising, and positive results, revealing one of the many structural problems that the numerous efforts towards open science initiatives are targeting. Non-publication not only strongly contradicts ethical values, but also it compromises the quality of published literature by leading to overestimation of effect sizes [ 16 , 17 ]. Furthermore, publications of animal studies too often show poor reporting that strongly impairs the reproducibility, validity, and usefulness of the results [ 18 ]. Unfortunately, the idea that negative or equivocal findings can also contribute to the gain of scientific knowledge is frequently neglected.

So far, the scientific community using animals has shown limited resonance to the open science movement. Due to the strong controversy surrounding animal experiments, scientists have been reluctant to share information on the topic. Additionally, translational research is highly competitive and researchers tend to be secretive about their ideas until they are ready for publication or patent [ 19 , 20 ]. However, this missing openness could also point to a lack of knowledge and training on the many open science options that are available and suitable for animal research. Researchers have to be convinced of the benefits of open science practices, not only for science in general, but also for the individual researcher and each single animal. Yet, the key players in the research system are already starting to value open science practices. An increasing number of journals request open sharing of data, funders pay for open access publications and institutions consider open science practices in hiring decisions. Open science practices can improve the quality of work by enabling valuable scientific input from peers at the early stages of research projects. Furthermore, the extended communication that open science practices offer can draw attention to research and help to expand networks of collaborators and lead to new project opportunities or follow-up positions. Thus, open science practices can be a driver for careers in academia, particularly those of early career researchers.

Beyond these personal benefits, improving transparency in translational biomedical research can boost scientific progress in general. By bringing to light all the recorded research outputs that until now have remained hidden, the publication bias and the overestimation of effect sizes can be reduced [ 17 ]. Large-scale sharing of data can help to synthesize research outputs in preclinical research that will enable better decision-making for clinical research. Disclosing the whole research process will help to uncover systematic problems and support scientists in thoroughly planning their studies. In the long run, we predict that the implementation of open science practices will lead to the use of fewer animals in unintentionally repeated experiments that previously showed unreported negative results or in the establishment of methods by avoiding experimental dead ends that are often not published. More collaborations and sharing of materials and methods can further reduce the number of animal experiments used for the implementation of new techniques.

Open science can and should be implemented at each step of the research process ( Fig 1 ). A vast number of tools are already provided that were either directly conceptualized for animal research or can be adapted easily. In this Essay, we provide an overview of open science tools that improve transparency, reliability, and animal welfare in translational in vivo biomedical research by supporting scientists to clearly communicate their research and by supporting collaborative working. Table 1 lists the most prominent open science tools we discuss, together with their respective links. We have structured this Essay to guide you through which tools can be used at each stage of the research process, from planning and conducting experiments, through to analyzing data and communicating the results. However, many of these tools can be used at many different steps. Table 1 has been deposited on Zenodo and will be updated continuously [ 21 ].

thumbnail

  • PPT PowerPoint slide
  • PNG larger image
  • TIFF original image

Application of open science practices at each step of the research process can maximize the impact of performed animal experiments. The implementation of these practices will lead to less time pressure at the end of a project. Due to the connection of most of these open science practices, spending more time in the planning phase and during the conduction of experiments will save time during the data analysis and publication of the study. Indeed, consulting reporting guidelines early on, preregistering a statistical plan, and writing down crucial experimental details in an electronic lab notebook, will strongly accelerate the writing of a manuscript. If protocols or even electronic lab notebooks were made public, just citing these would simplify the writing of publications. Similarly, if a data management plan is well designed before starting data collection, analyzing, and depositing data in a public repository, as is increasingly required, will be fast. NTS, non-technical summary.

https://doi.org/10.1371/journal.pbio.3001810.g001

thumbnail

https://doi.org/10.1371/journal.pbio.3001810.t001

Planning the study

Transparent practices can be adopted at every stage of the research process. However, to ensure full effectivity, it is highly recommended to engage in detailed planning before the start of the experiment. This can prevent valuable time from being lost at the end of the study due to careless decisions being made at the beginning. Clarifying data management at the start of a project can help avoiding filing chaos that can be very time consuming to untangle. Keeping clear track of a project and study design will also help if new colleagues are included later on in the project or if entire project parts are handed over. In addition, all texts written on the rationale and hypothesis of the study or method descriptions, or design schemes created during the planning phase can be used in the final publications ( Fig 1 ). Similarly, information required for preregistration of animal studies or for reporting according to the ARRIVE guidelines are an extension of the details required for ethical approval [ 22 , 23 ]. Thus, the time burden within the planning phase is often overestimated. Furthermore, the thorough planning of experiments can avoid the unnecessary use of animals by preventing wrong avenues from being pursued.

Implementing open scientific practices at the beginning of a project does not mean that the idea and study plan must be shared immediately, but rather is critical for making the entire workflow transparent at the end of the project. However, optional early sharing of information can enable peers to give feedback on the study plan. Studies potentially benefit more from this a priori input than they would from the classical a posteriori peer-review process.

Most people perceive guidelines as advice that instructs on how to do something. However, it is sometimes useful to consider the term in its original meaning; “the line that guides us”. In this sense, following guidelines is not simply fulfilling a duty, but is a process that can help to design a sound research study and, as such, guidelines should be consulted at the planning stage of a project. The PREPARE guidelines are a list of important points that should be thought-out before starting a study involving animal experiments in order to reduce the waste of animals, promote alternatives, and increase the reproducibility of research and testing [ 24 ]. The PREPARE checklist helps to thoroughly plan a study and focuses on improving the communication and collaboration between all involved participants of the study (i.e., animal caretakers and scientists). Indeed, open science begins with the communication within a research facility. It is currently available in 33 languages and the responsible team from Norecopa, Norway’s 3R-center, takes requests for translations into further languages.

The UK Reproducibility Network has also published several guiding documents (primers) on important topics for open and reproducible science. These address issues such as data sharing [ 25 ], open access [ 26 ], open code and software [ 27 ], and preprints [ 28 ], as well as preregistration and registered reports [ 27 ]. Consultation of these primers is not only helpful in the relevant phases of the experiment but is also encouraged in the planning phase.

Although the ARRIVE guidelines are primarily a reporting guideline specifically designed for preparing a publication containing animal data, they can also support researchers when planning their experiments [ 22 , 23 ]. Going through the ARRIVE website, researchers will find tools and explanations that can support them in planning their experiments [ 29 ]. Consulting the ARRIVE checklist at the beginning of a project can help in deciding what details need to be documented during conduction of the experiments. This is particularly advisable, given that compliance to ARRIVE is still poor [ 18 ].

Experimental design

To maximize the validity of performed experiments and the knowledge gained, designing the study well is crucial. It is important that the chosen animal species reflects the investigated disease well and that basic characteristics of the animal, such as sex or age, are considered carefully [ 30 ]. The Canadian Institutes of Health Research provides a collection of resources on the integration of sex and gender in biomedical research with animals, including tips and tools for researchers and reviewers [ 31 ]. Additionally, it is advisable to avoid unnecessary standardization of biological and environmental factors that can reduce the external validity of results [ 32 ]. Meticulous statistical planning can further optimize the use of animals. Free to use online tools for calculating sample sizes such as G*Power or the inVivo software package for R can further support animal researchers in designing their statistical plan [ 33 , 34 ]. Randomization for the allocation of groups can be supported with specific tools for scientists like Research Randomizer, but also by simple online random number generators [ 35 ]. Furthermore, it might be advisable when designing the study to incorporate pathological analyses into the experimental plan. Optimal planning of tissue collection, performance of pathological procedures according to accepted best practices, and use of optimal pathological analysis and reporting methods can add some extra knowledge that would otherwise be lost. This can improve the reproducibility and quality of translational biomedicine, especially, but not exclusively, in animal studies with morphological endpoints. In all animal studies, unexpected deaths in experimental animals can occur and be the cause of lost data or missed opportunities to identify health problems [ 36 , 37 ].

To support researchers in designing their animal research, the National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs) has also developed the Experimental Design Assistant (EDA) [ 38 , 39 ]. This online tool helps researchers to better structure in vivo research by creating detailed schemes of the study design. It provides feedback on the entered design, drawing researcher’s attention to crucial decisions in the project. The resulting schemes can be used to transparently share the study design by uploading it into a study preregistration, enclosing it in a grant application, or submitting it with a final manuscript. The EDA can be used for different study designs in diverse scenarios and helps to communicate researcher plans to others [ 40 ]. The EDA might be particularly of interest to clarify very complex study designs involving multiple experimental groups. Working with the EDA might appear rather complex in the beginning, but the NC3R provides regular webinars that can help to answer any questions that arise.

Preregistration

Preregistration is an effective tool to improve the quality and transparency of research. To preregister their work, scientists must determine crucial details of the study before starting any experiment. Changes occurring during a study can be outlined at the end. A preregistered study plan should include at least the hypothesis and determine all the parameters that are known in advance. A description of the planned study design and statistical analysis will enable reviewers and peers to better retrace the workflow. It can prevent the intentional use of the flexibility of analysis to reach p -values under a certain significance level (e.g., p-hacking or HARKing (Hypothesizing After Results are Known)). With preregistration, scientists can also claim their idea at an early stage of their research with a citable individual identifier that labels the idea as their own. Some open preregistration platforms also provide a digital object identifier (DOI), which makes the registered study citable. Three public registries actively encourage the preregistration of animal studies conducted around the world: OSF registry, preclinicaltrials.eu, and animalstudyregistry.org [ 41 – 45 ]. Scientists can choose the registry according to their needs. Preregistering a study in a public registry supports scientists in planning their study and later to critically reevaluate their own work and assess its limitations and potentials.

As an alternative to public registries, researchers can also submit their study plan to one of hundreds of journals already publishing registered reports, including many journals open to animal research [ 8 ]. A submitted registered report passes 2 steps of peer review. In the first step, reviewers comment on the idea and the study design. After an “in-principle-acceptance,” researchers can conduct their study as planned. If the authors conduct the experiments as described in the accepted study protocol, the journal will publish the final study regardless of the outcome. This might be an attractive option, especially for early career researchers, as a manuscript is published at the beginning of a project with the guarantee of a future final publication.

The benefits of preregistration can already be observed in clinical research, where registration has been mandatory for most trials for more than 20 years. Preregistration in clinical research has helped to make known what has been tested and not just what worked and was published, and the implementation of trial registration has strongly reduced the number of publications reporting significant treatment effects [ 46 ]. In animal research, with its unrealistically high percentage of positive results, preregistration seems to be particularly worthwhile.

Research data management

To get the most out of performed animal experiments, effective sharing of data at the end of the study is essential. Sharing research data optimally is complex and needs to be prepared in advance. Thus, data management can be seen as one part of planning a study thoroughly. Many funders have recognized the value of the original research data and request a data management plan from applicants in advance [ 25 , 47 ]. Various freely available tools such as DMPTool or DMPonline already exist to design a research data management plan that complies to the requirements of different funders [ 48 , 49 ]. The data management plan defines the types of data collected and describes the handling and names responsible persons throughout the data lifecycle. This includes collecting the data, analyzing, archiving, and sharing it. Finally, a data management plan enables long-term access and the possibility for reuse by peers. Developing such a plan, whether it is required by funders or not, will later simplify the application of the FAIR data principle (see section on the FAIR data principle). The Longwood Medical Area Research Data Management Working Group from the Harvard Medical School developed a checklist to assist researchers in optimally managing their data throughout the data lifecycle [ 50 ]. Similarly, the Joint Information Systems Committee (JISC) provides a great research data management toolkit including a checklist for researchers planning their project [ 51 ]. Consulting this checklist in the planning phase of a project can prevent common errors in research data management.

