Quantitative Data Analysis: A Comprehensive Guide

By: Ofem Eteng | Published: May 18, 2022

Related Articles

data analysis on quantitative research

A healthcare giant successfully introduces the most effective drug dosage through rigorous statistical modeling, saving countless lives. A marketing team predicts consumer trends with uncanny accuracy, tailoring campaigns for maximum impact.

Table of Contents

These trends and dosages are not just any numbers but are a result of meticulous quantitative data analysis. Quantitative data analysis offers a robust framework for understanding complex phenomena, evaluating hypotheses, and predicting future outcomes.

In this blog, we’ll walk through the concept of quantitative data analysis, the steps required, its advantages, and the methods and techniques that are used in this analysis. Read on!

What is Quantitative Data Analysis?

Quantitative data analysis is a systematic process of examining, interpreting, and drawing meaningful conclusions from numerical data. It involves the application of statistical methods, mathematical models, and computational techniques to understand patterns, relationships, and trends within datasets.

Quantitative data analysis methods typically work with algorithms, mathematical analysis tools, and software to gain insights from the data, answering questions such as how many, how often, and how much. Data for quantitative data analysis is usually collected from close-ended surveys, questionnaires, polls, etc. The data can also be obtained from sales figures, email click-through rates, number of website visitors, and percentage revenue increase. 

Quantitative Data Analysis vs Qualitative Data Analysis

When we talk about data, we directly think about the pattern, the relationship, and the connection between the datasets – analyzing the data in short. Therefore when it comes to data analysis, there are broadly two types – Quantitative Data Analysis and Qualitative Data Analysis.

Quantitative data analysis revolves around numerical data and statistics, which are suitable for functions that can be counted or measured. In contrast, qualitative data analysis includes description and subjective information – for things that can be observed but not measured.

Let us differentiate between Quantitative Data Analysis and Quantitative Data Analysis for a better understanding.

Numerical data – statistics, counts, metrics measurementsText data – customer feedback, opinions, documents, notes, audio/video recordings
Close-ended surveys, polls and experiments.Open-ended questions, descriptive interviews
What? How much? Why (to a certain extent)?How? Why? What are individual experiences and motivations?
Statistical programming software like R, Python, SAS and Data visualization like Tableau, Power BINVivo, Atlas.ti for qualitative coding.
Word processors and highlighters – Mindmaps and visual canvases
Best used for large sample sizes for quick answers.Best used for small to middle sample sizes for descriptive insights

Data Preparation Steps for Quantitative Data Analysis

Quantitative data has to be gathered and cleaned before proceeding to the stage of analyzing it. Below are the steps to prepare a data before quantitative research analysis:

  • Step 1: Data Collection

Before beginning the analysis process, you need data. Data can be collected through rigorous quantitative research, which includes methods such as interviews, focus groups, surveys, and questionnaires.

  • Step 2: Data Cleaning

Once the data is collected, begin the data cleaning process by scanning through the entire data for duplicates, errors, and omissions. Keep a close eye for outliers (data points that are significantly different from the majority of the dataset) because they can skew your analysis results if they are not removed.

This data-cleaning process ensures data accuracy, consistency and relevancy before analysis.

  • Step 3: Data Analysis and Interpretation

Now that you have collected and cleaned your data, it is now time to carry out the quantitative analysis. There are two methods of quantitative data analysis, which we will discuss in the next section.

However, if you have data from multiple sources, collecting and cleaning it can be a cumbersome task. This is where Hevo Data steps in. With Hevo, extracting, transforming, and loading data from source to destination becomes a seamless task, eliminating the need for manual coding. This not only saves valuable time but also enhances the overall efficiency of data analysis and visualization, empowering users to derive insights quickly and with precision

Hevo is the only real-time ELT No-code Data Pipeline platform that cost-effectively automates data pipelines that are flexible to your needs. With integration with 150+ Data Sources (40+ free sources), we help you not only export data from sources & load data to the destinations but also transform & enrich your data, & make it analysis-ready.

Start for free now!

Now that you are familiar with what quantitative data analysis is and how to prepare your data for analysis, the focus will shift to the purpose of this article, which is to describe the methods and techniques of quantitative data analysis.

Methods and Techniques of Quantitative Data Analysis

Quantitative data analysis employs two techniques to extract meaningful insights from datasets, broadly. The first method is descriptive statistics, which summarizes and portrays essential features of a dataset, such as mean, median, and standard deviation.

Inferential statistics, the second method, extrapolates insights and predictions from a sample dataset to make broader inferences about an entire population, such as hypothesis testing and regression analysis.

An in-depth explanation of both the methods is provided below:

  • Descriptive Statistics
  • Inferential Statistics

1) Descriptive Statistics

Descriptive statistics as the name implies is used to describe a dataset. It helps understand the details of your data by summarizing it and finding patterns from the specific data sample. They provide absolute numbers obtained from a sample but do not necessarily explain the rationale behind the numbers and are mostly used for analyzing single variables. The methods used in descriptive statistics include: 

  • Mean:   This calculates the numerical average of a set of values.
  • Median: This is used to get the midpoint of a set of values when the numbers are arranged in numerical order.
  • Mode: This is used to find the most commonly occurring value in a dataset.
  • Percentage: This is used to express how a value or group of respondents within the data relates to a larger group of respondents.
  • Frequency: This indicates the number of times a value is found.
  • Range: This shows the highest and lowest values in a dataset.
  • Standard Deviation: This is used to indicate how dispersed a range of numbers is, meaning, it shows how close all the numbers are to the mean.
  • Skewness: It indicates how symmetrical a range of numbers is, showing if they cluster into a smooth bell curve shape in the middle of the graph or if they skew towards the left or right.

2) Inferential Statistics

In quantitative analysis, the expectation is to turn raw numbers into meaningful insight using numerical values, and descriptive statistics is all about explaining details of a specific dataset using numbers, but it does not explain the motives behind the numbers; hence, a need for further analysis using inferential statistics.

Inferential statistics aim to make predictions or highlight possible outcomes from the analyzed data obtained from descriptive statistics. They are used to generalize results and make predictions between groups, show relationships that exist between multiple variables, and are used for hypothesis testing that predicts changes or differences.

There are various statistical analysis methods used within inferential statistics; a few are discussed below.

  • Cross Tabulations: Cross tabulation or crosstab is used to show the relationship that exists between two variables and is often used to compare results by demographic groups. It uses a basic tabular form to draw inferences between different data sets and contains data that is mutually exclusive or has some connection with each other. Crosstabs help understand the nuances of a dataset and factors that may influence a data point.
  • Regression Analysis: Regression analysis estimates the relationship between a set of variables. It shows the correlation between a dependent variable (the variable or outcome you want to measure or predict) and any number of independent variables (factors that may impact the dependent variable). Therefore, the purpose of the regression analysis is to estimate how one or more variables might affect a dependent variable to identify trends and patterns to make predictions and forecast possible future trends. There are many types of regression analysis, and the model you choose will be determined by the type of data you have for the dependent variable. The types of regression analysis include linear regression, non-linear regression, binary logistic regression, etc.
  • Monte Carlo Simulation: Monte Carlo simulation, also known as the Monte Carlo method, is a computerized technique of generating models of possible outcomes and showing their probability distributions. It considers a range of possible outcomes and then tries to calculate how likely each outcome will occur. Data analysts use it to perform advanced risk analyses to help forecast future events and make decisions accordingly.
  • Analysis of Variance (ANOVA): This is used to test the extent to which two or more groups differ from each other. It compares the mean of various groups and allows the analysis of multiple groups.
  • Factor Analysis:   A large number of variables can be reduced into a smaller number of factors using the factor analysis technique. It works on the principle that multiple separate observable variables correlate with each other because they are all associated with an underlying construct. It helps in reducing large datasets into smaller, more manageable samples.
  • Cohort Analysis: Cohort analysis can be defined as a subset of behavioral analytics that operates from data taken from a given dataset. Rather than looking at all users as one unit, cohort analysis breaks down data into related groups for analysis, where these groups or cohorts usually have common characteristics or similarities within a defined period.
  • MaxDiff Analysis: This is a quantitative data analysis method that is used to gauge customers’ preferences for purchase and what parameters rank higher than the others in the process. 
  • Cluster Analysis: Cluster analysis is a technique used to identify structures within a dataset. Cluster analysis aims to be able to sort different data points into groups that are internally similar and externally different; that is, data points within a cluster will look like each other and different from data points in other clusters.
  • Time Series Analysis: This is a statistical analytic technique used to identify trends and cycles over time. It is simply the measurement of the same variables at different times, like weekly and monthly email sign-ups, to uncover trends, seasonality, and cyclic patterns. By doing this, the data analyst can forecast how variables of interest may fluctuate in the future. 
  • SWOT analysis: This is a quantitative data analysis method that assigns numerical values to indicate strengths, weaknesses, opportunities, and threats of an organization, product, or service to show a clearer picture of competition to foster better business strategies

How to Choose the Right Method for your Analysis?

Choosing between Descriptive Statistics or Inferential Statistics can be often confusing. You should consider the following factors before choosing the right method for your quantitative data analysis:

1. Type of Data

The first consideration in data analysis is understanding the type of data you have. Different statistical methods have specific requirements based on these data types, and using the wrong method can render results meaningless. The choice of statistical method should align with the nature and distribution of your data to ensure meaningful and accurate analysis.

2. Your Research Questions

When deciding on statistical methods, it’s crucial to align them with your specific research questions and hypotheses. The nature of your questions will influence whether descriptive statistics alone, which reveal sample attributes, are sufficient or if you need both descriptive and inferential statistics to understand group differences or relationships between variables and make population inferences.

Pros and Cons of Quantitative Data Analysis

1. Objectivity and Generalizability:

  • Quantitative data analysis offers objective, numerical measurements, minimizing bias and personal interpretation.
  • Results can often be generalized to larger populations, making them applicable to broader contexts.

Example: A study using quantitative data analysis to measure student test scores can objectively compare performance across different schools and demographics, leading to generalizable insights about educational strategies.

2. Precision and Efficiency:

  • Statistical methods provide precise numerical results, allowing for accurate comparisons and prediction.
  • Large datasets can be analyzed efficiently with the help of computer software, saving time and resources.

Example: A marketing team can use quantitative data analysis to precisely track click-through rates and conversion rates on different ad campaigns, quickly identifying the most effective strategies for maximizing customer engagement.

3. Identification of Patterns and Relationships:

  • Statistical techniques reveal hidden patterns and relationships between variables that might not be apparent through observation alone.
  • This can lead to new insights and understanding of complex phenomena.

Example: A medical researcher can use quantitative analysis to pinpoint correlations between lifestyle factors and disease risk, aiding in the development of prevention strategies.

1. Limited Scope:

  • Quantitative analysis focuses on quantifiable aspects of a phenomenon ,  potentially overlooking important qualitative nuances, such as emotions, motivations, or cultural contexts.

Example: A survey measuring customer satisfaction with numerical ratings might miss key insights about the underlying reasons for their satisfaction or dissatisfaction, which could be better captured through open-ended feedback.

2. Oversimplification:

  • Reducing complex phenomena to numerical data can lead to oversimplification and a loss of richness in understanding.

Example: Analyzing employee productivity solely through quantitative metrics like hours worked or tasks completed might not account for factors like creativity, collaboration, or problem-solving skills, which are crucial for overall performance.

3. Potential for Misinterpretation:

  • Statistical results can be misinterpreted if not analyzed carefully and with appropriate expertise.
  • The choice of statistical methods and assumptions can significantly influence results.

This blog discusses the steps, methods, and techniques of quantitative data analysis. It also gives insights into the methods of data collection, the type of data one should work with, and the pros and cons of such analysis.

Gain a better understanding of data analysis with these essential reads:

  • Data Analysis and Modeling: 4 Critical Differences
  • Exploratory Data Analysis Simplified 101
  • 25 Best Data Analysis Tools in 2024

Carrying out successful data analysis requires prepping the data and making it analysis-ready. That is where Hevo steps in.

Want to give Hevo a try? Sign Up for a 14-day free trial and experience the feature-rich Hevo suite first hand. You may also have a look at the amazing Hevo price , which will assist you in selecting the best plan for your requirements.

Share your experience of understanding Quantitative Data Analysis in the comment section below! We would love to hear your thoughts.

Ofem Eteng is a seasoned technical content writer with over 12 years of experience. He has held pivotal roles such as System Analyst (DevOps) at Dagbs Nigeria Limited and Full-Stack Developer at Pedoquasphere International Limited. He specializes in data science, data analytics and cutting-edge technologies, making him an expert in the data industry.

No-code Data Pipeline for your Data Warehouse

  • Data Analysis
  • Data Warehouse
  • Quantitative Data Analysis

Continue Reading

data analysis on quantitative research

Muskan Kesharwani

Top 10 Data Quality Tools for Ensuring High Data Standards

data analysis on quantitative research

Arun Chaudhary

Fivetran vs RudderStack Comparison

data analysis on quantitative research

Roopa Madhuri G

Fivetran vs Airbyte: A Comprehensive Comparison for 2024

I want to read this e-book.

data analysis on quantitative research

data analysis on quantitative research

Quantitative Data Analysis 101

The lingo, methods and techniques, explained simply.

By: Derek Jansen (MBA)  and Kerryn Warren (PhD) | December 2020

Quantitative data analysis is one of those things that often strikes fear in students. It’s totally understandable – quantitative analysis is a complex topic, full of daunting lingo , like medians, modes, correlation and regression. Suddenly we’re all wishing we’d paid a little more attention in math class…

The good news is that while quantitative data analysis is a mammoth topic, gaining a working understanding of the basics isn’t that hard , even for those of us who avoid numbers and math . In this post, we’ll break quantitative analysis down into simple , bite-sized chunks so you can approach your research with confidence.