Non-technical project summary

One instrument specifically conceived to create transparency on animal research for the general public is the so-called non-technical project summary (NTS). All animal protocols approved within the EU must be accompanied by these comprehensible summaries. NTSs are intended to inform the public about ongoing animal experiments. They are anonymous and include information on the objectives and potential benefits of the project, the expected harm, the number of animals, the species, and a statement of compliance with the requirements of the 3Rs principle. However, beyond simply informing the public, NTSs can also be used for meta-research to help identify new research areas with an increased need for new 3R technologies [ 52 , 53 ]. NTSs become an excellent tool to appropriately communicate the scientific value of the approved protocol and for meta-scientists to generate added value by systematically analyzing theses summaries if they fulfill a minimum quality threshold [ 54 , 55 ]. In 2021, the EU launched the ALURES platform ( Table 1 ), where NTSs from all member states are published together, opening the opportunities for EU-wide meta-research. NTSs are, in contrast to other open science practices, mandatory in the EU. However, instead of thinking of them as an annoying duty, it might be worth thoroughly drafting the NTS to support the goals of more transparency towards the public, enabling an open dialogue and reducing extreme opinions.

Conducting the experiments

Once the experiments begin, documentation of all necessary details is essential to ensure the transparency of the workflow. This includes methodological details that are crucial for replicating experiments, but also failed attempts that could help peers to avoid experiments that do not work in the future. All information should be stored in such a way that it can be found easily and shared later. In this area, many new tools have emerged in recent years ( Table 1 ). These tools will not only make research transparent for colleagues, but also help to keep track of one’s own research and improve internal collaboration.

Electronic laboratory notebooks

Electronic laboratory notebooks (ELNs) are an important pillar of research data management and open science. ELNs facilitate the structured and harmonized documentation of the data generation workflow, ensure data integrity, and keep track of all modifications made to the original data based on an audit trail option. Moreover, ELNs simplify the sharing of data and support collaborations within and outside the research group. Methodological details and research data become searchable and traceable. There is an extensive amount of literature providing advice on the selection and the implementation process of an ELN depending on the specific needs and research area and its discussion would be beyond the scope of this Essay [ 56 – 58 ]. Some ELNs are connected to a laboratory information management system (LIMS) that provides an animal module supporting the tracking of animal details [ 59 ]. But as research involving animals is highly heterogeneous, this might not be the only decision point and we cannot recommend a specific ELN that is suitable for all animal research.

ELNs are already established in the pharmaceutical industry and their use is on the rise among academics as well. However, due to concerns around costs for licenses, data security, and loss of flexibility, many research institutions still fear the expenses that the introduction of such a system would incur [ 56 ]. Nevertheless, an increasing number of academic institutions are implementing ELNs and appreciating the associated benefits [ 60 ]. If your institution already has an ELN, it might be easiest to just use the option available in the research environment. If not, the Harvard Medical School provides an extensive and updated overview of various features of different ELNs that can support scientists in choosing the appropriate one for their research [ 61 ]. There are many commercial ELN products, which may be preferred when the administrative workload should be outsourced to a large extent. However, open-source products such as eLabFTW or open BIS provide a greater opportunity for customization to meet specific needs of individual research institutions [ 62 – 64 ]. A huge number of options are available depending on the resources and the features required. Some scientists might prefer generic note taking tools such as Evernote or just a simple Word document that offers infinite flexibility, but specific ELNs can further support good record keeping practice by providing immutability, automated backups, standardized methods, and protocols to follow. Clearly defining the specific requirements expected might help to choose an adequate system that would improve the quality of the record compared to classical paper laboratory notebooks.

Sharing protocols

Adequate sharing of methods in translational biomedical sciences is key to reproducibility. Several repositories exist that simplify the publication and exchange of protocols. Writing down methods at the end of the project bears the risk that crucial details might be missing [ 65 ]. On protocols.io, scientists can note all methodological details of a procedure, complete them with uploaded documents, and keep them for personal use or share them with collaborators [ 66 ]. Authors can also decide at any point in time to make their protocol public. Protocols published on protocols.io receive a DOI and become citable; they can be commented on by peers and adapted according to the needs of the individual researcher. Protocol.io files from established protocols can also be submitted together with some context and sample datasets to PLOS ONE , where it can be peer-reviewed and potentially published [ 67 , 68 ]. Depending on the affiliation of the researchers to academia or industry and on an internal or public sharing of files, protocols.io can be free of charge or come with costs. Other journals also encourage their authors to deposit their protocols in a freely accessible repository, such as protocol exchange from Nature portfolio [ 69 ]. Another option might be to separately submit a protocol that was validated by its use in an already published research article to an online and peer-reviewed journal specific for research protocols, such as Bio-Protocol. A multitude of journals, including eLife and Science already collaborate with Bio-Protocol and recommend authors to publish the method in Bio-Protocol [ 70 ]. Bio-Protocol has no submission fees and is freely available to all readers. Both protocols.io and Bio-Protocol allow the illustration of complex scientific methods by uploading videos to published protocols. In addition, protocols can be deposited in a general research repository such as the Open Science Framework (OSF repository) and referenced in appropriate publications.

Sharing critical incidents

Sharing critical or even adverse events that occur in the context of animal experimentation can help other scientists to avoid committing the same mistakes. The system of sharing critical incidents is already established in clinical practice and helps to improve medical care [ 71 , 72 ]. The online platform critical incident reporting system in laboratory animal science (CIRS-LAS) represents the first preclinical equivalent to these clinical systems [ 73 ]. With this web-based tool, critical incidents in animal research can be reported anonymously without registration. An expert panel helps to analyze the incident to encourage an open dialogue. Critical incident reporting is still very marginal in animal research and performed procedures are very variable. These factors make a systemic analysis and a targeted search of incidence difficult. However, it may be of special interest for methods that are broadly used in animal research such as anesthesia. Indeed, a broad feed of this system with data on errors occurring in standard procedures today could help avoid critical incidences in the future and refine animal experiments.

Sharing animals, organs, and tissue

When we think about open science, sharing results and data are often in focus. However, sharing material is also part of a collaborative and open research culture that could help to greatly reduce the number of experimental animals used. When an animal is killed to obtain specific tissue or organs, the remainder is mostly discarded. This may constitute a wasteful practice, as surplus tissue can be used by other researchers for different analyses. More animals are currently killed as surplus than are used in experiments, demonstrating the potential for sharing these animals [ 74 , 75 ].

Sharing information on generated surplus is therefore not only economical, but also an effective way to reduce the number of animals used for scientific purposes. The open-source software Anishare is a straightforward way for breeders of genetically modified lines to promote their surplus offspring or organs within an institution [ 76 ]. The database AniMatch ( Table 1 ) connects scientists within Europe who are offering tissue or organs with scientists seeking this material. Scientists already sharing animal organs can support this process by describing it in publications and making peers aware of this possibility [ 77 ]. Specialized research communities also allow sharing of animal tissue or animal-derived products worldwide that are typically used in these fields on a collaborative basis via the SEARCH-framework [ 78 , 79 ]. Depositing transgenic mice lines into one of several repositories for mouse strains can help to further minimize efforts in producing new transgenic lines and most importantly reduce the number of surplus animals by supporting the cryoconservation of mouse lines. The International Mouse Strain Resource (IMSR) can be used to help find an adequate repository or to help scientists seeking a specific transgenic line find a match [ 80 ].

Analyzing the data

Animal researchers have to handle increasingly complex data. Imaging, electrophysiological recording, or automated behavioral tracking, for example, produce huge datasets. Data can be shared as raw numerical output but also as images, videos, sounds, or other forms from which raw numerical data can be generated. As the heterogeneity and the complexity of research data increases, infinite possibilities for analysis emerge. Transparently reporting how the data were processed will enable peers to better interpret reported results. To get the most out of performed animal experiments, it is crucial to allow other scientists to replicate the analysis and adapt it to their research questions. It is therefore highly recommended to use formats and tools during the analysis that allow a straightforward exchange of code and data later on.

Transparent coding

The use of non-transparent analysis codes have led to a lack of reproducibility of results [ 81 ]. Sharing code is essential for complex analysis and enables other researchers to reproduce results and perform follow-up studies, and citable code gives credit for the development of new algorithms ( Table 1 ). Jupyter Notebooks are a convenient way to share data science pipelines that may use a variety of coding languages, including like Python, R or Matlab, and also share the results of analyses in the form of tables, diagrams, images, and videos. Notebooks contain source code and can be published or collaboratively shared on platforms like GitHub or GitLab, where version control of source code is implemented. The data-archiving tool Zenodo can be used to archive a repository on GitHub and create a DOI for the archive. Thereby contents become citable. Using free and open-source programming language like R or Python will increase the number of potential researchers that can work with the published code. Best practice for research software is to publish the source code with a license that allows modification and redistribution.

Choice of data visualization

Choosing the right format for the visualization of data can increase its accessibility to a broad scientific audience and enable peers to better judge the validity of the results. Studies based on animal research often work with very small sample sizes. Visualizing these data in histograms may lead to an overestimation of the outcomes. Choosing the right dot plots that makes all recorded points visible and at the same time focusses on the summary instead of the individual points can further improve the intuitive understanding of a result. If the sample size is too low, it might not be meaningful to visualize error bars. A variety of freely available tools already exists that can support scientists in creating the most appropriate graphs for their data [ 82 ]. In particular, when representing microscopy results or heat maps, it should be kept in mind that a large part of the population cannot perceive the classical red and green representation [ 83 ]. Opting for the color-blind safe color maps and checking images with free tools such as color oracle ( Table 1 ) can increase the accessibility of graphs. Multiple journals have already addressed flaws in data visualization and have introduced new policies that will accelerate the uptake of transparent representation of results.

Publication of all study outcomes

Open science practices have received much attention in the past few years when it comes to publication of the results. However, it is important to emphasize that although open science tools have their greatest impact at the end of the project, good study preparation and sharing of the study plan and data early on can greatly increase the transparency at the end.

The FAIR data principle

To maximize the impact and outcome of a study, and to make the best long-term use of data generated through animal experiments, researchers should publish all data collected during their research according to the FAIR data principle. That means the data should be findable, accessible, interoperable, and reusable. The FAIR principle is thus an extension of open access publishing. Data should not only be published without paywalls or other access restrictions, but also in such a manner that they can be reused and further processed by others. For this, legal as well as technical requirements must be met by the data. To achieve this, the GoFAIR initiative has developed a set of principles that should be taken into account as early as at the data collection stage [ 49 , 84 ]. In addition to extensively described and machine-readable metadata, these principles include, for example, the application of globally persistent identifiers, the use of open file formats, and standardized communication protocols to ensure that humans and machines can easily download the data. A well-chosen repository to upload the data is then just the final step to publish FAIR data.

FAIR data can strongly increase the knowledge gained from performed animal experiments. Thus, the same data can be analyzed by different researchers and could be combined to obtain larger sample sizes, as already occurs in the neuroimaging community, which works with comparable datasets [ 85 ]. Furthermore, the sharing of data enables other researchers to analyze published datasets and estimate measurement reliabilities to optimize their own data collection [ 86 , 87 ]. This will help to improve the translation from animal research into clinics and simultaneously reduce the number of animal experiment in future.

Reporting guidelines

In preclinical research, the ARRIVE guidelines are the current state of the art when it comes to reporting data based on animal experiments [ 22 , 23 ]. The ARRIVE guidelines have been endorsed by more than 1,000 journals who ask that scientists comply with them when reporting their outcomes. Since the ARRIVE guidelines have not had the expected impact on the transparency of reporting in animal research publications, a more rigorous update has been developed to facilitate their application in practice (ARRIVE 2.0 [ 23 ]). We believe that the ARRIVE guidelines can be more effective if they are implemented at a very early stage of the project (see section on guidelines). Some more specialized reporting guidelines have also emerged for individual research fields that rely on animal studies, such as endodontology [ 88 ]. The equator network collects all guidelines and makes them easily findable with their search tool on their website ( Table 1 ). MERIDIAN also offers a 1-stop shop for all reporting guidelines involving the use of animals across all research sectors [ 89 ]. It is thus worth checking for new reporting guidelines before preparing a manuscript to maximize the transparency of described experiments.

Identifiers

Persistent identifiers for published work, authors, or resources are key for making public data findable by search engines and are thus a prerequisite for compliance to FAIR data principles. The most common identifier for publications will be a DOI, which makes the work citable. A DOI is a globally unique string assigned by the International DOI Foundation to identify content permanently and provide a persistent link to its location on the Internet. An ORCID ID is used as a personal persistent identifier and is recommendable to unmistakably identify an author ( Table 1 ). This will avoid confusions between authors with the same name or in the case of name changes or changes of affiliation. Research Resource Identifiers (RRID) are unique ID numbers that help to transparently report research resources. RRID also apply to animals to clearly identify the species used. RRID help avoid confusion between different names or changing names of genetic lines and, importantly, make them machine findable. The RRID Portal helps scientists find a specific RRID or create one if necessary ( Table 1 ). In the context of genetically altered animal lines, correct naming is key. The Mouse Genome Informatics (MGI) Database is the authoritative source of official names for mouse genes, alleles, and strains ([ 90 ]).

Preprint publication

Preprints have undergone unprecedented success, particularly during the height of the Coronavirus Disease 2019 (COVID-19) pandemic when the need for rapid dissemination of scientific knowledge was critical. The publication process for scientific manuscripts in peer-reviewed journals usually requires a considerable amount of time, ranging from a few months to several years, mainly due to the lengthy review process and inefficient editorial procedures [ 91 , 92 ]. Preprints typically precede formal publication in scientific journals and, thus, do not go through a peer review process, thus, facilitating the prompt open dissemination of important scientific findings within the scientific community. However, submitted papers are usually screened and checked for plagiarism. Preprints are assigned a DOI so they can be cited. Once a preprint is published in a journal, its status is automatically updated on the preprint server. The preprint is linked to the publication via CrossRef and mentioned accordingly on the website of the respective preprint platform.

After initial skepticism, most publishers now allow papers to be posted on preprint servers prior to submission. An increasing number of journals even allow direct submission of a preprint to their peer review process. The US National Institutes of Health and the Wellcome Trust, among other funders, also encourage prepublication and permit researchers to cite preprints in their grant applications. There are now numerous preprint repositories for different scientific disciplines. BioASAP provides a searchable database for preprint servers that can help in identifying the one that best matches an individual’s needs [ 93 ]. The most popular repository for animal research is bioRxiv, which is hosted by the Cold Spring Harbor Laboratory ( Table 1 ).

The early exchange of scientific results is particularly important for animal research. This acceleration of the publication process can help other scientists to adapt their research or could even prevent animal experiments if other scientists become aware that an experiment has already been done before starting their own. In addition, preprints can help to increase the visibility of research. Journal articles that have a corresponding preprint publication have higher citation and Altmetric counts than articles without preprint [ 94 ]. In addition, the publication of preprints can help to combat publication bias, which represents a major problem in animal research [ 16 ]. Since journals and readers prioritize cutting-edge studies with positive results over inconclusive or negative results, researchers are reluctant to invest time and money in a manuscript that is unlikely to be accepted in a high-impact journal.

In addition to the option of publishing as preprint, other alternative publication formats have recently been introduced to facilitate the publication of research results that are hard to publish in traditional peer-reviewed journals. These include micro publications, data repositories, data journals, publication platforms, and journals that focus on negative or inconclusive results. The tool fiddle can support scientists in choosing the right publication format [ 95 , 96 ].

Open access publication

Publishing open access is one of the most established open science strategies. In contrast to the FAIR data principle, the term open access publication refers usually to the publication of a manuscript on a platform that is accessible free of charge—in translational biomedical research, this is mostly in the form of a scientific journal article. Originally, publications accessible free of charge were the answer to the paywalls established by renowned publishing houses, which led to social inequalities within and outside the research system. In translational biomedical research, the ethical aspect of urgently needed transparency is another argument in favor of open access publication, as these studies will not only be findable, but also internationally readable.

There are different ways of open access publishing; the 2 main routes are gold open access and green open access. Numerous journals offer now gold open access. It refers to the immediate and fully accessible publication of an article. The Directory of Open Access Journals (DOAJ) provides a complete and updated list for high-quality, open access, and peer-reviewed journals [ 97 ]. Charité–Universitätsmedizin Berlin offers a specific tool for biomedical open access journals that supports animal researchers to choose an appropriate journal [ 49 ]. In addition, the Sherpa Romeo platform is a straightforward way to identify publisher open access policies on a journal-by-journal basis, including information on preprints, but also on licensing of articles [ 51 ]. Hybrid open access refers to openly accessible articles in otherwise paywalled journals. By contrast, green open access refers to the publication of a manuscript or article in a repository that is mostly operated by institutions and/or universities. The publication can be exclusively on the repository or in combination with a publisher. In the quality-assured, global Directory of Open Access Repositories (openDOAR), scientists can find thousands of indexed open access repositories [ 49 ]. The publisher often sets an embargo during which the authors cannot make the publication available in the repository, which can restrict the combined model. It is worth mentioning that gold open access is usually more expensive for the authors, as they have to pay an article processing charge. However, the article’s outreach is usually much higher than the outreach of an article in a repository or available exclusively as subscription content [ 98 ]. Diamond open access refers to publications and publication platforms that can be read free of charge by anyone interested and for which no costs are incurred by the authors either. It is the simplest and fairest form of open access for all parties involved, as no one is prevented from participating in scientific discourse by payment barriers. For now, it is not as widespread as the other forms because publishers have to find alternative sources of revenue to cover their costs.

As social media and the researcher’s individual public outreach are becoming increasingly important, it should be remembered that the accessibility of a publication should not be confused with the licensing under which the publication is made available. In order to be able to share and reuse one’s own work in the future, we recommend looking for journals that allow publications under the Creative Commons licenses CC BY or CC BY-NC. This also allows the immediate combination of gold and green open access.

Creative commons licenses

Attributing Creative Commons (CC) licenses to scientific content can make research broadly available and clearly specifies the terms and conditions under which people can reuse and redistribute the intellectual property, namely publications and data, while giving the credit to whom it deserves [ 49 ]. As the laws on copyright vary from country to country and law texts are difficult to understand for outsiders, the CC licenses are designed to be easily understandable and are available in 41 languages. This way, users can easily avoid accidental misuse. The CC initiative developed a tool that enables researchers to find the license that best fits their interests [ 49 ]. Since the licenses are based on a modular concept ranging from relatively unrestricted licenses (CC BY, free to use, credit must be given) to more restricted licenses (CC BY-NC-ND, only free to share for non-commercial purposes, credit must be given), one can find an appropriate license even for the most sensitive content. Publishing under an open CC license will not only make the publication easy to access but can also help to increase its reach. It can stimulate other researchers and the interested public to share this article within their network and to make the best future use of it. Bear in mind that datasets published independently from an article may receive a different CC license. In terms of intellectual property, data are not protected in the same way as articles, which is why the CC initiative in the United Kingdom recommends publishing them under a CC0 (“no rights reserved”) license or the Public Domain Mark. This gives everybody the right to use the data freely. In an animal ethics sense, this is especially important in order to get the most out of data derived from animal experiments.

Data and code repositories

Sharing research data is essential to ensure reproducibility and to facilitate scientific progress. This is particularly true in animal research and the scientific community increasingly recognizes the value of sharing research data. However, even though there is increasing support for the sharing of data, researchers still perceive barriers when it comes to doing so in practice [ 99 – 101 ]. Many universities and research institutions have established research data repositories that provide continuous access to datasets in a trusted environment. Many of these data repositories are tied to specific research areas, geographic regions, or scientific institutions. Due to the growing number and overall heterogeneity of these repositories, it can be difficult for researchers, funding agencies, publishers, and academic institutions to identify appropriate repositories for storing and searching research data.

Recently, several web-based tools have been developed to help in the selection of a suitable repository. One example is Re3data, a global registry of research data repositories that includes repositories from various scientific disciplines. The extensive database can be searched by country, content (e.g., raw data, source code), and scientific discipline [ 49 ]. A similar tool to help find a data archive specific to the field is FAIRsharing, based at Oxford University [ 102 ]. If there is no appropriate subject-specific data repository or one seems unsuitable for the data, there are general data repositories, such as Open Science Framework, figshare, Dryad, or Zenodo. To ensure that data stored in a repository can be found, a DOI is assigned to the data. Choosing the right license for the deposited code and data ensures that authors get credit for their work.

Publication and connection of all outcomes

If scientists have used all available open science tools during the research process, then publishing and linking all outcomes represents the well-deserved harvest ( Fig 2 ). At the end of a research process, researchers will not just have 1 publication in a journal. Instead, they might have a preregistration, a preprint, a publication in a journal, a dataset, and a protocol. Connecting these outcomes in a way that enables other scientists to better assess the results that link these publications will be key. There are many examples of good open science practices in laboratory animal science, but we want to highlight one of them to show how this could be achieved. Blenkuš and colleagues investigated how mild stress-induced hyperthermia can be assessed non-invasively by thermography in mice [ 103 ]. The study was preregistered with animalstudyregistry.org , which is referred to in their publication [ 104 ]. A deviation from the originally preregistered hypothesis was explained in the manuscript and the supplementary material was uploaded to figshare [ 105 ].

thumbnail

Application of open science practices can increase the reproducibility and visibility of a research project at the same time. By publishing different research outputs with more detailed information than can be included in a journal article, researchers enable peers to replicate their work. Reporting according to guidelines and using transparent visualization will further improve this reproducibility. The more research products that are generated, the more credit can be attributed. By communicating on social media or additionally publishing slides from delivered talks or posters, more attention can be raised. Additionally, publishing open access and making the work machine-findable makes it accessible to an even broader number of peers.

https://doi.org/10.1371/journal.pbio.3001810.g002

It might also be helpful to provide all resources from a project in a single repository such as Open Science Framework, which also implements other, different tools that might have been used, like GitHub or protocols.io.

Communicating your research

Once all outcomes of the project are shared, it is time to address the targeted peers. Social media is an important instrument to connect research communities [ 106 ]. In particular, Twitter is an effective way to communicate research findings or related events to peers [ 107 ]. In addition, specialized platforms like ResearchGate can support the exchange of practical experiences ( Table 1 ). When all resources related to a project are kept in one place, sharing this link is a straightforward way to reach out to fellow scientists.

With the increasing number of publications, science communication has become more important in recent years. Transparent science that communicates openly with the public contributes to strengthening society’s trust in research.

Conclusions

Plenty of open science tools are already available and the number of tools is constantly growing. Translational biomedical researchers should seize this opportunity, as it could contribute to a significant improvement in the transparency of research and fulfil their ethical responsibility to maximize the impact of knowledge gained from animal experiments. Over and above this, open science practices also bear important direct benefits for the scientists themselves. Indeed, the implementation of these tools can increase the visibility of research and becomes increasingly important when applying for grants or in recruitment decisions. Already, more and more journals and funders require activities such as data sharing. Several institutions have established open science practices as evaluation criteria alongside publication lists, impact factor, and h-index for panels deciding on hiring or tenure [ 108 ]. For new adopters, it is not necessary to apply all available practices at once. Implementing single tools can be a safe approach to slowly improve the outreach and reproducibility of one’s own research. The more open science products that are generated, the more reproducible the work becomes, but also the more the visibility of a study increases ( Fig 2 ).

As other research fields, such as social sciences, are already a step ahead in the implementation of open science practices, translational biomedicine can profit from their experiences [ 109 ]. We should thus keep in mind that open science comes with some risks that should be minimized early on. Indeed, the more open science practices become incentivized, the more researchers could be tempted to get a transparency quality label that might not be justified. When a study is based on a bad hypothesis or poor statistical planning, this cannot be fixed by preregistration, as prediction alone is not sufficient to validate an interpretation [ 110 ]. Furthermore, a boom of data sharing could disconnect data collectors and analysts, bearing the risk that researchers performing the analysis lack understanding of the data. The publication of datasets could also promote a “parasitic” use of a researcher’s data and lead to scooping of outcomes [ 111 ]. Stakeholders could counteract such a risk by promoting collaboration instead of competition.