Quantitative data analysis methods and techniques 101

Overview: Quantitative Data Analysis 101

  • What (exactly) is quantitative data analysis?
  • When to use quantitative analysis
  • How quantitative analysis works

The two “branches” of quantitative analysis

  • Descriptive statistics 101
  • Inferential statistics 101
  • How to choose the right quantitative methods
  • Recap & summary

What is quantitative data analysis?

Despite being a mouthful, quantitative data analysis simply means analysing data that is numbers-based – or data that can be easily “converted” into numbers without losing any meaning.

For example, category-based variables like gender, ethnicity, or native language could all be “converted” into numbers without losing meaning – for example, English could equal 1, French 2, etc.

This contrasts against qualitative data analysis, where the focus is on words, phrases and expressions that can’t be reduced to numbers. If you’re interested in learning about qualitative analysis, check out our post and video here .

What is quantitative analysis used for?

Quantitative analysis is generally used for three purposes.

  • Firstly, it’s used to measure differences between groups . For example, the popularity of different clothing colours or brands.
  • Secondly, it’s used to assess relationships between variables . For example, the relationship between weather temperature and voter turnout.
  • And third, it’s used to test hypotheses in a scientifically rigorous way. For example, a hypothesis about the impact of a certain vaccine.

Again, this contrasts with qualitative analysis , which can be used to analyse people’s perceptions and feelings about an event or situation. In other words, things that can’t be reduced to numbers.

How does quantitative analysis work?

Well, since quantitative data analysis is all about analysing numbers , it’s no surprise that it involves statistics . Statistical analysis methods form the engine that powers quantitative analysis, and these methods can vary from pretty basic calculations (for example, averages and medians) to more sophisticated analyses (for example, correlations and regressions).

Sounds like gibberish? Don’t worry. We’ll explain all of that in this post. Importantly, you don’t need to be a statistician or math wiz to pull off a good quantitative analysis. We’ll break down all the technical mumbo jumbo in this post.

Need a helping hand?

data analysis on quantitative research

As I mentioned, quantitative analysis is powered by statistical analysis methods . There are two main “branches” of statistical methods that are used – descriptive statistics and inferential statistics . In your research, you might only use descriptive statistics, or you might use a mix of both , depending on what you’re trying to figure out. In other words, depending on your research questions, aims and objectives . I’ll explain how to choose your methods later.

So, what are descriptive and inferential statistics?

Well, before I can explain that, we need to take a quick detour to explain some lingo. To understand the difference between these two branches of statistics, you need to understand two important words. These words are population and sample .

First up, population . In statistics, the population is the entire group of people (or animals or organisations or whatever) that you’re interested in researching. For example, if you were interested in researching Tesla owners in the US, then the population would be all Tesla owners in the US.

However, it’s extremely unlikely that you’re going to be able to interview or survey every single Tesla owner in the US. Realistically, you’ll likely only get access to a few hundred, or maybe a few thousand owners using an online survey. This smaller group of accessible people whose data you actually collect is called your sample .

So, to recap – the population is the entire group of people you’re interested in, and the sample is the subset of the population that you can actually get access to. In other words, the population is the full chocolate cake , whereas the sample is a slice of that cake.

So, why is this sample-population thing important?

Well, descriptive statistics focus on describing the sample , while inferential statistics aim to make predictions about the population, based on the findings within the sample. In other words, we use one group of statistical methods – descriptive statistics – to investigate the slice of cake, and another group of methods – inferential statistics – to draw conclusions about the entire cake. There I go with the cake analogy again…

With that out the way, let’s take a closer look at each of these branches in more detail.

Descriptive statistics vs inferential statistics

Branch 1: Descriptive Statistics

Descriptive statistics serve a simple but critically important role in your research – to describe your data set – hence the name. In other words, they help you understand the details of your sample . Unlike inferential statistics (which we’ll get to soon), descriptive statistics don’t aim to make inferences or predictions about the entire population – they’re purely interested in the details of your specific sample .

When you’re writing up your analysis, descriptive statistics are the first set of stats you’ll cover, before moving on to inferential statistics. But, that said, depending on your research objectives and research questions , they may be the only type of statistics you use. We’ll explore that a little later.

So, what kind of statistics are usually covered in this section?

Some common statistical tests used in this branch include the following:

  • Mean – this is simply the mathematical average of a range of numbers.
  • Median – this is the midpoint in a range of numbers when the numbers are arranged in numerical order. If the data set makes up an odd number, then the median is the number right in the middle of the set. If the data set makes up an even number, then the median is the midpoint between the two middle numbers.
  • Mode – this is simply the most commonly occurring number in the data set.
  • In cases where most of the numbers are quite close to the average, the standard deviation will be relatively low.
  • Conversely, in cases where the numbers are scattered all over the place, the standard deviation will be relatively high.
  • Skewness . As the name suggests, skewness indicates how symmetrical a range of numbers is. In other words, do they tend to cluster into a smooth bell curve shape in the middle of the graph, or do they skew to the left or right?

Feeling a bit confused? Let’s look at a practical example using a small data set.

Descriptive statistics example data

On the left-hand side is the data set. This details the bodyweight of a sample of 10 people. On the right-hand side, we have the descriptive statistics. Let’s take a look at each of them.

First, we can see that the mean weight is 72.4 kilograms. In other words, the average weight across the sample is 72.4 kilograms. Straightforward.

Next, we can see that the median is very similar to the mean (the average). This suggests that this data set has a reasonably symmetrical distribution (in other words, a relatively smooth, centred distribution of weights, clustered towards the centre).

In terms of the mode , there is no mode in this data set. This is because each number is present only once and so there cannot be a “most common number”. If there were two people who were both 65 kilograms, for example, then the mode would be 65.

Next up is the standard deviation . 10.6 indicates that there’s quite a wide spread of numbers. We can see this quite easily by looking at the numbers themselves, which range from 55 to 90, which is quite a stretch from the mean of 72.4.

And lastly, the skewness of -0.2 tells us that the data is very slightly negatively skewed. This makes sense since the mean and the median are slightly different.

As you can see, these descriptive statistics give us some useful insight into the data set. Of course, this is a very small data set (only 10 records), so we can’t read into these statistics too much. Also, keep in mind that this is not a list of all possible descriptive statistics – just the most common ones.

But why do all of these numbers matter?

While these descriptive statistics are all fairly basic, they’re important for a few reasons:

  • Firstly, they help you get both a macro and micro-level view of your data. In other words, they help you understand both the big picture and the finer details.
  • Secondly, they help you spot potential errors in the data – for example, if an average is way higher than you’d expect, or responses to a question are highly varied, this can act as a warning sign that you need to double-check the data.
  • And lastly, these descriptive statistics help inform which inferential statistical techniques you can use, as those techniques depend on the skewness (in other words, the symmetry and normality) of the data.

Simply put, descriptive statistics are really important , even though the statistical techniques used are fairly basic. All too often at Grad Coach, we see students skimming over the descriptives in their eagerness to get to the more exciting inferential methods, and then landing up with some very flawed results.

Don’t be a sucker – give your descriptive statistics the love and attention they deserve!

Examples of descriptive statistics

Branch 2: Inferential Statistics

As I mentioned, while descriptive statistics are all about the details of your specific data set – your sample – inferential statistics aim to make inferences about the population . In other words, you’ll use inferential statistics to make predictions about what you’d expect to find in the full population.

What kind of predictions, you ask? Well, there are two common types of predictions that researchers try to make using inferential stats:

  • Firstly, predictions about differences between groups – for example, height differences between children grouped by their favourite meal or gender.
  • And secondly, relationships between variables – for example, the relationship between body weight and the number of hours a week a person does yoga.

In other words, inferential statistics (when done correctly), allow you to connect the dots and make predictions about what you expect to see in the real world population, based on what you observe in your sample data. For this reason, inferential statistics are used for hypothesis testing – in other words, to test hypotheses that predict changes or differences.

Inferential statistics are used to make predictions about what you’d expect to find in the full population, based on the sample.

Of course, when you’re working with inferential statistics, the composition of your sample is really important. In other words, if your sample doesn’t accurately represent the population you’re researching, then your findings won’t necessarily be very useful.

For example, if your population of interest is a mix of 50% male and 50% female , but your sample is 80% male , you can’t make inferences about the population based on your sample, since it’s not representative. This area of statistics is called sampling, but we won’t go down that rabbit hole here (it’s a deep one!) – we’ll save that for another post .

What statistics are usually used in this branch?

There are many, many different statistical analysis methods within the inferential branch and it’d be impossible for us to discuss them all here. So we’ll just take a look at some of the most common inferential statistical methods so that you have a solid starting point.

First up are T-Tests . T-tests compare the means (the averages) of two groups of data to assess whether they’re statistically significantly different. In other words, do they have significantly different means, standard deviations and skewness.

This type of testing is very useful for understanding just how similar or different two groups of data are. For example, you might want to compare the mean blood pressure between two groups of people – one that has taken a new medication and one that hasn’t – to assess whether they are significantly different.

Kicking things up a level, we have ANOVA, which stands for “analysis of variance”. This test is similar to a T-test in that it compares the means of various groups, but ANOVA allows you to analyse multiple groups , not just two groups So it’s basically a t-test on steroids…

Next, we have correlation analysis . This type of analysis assesses the relationship between two variables. In other words, if one variable increases, does the other variable also increase, decrease or stay the same. For example, if the average temperature goes up, do average ice creams sales increase too? We’d expect some sort of relationship between these two variables intuitively , but correlation analysis allows us to measure that relationship scientifically .

Lastly, we have regression analysis – this is quite similar to correlation in that it assesses the relationship between variables, but it goes a step further to understand cause and effect between variables, not just whether they move together. In other words, does the one variable actually cause the other one to move, or do they just happen to move together naturally thanks to another force? Just because two variables correlate doesn’t necessarily mean that one causes the other.

Stats overload…

I hear you. To make this all a little more tangible, let’s take a look at an example of a correlation in action.

Here’s a scatter plot demonstrating the correlation (relationship) between weight and height. Intuitively, we’d expect there to be some relationship between these two variables, which is what we see in this scatter plot. In other words, the results tend to cluster together in a diagonal line from bottom left to top right.

Sample correlation

As I mentioned, these are are just a handful of inferential techniques – there are many, many more. Importantly, each statistical method has its own assumptions and limitations .

For example, some methods only work with normally distributed (parametric) data, while other methods are designed specifically for non-parametric data. And that’s exactly why descriptive statistics are so important – they’re the first step to knowing which inferential techniques you can and can’t use.

Remember that every statistical method has its own assumptions and limitations,  so you need to be aware of these.

How to choose the right analysis method

To choose the right statistical methods, you need to think about two important factors :

  • The type of quantitative data you have (specifically, level of measurement and the shape of the data). And,
  • Your research questions and hypotheses

Let’s take a closer look at each of these.

Factor 1 – Data type

The first thing you need to consider is the type of data you’ve collected (or the type of data you will collect). By data types, I’m referring to the four levels of measurement – namely, nominal, ordinal, interval and ratio. If you’re not familiar with this lingo, check out the video below.

Why does this matter?

Well, because different statistical methods and techniques require different types of data. This is one of the “assumptions” I mentioned earlier – every method has its assumptions regarding the type of data.

For example, some techniques work with categorical data (for example, yes/no type questions, or gender or ethnicity), while others work with continuous numerical data (for example, age, weight or income) – and, of course, some work with multiple data types.

If you try to use a statistical method that doesn’t support the data type you have, your results will be largely meaningless . So, make sure that you have a clear understanding of what types of data you’ve collected (or will collect). Once you have this, you can then check which statistical methods would support your data types here .

If you haven’t collected your data yet, you can work in reverse and look at which statistical method would give you the most useful insights, and then design your data collection strategy to collect the correct data types.

Another important factor to consider is the shape of your data . Specifically, does it have a normal distribution (in other words, is it a bell-shaped curve, centred in the middle) or is it very skewed to the left or the right? Again, different statistical techniques work for different shapes of data – some are designed for symmetrical data while others are designed for skewed data.

This is another reminder of why descriptive statistics are so important – they tell you all about the shape of your data.

Factor 2: Your research questions

The next thing you need to consider is your specific research questions, as well as your hypotheses (if you have some). The nature of your research questions and research hypotheses will heavily influence which statistical methods and techniques you should use.

If you’re just interested in understanding the attributes of your sample (as opposed to the entire population), then descriptive statistics are probably all you need. For example, if you just want to assess the means (averages) and medians (centre points) of variables in a group of people.

On the other hand, if you aim to understand differences between groups or relationships between variables and to infer or predict outcomes in the population, then you’ll likely need both descriptive statistics and inferential statistics.

So, it’s really important to get very clear about your research aims and research questions, as well your hypotheses – before you start looking at which statistical techniques to use.

Never shoehorn a specific statistical technique into your research just because you like it or have some experience with it. Your choice of methods must align with all the factors we’ve covered here.

Time to recap…

You’re still with me? That’s impressive. We’ve covered a lot of ground here, so let’s recap on the key points:

  • Quantitative data analysis is all about  analysing number-based data  (which includes categorical and numerical data) using various statistical techniques.
  • The two main  branches  of statistics are  descriptive statistics  and  inferential statistics . Descriptives describe your sample, whereas inferentials make predictions about what you’ll find in the population.
  • Common  descriptive statistical methods include  mean  (average),  median , standard  deviation  and  skewness .
  • Common  inferential statistical methods include  t-tests ,  ANOVA ,  correlation  and  regression  analysis.
  • To choose the right statistical methods and techniques, you need to consider the  type of data you’re working with , as well as your  research questions  and hypotheses.

data analysis on quantitative research

Psst... there’s more!

This post was based on one of our popular Research Bootcamps . If you're working on a research project, you'll definitely want to check this out ...

77 Comments

Oddy Labs

Hi, I have read your article. Such a brilliant post you have created.

Derek Jansen

Thank you for the feedback. Good luck with your quantitative analysis.

Abdullahi Ramat

Thank you so much.

Obi Eric Onyedikachi

Thank you so much. I learnt much well. I love your summaries of the concepts. I had love you to explain how to input data using SPSS

MWASOMOLA, BROWN

Very useful, I have got the concept

Lumbuka Kaunda

Amazing and simple way of breaking down quantitative methods.

Charles Lwanga

This is beautiful….especially for non-statisticians. I have skimmed through but I wish to read again. and please include me in other articles of the same nature when you do post. I am interested. I am sure, I could easily learn from you and get off the fear that I have had in the past. Thank you sincerely.

Essau Sefolo

Send me every new information you might have.

fatime

i need every new information

Dr Peter

Thank you for the blog. It is quite informative. Dr Peter Nemaenzhe PhD

Mvogo Mvogo Ephrem

It is wonderful. l’ve understood some of the concepts in a more compréhensive manner

Maya

Your article is so good! However, I am still a bit lost. I am doing a secondary research on Gun control in the US and increase in crime rates and I am not sure which analysis method I should use?

Joy

Based on the given learning points, this is inferential analysis, thus, use ‘t-tests, ANOVA, correlation and regression analysis’

Peter

Well explained notes. Am an MPH student and currently working on my thesis proposal, this has really helped me understand some of the things I didn’t know.

Jejamaije Mujoro

I like your page..helpful

prashant pandey

wonderful i got my concept crystal clear. thankyou!!

Dailess Banda

This is really helpful , thank you

Lulu

Thank you so much this helped

wossen

Wonderfully explained

Niamatullah zaheer

thank u so much, it was so informative

mona

THANKYOU, this was very informative and very helpful

Thaddeus Ogwoka

This is great GRADACOACH I am not a statistician but I require more of this in my thesis

Include me in your posts.

Alem Teshome

This is so great and fully useful. I would like to thank you again and again.

Mrinal

Glad to read this article. I’ve read lot of articles but this article is clear on all concepts. Thanks for sharing.

Emiola Adesina

Thank you so much. This is a very good foundation and intro into quantitative data analysis. Appreciate!

Josyl Hey Aquilam

You have a very impressive, simple but concise explanation of data analysis for Quantitative Research here. This is a God-send link for me to appreciate research more. Thank you so much!

Lynnet Chikwaikwai

Avery good presentation followed by the write up. yes you simplified statistics to make sense even to a layman like me. Thank so much keep it up. The presenter did ell too. i would like more of this for Qualitative and exhaust more of the test example like the Anova.

Adewole Ikeoluwa

This is a very helpful article, couldn’t have been clearer. Thank you.

Samih Soud ALBusaidi

Awesome and phenomenal information.Well done

Nūr

The video with the accompanying article is super helpful to demystify this topic. Very well done. Thank you so much.

Lalah

thank you so much, your presentation helped me a lot

Anjali

I don’t know how should I express that ur article is saviour for me 🥺😍

Saiqa Aftab Tunio

It is well defined information and thanks for sharing. It helps me a lot in understanding the statistical data.

Funeka Mvandaba

I gain a lot and thanks for sharing brilliant ideas, so wish to be linked on your email update.

Rita Kathomi Gikonyo

Very helpful and clear .Thank you Gradcoach.

Hilaria Barsabal

Thank for sharing this article, well organized and information presented are very clear.

AMON TAYEBWA

VERY INTERESTING AND SUPPORTIVE TO NEW RESEARCHERS LIKE ME. AT LEAST SOME BASICS ABOUT QUANTITATIVE.

Tariq

An outstanding, well explained and helpful article. This will help me so much with my data analysis for my research project. Thank you!

chikumbutso

wow this has just simplified everything i was scared of how i am gonna analyse my data but thanks to you i will be able to do so

Idris Haruna

simple and constant direction to research. thanks

Mbunda Castro

This is helpful

AshikB

Great writing!! Comprehensive and very helpful.

himalaya ravi

Do you provide any assistance for other steps of research methodology like making research problem testing hypothesis report and thesis writing?

Sarah chiwamba

Thank you so much for such useful article!

Lopamudra

Amazing article. So nicely explained. Wow

Thisali Liyanage

Very insightfull. Thanks

Melissa

I am doing a quality improvement project to determine if the implementation of a protocol will change prescribing habits. Would this be a t-test?

Aliyah

The is a very helpful blog, however, I’m still not sure how to analyze my data collected. I’m doing a research on “Free Education at the University of Guyana”

Belayneh Kassahun

tnx. fruitful blog!

Suzanne

So I am writing exams and would like to know how do establish which method of data analysis to use from the below research questions: I am a bit lost as to how I determine the data analysis method from the research questions.

Do female employees report higher job satisfaction than male employees with similar job descriptions across the South African telecommunications sector? – I though that maybe Chi Square could be used here. – Is there a gender difference in talented employees’ actual turnover decisions across the South African telecommunications sector? T-tests or Correlation in this one. – Is there a gender difference in the cost of actual turnover decisions across the South African telecommunications sector? T-tests or Correlation in this one. – What practical recommendations can be made to the management of South African telecommunications companies on leveraging gender to mitigate employee turnover decisions?

Your assistance will be appreciated if I could get a response as early as possible tomorrow

Like

This was quite helpful. Thank you so much.

kidane Getachew

wow I got a lot from this article, thank you very much, keep it up

FAROUK AHMAD NKENGA

Thanks for yhe guidance. Can you send me this guidance on my email? To enable offline reading?

Nosi Ruth Xabendlini

Thank you very much, this service is very helpful.

George William Kiyingi

Every novice researcher needs to read this article as it puts things so clear and easy to follow. Its been very helpful.

Adebisi

Wonderful!!!! you explained everything in a way that anyone can learn. Thank you!!

Miss Annah

I really enjoyed reading though this. Very easy to follow. Thank you

Reza Kia

Many thanks for your useful lecture, I would be really appreciated if you could possibly share with me the PPT of presentation related to Data type?

Protasia Tairo

Thank you very much for sharing, I got much from this article

Fatuma Chobo

This is a very informative write-up. Kindly include me in your latest posts.

naphtal

Very interesting mostly for social scientists

Boy M. Bachtiar

Thank you so much, very helpfull

You’re welcome 🙂

Dr Mafaza Mansoor

woow, its great, its very informative and well understood because of your way of writing like teaching in front of me in simple languages.

Opio Len

I have been struggling to understand a lot of these concepts. Thank you for the informative piece which is written with outstanding clarity.

Eric

very informative article. Easy to understand

Leena Fukey

Beautiful read, much needed.

didin

Always greet intro and summary. I learn so much from GradCoach

Mmusyoka

Quite informative. Simple and clear summary.

Jewel Faver

I thoroughly enjoyed reading your informative and inspiring piece. Your profound insights into this topic truly provide a better understanding of its complexity. I agree with the points you raised, especially when you delved into the specifics of the article. In my opinion, that aspect is often overlooked and deserves further attention.

Shantae

Absolutely!!! Thank you

Thazika Chitimera

Thank you very much for this post. It made me to understand how to do my data analysis.

lule victor

its nice work and excellent job ,you have made my work easier

Pedro Uwadum

Wow! So explicit. Well done.

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Print Friendly

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Methodology

  • What Is Quantitative Research? | Definition, Uses & Methods

What Is Quantitative Research? | Definition, Uses & Methods

Published on June 12, 2020 by Pritha Bhandari . Revised on June 22, 2023.

Quantitative research is the process of collecting and analyzing numerical data. It can be used to find patterns and averages, make predictions, test causal relationships, and generalize results to wider populations.

Quantitative research is the opposite of qualitative research , which involves collecting and analyzing non-numerical data (e.g., text, video, or audio).

Quantitative research is widely used in the natural and social sciences: biology, chemistry, psychology, economics, sociology, marketing, etc.

  • What is the demographic makeup of Singapore in 2020?
  • How has the average temperature changed globally over the last century?
  • Does environmental pollution affect the prevalence of honey bees?
  • Does working from home increase productivity for people with long commutes?

Table of contents

Quantitative research methods, quantitative data analysis, advantages of quantitative research, disadvantages of quantitative research, other interesting articles, frequently asked questions about quantitative research.

You can use quantitative research methods for descriptive, correlational or experimental research.

  • In descriptive research , you simply seek an overall summary of your study variables.
  • In correlational research , you investigate relationships between your study variables.
  • In experimental research , you systematically examine whether there is a cause-and-effect relationship between variables.

Correlational and experimental research can both be used to formally test hypotheses , or predictions, using statistics. The results may be generalized to broader populations based on the sampling method used.

To collect quantitative data, you will often need to use operational definitions that translate abstract concepts (e.g., mood) into observable and quantifiable measures (e.g., self-ratings of feelings and energy levels).

Quantitative research methods
Research method How to use Example
Control or manipulate an to measure its effect on a dependent variable. To test whether an intervention can reduce procrastination in college students, you give equal-sized groups either a procrastination intervention or a comparable task. You compare self-ratings of procrastination behaviors between the groups after the intervention.
Ask questions of a group of people in-person, over-the-phone or online. You distribute with rating scales to first-year international college students to investigate their experiences of culture shock.
(Systematic) observation Identify a behavior or occurrence of interest and monitor it in its natural setting. To study college classroom participation, you sit in on classes to observe them, counting and recording the prevalence of active and passive behaviors by students from different backgrounds.
Secondary research Collect data that has been gathered for other purposes e.g., national surveys or historical records. To assess whether attitudes towards climate change have changed since the 1980s, you collect relevant questionnaire data from widely available .

Note that quantitative research is at risk for certain research biases , including information bias , omitted variable bias , sampling bias , or selection bias . Be sure that you’re aware of potential biases as you collect and analyze your data to prevent them from impacting your work too much.

Receive feedback on language, structure, and formatting

Professional editors proofread and edit your paper by focusing on:

  • Academic style
  • Vague sentences
  • Style consistency

See an example

data analysis on quantitative research

Once data is collected, you may need to process it before it can be analyzed. For example, survey and test data may need to be transformed from words to numbers. Then, you can use statistical analysis to answer your research questions .

Descriptive statistics will give you a summary of your data and include measures of averages and variability. You can also use graphs, scatter plots and frequency tables to visualize your data and check for any trends or outliers.

Using inferential statistics , you can make predictions or generalizations based on your data. You can test your hypothesis or use your sample data to estimate the population parameter .

First, you use descriptive statistics to get a summary of the data. You find the mean (average) and the mode (most frequent rating) of procrastination of the two groups, and plot the data to see if there are any outliers.

You can also assess the reliability and validity of your data collection methods to indicate how consistently and accurately your methods actually measured what you wanted them to.

Quantitative research is often used to standardize data collection and generalize findings . Strengths of this approach include:

  • Replication

Repeating the study is possible because of standardized data collection protocols and tangible definitions of abstract concepts.

  • Direct comparisons of results

The study can be reproduced in other cultural settings, times or with different groups of participants. Results can be compared statistically.

  • Large samples

Data from large samples can be processed and analyzed using reliable and consistent procedures through quantitative data analysis.

  • Hypothesis testing

Using formalized and established hypothesis testing procedures means that you have to carefully consider and report your research variables, predictions, data collection and testing methods before coming to a conclusion.

Despite the benefits of quantitative research, it is sometimes inadequate in explaining complex research topics. Its limitations include:

  • Superficiality

Using precise and restrictive operational definitions may inadequately represent complex concepts. For example, the concept of mood may be represented with just a number in quantitative research, but explained with elaboration in qualitative research.

  • Narrow focus

Predetermined variables and measurement procedures can mean that you ignore other relevant observations.

  • Structural bias

Despite standardized procedures, structural biases can still affect quantitative research. Missing data , imprecise measurements or inappropriate sampling methods are biases that can lead to the wrong conclusions.

  • Lack of context

Quantitative research often uses unnatural settings like laboratories or fails to consider historical and cultural contexts that may affect data collection and results.

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

  • Chi square goodness of fit test
  • Degrees of freedom
  • Null hypothesis
  • Discourse analysis
  • Control groups
  • Mixed methods research
  • Non-probability sampling
  • Inclusion and exclusion criteria

Research bias

  • Rosenthal effect
  • Implicit bias
  • Cognitive bias
  • Selection bias
  • Negativity bias
  • Status quo bias

Quantitative research deals with numbers and statistics, while qualitative research deals with words and meanings.

Quantitative methods allow you to systematically measure variables and test hypotheses . Qualitative methods allow you to explore concepts and experiences in more detail.

In mixed methods research , you use both qualitative and quantitative data collection and analysis methods to answer your research question .

Data collection is the systematic process by which observations or measurements are gathered in research. It is used in many different contexts by academics, governments, businesses, and other organizations.

Operationalization means turning abstract conceptual ideas into measurable observations.

For example, the concept of social anxiety isn’t directly observable, but it can be operationally defined in terms of self-rating scores, behavioral avoidance of crowded places, or physical anxiety symptoms in social situations.

Before collecting data , it’s important to consider how you will operationalize the variables that you want to measure.

Reliability and validity are both about how well a method measures something:

  • Reliability refers to the  consistency of a measure (whether the results can be reproduced under the same conditions).
  • Validity   refers to the  accuracy of a measure (whether the results really do represent what they are supposed to measure).

If you are doing experimental research, you also have to consider the internal and external validity of your experiment.

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics. It is used by scientists to test specific predictions, called hypotheses , by calculating how likely it is that a pattern or relationship between variables could have arisen by chance.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

Bhandari, P. (2023, June 22). What Is Quantitative Research? | Definition, Uses & Methods. Scribbr. Retrieved August 13, 2024, from https://www.scribbr.com/methodology/quantitative-research/

Is this article helpful?

Pritha Bhandari

Pritha Bhandari

Other students also liked, descriptive statistics | definitions, types, examples, inferential statistics | an easy introduction & examples, what is your plagiarism score.