During the COVID-19 pandemic, we have seen an explosion of preprint publications. This unseen acceleration of science might be the adequate response to a pandemic; however, the speeding up science in combination with the “publish or perish” culture could come at the expense of the quality of the publication. Nevertheless, a meta-analysis comparing the quality of reporting between preprints and peer-reviewed articles showed that the quality of reporting in preprints in the life sciences is at most slightly lower on average compared to peer-reviewed articles [ 112 ]. Additionally, preprints and social media have shown during this pandemic that a premature and overconfident communication of research results can be overinterpreted by journalists and raise unfounded hopes or fears in patients and relatives [ 113 ]. By being honest and open about the scope and limitations of the study and choosing communication channels carefully, researchers can avoid misinterpretation. It should be noted, however, that by releasing all methodological details and data in research fields such as viral engineering, where a dual use cannot be excluded, open science could increase biosecurity risk. Implementing access-controlled repositories, application programming interfaces, and a biosecurity risk assessment in the planning phase (i.e., by preregistration) could mitigate this threat [ 114 ].

Publishing in open access journals often involves higher publication costs, which makes it more difficult for institutes and universities from low-income countries to publish there [ 115 ]. Equity has been identified as a key aim of open science [ 116 ]. It is vital, therefore, that existing structural inequities in the scientific system are not unintentionally reinforced by open science practices. Early career researchers have been the main drivers of the open science movement in other fields even though they are often in vulnerable positions due to short contracts and hierarchical and strongly networked research environments. Supporting these early career researchers in adopting open science tools could significantly advance this change in research culture [ 117 ]. However, early career researchers can already benefit by publishing registered reports or preprints that can provide a publication much faster than conventional journal publications. Communication in social media can help them establish a network enabling new collaborations or follow-up positions.

Even though open science comes with some risks, the benefits easily overweigh these caveats. If a change towards more transparency is accompanied by the implementation of open science in the teaching curricula of the universities, most of the risks can be minimized [ 118 ]. Interestingly, we have observed that open science tools and infrastructure that are specific to animal research seem to mostly come from Europe. This may be because of strict regulations within Europe for animal experiments or because of a strong research focus in laboratory animal science along with targeted research funding in this region. Whatever the reason might be, it demonstrates the important role of research policy in accelerating the development towards 3Rs and open science.

Overall, it seems inevitable that open science will eventually prevail in translational biomedical research. Scientists should not wait for the slow-moving incentive framework to change their research habits, but should take pioneering roles in adopting open science tools and working towards more collaboration, transparency, and reproducibility.

Acknowledgments

The authors gratefully acknowledge the valuable input and comments from Sebastian Dunst, Daniel Butzke, and Nils Körber that have improved the content of this work.

  • View Article
  • PubMed/NCBI
  • Google Scholar
  • 6. Cary Funk MH, Brian Kennedy, Courtney Johnson. Americans say open access to data and independent review inspire more trust in research findings. Pew Research Center Website: Pew Research Center; 2019. Available from: https://www.pewresearch.org/science/2019/08/02/americans-say-open-access-to-data-and-independent-review-inspire-more-trust-in-research-findings/ .
  • 7. International Reproducibility Networks. International Networks Statement UK Reproducibility Network Website: UK Reproducibility Network. 2021. Available from: https://cpb-eu-w2.wpmucdn.com/blogs.bristol.ac.uk/dist/b/631/files/2021/09/International-Networks-Statement-v1.0.pdf .
  • 13. Article 36 of Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 amended by Regilation (EU) 2019/1010 of the European Parliament and of the Council of 5 June 2019. OJEU. 2010;L276:36.
  • 19. American Association for Cancer Research. Editorial Policies. 2021. Available from: https://aacrjournals.org/content/authors/editorial-policies .
  • 21. Diederich K, Schmitt K, Schwedhelm P, Bert B, Heinl C. Open Science Toolbox for Animal Research. Zenodo. 2022. Available from: https://zenodo.org/record/6497560 .
  • 29. NC3R. ARRIVE guidelines. NC3R Website. Available from: https://arriveguidelines.org/ .
  • 31. Canadian Institutes of Health Research. How to integrate sex and gender into research. Website of the Canadian Institutes of Health Research: Canadian Institutes of Health Research. 2019 [cited 2019 Aug 21]. Available from: https://cihr-irsc.gc.ca/e/50836.html .
  • 33. Simon T, Bate RAC. InVivoStat. Available from: https://invivostat.co.uk/ .
  • 35. Urbaniak G, Plous S. Research randomizer (version 4.0) [computer software]. 2013.
  • 47. Medical Research Council’s. Data sharing policy. UK Research and Innovation Website 2021. Available from: https://www.ukri.org/publications/mrc-data-sharing-policy/ .
  • 48. University of California Curation Center. DMPTool. 2021. Available from: https://dmptool.org/ .
  • 49. Digital Curation Centre. DMPOnline. Available from: https://dmponline.dcc.ac.uk/ . Digital Curation Centre; 2021.
  • 50. Harvard Longwood Medical Area Research Data Management Working Group. Biomedical Data Lifecycle. Harvard Medical School Website: Harvard Medical School; 2021. Available from: https://datamanagement.hms.harvard.edu/about/what-research-data-management/biomedical-data-lifecycle .
  • 51. Joint Information Systems Committee. Research data management toolkit JISC Website: JISC; 2018. Available from: https://www.jisc.ac.uk/guides/rdm-toolkit .
  • 54. German Centre for the Protection of Laboratory Animals (Bf3R). NTPs—Nicht Technische Projektzusammenfassungen 3R-SMART; 2020. Available from: https://www.3r-smart.de/index.php?id=6895 .
  • 55. Understanding Animal Research. Guide to writing non-technical summaries concordat on openness on animal research in the UK2018. Available from: https://concordatopenness.org.uk/guide-to-writing-non-technical-summaries .
  • 56. Gerlach B, Untucht C, Stefan A. Electronic Lab Notebooks and Experimental Design Assistants. In: Bespalov A, Michel MC, Steckler T, editors. Good Research Practice in Non-Clinical Pharmacology and Biomedicine. Cham: Springer International Publishing; 2020. p. 257–75.
  • 58. Adam BL, Birte L. ELN Guide: electronic laboratory notebooks in the context of research data management and good research practice–a guide for the life sciences. Cologne, Germany: ZB MED–Information Centre for Life Sciences; 2021.
  • 59. AgileBio. LabCollector Website https://labcollector.com/labcollector-lims/features/modules/animals-module/2022 . Available from: https://labcollector.com/labcollector-lims/features/modules/animals-module/ .
  • 61. Harvard Longwood Medical Area Research Data Management Working Group. Electronic Lab Notebook Comparison Matrix. Zenodo. 2021.
  • 70. Bio-protocol. Collaborating Journals bio-protocol website2021. Available from: https://bio-protocol.org/default.aspx?dw=Collaborating .
  • 76. Dinkel H. anishare: GitHub; [updated June 2018]. Available from: https://github.com/hdinkel/anishare .
  • 89. O’Connor AM. MERIDIAN: Menagerie of Reporting guidelines Involving Animals. Iowa State University; 2022. Available from: https://meridian.cvm.iastate.edu/ .
  • 90. The Jackson Laboratory. Mouse Nomenclature Home Page at the Mouse Genome Informatics website World Wide Web: The Jackson Laboratory,Bar Harbor, Maine. Available from: http://www.informatics.jax.org/mgihome/nomen/index.shtml .
  • 97. Directory of Open Access Journals. Find open access journals & articles. Available from: https://doaj.org/ . Directory of Open Access Journals, [DOAJ]; 2021.
  • 98. Gold Open Access research has greater societal impact as used more outside of academia [press release]. Springer Nature Website: Springer. Nature. 2020;30:2020.
  • 104. Franco NH. Can we use infrared thermography for assessing emotional states in mice?—A comparison between handling-induced stress by different techniques. Available from: animalstudyregistry.org . German Federal Institute for Risk Assessment (BfR); 2020. https://doi.org/10.17590/asr.0000224
  • Search Menu
  • Sign in through your institution
  • Advance articles
  • Themed Issues
  • Author Guidelines
  • Open Access
  • About ILAR Journal
  • About the Institute for Laboratory Animal Research
  • Editorial Board
  • Advertising and Corporate Services
  • Self-Archiving Policy
  • Dispatch Dates
  • Journals on Oxford Academic
  • Books on Oxford Academic

Issue Cover

Article Contents

An introduction to ethical questions around animal research.

  • Article contents
  • Figures & tables
  • Supplementary Data

Adam J Shriver, Eric Hutchison, An Introduction to Ethical Questions Around Animal Research, ILAR Journal , Volume 60, Issue 3, 2019, Pages 305–307, https://doi.org/10.1093/ilar/ilab026

  • Permissions Icon Permissions

The principal investigator is an expert on the topic under investigation. The veterinarian is an expert in the health and wellness of an animal. But what, exactly, can ethicists add to discussions about animal research? This special issue of the ILAR Journal considers how contemporary ethics scholarship can be relevant to animal research. The articles were selected to highlight how clear thinking about values and the implications of those values can inform which research is conducted and how it is conducted.

The principal investigator is an expert on the topic under investigation. The veterinarian is an expert in the health and wellness of an animal. But what, exactly, can ethicists add to discussions about animal research?

In fact, like it or not, ethics is central to the practice of animal research. Questions such as which research is valuable, which research should be prioritized, and what should be allowed in the pursuit of research goals are all questions that depend, ultimately, on our values as well as on an understanding of the facts. And as David Hume observed many years ago, no amount of understanding of facts about the way the world “is” can infallibly tell us how we “ought” to be behaving. 1

Even so, we might question the value of ethical debate. After all, isn’t ethics merely the expression of people’s opinions? Isn’t it all “subjective” and, therefore, impervious to evidence and reasoned debate?

It is true that after thousands of years of debate, there is still much disagreement about “how one ought to live.” But a move from this fact to a dismissal of the practice of ethics moves too quickly. Just like science, ethics can be done well or poorly. At the very least, we ought to all agree that any ethical perspective should make assumptions clear, consider alternative approaches, and employ airtight reasoning to justify any move from initial assumptions to practical implications. A good ethics argument, like any good argument, starts from premises the reader accepts and then shows what follows from those premises.

This special issue highlights the role that modern ethics can play in the field of animal research. It is designed to show how clear thinking about values and the implications of those values might inform which research is conducted and how it is conducted. In short, it is designed to address the question: what can ethicists add to the discussion of animal research?

The first three articles are most explicitly directed at answering that question. First, following up on their important recent book, Principles of Animal Research Ethics , 2 Tom Beauchamp and David DeGrazia outline an ethical framework for animal research that they believe is an important advancement on the 3Rs and that better aligns the bioethics of animal research with that of human research. 3 Beauchamp was a key figure and principal author in the landmark Belmont Report , 4 and his co-authored book with Childress, Principles of Biomedical Ethics , 5 outlines a set of principles central to the ethical consideration of medical and research ethics around the world. DeGrazia is a leading scholar in animal ethics (as well as other areas of bioethics) who has played a central role in integrating science into the field of animal ethics. The book is an attempt to provide animal research bioethics with a similarly strong ethical foundation as human bioethics, to clarify and expand on key assumptions of the field. Their contribution to this issue allows them to respond to and address issues that did not make the initial book.

The next 2 contributions, from Angela Hvitved and Nathan Nobis, take a more explicit approach to communicating the value of ethics for animal research. Hvitved takes the perspective of political philosophy, arguing for the importance of including ethicists in animal research discussions as stakeholders. 6 Nobis, on the other hand, explicitly spells out the types of expertise offered by ethicists and considers whether this should be included as an essential component of IACUCs. 7

Much of the recent explicit focus on ethics among animal researchers and their regulators has centered on the comparison of harms (or costs) and benefits. Harm-benefit analysis is posited as a useful tool for evaluating specific techniques or approaches in animal experimentation within the field of animal research. Indeed, this approach plays a central role in debates about the permissibility of research on animals. Arguments for research often cite the potential benefits that will result as justification for any harms endured by animals, and some of the fiercest critics of animal research have also appealed to comparisons of harms and benefit. 8

This volume has several articles relevant for debates about harm-benefit analyses. First, Brill et al offer an article in favor of an improved harm-benefit analysis, arguing that the aims of research are not sufficient to define its potential benefits but that the quality of that research must also be considered. 9 On the other side, however, Niemi suggests that the premise of evaluating potential future benefits is flawed enough to require major rethinking of this as an ethical measuring stick. 10

One of the big challenges of using harm-benefit analysis as a justification or criticism of the overall practice of research is deciding which things get to count as harms and which get to count as benefits. Along these lines, Tannenbaum in this issue suggests that we might better conceive of the creation of knowledge as the justification of research rather than attempting to appeal to purely utilitarian style arguments. 11

Broadminded approaches to weighing harms and benefits also need to consider not only which types of harms might occur to laboratory animals but also what conditions could provide them with as good a life as possible. This is one way of seeing the recent shift towards focusing on what is a good life for animals. In this issue, we have several articles that focus on this theme. One, from Pat Turner, offers a general argument about focusing on the important value of a positive life. 12 The other, by Makowska and Weary, focuses on a number of explicit ways of improving the lives of rats and mice. 13 Another key approach towards improving the well-being of laboratory animals is put forward by Schapiro et al, who argue that we should use behavioral management to improve the welfare of laboratory animals. 14

Two key ways of improving the lives of some animals might be using positive reinforcement training and rehoming eligible animals. Philosopher Andrew Fenton focuses on these when he asks if we are truly living up to our duty of providing the best lives possible. 15 Fenton, in this and in previous work, also raises an issue that is perhaps best viewed from outside of the framework of harm-benefit analyses. In human research, it is considered essential to research to obtain informed consent from research subjects, or at least assent in cases where consent is not possible. It is generally taken for granted that even if we could provide a favorable harm-benefit analysis of conducting research on unconsenting individuals, such practices would be ethically unacceptable. Fenton examines what it would mean to apply similar reasoning in the case of animals and assent.

Another move away from a focus purely on counting harms and benefits would be to place strict restrictions on the upper limits of pain in animals. Olsson and colleagues take a closer look at a rule that forbids research that places a maximum level of pain on certain animals. 16 Were such a rule implemented, we might say that animals have “rights” not to have certain procedures performed even if those procedures were, strictly speaking, justified by harm-benefit analyses.

One criticism of philosophy in the 20th century was that it focused too much on evaluating particular actions and too little on what it meant to be a good or bad person. Ethical theories that focused primarily on character traits as a central focus of ethics are known as virtue ethics, and Rebecca Walker outlines what a virtue ethics approach to animal research should look like. 17

Finally, in additional to addressing theoretical considerations, ethicists also are called on to attempt to offer guidance in relation to new developments. Sometimes the technological advancements occurring outpace our ability to fully consider the ethical implications of those advancements. The last 2 articles look at applied ethics approaches to dealing with new and developing technology. Shriver and John summarize a conference that took the perspective of the new field of neuroethics and applied it specifically to topics in animal research, 18 and Devolder et al looks at the significance of developments in genetic research and considers the possibility of human-animal chimeras as well as the less discussed topic of animal–animal chimeras. 19

Potential conflicts of interest . All authors: No reported conflicts.

Hume   D.   A Treatise of Human Nature . New , by D.   Hume . ed. Oxford: Oxford University Press; 1817 .

Beauchamp   TL , DeGrazia   D . Principles of Animal Research Ethics . Oxford Medicine Online . Oxford: Oxford University Press ; 2020 . https://oxfordmedicine.com/view/10.1093/med/9780190939120.001.0001/med-9780190939120 . Accessed July 15, 2021.

Google Scholar

Google Preview

DeGrazia   D , Beauchamp   TL . Beyond the 3 Rs to a more comprehensive framework of principles for animal research ethics . ILAR J . 2019 ; 10 :ilz011. https://doi.org/10.1093/ilar/ilz011   Online ahead of print. PMID: 31598694 .

United States  National Commission for the Protection of Human Subjects of Biomedical and Behavioral Research. In: The Belmont Report : Ethical Principles and Guidelines for the Protection of Human Subjects of Research . DHEW publication no (OS) 78-0012 . Washington D.C.: US Govt Print Office ; 1978 . https://www.hhs.gov/ohrp/regulations-and-policy/belmont-report/index.html . Accessed July 15, 2021.

Beauchamp   TL , Childress   JF . Principles of Biomedical Ethics . 7th ed. Oxford: Oxford University Press ; 2013 : xvi .

Hvitved   AN . Engaging ethicists in animal research policymaking . ILAR J . 2019 ; 13 :ilz023. https://doi.org/10.1093/ilar/ilz023   Online ahead of print. PMID: 31836879 .

Nobis   N . Why IACUCs need ethicists . ILAR J . 2020 ; 28 :ilaa021. https://doi.org/10.1093/ilar/ilaa021   Online ahead of print. PMID: 33369619 .

Singer   P.   Animal Liberation . 2nd ed. London: Jonathan Cape; 1990 .

Brill   S , Guerrero-Martin   S , Pate   K . The symbiotic relationship between scientific quality and animal research ethics . ILAR J . 2020 ; 14 . https://doi.org/10.1093/ilar/ilab023 .

Niemi   SM . Harm-benefit analyses can be harmful . ILAR J . 2020 ; 12 :ilaa016. https://doi.org/10.1093/ilar/ilaa016   Online ahead of print. PMID: 32785593 .

Tannenbaum   J . The pursuit and advancement of knowledge as a justification for the use of animals in research . ILAR J . 2019 ; 14 :ilz013. https://doi.org/10.1093/ilar/ilz013   Online ahead of print. PMID: 31608362 .

Turner   PV . Moving beyond the absence of pain and distress: focusing on positive animal welfare . ILAR J . 2020 ; 29 :ilaa017. https://doi.org/10.1093/ilar/ilaa017   Online ahead of print. PMID: 33119093 .

Makowska   IJ , Weary   DM . A good life for laboratory rodents?   ILAR J . 2020 ; 20 :ilaa001. https://doi.org/10.1093/ilar/ilaa001   Online ahead of print. PMID: 32311030 .

Schapiro   SJ , Neal Webb   SJ , Mulholland   MM  et al.    Behavioral management is a key component of ethical research . ILAR J . 2020 . https://doi.org/10.1093/ilar/ilaa023   Online ahead of print .

Fenton   A . Holding animal-based research to our highest ethical standards: re-seeing two emergent laboratory practices and the ethical significance of research animal dissent . ILAR J . 2020 ; 2 :ilaa014. https://doi.org/10.1093/ilar/ilaa014   Online ahead of print. PMID: 32614447 .

Olsson   IAS , J Nicol   C , Niemi   SM  et al.    From unpleasant to unbearable-why and how to implement an upper limit to pain and other forms of suffering in research with animals . ILAR J . 2020 ; 30 :ilz018. https://doi.org/10.1093/ilar/ilz018   Online ahead of print. PMID: 31996924 .

Walker   RL . Virtue ethics and laboratory animal research . ILAR J . 2020 ; 27 . https://doi.org/10.1093/ilar/ilaa015   [ilaa019 Erratum]. Online ahead of print. PMID: 32717051 .

Shriver   AJ , John   T . Neuroethics and animals: report and recommendations from the University of Pennsylvania Animal Research Neuroethics Workshop . ILAR J . 2020 . https://doi.org/10.1093/ilar/ilab024 .

Devolder   K , Yip   LJ , Douglas   T . The ethics of creating and using human-animal chimeras . ILAR J . 2020 ; 24 :ilaa002. https://doi.org/10.1093/ilar/ilaa002   Online ahead of print. PMID: 32325492 .

Email alerts

Citing articles via.

  • Recommend to your Library

Affiliations

  • Online ISSN 1930-6180
  • Print ISSN 1084-2020
  • Copyright © 2024 Institute for Laboratory Animal Research
  • About Oxford Academic
  • Publish journals with us
  • University press partners
  • What we publish
  • New features  
  • Open access
  • Institutional account management
  • Rights and permissions
  • Get help with access
  • Accessibility
  • Advertising
  • Media enquiries
  • Oxford University Press
  • Oxford Languages
  • University of Oxford

Oxford University Press is a department of the University of Oxford. It furthers the University's objective of excellence in research, scholarship, and education by publishing worldwide

  • Copyright © 2024 Oxford University Press
  • Cookie settings
  • Cookie policy
  • Privacy policy
  • Legal notice

This Feature Is Available To Subscribers Only

Sign In or Create an Account

This PDF is available to Subscribers Only

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

How to write an animal report

Your teacher wants a written report on the beluga whale . Not to worry. Use these organizational tools from the Nat Geo Kids Almanac so you can stay afloat while writing a report.

STEPS TO SUCCESS:

Your report will follow the format of a descriptive or expository essay and should consist of a main idea, followed by supporting details and a conclusion. Use this basic structure for each paragraph as well as the whole report, and you’ll be on the right track.

Introduction

State your main idea .

The beluga whale is a common and important species of whale.

Provide supporting points for your main idea.

1. The beluga whale is one of the smallest whale species.

2. It is also known as the “white whale” because of its distinctive coloring.

3. These whales are common in the Arctic Ocean’s coastal waters.

Then expand on those points with further description, explanation, or discussion.

1a. Belugas range in size from 13 to 20 feet (4 to 6.1 m) in length.

2a. Belugas are born gray or brown. They fade to white at around five years old.

3a. Some Arctic belugas migrate south in large herds when sea ice freezes over.

Wrap it up with a summary of your whole paper.

Because of its unique coloring and unusual features, belugas are among the most familiar and easily distinguishable of all the whales.

Key Information

Here are some things you should consider including in your report:

What does your animal look like? To what other species is it related? How does it move? Where does it live? What does it eat? What are its predators? How long does it live? Is it endangered? Why do you find it interesting?

SEPARATE FACT FROM FICTION: Your animal may have been featured in a movie or in myths and legends. Compare and contrast how the animal has been portrayed with how it behaves in reality. For example, penguins can’t dance the way they do in Happy Feet.

PROOFREAD AND REVISE: As with any essay, when you’re finished, check for misspellings, grammatical mistakes, and punctuation errors. It often helps to have someone else proofread your work, too, as he or she may catch things you have missed. Also, look for ways to make your sentences and paragraphs even better. Add more descriptive language, choosing just the right verbs, adverbs, and adjectives to make your writing come alive.

BE CREATIVE: Use visual aids to make your report come to life. Include an animal photo file with interesting images found in magazines or printed from websites. Or draw your own! You can also build a miniature animal habitat diorama. Use creativity to help communicate your passion for the subject.

THE FINAL RESULT: Put it all together in one final, polished draft. Make it neat and clean, and remember to cite your references.

Download the pdf .

More resources

Homework help, science lab, (ad) national geographic kids almanac.

  • Terms of Use
  • Privacy Policy
  • Your California Privacy Rights
  • Children's Online Privacy Policy
  • Interest-Based Ads
  • About Nielsen Measurement
  • Do Not Sell My Info
  • National Geographic
  • National Geographic Education
  • Shop Nat Geo
  • Customer Service
  • Manage Your Subscription

Copyright © 1996-2015 National Geographic Society Copyright © 2015-2024 National Geographic Partners, LLC. All rights reserved

animal research paper introduction

Get science-backed answers as you write with Paperpal's Research feature

How to Write a Research Paper Introduction (with Examples)

How to Write a Research Paper Introduction (with Examples)

The research paper introduction section, along with the Title and Abstract, can be considered the face of any research paper. The following article is intended to guide you in organizing and writing the research paper introduction for a quality academic article or dissertation.