Logo for UEN Digital Press with Pressbooks

Part II: Data Analysis Methods in Quantitative Research

Data analysis methods in quantitative research.

We started this module with levels of measurement as a way to categorize our data. Data analysis is directed toward answering the original research question and achieving the study purpose (or aim). Now, we are going to delve into two main statistical analyses to describe our data and make inferences about our data:

Descriptive Statistics and Inferential Statistics.

Descriptive Statistics:

Before you panic, we will not be going into statistical analyses very deeply. We want to simply get a good overview of some of the types of general statistical analyses so that it makes some sense to us when we read results in published research articles.

Descriptive statistics   summarize or describe the characteristics of a data set. This is a method of simply organizing and describing our data. Why? Because data that are not organized in some fashion are super difficult to interpret.

Let’s say our sample is golden retrievers (population “canines”). Our descriptive statistics  tell us more about the same.

  • 37% of our sample is male, 43% female
  • The mean age is 4 years
  • Mode is 6 years
  • Median age is 5.5 years

Image of golden retriever in field

Let’s explore some of the types of descriptive statistics.

Frequency Distributions : A frequency distribution describes the number of observations for each possible value of a measured variable. The numbers are arranged from lowest to highest and features a count of how many times each value occurred.

For example, if 18 students have pet dogs, dog ownership has a frequency of 18.

We might see what other types of pets that students have. Maybe cats, fish, and hamsters. We find that 2 students have hamsters, 9 have fish, 1 has a cat.

You can see that it is very difficult to interpret the various pets into any meaningful interpretation, yes?

Now, let’s take those same pets and place them in a frequency distribution table.                          

Type of Pet

Frequency

Dog

18

Fish

9

Hamsters

2

Cat

1

As we can now see, this is much easier to interpret.

Let’s say that we want to know how many books our sample population of  students have read in the last year. We collect our data and find this:

Number of Books

Frequency (How many students read that number of books)

13

1

12

6

11

18

10

58

9

99

8

138

7

99

6

56

5

21

4

8

3

2

2

1

1

0

We can then take that table and plot it out on a frequency distribution graph. This makes it much easier to see how the numbers are disbursed. Easier on the eyes, yes?

Chart, histogram Description automatically generated

Here’s another example of symmetrical, positive skew, and negative skew:

Understanding Descriptive Statistics | by Sarang Narkhede | Towards Data Science

Correlation : Relationships between two research variables are called correlations . Remember, correlation is not cause-and-effect. Correlations  simply measure the extent of relationship between two variables. To measure correlation in descriptive statistics, the statistical analysis called Pearson’s correlation coefficient I is often used.  You do not need to know how to calculate this for this course. But, do remember that analysis test because you will often see this in published research articles. There really are no set guidelines on what measurement constitutes a “strong” or “weak” correlation, as it really depends on the variables being measured.

However, possible values for correlation coefficients range from -1.00 through .00 to +1.00. A value of +1 means that the two variables are positively correlated, as one variable goes up, the other goes up. A value of r = 0 means that the two variables are not linearly related.

Often, the data will be presented on a scatter plot. Here, we can view the data and there appears to be a straight line (linear) trend between height and weight. The association (or correlation) is positive. That means, that there is a weight increase with height. The Pearson correlation coefficient in this case was r = 0.56.

data analysis on quantitative research

A type I error is made by rejecting a null hypothesis that is true. This means that there was no difference but the researcher concluded that the hypothesis was true.

A type II error is made by accepting that the null hypothesis is true when, in fact, it was false. Meaning there was actually a difference but the researcher did not think their hypothesis was supported.

Hypothesis Testing Procedures : In a general sense, the overall testing of a hypothesis has a systematic methodology. Remember, a hypothesis is an educated guess about the outcome. If we guess wrong, we might set up the tests incorrectly and might get results that are invalid. Sometimes, this is super difficult to get right. The main purpose of statistics is to test a hypothesis.

  • Selecting a statistical test. Lots of factors go into this, including levels of measurement of the variables.
  • Specifying the level of significance. Usually 0.05 is chosen.
  • Computing a test statistic. Lots of software programs to help with this.
  • Determining degrees of freedom ( df ). This refers to the number of observations free to vary about a parameter. Computing this is easy (but you don’t need to know how for this course).
  • Comparing the test statistic to a theoretical value. Theoretical values exist for all test statistics, which is compared to the study statistics to help establish significance.

Some of the common inferential statistics you will see include:

Comparison tests: Comparison tests look for differences among group means. They can be used to test the effect of a categorical variable on the mean value of some other characteristic.

T-tests are used when comparing the means of precisely two groups (e.g., the average heights of men and women). ANOVA and MANOVA tests are used when comparing the means of more than two groups (e.g., the average heights of children, teenagers, and adults).

  • t -tests (compares differences in two groups) – either paired t-test (example: What is the effect of two different test prep programs on the average exam scores for students from the same class?) or independent t-test (example: What is the difference in average exam scores for students from two different schools?)
  • analysis of variance (ANOVA, which compares differences in three or more groups) (example: What is the difference in average pain levels among post-surgical patients given three different painkillers?) or MANOVA (compares differences in three or more groups, and 2 or more outcomes) (example: What is the effect of flower species on petal length, petal width, and stem length?)

Correlation tests: Correlation tests check whether variables are related without hypothesizing a cause-and-effect relationship.

  • Pearson r (measures the strength and direction of the relationship between two variables) (example: How are latitude and temperature related?)

Nonparametric tests: Non-parametric tests don’t make as many assumptions about the data, and are useful when one or more of the common statistical assumptions are violated. However, the inferences they make aren’t as strong as with parametric tests.

  • chi-squared ( X 2 ) test (measures differences in proportions). Chi-square tests are often used to test hypotheses. The chi-square statistic compares the size of any discrepancies between the expected results and the actual results, given the size of the sample and the number of variables in the relationship. For example, the results of tossing a fair coin meet these criteria. We can apply a chi-square test to determine which type of candy is most popular and make sure that our shelves are well stocked. Or maybe you’re a scientist studying the offspring of cats to determine the likelihood of certain genetic traits being passed to a litter of kittens.

Inferential Versus Descriptive Statistics Summary Table

Inferential Statistics

Descriptive Statistics

Used to make conclusions about the population by using analytical tools on the sample data.

Used to qualify the characteristics of the data.

Hypothesis testing.

Measures of central tendency and measures of dispersion are the important tools used.

Is used to make inferences about an unknown population.

Used to describe the characteristics of a known sample or population.

Measures of inferential statistics include t-tests, ANOVA, chi-squared test, etc.

Measures of descriptive statistics are variances, range, mean, median, etc.

Statistical Significance Versus Clinical Significance

Finally, when it comes to statistical significance  in hypothesis testing, the normal probability value in nursing is <0.05. A p=value (probability) is a statistical measurement used to validate a hypothesis against measured data in the study. Meaning, it measures the likelihood that the results were actually observed due to the intervention, or if the results were just due by chance. The p-value, in measuring the probability of obtaining the observed results, assumes the null hypothesis is true.

The lower the p-value, the greater the statistical significance of the observed difference.

In the example earlier about our diabetic patients receiving online diet education, let’s say we had p = 0.05. Would that be a statistically significant result?

If you answered yes, you are correct!

What if our result was p = 0.8?

Not significant. Good job!

That’s pretty straightforward, right? Below 0.05, significant. Over 0.05 not   significant.

Could we have significance clinically even if we do not have statistically significant results? Yes. Let’s explore this a bit.

Statistical hypothesis testing provides little information for interpretation purposes. It’s pretty mathematical and we can still get it wrong. Additionally, attaining statistical significance does not really state whether a finding is clinically meaningful. With a large enough sample, even a small very tiny relationship may be statistically significant. But, clinical significance  is the practical importance of research. Meaning, we need to ask what the palpable effects may be on the lives of patients or healthcare decisions.

Remember, hypothesis testing cannot prove. It also cannot tell us much other than “yeah, it’s probably likely that there would be some change with this intervention”. Hypothesis testing tells us the likelihood that the outcome was due to an intervention or influence and not just by chance. Also, as nurses and clinicians, we are not concerned with a group of people – we are concerned at the individual, holistic level. The goal of evidence-based practice is to use best evidence for decisions about specific individual needs.

data analysis on quantitative research

Additionally, begin your Discussion section. What are the implications to practice? Is there little evidence or a lot? Would you recommend additional studies? If so, what type of study would you recommend, and why?

data analysis on quantitative research

  • Were all the important results discussed?
  • Did the researchers discuss any study limitations and their possible effects on the credibility of the findings? In discussing limitations, were key threats to the study’s validity and possible biases reviewed? Did the interpretations take limitations into account?
  • What types of evidence were offered in support of the interpretation, and was that evidence persuasive? Were results interpreted in light of findings from other studies?
  • Did the researchers make any unjustifiable causal inferences? Were alternative explanations for the findings considered? Were the rationales for rejecting these alternatives convincing?
  • Did the interpretation consider the precision of the results and/or the magnitude of effects?
  • Did the researchers draw any unwarranted conclusions about the generalizability of the results?
  • Did the researchers discuss the study’s implications for clinical practice or future nursing research? Did they make specific recommendations?
  • If yes, are the stated implications appropriate, given the study’s limitations and the magnitude of the effects as well as evidence from other studies? Are there important implications that the report neglected to include?
  • Did the researchers mention or assess clinical significance? Did they make a distinction between statistical and clinical significance?
  • If clinical significance was examined, was it assessed in terms of group-level information (e.g., effect sizes) or individual-level results? How was clinical significance operationalized?

References & Attribution

“ Green check mark ” by rawpixel licensed CC0 .

“ Magnifying glass ” by rawpixel licensed CC0

“ Orange flame ” by rawpixel licensed CC0 .

Polit, D. & Beck, C. (2021).  Lippincott CoursePoint Enhanced for Polit’s Essentials of Nursing Research  (10th ed.). Wolters Kluwer Health 

Vaid, N. K. (2019) Statistical performance measures. Medium. https://neeraj-kumar-vaid.medium.com/statistical-performance-measures-12bad66694b7

Evidence-Based Practice & Research Methodologies Copyright © by Tracy Fawns is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

Research-Methodology

Quantitative Data Analysis

In quantitative data analysis you are expected to turn raw numbers into meaningful data through the application of rational and critical thinking. Quantitative data analysis may include the calculation of frequencies of variables and differences between variables. A quantitative approach is usually associated with finding evidence to either support or reject hypotheses you have formulated at the earlier stages of your research process .

The same figure within data set can be interpreted in many different ways; therefore it is important to apply fair and careful judgement.

For example, questionnaire findings of a research titled “A study into the impacts of informal management-employee communication on the levels of employee motivation: a case study of Agro Bravo Enterprise” may indicate that the majority 52% of respondents assess communication skills of their immediate supervisors as inadequate.

This specific piece of primary data findings needs to be critically analyzed and objectively interpreted through comparing it to other findings within the framework of the same research. For example, organizational culture of Agro Bravo Enterprise, leadership style, the levels of frequency of management-employee communications need to be taken into account during the data analysis.

Moreover, literature review findings conducted at the earlier stages of the research process need to be referred to in order to reflect the viewpoints of other authors regarding the causes of employee dissatisfaction with management communication. Also, secondary data needs to be integrated in data analysis in a logical and unbiased manner.

Let’s take another example. You are writing a dissertation exploring the impacts of foreign direct investment (FDI) on the levels of economic growth in Vietnam using correlation quantitative data analysis method . You have specified FDI and GDP as variables for your research and correlation tests produced correlation coefficient of 0.9.

In this case simply stating that there is a strong positive correlation between FDI and GDP would not suffice; you have to provide explanation about the manners in which the growth on the levels of FDI may contribute to the growth of GDP by referring to the findings of the literature review and applying your own critical and rational reasoning skills.

A set of analytical software can be used to assist with analysis of quantitative data. The following table  illustrates the advantages and disadvantages of three popular quantitative data analysis software: Microsoft Excel, Microsoft Access and SPSS.

Cost effective or Free of Charge

Can be sent as e-mail attachments & viewed by most smartphones

All in one program

Excel files can be secured by a password

Big Excel files may run slowly

Numbers of rows and columns are limited

Advanced analysis functions are time consuming to be learned by beginners

Virus vulnerability through macros

 

One of the cheapest amongst premium programs

Flexible information retrieval

Ease of use

 

Difficult in dealing with large database

Low level of interactivity

Remote use requires installation of the same version of Microsoft Access

Broad coverage of formulas and statistical routines

Data files can be imported through other programs

Annually updated to increase sophistication

Expensive cost

Limited license duration

Confusion among the different versions due to regular update

Advantages and disadvantages of popular quantitative analytical software

Quantitative data analysis with the application of statistical software consists of the following stages [1] :

  • Preparing and checking the data. Input of data into computer.
  • Selecting the most appropriate tables and diagrams to use according to your research objectives.
  • Selecting the most appropriate statistics to describe your data.
  • Selecting the most appropriate statistics to examine relationships and trends in your data.

It is important to note that while the application of various statistical software and programs are invaluable to avoid drawing charts by hand or undertake calculations manually, it is easy to use them incorrectly. In other words, quantitative data analysis is “a field where it is not at all difficult to carry out an analysis which is simply wrong, or inappropriate for your data or purposes. And the negative side of readily available specialist statistical software is that it becomes that much easier to generate elegantly presented rubbish” [2] .

Therefore, it is important for you to seek advice from your dissertation supervisor regarding statistical analyses in general and the choice and application of statistical software in particular.