The research paper introduction aims to present the topic to the reader. A study will only be accepted for publishing if you can ascertain that the available literature cannot answer your research question. So it is important to ensure that you have read important studies on that particular topic, especially those within the last five to ten years, and that they are properly referenced in this section. 1 What should be included in the research paper introduction is decided by what you want to tell readers about the reason behind the research and how you plan to fill the knowledge gap. The best research paper introduction provides a systemic review of existing work and demonstrates additional work that needs to be done. It needs to be brief, captivating, and well-referenced; a well-drafted research paper introduction will help the researcher win half the battle.

The introduction for a research paper is where you set up your topic and approach for the reader. It has several key goals:

  • Present your research topic
  • Capture reader interest
  • Summarize existing research
  • Position your own approach
  • Define your specific research problem and problem statement
  • Highlight the novelty and contributions of the study
  • Give an overview of the paper’s structure

The research paper introduction can vary in size and structure depending on whether your paper presents the results of original empirical research or is a review paper. Some research paper introduction examples are only half a page while others are a few pages long. In many cases, the introduction will be shorter than all of the other sections of your paper; its length depends on the size of your paper as a whole.

  • Break through writer’s block. Write your research paper introduction with Paperpal Copilot

Table of Contents

What is the introduction for a research paper, why is the introduction important in a research paper, craft a compelling introduction section with paperpal. try now, 1. introduce the research topic:, 2. determine a research niche:, 3. place your research within the research niche:, craft accurate research paper introductions with paperpal. start writing now, frequently asked questions on research paper introduction, key points to remember.

The introduction in a research paper is placed at the beginning to guide the reader from a broad subject area to the specific topic that your research addresses. They present the following information to the reader

  • Scope: The topic covered in the research paper
  • Context: Background of your topic
  • Importance: Why your research matters in that particular area of research and the industry problem that can be targeted

The research paper introduction conveys a lot of information and can be considered an essential roadmap for the rest of your paper. A good introduction for a research paper is important for the following reasons:

  • It stimulates your reader’s interest: A good introduction section can make your readers want to read your paper by capturing their interest. It informs the reader what they are going to learn and helps determine if the topic is of interest to them.
  • It helps the reader understand the research background: Without a clear introduction, your readers may feel confused and even struggle when reading your paper. A good research paper introduction will prepare them for the in-depth research to come. It provides you the opportunity to engage with the readers and demonstrate your knowledge and authority on the specific topic.
  • It explains why your research paper is worth reading: Your introduction can convey a lot of information to your readers. It introduces the topic, why the topic is important, and how you plan to proceed with your research.
  • It helps guide the reader through the rest of the paper: The research paper introduction gives the reader a sense of the nature of the information that will support your arguments and the general organization of the paragraphs that will follow. It offers an overview of what to expect when reading the main body of your paper.

What are the parts of introduction in the research?

A good research paper introduction section should comprise three main elements: 2

  • What is known: This sets the stage for your research. It informs the readers of what is known on the subject.
  • What is lacking: This is aimed at justifying the reason for carrying out your research. This could involve investigating a new concept or method or building upon previous research.
  • What you aim to do: This part briefly states the objectives of your research and its major contributions. Your detailed hypothesis will also form a part of this section.

How to write a research paper introduction?

The first step in writing the research paper introduction is to inform the reader what your topic is and why it’s interesting or important. This is generally accomplished with a strong opening statement. The second step involves establishing the kinds of research that have been done and ending with limitations or gaps in the research that you intend to address. Finally, the research paper introduction clarifies how your own research fits in and what problem it addresses. If your research involved testing hypotheses, these should be stated along with your research question. The hypothesis should be presented in the past tense since it will have been tested by the time you are writing the research paper introduction.

The following key points, with examples, can guide you when writing the research paper introduction section:

  • Highlight the importance of the research field or topic
  • Describe the background of the topic
  • Present an overview of current research on the topic

Example: The inclusion of experiential and competency-based learning has benefitted electronics engineering education. Industry partnerships provide an excellent alternative for students wanting to engage in solving real-world challenges. Industry-academia participation has grown in recent years due to the need for skilled engineers with practical training and specialized expertise. However, from the educational perspective, many activities are needed to incorporate sustainable development goals into the university curricula and consolidate learning innovation in universities.

  • Reveal a gap in existing research or oppose an existing assumption
  • Formulate the research question

Example: There have been plausible efforts to integrate educational activities in higher education electronics engineering programs. However, very few studies have considered using educational research methods for performance evaluation of competency-based higher engineering education, with a focus on technical and or transversal skills. To remedy the current need for evaluating competencies in STEM fields and providing sustainable development goals in engineering education, in this study, a comparison was drawn between study groups without and with industry partners.

  • State the purpose of your study
  • Highlight the key characteristics of your study
  • Describe important results
  • Highlight the novelty of the study.
  • Offer a brief overview of the structure of the paper.

Example: The study evaluates the main competency needed in the applied electronics course, which is a fundamental core subject for many electronics engineering undergraduate programs. We compared two groups, without and with an industrial partner, that offered real-world projects to solve during the semester. This comparison can help determine significant differences in both groups in terms of developing subject competency and achieving sustainable development goals.

Write a Research Paper Introduction in Minutes with Paperpal

Paperpal Copilot is a generative AI-powered academic writing assistant. It’s trained on millions of published scholarly articles and over 20 years of STM experience. Paperpal Copilot helps authors write better and faster with:

  • Real-time writing suggestions
  • In-depth checks for language and grammar correction
  • Paraphrasing to add variety, ensure academic tone, and trim text to meet journal limits

With Paperpal Copilot, create a research paper introduction effortlessly. In this step-by-step guide, we’ll walk you through how Paperpal transforms your initial ideas into a polished and publication-ready introduction.

animal research paper introduction

How to use Paperpal to write the Introduction section

Step 1: Sign up on Paperpal and click on the Copilot feature, under this choose Outlines > Research Article > Introduction

Step 2: Add your unstructured notes or initial draft, whether in English or another language, to Paperpal, which is to be used as the base for your content.

Step 3: Fill in the specifics, such as your field of study, brief description or details you want to include, which will help the AI generate the outline for your Introduction.

Step 4: Use this outline and sentence suggestions to develop your content, adding citations where needed and modifying it to align with your specific research focus.

Step 5: Turn to Paperpal’s granular language checks to refine your content, tailor it to reflect your personal writing style, and ensure it effectively conveys your message.

You can use the same process to develop each section of your article, and finally your research paper in half the time and without any of the stress.

The purpose of the research paper introduction is to introduce the reader to the problem definition, justify the need for the study, and describe the main theme of the study. The aim is to gain the reader’s attention by providing them with necessary background information and establishing the main purpose and direction of the research.

The length of the research paper introduction can vary across journals and disciplines. While there are no strict word limits for writing the research paper introduction, an ideal length would be one page, with a maximum of 400 words over 1-4 paragraphs. Generally, it is one of the shorter sections of the paper as the reader is assumed to have at least a reasonable knowledge about the topic. 2 For example, for a study evaluating the role of building design in ensuring fire safety, there is no need to discuss definitions and nature of fire in the introduction; you could start by commenting upon the existing practices for fire safety and how your study will add to the existing knowledge and practice.

When deciding what to include in the research paper introduction, the rest of the paper should also be considered. The aim is to introduce the reader smoothly to the topic and facilitate an easy read without much dependency on external sources. 3 Below is a list of elements you can include to prepare a research paper introduction outline and follow it when you are writing the research paper introduction. Topic introduction: This can include key definitions and a brief history of the topic. Research context and background: Offer the readers some general information and then narrow it down to specific aspects. Details of the research you conducted: A brief literature review can be included to support your arguments or line of thought. Rationale for the study: This establishes the relevance of your study and establishes its importance. Importance of your research: The main contributions are highlighted to help establish the novelty of your study Research hypothesis: Introduce your research question and propose an expected outcome. Organization of the paper: Include a short paragraph of 3-4 sentences that highlights your plan for the entire paper

Cite only works that are most relevant to your topic; as a general rule, you can include one to three. Note that readers want to see evidence of original thinking. So it is better to avoid using too many references as it does not leave much room for your personal standpoint to shine through. Citations in your research paper introduction support the key points, and the number of citations depend on the subject matter and the point discussed. If the research paper introduction is too long or overflowing with citations, it is better to cite a few review articles rather than the individual articles summarized in the review. A good point to remember when citing research papers in the introduction section is to include at least one-third of the references in the introduction.

The literature review plays a significant role in the research paper introduction section. A good literature review accomplishes the following: Introduces the topic – Establishes the study’s significance – Provides an overview of the relevant literature – Provides context for the study using literature – Identifies knowledge gaps However, remember to avoid making the following mistakes when writing a research paper introduction: Do not use studies from the literature review to aggressively support your research Avoid direct quoting Do not allow literature review to be the focus of this section. Instead, the literature review should only aid in setting a foundation for the manuscript.

Remember the following key points for writing a good research paper introduction: 4

  • Avoid stuffing too much general information: Avoid including what an average reader would know and include only that information related to the problem being addressed in the research paper introduction. For example, when describing a comparative study of non-traditional methods for mechanical design optimization, information related to the traditional methods and differences between traditional and non-traditional methods would not be relevant. In this case, the introduction for the research paper should begin with the state-of-the-art non-traditional methods and methods to evaluate the efficiency of newly developed algorithms.
  • Avoid packing too many references: Cite only the required works in your research paper introduction. The other works can be included in the discussion section to strengthen your findings.
  • Avoid extensive criticism of previous studies: Avoid being overly critical of earlier studies while setting the rationale for your study. A better place for this would be the Discussion section, where you can highlight the advantages of your method.
  • Avoid describing conclusions of the study: When writing a research paper introduction remember not to include the findings of your study. The aim is to let the readers know what question is being answered. The actual answer should only be given in the Results and Discussion section.

To summarize, the research paper introduction section should be brief yet informative. It should convince the reader the need to conduct the study and motivate him to read further. If you’re feeling stuck or unsure, choose trusted AI academic writing assistants like Paperpal to effortlessly craft your research paper introduction and other sections of your research article.

1. Jawaid, S. A., & Jawaid, M. (2019). How to write introduction and discussion. Saudi Journal of Anaesthesia, 13(Suppl 1), S18.

2. Dewan, P., & Gupta, P. (2016). Writing the title, abstract and introduction: Looks matter!. Indian pediatrics, 53, 235-241.

3. Cetin, S., & Hackam, D. J. (2005). An approach to the writing of a scientific Manuscript1. Journal of Surgical Research, 128(2), 165-167.

4. Bavdekar, S. B. (2015). Writing introduction: Laying the foundations of a research paper. Journal of the Association of Physicians of India, 63(7), 44-6.

Paperpal is a comprehensive AI writing toolkit that helps students and researchers achieve 2x the writing in half the time. It leverages 21+ years of STM experience and insights from millions of research articles to provide in-depth academic writing, language editing, and submission readiness support to help you write better, faster.  

Get accurate academic translations, rewriting support, grammar checks, vocabulary suggestions, and generative AI assistance that delivers human precision at machine speed. Try for free or upgrade to Paperpal Prime starting at US$19 a month to access premium features, including consistency, plagiarism, and 30+ submission readiness checks to help you succeed.  

Experience the future of academic writing – Sign up to Paperpal and start writing for free!  