My  e-book,  The Ultimate Guide to Writing a Dissertation in Business Studies: a step by step approach  contains a detailed, yet simple explanation of quantitative data analysis methods . The e-book explains all stages of the research process starting from the selection of the research area to writing personal reflection. Important elements of dissertations such as research philosophy, research approach, research design, methods of data collection and data analysis are explained in simple words. John Dudovskiy

Quantitative Data Analysis

[1] Saunders, M., Lewis, P. & Thornhill, A. (2012) “Research Methods for Business Students” 6th edition, Pearson Education Limited.

[2] Robson, C. (2011) Real World Research: A Resource for Users of Social Research Methods in Applied Settings (3rd edn). Chichester: John Wiley.

Qualitative vs Quantitative Research Methods & Data Analysis

Saul McLeod, PhD

Editor-in-Chief for Simply Psychology

BSc (Hons) Psychology, MRes, PhD, University of Manchester

Saul McLeod, PhD., is a qualified psychology teacher with over 18 years of experience in further and higher education. He has been published in peer-reviewed journals, including the Journal of Clinical Psychology.

Learn about our Editorial Process

Olivia Guy-Evans, MSc

Associate Editor for Simply Psychology

BSc (Hons) Psychology, MSc Psychology of Education

Olivia Guy-Evans is a writer and associate editor for Simply Psychology. She has previously worked in healthcare and educational sectors.

On This Page:

What is the difference between quantitative and qualitative?

The main difference between quantitative and qualitative research is the type of data they collect and analyze.

Quantitative research collects numerical data and analyzes it using statistical methods. The aim is to produce objective, empirical data that can be measured and expressed in numerical terms. Quantitative research is often used to test hypotheses, identify patterns, and make predictions.

Qualitative research , on the other hand, collects non-numerical data such as words, images, and sounds. The focus is on exploring subjective experiences, opinions, and attitudes, often through observation and interviews.

Qualitative research aims to produce rich and detailed descriptions of the phenomenon being studied, and to uncover new insights and meanings.

Quantitative data is information about quantities, and therefore numbers, and qualitative data is descriptive, and regards phenomenon which can be observed but not measured, such as language.

What Is Qualitative Research?

Qualitative research is the process of collecting, analyzing, and interpreting non-numerical data, such as language. Qualitative research can be used to understand how an individual subjectively perceives and gives meaning to their social reality.

Qualitative data is non-numerical data, such as text, video, photographs, or audio recordings. This type of data can be collected using diary accounts or in-depth interviews and analyzed using grounded theory or thematic analysis.

Qualitative research is multimethod in focus, involving an interpretive, naturalistic approach to its subject matter. This means that qualitative researchers study things in their natural settings, attempting to make sense of, or interpret, phenomena in terms of the meanings people bring to them. Denzin and Lincoln (1994, p. 2)

Interest in qualitative data came about as the result of the dissatisfaction of some psychologists (e.g., Carl Rogers) with the scientific study of psychologists such as behaviorists (e.g., Skinner ).

Since psychologists study people, the traditional approach to science is not seen as an appropriate way of carrying out research since it fails to capture the totality of human experience and the essence of being human.  Exploring participants’ experiences is known as a phenomenological approach (re: Humanism ).

Qualitative research is primarily concerned with meaning, subjectivity, and lived experience. The goal is to understand the quality and texture of people’s experiences, how they make sense of them, and the implications for their lives.

Qualitative research aims to understand the social reality of individuals, groups, and cultures as nearly as possible as participants feel or live it. Thus, people and groups are studied in their natural setting.

Some examples of qualitative research questions are provided, such as what an experience feels like, how people talk about something, how they make sense of an experience, and how events unfold for people.

Research following a qualitative approach is exploratory and seeks to explain ‘how’ and ‘why’ a particular phenomenon, or behavior, operates as it does in a particular context. It can be used to generate hypotheses and theories from the data.

Qualitative Methods

There are different types of qualitative research methods, including diary accounts, in-depth interviews , documents, focus groups , case study research , and ethnography.

The results of qualitative methods provide a deep understanding of how people perceive their social realities and in consequence, how they act within the social world.

The researcher has several methods for collecting empirical materials, ranging from the interview to direct observation, to the analysis of artifacts, documents, and cultural records, to the use of visual materials or personal experience. Denzin and Lincoln (1994, p. 14)

Here are some examples of qualitative data:

Interview transcripts : Verbatim records of what participants said during an interview or focus group. They allow researchers to identify common themes and patterns, and draw conclusions based on the data. Interview transcripts can also be useful in providing direct quotes and examples to support research findings.

Observations : The researcher typically takes detailed notes on what they observe, including any contextual information, nonverbal cues, or other relevant details. The resulting observational data can be analyzed to gain insights into social phenomena, such as human behavior, social interactions, and cultural practices.

Unstructured interviews : generate qualitative data through the use of open questions.  This allows the respondent to talk in some depth, choosing their own words.  This helps the researcher develop a real sense of a person’s understanding of a situation.

Diaries or journals : Written accounts of personal experiences or reflections.

Notice that qualitative data could be much more than just words or text. Photographs, videos, sound recordings, and so on, can be considered qualitative data. Visual data can be used to understand behaviors, environments, and social interactions.

Qualitative Data Analysis

Qualitative research is endlessly creative and interpretive. The researcher does not just leave the field with mountains of empirical data and then easily write up his or her findings.

Qualitative interpretations are constructed, and various techniques can be used to make sense of the data, such as content analysis, grounded theory (Glaser & Strauss, 1967), thematic analysis (Braun & Clarke, 2006), or discourse analysis .

For example, thematic analysis is a qualitative approach that involves identifying implicit or explicit ideas within the data. Themes will often emerge once the data has been coded .

RESEARCH THEMATICANALYSISMETHOD

Key Features

  • Events can be understood adequately only if they are seen in context. Therefore, a qualitative researcher immerses her/himself in the field, in natural surroundings. The contexts of inquiry are not contrived; they are natural. Nothing is predefined or taken for granted.
  • Qualitative researchers want those who are studied to speak for themselves, to provide their perspectives in words and other actions. Therefore, qualitative research is an interactive process in which the persons studied teach the researcher about their lives.
  • The qualitative researcher is an integral part of the data; without the active participation of the researcher, no data exists.
  • The study’s design evolves during the research and can be adjusted or changed as it progresses. For the qualitative researcher, there is no single reality. It is subjective and exists only in reference to the observer.
  • The theory is data-driven and emerges as part of the research process, evolving from the data as they are collected.

Limitations of Qualitative Research

  • Because of the time and costs involved, qualitative designs do not generally draw samples from large-scale data sets.
  • The problem of adequate validity or reliability is a major criticism. Because of the subjective nature of qualitative data and its origin in single contexts, it is difficult to apply conventional standards of reliability and validity. For example, because of the central role played by the researcher in the generation of data, it is not possible to replicate qualitative studies.
  • Also, contexts, situations, events, conditions, and interactions cannot be replicated to any extent, nor can generalizations be made to a wider context than the one studied with confidence.
  • The time required for data collection, analysis, and interpretation is lengthy. Analysis of qualitative data is difficult, and expert knowledge of an area is necessary to interpret qualitative data. Great care must be taken when doing so, for example, looking for mental illness symptoms.

Advantages of Qualitative Research

  • Because of close researcher involvement, the researcher gains an insider’s view of the field. This allows the researcher to find issues that are often missed (such as subtleties and complexities) by the scientific, more positivistic inquiries.
  • Qualitative descriptions can be important in suggesting possible relationships, causes, effects, and dynamic processes.
  • Qualitative analysis allows for ambiguities/contradictions in the data, which reflect social reality (Denscombe, 2010).
  • Qualitative research uses a descriptive, narrative style; this research might be of particular benefit to the practitioner as she or he could turn to qualitative reports to examine forms of knowledge that might otherwise be unavailable, thereby gaining new insight.

What Is Quantitative Research?

Quantitative research involves the process of objectively collecting and analyzing numerical data to describe, predict, or control variables of interest.

The goals of quantitative research are to test causal relationships between variables , make predictions, and generalize results to wider populations.

Quantitative researchers aim to establish general laws of behavior and phenomenon across different settings/contexts. Research is used to test a theory and ultimately support or reject it.

Quantitative Methods

Experiments typically yield quantitative data, as they are concerned with measuring things.  However, other research methods, such as controlled observations and questionnaires , can produce both quantitative information.

For example, a rating scale or closed questions on a questionnaire would generate quantitative data as these produce either numerical data or data that can be put into categories (e.g., “yes,” “no” answers).

Experimental methods limit how research participants react to and express appropriate social behavior.

Findings are, therefore, likely to be context-bound and simply a reflection of the assumptions that the researcher brings to the investigation.

There are numerous examples of quantitative data in psychological research, including mental health. Here are a few examples:

Another example is the Experience in Close Relationships Scale (ECR), a self-report questionnaire widely used to assess adult attachment styles .

The ECR provides quantitative data that can be used to assess attachment styles and predict relationship outcomes.

Neuroimaging data : Neuroimaging techniques, such as MRI and fMRI, provide quantitative data on brain structure and function.

This data can be analyzed to identify brain regions involved in specific mental processes or disorders.

For example, the Beck Depression Inventory (BDI) is a clinician-administered questionnaire widely used to assess the severity of depressive symptoms in individuals.

The BDI consists of 21 questions, each scored on a scale of 0 to 3, with higher scores indicating more severe depressive symptoms. 

Quantitative Data Analysis

Statistics help us turn quantitative data into useful information to help with decision-making. We can use statistics to summarize our data, describing patterns, relationships, and connections. Statistics can be descriptive or inferential.

Descriptive statistics help us to summarize our data. In contrast, inferential statistics are used to identify statistically significant differences between groups of data (such as intervention and control groups in a randomized control study).

  • Quantitative researchers try to control extraneous variables by conducting their studies in the lab.
  • The research aims for objectivity (i.e., without bias) and is separated from the data.
  • The design of the study is determined before it begins.
  • For the quantitative researcher, the reality is objective, exists separately from the researcher, and can be seen by anyone.
  • Research is used to test a theory and ultimately support or reject it.

Limitations of Quantitative Research

  • Context: Quantitative experiments do not take place in natural settings. In addition, they do not allow participants to explain their choices or the meaning of the questions they may have for those participants (Carr, 1994).
  • Researcher expertise: Poor knowledge of the application of statistical analysis may negatively affect analysis and subsequent interpretation (Black, 1999).
  • Variability of data quantity: Large sample sizes are needed for more accurate analysis. Small-scale quantitative studies may be less reliable because of the low quantity of data (Denscombe, 2010). This also affects the ability to generalize study findings to wider populations.
  • Confirmation bias: The researcher might miss observing phenomena because of focus on theory or hypothesis testing rather than on the theory of hypothesis generation.

Advantages of Quantitative Research

  • Scientific objectivity: Quantitative data can be interpreted with statistical analysis, and since statistics are based on the principles of mathematics, the quantitative approach is viewed as scientifically objective and rational (Carr, 1994; Denscombe, 2010).
  • Useful for testing and validating already constructed theories.
  • Rapid analysis: Sophisticated software removes much of the need for prolonged data analysis, especially with large volumes of data involved (Antonius, 2003).
  • Replication: Quantitative data is based on measured values and can be checked by others because numerical data is less open to ambiguities of interpretation.
  • Hypotheses can also be tested because of statistical analysis (Antonius, 2003).

Antonius, R. (2003). Interpreting quantitative data with SPSS . Sage.

Black, T. R. (1999). Doing quantitative research in the social sciences: An integrated approach to research design, measurement and statistics . Sage.

Braun, V. & Clarke, V. (2006). Using thematic analysis in psychology . Qualitative Research in Psychology , 3, 77–101.

Carr, L. T. (1994). The strengths and weaknesses of quantitative and qualitative research : what method for nursing? Journal of advanced nursing, 20(4) , 716-721.

Denscombe, M. (2010). The Good Research Guide: for small-scale social research. McGraw Hill.

Denzin, N., & Lincoln. Y. (1994). Handbook of Qualitative Research. Thousand Oaks, CA, US: Sage Publications Inc.

Glaser, B. G., Strauss, A. L., & Strutzel, E. (1968). The discovery of grounded theory; strategies for qualitative research. Nursing research, 17(4) , 364.

Minichiello, V. (1990). In-Depth Interviewing: Researching People. Longman Cheshire.

Punch, K. (1998). Introduction to Social Research: Quantitative and Qualitative Approaches. London: Sage

Further Information

  • Mixed methods research
  • Designing qualitative research
  • Methods of data collection and analysis
  • Introduction to quantitative and qualitative research
  • Checklists for improving rigour in qualitative research: a case of the tail wagging the dog?
  • Qualitative research in health care: Analysing qualitative data
  • Qualitative data analysis: the framework approach
  • Using the framework method for the analysis of
  • Qualitative data in multi-disciplinary health research
  • Content Analysis
  • Grounded Theory
  • Thematic Analysis

Print Friendly, PDF & Email

Data Analysis

  • Introduction to Data Analysis
  • Quantitative Analysis Tools
  • Qualitative Analysis Tools
  • Mixed Methods Analysis
  • Geospatial Analysis
  • Further Reading

Profile Photo

What is Data Analysis?

According to the federal government, data analysis is "the process of systematically applying statistical and/or logical techniques to describe and illustrate, condense and recap, and evaluate data" ( Responsible Conduct in Data Management ). Important components of data analysis include searching for patterns, remaining unbiased in drawing inference from data, practicing responsible  data management , and maintaining "honest and accurate analysis" ( Responsible Conduct in Data Management ). 

In order to understand data analysis further, it can be helpful to take a step back and understand the question "What is data?". Many of us associate data with spreadsheets of numbers and values, however, data can encompass much more than that. According to the federal government, data is "The recorded factual material commonly accepted in the scientific community as necessary to validate research findings" ( OMB Circular 110 ). This broad definition can include information in many formats. 

Some examples of types of data are as follows:

  • Photographs 
  • Hand-written notes from field observation
  • Machine learning training data sets
  • Ethnographic interview transcripts
  • Sheet music
  • Scripts for plays and musicals 
  • Observations from laboratory experiments ( CMU Data 101 )

Thus, data analysis includes the processing and manipulation of these data sources in order to gain additional insight from data, answer a research question, or confirm a research hypothesis. 

Data analysis falls within the larger research data lifecycle, as seen below. 

( University of Virginia )

Why Analyze Data?

Through data analysis, a researcher can gain additional insight from data and draw conclusions to address the research question or hypothesis. Use of data analysis tools helps researchers understand and interpret data. 

What are the Types of Data Analysis?

Data analysis can be quantitative, qualitative, or mixed methods. 

Quantitative research typically involves numbers and "close-ended questions and responses" ( Creswell & Creswell, 2018 , p. 3). Quantitative research tests variables against objective theories, usually measured and collected on instruments and analyzed using statistical procedures ( Creswell & Creswell, 2018 , p. 4). Quantitative analysis usually uses deductive reasoning. 

Qualitative  research typically involves words and "open-ended questions and responses" ( Creswell & Creswell, 2018 , p. 3). According to Creswell & Creswell, "qualitative research is an approach for exploring and understanding the meaning individuals or groups ascribe to a social or human problem" ( 2018 , p. 4). Thus, qualitative analysis usually invokes inductive reasoning. 

Mixed methods  research uses methods from both quantitative and qualitative research approaches. Mixed methods research works under the "core assumption... that the integration of qualitative and quantitative data yields additional insight beyond the information provided by either the quantitative or qualitative data alone" ( Creswell & Creswell, 2018 , p. 4). 

  • Next: Planning >>
  • Last Updated: Jun 25, 2024 10:23 AM
  • URL: https://guides.library.georgetown.edu/data-analysis

Creative Commons

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • J Korean Med Sci
  • v.37(16); 2022 Apr 25

Logo of jkms

A Practical Guide to Writing Quantitative and Qualitative Research Questions and Hypotheses in Scholarly Articles

Edward barroga.

1 Department of General Education, Graduate School of Nursing Science, St. Luke’s International University, Tokyo, Japan.

Glafera Janet Matanguihan

2 Department of Biological Sciences, Messiah University, Mechanicsburg, PA, USA.

The development of research questions and the subsequent hypotheses are prerequisites to defining the main research purpose and specific objectives of a study. Consequently, these objectives determine the study design and research outcome. The development of research questions is a process based on knowledge of current trends, cutting-edge studies, and technological advances in the research field. Excellent research questions are focused and require a comprehensive literature search and in-depth understanding of the problem being investigated. Initially, research questions may be written as descriptive questions which could be developed into inferential questions. These questions must be specific and concise to provide a clear foundation for developing hypotheses. Hypotheses are more formal predictions about the research outcomes. These specify the possible results that may or may not be expected regarding the relationship between groups. Thus, research questions and hypotheses clarify the main purpose and specific objectives of the study, which in turn dictate the design of the study, its direction, and outcome. Studies developed from good research questions and hypotheses will have trustworthy outcomes with wide-ranging social and health implications.

INTRODUCTION

Scientific research is usually initiated by posing evidenced-based research questions which are then explicitly restated as hypotheses. 1 , 2 The hypotheses provide directions to guide the study, solutions, explanations, and expected results. 3 , 4 Both research questions and hypotheses are essentially formulated based on conventional theories and real-world processes, which allow the inception of novel studies and the ethical testing of ideas. 5 , 6

It is crucial to have knowledge of both quantitative and qualitative research 2 as both types of research involve writing research questions and hypotheses. 7 However, these crucial elements of research are sometimes overlooked; if not overlooked, then framed without the forethought and meticulous attention it needs. Planning and careful consideration are needed when developing quantitative or qualitative research, particularly when conceptualizing research questions and hypotheses. 4

There is a continuing need to support researchers in the creation of innovative research questions and hypotheses, as well as for journal articles that carefully review these elements. 1 When research questions and hypotheses are not carefully thought of, unethical studies and poor outcomes usually ensue. Carefully formulated research questions and hypotheses define well-founded objectives, which in turn determine the appropriate design, course, and outcome of the study. This article then aims to discuss in detail the various aspects of crafting research questions and hypotheses, with the goal of guiding researchers as they develop their own. Examples from the authors and peer-reviewed scientific articles in the healthcare field are provided to illustrate key points.

DEFINITIONS AND RELATIONSHIP OF RESEARCH QUESTIONS AND HYPOTHESES

A research question is what a study aims to answer after data analysis and interpretation. The answer is written in length in the discussion section of the paper. Thus, the research question gives a preview of the different parts and variables of the study meant to address the problem posed in the research question. 1 An excellent research question clarifies the research writing while facilitating understanding of the research topic, objective, scope, and limitations of the study. 5

On the other hand, a research hypothesis is an educated statement of an expected outcome. This statement is based on background research and current knowledge. 8 , 9 The research hypothesis makes a specific prediction about a new phenomenon 10 or a formal statement on the expected relationship between an independent variable and a dependent variable. 3 , 11 It provides a tentative answer to the research question to be tested or explored. 4

Hypotheses employ reasoning to predict a theory-based outcome. 10 These can also be developed from theories by focusing on components of theories that have not yet been observed. 10 The validity of hypotheses is often based on the testability of the prediction made in a reproducible experiment. 8

Conversely, hypotheses can also be rephrased as research questions. Several hypotheses based on existing theories and knowledge may be needed to answer a research question. Developing ethical research questions and hypotheses creates a research design that has logical relationships among variables. These relationships serve as a solid foundation for the conduct of the study. 4 , 11 Haphazardly constructed research questions can result in poorly formulated hypotheses and improper study designs, leading to unreliable results. Thus, the formulations of relevant research questions and verifiable hypotheses are crucial when beginning research. 12

CHARACTERISTICS OF GOOD RESEARCH QUESTIONS AND HYPOTHESES

Excellent research questions are specific and focused. These integrate collective data and observations to confirm or refute the subsequent hypotheses. Well-constructed hypotheses are based on previous reports and verify the research context. These are realistic, in-depth, sufficiently complex, and reproducible. More importantly, these hypotheses can be addressed and tested. 13

There are several characteristics of well-developed hypotheses. Good hypotheses are 1) empirically testable 7 , 10 , 11 , 13 ; 2) backed by preliminary evidence 9 ; 3) testable by ethical research 7 , 9 ; 4) based on original ideas 9 ; 5) have evidenced-based logical reasoning 10 ; and 6) can be predicted. 11 Good hypotheses can infer ethical and positive implications, indicating the presence of a relationship or effect relevant to the research theme. 7 , 11 These are initially developed from a general theory and branch into specific hypotheses by deductive reasoning. In the absence of a theory to base the hypotheses, inductive reasoning based on specific observations or findings form more general hypotheses. 10

TYPES OF RESEARCH QUESTIONS AND HYPOTHESES

Research questions and hypotheses are developed according to the type of research, which can be broadly classified into quantitative and qualitative research. We provide a summary of the types of research questions and hypotheses under quantitative and qualitative research categories in Table 1 .

Quantitative research questionsQuantitative research hypotheses
Descriptive research questionsSimple hypothesis
Comparative research questionsComplex hypothesis
Relationship research questionsDirectional hypothesis
Non-directional hypothesis
Associative hypothesis
Causal hypothesis
Null hypothesis
Alternative hypothesis
Working hypothesis
Statistical hypothesis
Logical hypothesis
Hypothesis-testing
Qualitative research questionsQualitative research hypotheses
Contextual research questionsHypothesis-generating
Descriptive research questions
Evaluation research questions
Explanatory research questions
Exploratory research questions
Generative research questions
Ideological research questions
Ethnographic research questions
Phenomenological research questions
Grounded theory questions
Qualitative case study questions

Research questions in quantitative research

In quantitative research, research questions inquire about the relationships among variables being investigated and are usually framed at the start of the study. These are precise and typically linked to the subject population, dependent and independent variables, and research design. 1 Research questions may also attempt to describe the behavior of a population in relation to one or more variables, or describe the characteristics of variables to be measured ( descriptive research questions ). 1 , 5 , 14 These questions may also aim to discover differences between groups within the context of an outcome variable ( comparative research questions ), 1 , 5 , 14 or elucidate trends and interactions among variables ( relationship research questions ). 1 , 5 We provide examples of descriptive, comparative, and relationship research questions in quantitative research in Table 2 .

Quantitative research questions
Descriptive research question
- Measures responses of subjects to variables
- Presents variables to measure, analyze, or assess
What is the proportion of resident doctors in the hospital who have mastered ultrasonography (response of subjects to a variable) as a diagnostic technique in their clinical training?
Comparative research question
- Clarifies difference between one group with outcome variable and another group without outcome variable
Is there a difference in the reduction of lung metastasis in osteosarcoma patients who received the vitamin D adjunctive therapy (group with outcome variable) compared with osteosarcoma patients who did not receive the vitamin D adjunctive therapy (group without outcome variable)?
- Compares the effects of variables
How does the vitamin D analogue 22-Oxacalcitriol (variable 1) mimic the antiproliferative activity of 1,25-Dihydroxyvitamin D (variable 2) in osteosarcoma cells?
Relationship research question
- Defines trends, association, relationships, or interactions between dependent variable and independent variable
Is there a relationship between the number of medical student suicide (dependent variable) and the level of medical student stress (independent variable) in Japan during the first wave of the COVID-19 pandemic?

Hypotheses in quantitative research

In quantitative research, hypotheses predict the expected relationships among variables. 15 Relationships among variables that can be predicted include 1) between a single dependent variable and a single independent variable ( simple hypothesis ) or 2) between two or more independent and dependent variables ( complex hypothesis ). 4 , 11 Hypotheses may also specify the expected direction to be followed and imply an intellectual commitment to a particular outcome ( directional hypothesis ) 4 . On the other hand, hypotheses may not predict the exact direction and are used in the absence of a theory, or when findings contradict previous studies ( non-directional hypothesis ). 4 In addition, hypotheses can 1) define interdependency between variables ( associative hypothesis ), 4 2) propose an effect on the dependent variable from manipulation of the independent variable ( causal hypothesis ), 4 3) state a negative relationship between two variables ( null hypothesis ), 4 , 11 , 15 4) replace the working hypothesis if rejected ( alternative hypothesis ), 15 explain the relationship of phenomena to possibly generate a theory ( working hypothesis ), 11 5) involve quantifiable variables that can be tested statistically ( statistical hypothesis ), 11 6) or express a relationship whose interlinks can be verified logically ( logical hypothesis ). 11 We provide examples of simple, complex, directional, non-directional, associative, causal, null, alternative, working, statistical, and logical hypotheses in quantitative research, as well as the definition of quantitative hypothesis-testing research in Table 3 .

Quantitative research hypotheses
Simple hypothesis
- Predicts relationship between single dependent variable and single independent variable
If the dose of the new medication (single independent variable) is high, blood pressure (single dependent variable) is lowered.
Complex hypothesis
- Foretells relationship between two or more independent and dependent variables
The higher the use of anticancer drugs, radiation therapy, and adjunctive agents (3 independent variables), the higher would be the survival rate (1 dependent variable).
Directional hypothesis
- Identifies study direction based on theory towards particular outcome to clarify relationship between variables
Privately funded research projects will have a larger international scope (study direction) than publicly funded research projects.
Non-directional hypothesis
- Nature of relationship between two variables or exact study direction is not identified
- Does not involve a theory
Women and men are different in terms of helpfulness. (Exact study direction is not identified)
Associative hypothesis
- Describes variable interdependency
- Change in one variable causes change in another variable
A larger number of people vaccinated against COVID-19 in the region (change in independent variable) will reduce the region’s incidence of COVID-19 infection (change in dependent variable).
Causal hypothesis
- An effect on dependent variable is predicted from manipulation of independent variable
A change into a high-fiber diet (independent variable) will reduce the blood sugar level (dependent variable) of the patient.
Null hypothesis
- A negative statement indicating no relationship or difference between 2 variables
There is no significant difference in the severity of pulmonary metastases between the new drug (variable 1) and the current drug (variable 2).
Alternative hypothesis
- Following a null hypothesis, an alternative hypothesis predicts a relationship between 2 study variables
The new drug (variable 1) is better on average in reducing the level of pain from pulmonary metastasis than the current drug (variable 2).
Working hypothesis
- A hypothesis that is initially accepted for further research to produce a feasible theory
Dairy cows fed with concentrates of different formulations will produce different amounts of milk.
Statistical hypothesis
- Assumption about the value of population parameter or relationship among several population characteristics
- Validity tested by a statistical experiment or analysis
The mean recovery rate from COVID-19 infection (value of population parameter) is not significantly different between population 1 and population 2.
There is a positive correlation between the level of stress at the workplace and the number of suicides (population characteristics) among working people in Japan.
Logical hypothesis
- Offers or proposes an explanation with limited or no extensive evidence
If healthcare workers provide more educational programs about contraception methods, the number of adolescent pregnancies will be less.
Hypothesis-testing (Quantitative hypothesis-testing research)
- Quantitative research uses deductive reasoning.
- This involves the formation of a hypothesis, collection of data in the investigation of the problem, analysis and use of the data from the investigation, and drawing of conclusions to validate or nullify the hypotheses.