Related Reads:

  • Scientific Writing Style Guides Explained
  • 5 Reasons for Rejection After Peer Review
  • Ethical Research Practices For Research with Human Subjects
  • 8 Most Effective Ways to Increase Motivation for Thesis Writing 

Practice vs. Practise: Learn the Difference

Academic paraphrasing: why paperpal’s rewrite should be your first choice , you may also like, mla works cited page: format, template & examples, how to write a high-quality conference paper, academic editing: how to self-edit academic text with..., measuring academic success: definition & strategies for excellence, phd qualifying exam: tips for success , ai in education: it’s time to change the..., is it ethical to use ai-generated abstracts without..., what are journal guidelines on using generative ai..., quillbot review: features, pricing, and free alternatives, what is an academic paper types and elements .

The Curriculum Corner 123

Writing Unit of Study: Animal Research Project

animal research paper introduction

This free animal research project will provide you with a writing unit of study that will help you build excitement about writing informational text in your classroom.

You can download this free animal research project to help your writers develop their research and writing skills.

This project will be a great fit for your first, second or third grade writing workshop.

This is another free resource for teachers and homeschool families from The Curriculum Corner.

Free animal research project for your writing workshop

Why should I introduce my students to research through animal study?

Animal research can be a great topic for writing informational text because students tend to be curious about animals.

Nothing seems to spark interest in most kids like learning about animals in our world. Turn their enthusiasm into an engaging animal research writing project.

They can take the time to learn about different habitats and diets.

You can also encourage students to expand their vocabulary by having them create a glossary to accompany their writing.

This free animal research project will provide you with a writing unit of study that will help you build excitement about writing informational text in your classroom.

About this animal research project

Within this post you will find over 30 pages of anchor charts, mini-lesson ideas, writing planners and graphic organizers.

The unit will help guide your students through the complete process. In the end, you will be helping to teach your students how to write their own pieces of informational text.

The intended end product for students is an animal booklet that they can staple together to share with others.

Students who are ready for more advanced work, can create a larger project with less direction.

A description of the mini-lessons

Lesson 1: introduction.

  • Begin the unit by having the students brainstorm a list of animals that they might see everyday.
  • Then, have them brainstorm a list of animals they see when they visit the zoo or walk in the forest. You can do this on the blank anchor chart provided or on cart paper.
  • Another option is to place students in groups. They could work to create a list together.  
  • You might assign each group a continent and have them find animals that live there.
  • Pull the class together and have each group share what animals they found that live on their continent.

Lesson 2: Noticings

  • Next you might want to get your students familiar with common characteristics about informational texts that teach about animals.
  • Have them work in pairs or small groups to go through some books and record their “noticings” about the writing.
  • Then come together in a community circle to discuss those noticings and create a class anchor chart.

FREE Animal Research Writing Unit of Study from The Curriculum Corner | Finding Facts & Opinions Lesson

Lesson 3: Opinion vs. Facts

  • Before getting truly into this unit, you might need to conduct a lesson on opinions vs. facts.
  • After a brief discussion you can use the giraffe paragraph provided in our resources to give your students some practice differentiating between the two. This paragraph contains both opinions and facts.
  • With your class read through the paragraph and record facts and opinions on the T-chart.
  • Discuss both sides and how they are different from each other.
  • A black & white copy of this giraffe paragraph has also been provided.  You can have them work in pairs or groups to distinguish between the facts and opinions.
  • If you need more resources for your students surrounding fact & opinion check out our   Fact & Opinion Sort .

Lesson 4: Choosing a Topic for the Animal Research Project

  • We want to help students to narrow their topic choices by giving them some guidance.
  • Gather students and begin a discussion about choosing an animal research topic.
  • For this lesson we have provided two pages where students can individually brainstorm the animals they are interested in.
  • You might have students work in groups or independently to make their choice. Conference with students as needed to help.
  • Don’t shy away from letting more than one student research about the same animal.  This can be a great way to promote group work. It might also help out with some of your literacy center choices throughout this unit.

Lesson 5: Good Places to Find Information about an Animal

  • At this age we want students to begin to understand that all they read online about animals isn’t always true. Sometimes writing might sound true without being filled with facts.
  • Show students two possible places to find information online about their animal. One should be a trusted site with reliable and accurate information. Another should be a site that perhaps a child has created.  (There are many that you can find if you search.)
  • Pose these questions: Is everything on the internet true? Why?  How can you tell? Why is it important for your research writing to contain accurate information?

FREE Animal Research Writing Unit of Study from The Curriculum Corner | Researching Animals

Lesson 6: Taking Notes

  • Sometimes giving students resources and a blank sheet of notebook paper can be too overwhelming for them. Some students will copy word for word. Others might feel overwhelmed.  We need to guide them to read and pull out facts & relevant information to use later in their writing.
  • For this lesson we have provided four templates for note-taking that you might choose to use for your students.
  • You might need to provide different organizers to students depending on their needs.
  • You will want to model the organizers your students are use. Show them how to take notes as they read.
  • After initial teaching, you may find that you need to pull small groups for extra practice. Others might benefit from a conference as you take a look at the notes they are taking.

Lesson 7: Word Choice in Research Writing

  • To help students think about making their writing more interesting, have them brainstorm words about their animal.
  • Together brainstorm words that would be appropriate for animals. They might add words about what they look like, their movement, their habitats, their life cycles, their diets, etc. You can create a class anchor chart on the page provided.  You might even think about using the real life picture of the wolf in the download. This can get the students to begin thinking of more interesting words for animals (fierce, mighty, strong, etc).
  • Then, pass out the individual brainstorm pages. Students can use the anchor chart as a guide to begin their own word choice pages about their animal. This might be a good partner activity as well.

Lesson 8: Writing Sketch for the Animal Research Project

  • Next, you can model the writing sketch planner for your class.
  • One idea to help your students narrow down all of the information they have learned about their animals is to give them a specific number of animals facts that they can focus on.
  • Each of these facts can serve as the actual text that they will put on each page of their animal research book. Or the facts could serve as a focus for each paragraph in their writing.
  • You might find that this would be a good mini-lesson to do with smaller groups of children.

Lesson 9: Creating a Table of Contents

  • Another idea that can be a writing planner AND a page in their animal research book is the table of contents. Pull out one of the Table of Contents pages from the resources provided and model how to fill in the blanks on each page.
  • This page will then serve as their Table of Contents (with a focus discussion on what that is and the purpose it serves) and also their writing planner so they know what they will put in the pages of their booklet.

Lesson 10: Creating a Glossary

  • There are two pages provided in the resources that might help your students to learn to pull out topic specific words to put into a glossary for the end of their animal research book.
  • Be sure to model how you would like for your students to use these organizers (keeping in mind that you may need to copy more than one page if there are more words than the page provides for).
  • If your students need a refresher on ABC order check out these links for some added practice/review: ABC Order Task Cards & Fry Word ABC Order Task Cards

Lesson 11: Writing Your Animal Research

  • You will decide on the best method for your students to showcase their published animal research.
  • You may want your students to use their own creativity in the texts that they write and share. If you’d like a first experience to provide a bit more guidance, we have provided two different sets of pages for booklets.
  • One is more guided and the other has less structure and smaller lines for more writing.  15 pages are provided so that you or students can pick what fits their needs.
  • This “lesson” may actually become a series of lessons if you choose to model how each page can be used.  (We have also included a page with simple writing lines in case students need less guidance than the booklet pages provided.)

FREE Animal Research Writing Unit of Study from The Curriculum Corner | Blank Books for Writing

Lesson 12: Labeling Pictures

  • One final lesson idea that pairs well with writing informational text is to teach your students how to label pictures.
  • Since most nonfiction writing has real photographs, students can find some pictures online to print out and label for their booklet.  Hand-drawn pictures are also great if you would rather encourage some or all of your students in that direction.
  • Whatever you choose, show your class how to effectively label a picture so that it teaches the reader more.  You can use the picture of the polar bear provided to model how to add words or even short facts as labels.  (For example if the simple label “fur” wouldn’t add additional information to the book, you might teach them to label it with a short fact such as “dense fur protects the animal’s skin from the weather”.
  • To make this idea more user friendly, you might want them to use the page of blank white boxes provided to write their labels for their pictures.  Then all they need to do is cut them out and glue them to a printed picture.

Lesson 13: Writing Celebration

As always, find a way to celebrate your students’ writing.  

Invite guests (younger students or special adults) to read the books with your young authors. You might simply want to pair or group them, or some students might choose to present their book to everyone.  

Provide some light snacks if possible to give it a party atmosphere and pass out the author certificates to each child for his/her hard work.

You can download this free writing unit of study here:

Writing Download

As with all of our resources, The Curriculum Corner creates these for free classroom use. Our products may not be sold. You may print and copy for your personal classroom use. These are also great for home school families!

You may not modify and resell in any form. Please let us know if you have any questions.

Christine E.

Saturday 8th of May 2021

Thank you so much for this resource and the many pages that I can use in my homeschooling. It is exactly what I've been looking for to help me get my kids to write about our animal units! You are doing a great job, keep up the amazing work you do. I appreciate the hard work you put into putting these together.

Planning a Dynamic Writing Workshop - The Curriculum Corner 123

Saturday 14th of July 2018

[…] Animal Research […]

Editable Writing Management Binder - The Curriculum Corner 123

Friday 3rd of March 2017

[…] Writing Unit of Study: Animal Research […]

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • v.8(6); 2007 Jun

Logo of emborep

Animal rights, human wrongs? Introduction to the Talking Point on the use of animals in scientific research

Frank gannon.

1 Frank Gannon is the Senior Editor of EMBO reports and senior scientist at the European Molecular Biology Laboratory in Heidelberg, Germany [email protected]

The balance between the rights of animals and their use in biomedical research is a delicate issue with huge societal implications. The debate over whether and how scientists should use animal models has been inflammatory, and the opposing viewpoints are difficult to reconcile. Many animal-rights activists call for nothing less than the total abolition of all research involving animals. Conversely, many scientists insist that some experiments require the use of animals and want to minimize regulation, arguing that it would impede their research. Most scientists, however, try to defend the well-established and generally beneficial practice of selective experimentation on animals, but struggle to do so on an intellectual basis. Somehow, society must find the middle ground—avoiding the cruel and unnecessary abuse of animals in research while accepting and allowing their use if it benefits society.

In any debate, one should first know the facts and arguments from each side before making an educated judgement. In the Talking Point in this issue of EMBO reports , Bernard Rollin provides ethical arguments against animal experimentation ( Rollin, 2007 ). Rather than simply demanding adequate regulations to ensure animals are well treated and do not suffer unnecessary and avoidable pain, Rollin questions the assumption that humans have an automatic right to make decisions for other animals. In his expansive and stimulating article, he concludes that there is no logical basis for the way in which we treat animals in research; in fact, we would not tolerate such treatment if the animals were Homo sapiens ; therefore, we cannot tolerate such treatment for other sentient creatures that, like us, are able to experience and suffer pain.

Practicing scientists will be comforted by the views of Simon Festing and Robin Wilkinson from the Research Defence Society in London, UK, who emphasize the extent to which legislation already limits the use, and ensures the welfare, of animals used in research ( Festing & Wilkinson, 2007 ). With a particular focus on the UK, they highlight how public opinion and legislation have worked together to control invasive research on animals within a legal and ethical framework, despite objections from the scientific community to the additional bureaucracy and costs that such laws engender. It is ironic then, that the UK is also where militant opponents of animal research have committed the most attacks against scientists and research institutes.

Turning to the wider picture, the European Commission is now rewriting its 1986 Directive on the protection of animals used for experimental and other scientific purposes. The Commission intends to reiterate its emphasis on the 3Rs—replacement, reduction and refinement—as a way to reduce the number of animals used in biomedical research ( Matthiessen et al , 2003 ). However, the recent passage of the REACH (Registration, Evaluation and Authorisation of Chemicals) directive, which calls for the additional testing of tens of thousands of chemicals to determine if they pose a danger to humans and/or the environment, inevitably means bad news for laboratory animals. According to the German Federal Institute for Risk Assessment, the implementation of REACH will involve the killing of up to 45 million laboratory animals over the next 15 years to satisfy the required safety tests ( Hofer et al , 2004 ).