Research questions in qualitative research

Unlike research questions in quantitative research, research questions in qualitative research are usually continuously reviewed and reformulated. The central question and associated subquestions are stated more than the hypotheses. 15 The central question broadly explores a complex set of factors surrounding the central phenomenon, aiming to present the varied perspectives of participants. 15

There are varied goals for which qualitative research questions are developed. These questions can function in several ways, such as to 1) identify and describe existing conditions ( contextual research question s); 2) describe a phenomenon ( descriptive research questions ); 3) assess the effectiveness of existing methods, protocols, theories, or procedures ( evaluation research questions ); 4) examine a phenomenon or analyze the reasons or relationships between subjects or phenomena ( explanatory research questions ); or 5) focus on unknown aspects of a particular topic ( exploratory research questions ). 5 In addition, some qualitative research questions provide new ideas for the development of theories and actions ( generative research questions ) or advance specific ideologies of a position ( ideological research questions ). 1 Other qualitative research questions may build on a body of existing literature and become working guidelines ( ethnographic research questions ). Research questions may also be broadly stated without specific reference to the existing literature or a typology of questions ( phenomenological research questions ), may be directed towards generating a theory of some process ( grounded theory questions ), or may address a description of the case and the emerging themes ( qualitative case study questions ). 15 We provide examples of contextual, descriptive, evaluation, explanatory, exploratory, generative, ideological, ethnographic, phenomenological, grounded theory, and qualitative case study research questions in qualitative research in Table 4 , and the definition of qualitative hypothesis-generating research in Table 5 .

Qualitative research questions
Contextual research question
- Ask the nature of what already exists
- Individuals or groups function to further clarify and understand the natural context of real-world problems
What are the experiences of nurses working night shifts in healthcare during the COVID-19 pandemic? (natural context of real-world problems)
Descriptive research question
- Aims to describe a phenomenon
What are the different forms of disrespect and abuse (phenomenon) experienced by Tanzanian women when giving birth in healthcare facilities?
Evaluation research question
- Examines the effectiveness of existing practice or accepted frameworks
How effective are decision aids (effectiveness of existing practice) in helping decide whether to give birth at home or in a healthcare facility?
Explanatory research question
- Clarifies a previously studied phenomenon and explains why it occurs
Why is there an increase in teenage pregnancy (phenomenon) in Tanzania?
Exploratory research question
- Explores areas that have not been fully investigated to have a deeper understanding of the research problem
What factors affect the mental health of medical students (areas that have not yet been fully investigated) during the COVID-19 pandemic?
Generative research question
- Develops an in-depth understanding of people’s behavior by asking ‘how would’ or ‘what if’ to identify problems and find solutions
How would the extensive research experience of the behavior of new staff impact the success of the novel drug initiative?
Ideological research question
- Aims to advance specific ideas or ideologies of a position
Are Japanese nurses who volunteer in remote African hospitals able to promote humanized care of patients (specific ideas or ideologies) in the areas of safe patient environment, respect of patient privacy, and provision of accurate information related to health and care?
Ethnographic research question
- Clarifies peoples’ nature, activities, their interactions, and the outcomes of their actions in specific settings
What are the demographic characteristics, rehabilitative treatments, community interactions, and disease outcomes (nature, activities, their interactions, and the outcomes) of people in China who are suffering from pneumoconiosis?
Phenomenological research question
- Knows more about the phenomena that have impacted an individual
What are the lived experiences of parents who have been living with and caring for children with a diagnosis of autism? (phenomena that have impacted an individual)
Grounded theory question
- Focuses on social processes asking about what happens and how people interact, or uncovering social relationships and behaviors of groups
What are the problems that pregnant adolescents face in terms of social and cultural norms (social processes), and how can these be addressed?
Qualitative case study question
- Assesses a phenomenon using different sources of data to answer “why” and “how” questions
- Considers how the phenomenon is influenced by its contextual situation.
How does quitting work and assuming the role of a full-time mother (phenomenon assessed) change the lives of women in Japan?
Qualitative research hypotheses
Hypothesis-generating (Qualitative hypothesis-generating research)
- Qualitative research uses inductive reasoning.
- This involves data collection from study participants or the literature regarding a phenomenon of interest, using the collected data to develop a formal hypothesis, and using the formal hypothesis as a framework for testing the hypothesis.
- Qualitative exploratory studies explore areas deeper, clarifying subjective experience and allowing formulation of a formal hypothesis potentially testable in a future quantitative approach.

Qualitative studies usually pose at least one central research question and several subquestions starting with How or What . These research questions use exploratory verbs such as explore or describe . These also focus on one central phenomenon of interest, and may mention the participants and research site. 15

Hypotheses in qualitative research

Hypotheses in qualitative research are stated in the form of a clear statement concerning the problem to be investigated. Unlike in quantitative research where hypotheses are usually developed to be tested, qualitative research can lead to both hypothesis-testing and hypothesis-generating outcomes. 2 When studies require both quantitative and qualitative research questions, this suggests an integrative process between both research methods wherein a single mixed-methods research question can be developed. 1

FRAMEWORKS FOR DEVELOPING RESEARCH QUESTIONS AND HYPOTHESES

Research questions followed by hypotheses should be developed before the start of the study. 1 , 12 , 14 It is crucial to develop feasible research questions on a topic that is interesting to both the researcher and the scientific community. This can be achieved by a meticulous review of previous and current studies to establish a novel topic. Specific areas are subsequently focused on to generate ethical research questions. The relevance of the research questions is evaluated in terms of clarity of the resulting data, specificity of the methodology, objectivity of the outcome, depth of the research, and impact of the study. 1 , 5 These aspects constitute the FINER criteria (i.e., Feasible, Interesting, Novel, Ethical, and Relevant). 1 Clarity and effectiveness are achieved if research questions meet the FINER criteria. In addition to the FINER criteria, Ratan et al. described focus, complexity, novelty, feasibility, and measurability for evaluating the effectiveness of research questions. 14

The PICOT and PEO frameworks are also used when developing research questions. 1 The following elements are addressed in these frameworks, PICOT: P-population/patients/problem, I-intervention or indicator being studied, C-comparison group, O-outcome of interest, and T-timeframe of the study; PEO: P-population being studied, E-exposure to preexisting conditions, and O-outcome of interest. 1 Research questions are also considered good if these meet the “FINERMAPS” framework: Feasible, Interesting, Novel, Ethical, Relevant, Manageable, Appropriate, Potential value/publishable, and Systematic. 14

As we indicated earlier, research questions and hypotheses that are not carefully formulated result in unethical studies or poor outcomes. To illustrate this, we provide some examples of ambiguous research question and hypotheses that result in unclear and weak research objectives in quantitative research ( Table 6 ) 16 and qualitative research ( Table 7 ) 17 , and how to transform these ambiguous research question(s) and hypothesis(es) into clear and good statements.

VariablesUnclear and weak statement (Statement 1) Clear and good statement (Statement 2) Points to avoid
Research questionWhich is more effective between smoke moxibustion and smokeless moxibustion?“Moreover, regarding smoke moxibustion versus smokeless moxibustion, it remains unclear which is more effective, safe, and acceptable to pregnant women, and whether there is any difference in the amount of heat generated.” 1) Vague and unfocused questions
2) Closed questions simply answerable by yes or no
3) Questions requiring a simple choice
HypothesisThe smoke moxibustion group will have higher cephalic presentation.“Hypothesis 1. The smoke moxibustion stick group (SM group) and smokeless moxibustion stick group (-SLM group) will have higher rates of cephalic presentation after treatment than the control group.1) Unverifiable hypotheses
Hypothesis 2. The SM group and SLM group will have higher rates of cephalic presentation at birth than the control group.2) Incompletely stated groups of comparison
Hypothesis 3. There will be no significant differences in the well-being of the mother and child among the three groups in terms of the following outcomes: premature birth, premature rupture of membranes (PROM) at < 37 weeks, Apgar score < 7 at 5 min, umbilical cord blood pH < 7.1, admission to neonatal intensive care unit (NICU), and intrauterine fetal death.” 3) Insufficiently described variables or outcomes
Research objectiveTo determine which is more effective between smoke moxibustion and smokeless moxibustion.“The specific aims of this pilot study were (a) to compare the effects of smoke moxibustion and smokeless moxibustion treatments with the control group as a possible supplement to ECV for converting breech presentation to cephalic presentation and increasing adherence to the newly obtained cephalic position, and (b) to assess the effects of these treatments on the well-being of the mother and child.” 1) Poor understanding of the research question and hypotheses
2) Insufficient description of population, variables, or study outcomes

a These statements were composed for comparison and illustrative purposes only.

b These statements are direct quotes from Higashihara and Horiuchi. 16

VariablesUnclear and weak statement (Statement 1)Clear and good statement (Statement 2)Points to avoid
Research questionDoes disrespect and abuse (D&A) occur in childbirth in Tanzania?How does disrespect and abuse (D&A) occur and what are the types of physical and psychological abuses observed in midwives’ actual care during facility-based childbirth in urban Tanzania?1) Ambiguous or oversimplistic questions
2) Questions unverifiable by data collection and analysis
HypothesisDisrespect and abuse (D&A) occur in childbirth in Tanzania.Hypothesis 1: Several types of physical and psychological abuse by midwives in actual care occur during facility-based childbirth in urban Tanzania.1) Statements simply expressing facts
Hypothesis 2: Weak nursing and midwifery management contribute to the D&A of women during facility-based childbirth in urban Tanzania.2) Insufficiently described concepts or variables
Research objectiveTo describe disrespect and abuse (D&A) in childbirth in Tanzania.“This study aimed to describe from actual observations the respectful and disrespectful care received by women from midwives during their labor period in two hospitals in urban Tanzania.” 1) Statements unrelated to the research question and hypotheses
2) Unattainable or unexplorable objectives

a This statement is a direct quote from Shimoda et al. 17

The other statements were composed for comparison and illustrative purposes only.

CONSTRUCTING RESEARCH QUESTIONS AND HYPOTHESES

To construct effective research questions and hypotheses, it is very important to 1) clarify the background and 2) identify the research problem at the outset of the research, within a specific timeframe. 9 Then, 3) review or conduct preliminary research to collect all available knowledge about the possible research questions by studying theories and previous studies. 18 Afterwards, 4) construct research questions to investigate the research problem. Identify variables to be accessed from the research questions 4 and make operational definitions of constructs from the research problem and questions. Thereafter, 5) construct specific deductive or inductive predictions in the form of hypotheses. 4 Finally, 6) state the study aims . This general flow for constructing effective research questions and hypotheses prior to conducting research is shown in Fig. 1 .

An external file that holds a picture, illustration, etc.
Object name is jkms-37-e121-g001.jpg

Research questions are used more frequently in qualitative research than objectives or hypotheses. 3 These questions seek to discover, understand, explore or describe experiences by asking “What” or “How.” The questions are open-ended to elicit a description rather than to relate variables or compare groups. The questions are continually reviewed, reformulated, and changed during the qualitative study. 3 Research questions are also used more frequently in survey projects than hypotheses in experiments in quantitative research to compare variables and their relationships.

Hypotheses are constructed based on the variables identified and as an if-then statement, following the template, ‘If a specific action is taken, then a certain outcome is expected.’ At this stage, some ideas regarding expectations from the research to be conducted must be drawn. 18 Then, the variables to be manipulated (independent) and influenced (dependent) are defined. 4 Thereafter, the hypothesis is stated and refined, and reproducible data tailored to the hypothesis are identified, collected, and analyzed. 4 The hypotheses must be testable and specific, 18 and should describe the variables and their relationships, the specific group being studied, and the predicted research outcome. 18 Hypotheses construction involves a testable proposition to be deduced from theory, and independent and dependent variables to be separated and measured separately. 3 Therefore, good hypotheses must be based on good research questions constructed at the start of a study or trial. 12

In summary, research questions are constructed after establishing the background of the study. Hypotheses are then developed based on the research questions. Thus, it is crucial to have excellent research questions to generate superior hypotheses. In turn, these would determine the research objectives and the design of the study, and ultimately, the outcome of the research. 12 Algorithms for building research questions and hypotheses are shown in Fig. 2 for quantitative research and in Fig. 3 for qualitative research.

An external file that holds a picture, illustration, etc.
Object name is jkms-37-e121-g002.jpg

EXAMPLES OF RESEARCH QUESTIONS FROM PUBLISHED ARTICLES

  • EXAMPLE 1. Descriptive research question (quantitative research)
  • - Presents research variables to be assessed (distinct phenotypes and subphenotypes)
  • “BACKGROUND: Since COVID-19 was identified, its clinical and biological heterogeneity has been recognized. Identifying COVID-19 phenotypes might help guide basic, clinical, and translational research efforts.
  • RESEARCH QUESTION: Does the clinical spectrum of patients with COVID-19 contain distinct phenotypes and subphenotypes? ” 19
  • EXAMPLE 2. Relationship research question (quantitative research)
  • - Shows interactions between dependent variable (static postural control) and independent variable (peripheral visual field loss)
  • “Background: Integration of visual, vestibular, and proprioceptive sensations contributes to postural control. People with peripheral visual field loss have serious postural instability. However, the directional specificity of postural stability and sensory reweighting caused by gradual peripheral visual field loss remain unclear.
  • Research question: What are the effects of peripheral visual field loss on static postural control ?” 20
  • EXAMPLE 3. Comparative research question (quantitative research)
  • - Clarifies the difference among groups with an outcome variable (patients enrolled in COMPERA with moderate PH or severe PH in COPD) and another group without the outcome variable (patients with idiopathic pulmonary arterial hypertension (IPAH))
  • “BACKGROUND: Pulmonary hypertension (PH) in COPD is a poorly investigated clinical condition.
  • RESEARCH QUESTION: Which factors determine the outcome of PH in COPD?
  • STUDY DESIGN AND METHODS: We analyzed the characteristics and outcome of patients enrolled in the Comparative, Prospective Registry of Newly Initiated Therapies for Pulmonary Hypertension (COMPERA) with moderate or severe PH in COPD as defined during the 6th PH World Symposium who received medical therapy for PH and compared them with patients with idiopathic pulmonary arterial hypertension (IPAH) .” 21
  • EXAMPLE 4. Exploratory research question (qualitative research)
  • - Explores areas that have not been fully investigated (perspectives of families and children who receive care in clinic-based child obesity treatment) to have a deeper understanding of the research problem
  • “Problem: Interventions for children with obesity lead to only modest improvements in BMI and long-term outcomes, and data are limited on the perspectives of families of children with obesity in clinic-based treatment. This scoping review seeks to answer the question: What is known about the perspectives of families and children who receive care in clinic-based child obesity treatment? This review aims to explore the scope of perspectives reported by families of children with obesity who have received individualized outpatient clinic-based obesity treatment.” 22
  • EXAMPLE 5. Relationship research question (quantitative research)
  • - Defines interactions between dependent variable (use of ankle strategies) and independent variable (changes in muscle tone)
  • “Background: To maintain an upright standing posture against external disturbances, the human body mainly employs two types of postural control strategies: “ankle strategy” and “hip strategy.” While it has been reported that the magnitude of the disturbance alters the use of postural control strategies, it has not been elucidated how the level of muscle tone, one of the crucial parameters of bodily function, determines the use of each strategy. We have previously confirmed using forward dynamics simulations of human musculoskeletal models that an increased muscle tone promotes the use of ankle strategies. The objective of the present study was to experimentally evaluate a hypothesis: an increased muscle tone promotes the use of ankle strategies. Research question: Do changes in the muscle tone affect the use of ankle strategies ?” 23