Although optimists might think that cell-based tests and methods could replace many of the standard safety and toxicity tests for chemicals or medicines, regulatory bodies—such as the US Food and Drug Administration, the US Environmental Protection Agency and the European Agency for the Evaluation of Medicinal Products—are not in a rush to accept them. After all, their task is to protect society from the devastating side effects of new drugs and other compounds, so any replacement test must be at least as reliable and safe as existing animal-based tests.

There are also good scientific reasons to retain the use of animal-based tests. Most scientists who work with cell lines know that they are full of chromosomal anomalies; even cells from the same line in two laboratories are not necessarily biologically identical. Cell-based tests also have other limitations: they assume that the cell type in which side effects manifest is known; that there are no interactions between different cell types that are found in many tissues; and that culture conditions adequately mimic the whole organism. Even if cell-based tests could replace animal-based tests, there are still no alternative methods available to test for teratogenicity or endocrine-disrupting activity, which require animal-based tests over several generations. Unfortunately, it is unlikely that cell and tissue cultures can sufficiently replace animals in the short term.

In the absence of safe alternatives to replace the animals used in research, the emphasis shifts toward reduction and refinement. However, this implicitly accepts the need to use animals in the first place, which is the point that Rollin challenges. Following his arguments, it is easy to see how anti-vivisectionists question whether humans have the right to decide how to use animals in what is generally thought to be the common interest. Similarly, it is easy to understand why researchers and society pass over these difficult questions, believing that the end justifies the means.

In my view, the most important point in this debate is the cost–benefit analysis used to justify certain types of research while prohibiting others. Society at large already relies on this: it accepts the use of animals in biomedical research but does not tolerate their use in cosmetics testing. This is a pragmatic distinction based on weighing the benefits to society—such as drug safety—against the costs to animals: pain, suffering and death.

In some cases, the benefits seem to outweigh the costs. If a cure for cancer was found, or a vaccine against malaria developed, the treatments would have to be tested on animals—for toxicity, unexpected side effects and efficacy—before being administered to millions of people. Here, the benefit to society might be obvious, and the use of animals morally justifiable. In other cases, the costs seem too high to justify the benefits. In experiments that could and should be done with cell lines, using higher animals as ‘laboratory consumables' is ill-conceived and expensive. Such unnecessary use of laboratory animals was widespread in the 1960s and 1970s, but thankfully is no longer officially tolerated.

Between these extremes, however, is a huge area in which the balance of costs and benefits is more difficult to achieve. Understanding ourselves and the world in which we live is not merely an intellectual exercise—it defines us as humans. To gain this knowledge relies on experiments, some of which require the use of animals—for example, generating transgenic mice to understand the function of a gene. These might reveal crucial information for tackling a disease, but in general it is hard to justify every such experiment with potential benefits for human health. Consequently, it is not possible to determine a priori whether an experiment is morally justified if its outcome merely advances understanding rather than producing a cure.

In my view, we should adopt a pragmatic attitude. An experiment that uses animals would be justifiable if it is done in such a way that causes minimal pain to the animals involved and if all possible alternative methods have been explored. When scientists take the lives of animals into their hands, they have a particular duty to avoid unnecessarily cruel treatment—not only during experiments but also in the way the animals are kept and handled. In this regard, a legally binding regulatory framework that reflects ethical considerations is not necessarily an undue intrusion on the freedom of research: it provides scientists with a good guide of what is socially permissible, and instills a greater awareness that animals are sentient beings, which are able to suffer and experience pain as much as humans do. If it strikes the right balance, such a framework might do more to reduce the number of animals used in research than any attacks on scientists and scientific institutions. To guide lawmakers in drafting regulations that both address valid criticism and enable valuable research, scientists and society must continue this debate to define what is needed and what is necessary.

An external file that holds a picture, illustration, etc.
Object name is 7400998-i1.jpg

  • Festing S, Wilkinson R (2007) The ethics of animal research . EMBO Rep 8 : 526–530 [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Hofer T, Gerner I, Gundert-Remy U, Liebsch M, Schulte A, Spielmann H, Vogel R, Wettig K (2004) Animal testing and alternative approaches for the human health risk assessment under the proposed new European chemicals regulation . Arch Toxicol 78 : 549–564 [ PubMed ] [ Google Scholar ]
  • Matthiessen L, Lucaroni B, Sachez E (2003) Towards responsible animal research . EMBO Rep 4 : 104–107 [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Rollin BE (2007) Animal research: a moral science . EMBO Rep 8 : 521–525 [ PMC free article ] [ PubMed ] [ Google Scholar ]

IMAGES

  1. Animal Research Report

    animal research paper introduction

  2. Animal research sheet

    animal research paper introduction

  3. Differentiated Animal Research Paper by Teaching Heart and Soul

    animal research paper introduction

  4. Animal experimentation essay

    animal research paper introduction

  5. Should the Animal Be Used for Scientific Research (300 Words

    animal research paper introduction

  6. Research paper topic ideas animals

    animal research paper introduction

VIDEO

  1. 5B Research Paper Introduction#EngineerMuhammadAliMirza#EmamStudent#ViralClip

  2. Introduction

  3. 21-Batch: Basic plots practice in R

  4. How to Write a Research Paper Introduction

  5. Informative Writing for Kids

  6. 11th batch PCA

COMMENTS

  1. An Introduction to Animal Research

    17.1 Introduction. Animal experimentation has contributed to 70% of the Nobel prizes for physiology and medicine, and despite advances in computer modelling and bioinformatics, it remains a vital component of biomedical research. However, the ethical challenges created by animal research continue to polarise both the scientific community and ...

  2. Writing an Animal Report plus Rubric: EnchantedLearning.com

    Introduction: Disorganized, no information on what is to come: Gives too little information. Summarizes report: Concise, well-written introduction. Research Part 1 (name, anatomy, locomotion, diet, habitat, range, adaptations) Does not cover all appropriate topics: Covers some of the appropriate topics. Covers most of the appropriate topics.

  3. Research using animals: an overview

    Where animals are used in research projects, they are used as part of a range of scientific techniques. These might include human trials, computer modelling, cell culture, statistical techniques, and others. Animals are only used for parts of research where no other techniques can deliver the answer. A living body is an extraordinarily complex ...

  4. Animal Experiments in Biomedical Research: A Historical Perspective

    Introduction. Animal experimentation has played a central role in biomedical research throughout history. ... As the original argument of antivivisectionists that animal research was inacceptable because it did not provide useful medical knowledge began ... although the number of biomedical papers has since then more than doubled ...

  5. Writing a Research Paper Introduction

    Table of contents. Step 1: Introduce your topic. Step 2: Describe the background. Step 3: Establish your research problem. Step 4: Specify your objective (s) Step 5: Map out your paper. Research paper introduction examples. Frequently asked questions about the research paper introduction.

  6. Animal tissue culture principles and applications

    Introduction. Cell culture is the process by which human, animal, or insect cells are grown in a favorable artificial environment. ... In biomedical research, the use of animal and human cell cultures has become beneficial for diverse applications. It provides indispensable tools for producing a number of products, including biopharmaceuticals ...

  7. The Emergence and Development of Animal Research Ethics: A Review with

    The Emergence of Animal Research Ethics. In his contribution to The Routledge Companion to Bioethics, Tom L. Beauchamp (2014, p. 262) calls animal research ethics "a recently coined term".It is, indeed, only in the last decade, that animal research has been discussed extensively within the framework of philosophical research ethics, but the term "animal research ethics" goes back at ...

  8. An Introduction to Animal Research

    This chapter reviews the principles of animal research and provides a practical resource for those researchers seeking to create robust animal experiments that ensure minimal suffering and maximal scientific validity. Despite advances in computer modelling and bioinformatics, animal models remain a vital component of biomedical research. The growth in this area of work is in part due to the ...

  9. A guide to open science practices for animal research

    Introduction. Over the past decade, the quality of published scientific literature has been repeatedly called into question by the failure of large replication studies or meta-analyses to demonstrate sufficient translation from experimental research into clinical successes [1-5].At the same time, the open science movement has gained more and more advocates across various research areas.

  10. An Introduction to Ethical Questions Around Animal Research

    An Introduction to Ethical Questions Around Animal Research Adam J Shriver, Adam J Shriver Corresponding Author: A.J. Shriver, PhD, W. Maurice Young Centre for Applied Ethics, University of British Columbia, 227 - 6356 Agricultural Road Vancouver, BC Canada V6T 1Z2. ... The book is an attempt to provide animal research bioethics with a ...

  11. How to write an animal report

    THE FINAL RESULT: Put it all together in one final, polished draft. Make it neat and clean, and remember to cite your references. Download the pdf. Your teacher wants a written report on the beluga whale. Not to worry. Use these organizational tools so you can stay afloat while writing a report.

  12. How to Write a Research Paper Introduction (with Examples)

    Define your specific research problem and problem statement. Highlight the novelty and contributions of the study. Give an overview of the paper's structure. The research paper introduction can vary in size and structure depending on whether your paper presents the results of original empirical research or is a review paper.

  13. Research Guides: Endangered and Threatened Species: Introduction

    Introduction. Endangered and Threatened Species. This guide offers a systematic approach to a wide variety of published material in the Library of Congress on endangered and/or threatened species of animals and plants as well as related conservation efforts. Author: Ashley Cuffia, Reference & Research Specialist, Science, Technology and ...

  14. Guide for authors

    Research papers Animal Behaviour publishes original papers relating to all aspects of the behaviour of animals, including humans. Papers may be field, laboratory or theoretical studies. Preference is given to studies that are likely to be of interest to the broad readership of the Journal and that test explicit hypotheses rather than being purely descriptive.

  15. (PDF) Wildlife: An Introduction

    Abstract. Wildlife is a precious gift of God to this planet. The term 'wildlife' not only caters to wild animals but also takes into account all undomesticated lifeforms including birds ...

  16. Ethical considerations regarding animal experimentation

    Introduction. Animal model-based research has been performed for a very long time. Ever since the 5 th century B.C., reports of experiments involving animals have been documented, but an increase in the frequency of their utilization has been observed since the 19 th century [].Most institutions for medical research around the world use non-human animals as experimental subjects [].

  17. (PDF) Animal Camouflage: An Introduction

    PDF | On Aug 7, 2011, Martin Stevens and others published Animal Camouflage: An Introduction | Find, read and cite all the research you need on ResearchGate

  18. Teach Students to Write Animal Reports

    The steps that I have students take when writing an animal report include: Choosing an animal. Reading about the animal and watching videos about it. Taking notes about the animal. Organizing their notes and facts into categories. Using a template or graphic organizer to start their writing. Writing a rough draft.

  19. Chapter I.1. Introduction in animal husbandry

    manipulation, transgenesis o r cloning. 1.3. Key issues in animal husbandry. 1. Animal husbandry is the branch of agriculture whose ob ject is the. multiplication and rearing of animals and birds ...

  20. Introduction and Overview

    Introduction and Overview. 1. Animals are widely used in neuroscience research to explore normal and abnormal biological mechanisms of nervous system function, to identify the genetic basis of disease states, and to provide models of human disorders and diseases for the development of new treatments. Numerous laws, policies, and regulations are ...

  21. Animal Research Writing Project

    About this animal research project. Within this post you will find over 30 pages of anchor charts, mini-lesson ideas, writing planners and graphic organizers. The unit will help guide your students through the complete process. In the end, you will be helping to teach your students how to write their own pieces of informational text.

  22. Animal rights, human wrongs? Introduction to the Talking Point on the

    It is ironic then, that the UK is also where militant opponents of animal research have committed the most attacks against scientists and research institutes. Turning to the wider picture, the European Commission is now rewriting its 1986 Directive on the protection of animals used for experimental and other scientific purposes.

  23. Writing An Introduction for My Animal Research Paper

    INTRODUCTION The introduction to a research paper can make or break your grade. Those first few words represent the tone of the paper. It has to attract the reader's attention and fully inform the reader about the topic. In at least five sentences, you will introduce your