EXAMPLES OF HYPOTHESES IN PUBLISHED ARTICLES

  • EXAMPLE 1. Working hypothesis (quantitative research)
  • - A hypothesis that is initially accepted for further research to produce a feasible theory
  • “As fever may have benefit in shortening the duration of viral illness, it is plausible to hypothesize that the antipyretic efficacy of ibuprofen may be hindering the benefits of a fever response when taken during the early stages of COVID-19 illness .” 24
  • “In conclusion, it is plausible to hypothesize that the antipyretic efficacy of ibuprofen may be hindering the benefits of a fever response . The difference in perceived safety of these agents in COVID-19 illness could be related to the more potent efficacy to reduce fever with ibuprofen compared to acetaminophen. Compelling data on the benefit of fever warrant further research and review to determine when to treat or withhold ibuprofen for early stage fever for COVID-19 and other related viral illnesses .” 24
  • EXAMPLE 2. Exploratory hypothesis (qualitative research)
  • - Explores particular areas deeper to clarify subjective experience and develop a formal hypothesis potentially testable in a future quantitative approach
  • “We hypothesized that when thinking about a past experience of help-seeking, a self distancing prompt would cause increased help-seeking intentions and more favorable help-seeking outcome expectations .” 25
  • “Conclusion
  • Although a priori hypotheses were not supported, further research is warranted as results indicate the potential for using self-distancing approaches to increasing help-seeking among some people with depressive symptomatology.” 25
  • EXAMPLE 3. Hypothesis-generating research to establish a framework for hypothesis testing (qualitative research)
  • “We hypothesize that compassionate care is beneficial for patients (better outcomes), healthcare systems and payers (lower costs), and healthcare providers (lower burnout). ” 26
  • Compassionomics is the branch of knowledge and scientific study of the effects of compassionate healthcare. Our main hypotheses are that compassionate healthcare is beneficial for (1) patients, by improving clinical outcomes, (2) healthcare systems and payers, by supporting financial sustainability, and (3) HCPs, by lowering burnout and promoting resilience and well-being. The purpose of this paper is to establish a scientific framework for testing the hypotheses above . If these hypotheses are confirmed through rigorous research, compassionomics will belong in the science of evidence-based medicine, with major implications for all healthcare domains.” 26
  • EXAMPLE 4. Statistical hypothesis (quantitative research)
  • - An assumption is made about the relationship among several population characteristics ( gender differences in sociodemographic and clinical characteristics of adults with ADHD ). Validity is tested by statistical experiment or analysis ( chi-square test, Students t-test, and logistic regression analysis)
  • “Our research investigated gender differences in sociodemographic and clinical characteristics of adults with ADHD in a Japanese clinical sample. Due to unique Japanese cultural ideals and expectations of women's behavior that are in opposition to ADHD symptoms, we hypothesized that women with ADHD experience more difficulties and present more dysfunctions than men . We tested the following hypotheses: first, women with ADHD have more comorbidities than men with ADHD; second, women with ADHD experience more social hardships than men, such as having less full-time employment and being more likely to be divorced.” 27
  • “Statistical Analysis
  • ( text omitted ) Between-gender comparisons were made using the chi-squared test for categorical variables and Students t-test for continuous variables…( text omitted ). A logistic regression analysis was performed for employment status, marital status, and comorbidity to evaluate the independent effects of gender on these dependent variables.” 27

EXAMPLES OF HYPOTHESIS AS WRITTEN IN PUBLISHED ARTICLES IN RELATION TO OTHER PARTS

  • EXAMPLE 1. Background, hypotheses, and aims are provided
  • “Pregnant women need skilled care during pregnancy and childbirth, but that skilled care is often delayed in some countries …( text omitted ). The focused antenatal care (FANC) model of WHO recommends that nurses provide information or counseling to all pregnant women …( text omitted ). Job aids are visual support materials that provide the right kind of information using graphics and words in a simple and yet effective manner. When nurses are not highly trained or have many work details to attend to, these job aids can serve as a content reminder for the nurses and can be used for educating their patients (Jennings, Yebadokpo, Affo, & Agbogbe, 2010) ( text omitted ). Importantly, additional evidence is needed to confirm how job aids can further improve the quality of ANC counseling by health workers in maternal care …( text omitted )” 28
  • “ This has led us to hypothesize that the quality of ANC counseling would be better if supported by job aids. Consequently, a better quality of ANC counseling is expected to produce higher levels of awareness concerning the danger signs of pregnancy and a more favorable impression of the caring behavior of nurses .” 28
  • “This study aimed to examine the differences in the responses of pregnant women to a job aid-supported intervention during ANC visit in terms of 1) their understanding of the danger signs of pregnancy and 2) their impression of the caring behaviors of nurses to pregnant women in rural Tanzania.” 28
  • EXAMPLE 2. Background, hypotheses, and aims are provided
  • “We conducted a two-arm randomized controlled trial (RCT) to evaluate and compare changes in salivary cortisol and oxytocin levels of first-time pregnant women between experimental and control groups. The women in the experimental group touched and held an infant for 30 min (experimental intervention protocol), whereas those in the control group watched a DVD movie of an infant (control intervention protocol). The primary outcome was salivary cortisol level and the secondary outcome was salivary oxytocin level.” 29
  • “ We hypothesize that at 30 min after touching and holding an infant, the salivary cortisol level will significantly decrease and the salivary oxytocin level will increase in the experimental group compared with the control group .” 29
  • EXAMPLE 3. Background, aim, and hypothesis are provided
  • “In countries where the maternal mortality ratio remains high, antenatal education to increase Birth Preparedness and Complication Readiness (BPCR) is considered one of the top priorities [1]. BPCR includes birth plans during the antenatal period, such as the birthplace, birth attendant, transportation, health facility for complications, expenses, and birth materials, as well as family coordination to achieve such birth plans. In Tanzania, although increasing, only about half of all pregnant women attend an antenatal clinic more than four times [4]. Moreover, the information provided during antenatal care (ANC) is insufficient. In the resource-poor settings, antenatal group education is a potential approach because of the limited time for individual counseling at antenatal clinics.” 30
  • “This study aimed to evaluate an antenatal group education program among pregnant women and their families with respect to birth-preparedness and maternal and infant outcomes in rural villages of Tanzania.” 30
  • “ The study hypothesis was if Tanzanian pregnant women and their families received a family-oriented antenatal group education, they would (1) have a higher level of BPCR, (2) attend antenatal clinic four or more times, (3) give birth in a health facility, (4) have less complications of women at birth, and (5) have less complications and deaths of infants than those who did not receive the education .” 30

Research questions and hypotheses are crucial components to any type of research, whether quantitative or qualitative. These questions should be developed at the very beginning of the study. Excellent research questions lead to superior hypotheses, which, like a compass, set the direction of research, and can often determine the successful conduct of the study. Many research studies have floundered because the development of research questions and subsequent hypotheses was not given the thought and meticulous attention needed. The development of research questions and hypotheses is an iterative process based on extensive knowledge of the literature and insightful grasp of the knowledge gap. Focused, concise, and specific research questions provide a strong foundation for constructing hypotheses which serve as formal predictions about the research outcomes. Research questions and hypotheses are crucial elements of research that should not be overlooked. They should be carefully thought of and constructed when planning research. This avoids unethical studies and poor outcomes by defining well-founded objectives that determine the design, course, and outcome of the study.

Disclosure: The authors have no potential conflicts of interest to disclose.

Author Contributions:

  • Conceptualization: Barroga E, Matanguihan GJ.
  • Methodology: Barroga E, Matanguihan GJ.
  • Writing - original draft: Barroga E, Matanguihan GJ.
  • Writing - review & editing: Barroga E, Matanguihan GJ.
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • QuestionPro

survey software icon

  • Solutions Industries Gaming Automotive Sports and events Education Government Travel & Hospitality Financial Services Healthcare Cannabis Technology Use Case AskWhy Communities Audience Contactless surveys Mobile LivePolls Member Experience GDPR Positive People Science 360 Feedback Surveys
  • Resources Blog eBooks Survey Templates Case Studies Training Help center

data analysis on quantitative research

Home Market Research

Data Analysis in Research: Types & Methods

data-analysis-in-research

Content Index

Why analyze data in research?

Types of data in research, finding patterns in the qualitative data, methods used for data analysis in qualitative research, preparing data for analysis, methods used for data analysis in quantitative research, considerations in research data analysis, what is data analysis in research.

Definition of research in data analysis: According to LeCompte and Schensul, research data analysis is a process used by researchers to reduce data to a story and interpret it to derive insights. The data analysis process helps reduce a large chunk of data into smaller fragments, which makes sense. 

Three essential things occur during the data analysis process — the first is data organization . Summarization and categorization together contribute to becoming the second known method used for data reduction. It helps find patterns and themes in the data for easy identification and linking. The third and last way is data analysis – researchers do it in both top-down and bottom-up fashion.

LEARN ABOUT: Research Process Steps

On the other hand, Marshall and Rossman describe data analysis as a messy, ambiguous, and time-consuming but creative and fascinating process through which a mass of collected data is brought to order, structure and meaning.

We can say that “the data analysis and data interpretation is a process representing the application of deductive and inductive logic to the research and data analysis.”

Researchers rely heavily on data as they have a story to tell or research problems to solve. It starts with a question, and data is nothing but an answer to that question. But, what if there is no question to ask? Well! It is possible to explore data even without a problem – we call it ‘Data Mining’, which often reveals some interesting patterns within the data that are worth exploring.

Irrelevant to the type of data researchers explore, their mission and audiences’ vision guide them to find the patterns to shape the story they want to tell. One of the essential things expected from researchers while analyzing data is to stay open and remain unbiased toward unexpected patterns, expressions, and results. Remember, sometimes, data analysis tells the most unforeseen yet exciting stories that were not expected when initiating data analysis. Therefore, rely on the data you have at hand and enjoy the journey of exploratory research. 

Create a Free Account

Every kind of data has a rare quality of describing things after assigning a specific value to it. For analysis, you need to organize these values, processed and presented in a given context, to make it useful. Data can be in different forms; here are the primary data types.

  • Qualitative data: When the data presented has words and descriptions, then we call it qualitative data . Although you can observe this data, it is subjective and harder to analyze data in research, especially for comparison. Example: Quality data represents everything describing taste, experience, texture, or an opinion that is considered quality data. This type of data is usually collected through focus groups, personal qualitative interviews , qualitative observation or using open-ended questions in surveys.
  • Quantitative data: Any data expressed in numbers of numerical figures are called quantitative data . This type of data can be distinguished into categories, grouped, measured, calculated, or ranked. Example: questions such as age, rank, cost, length, weight, scores, etc. everything comes under this type of data. You can present such data in graphical format, charts, or apply statistical analysis methods to this data. The (Outcomes Measurement Systems) OMS questionnaires in surveys are a significant source of collecting numeric data.
  • Categorical data: It is data presented in groups. However, an item included in the categorical data cannot belong to more than one group. Example: A person responding to a survey by telling his living style, marital status, smoking habit, or drinking habit comes under the categorical data. A chi-square test is a standard method used to analyze this data.

Learn More : Examples of Qualitative Data in Education

Data analysis in qualitative research

Data analysis and qualitative data research work a little differently from the numerical data as the quality data is made up of words, descriptions, images, objects, and sometimes symbols. Getting insight from such complicated information is a complicated process. Hence it is typically used for exploratory research and data analysis .

Although there are several ways to find patterns in the textual information, a word-based method is the most relied and widely used global technique for research and data analysis. Notably, the data analysis process in qualitative research is manual. Here the researchers usually read the available data and find repetitive or commonly used words. 

For example, while studying data collected from African countries to understand the most pressing issues people face, researchers might find  “food”  and  “hunger” are the most commonly used words and will highlight them for further analysis.

LEARN ABOUT: Level of Analysis

The keyword context is another widely used word-based technique. In this method, the researcher tries to understand the concept by analyzing the context in which the participants use a particular keyword.  

For example , researchers conducting research and data analysis for studying the concept of ‘diabetes’ amongst respondents might analyze the context of when and how the respondent has used or referred to the word ‘diabetes.’

The scrutiny-based technique is also one of the highly recommended  text analysis  methods used to identify a quality data pattern. Compare and contrast is the widely used method under this technique to differentiate how a specific text is similar or different from each other. 

For example: To find out the “importance of resident doctor in a company,” the collected data is divided into people who think it is necessary to hire a resident doctor and those who think it is unnecessary. Compare and contrast is the best method that can be used to analyze the polls having single-answer questions types .

Metaphors can be used to reduce the data pile and find patterns in it so that it becomes easier to connect data with theory.

Variable Partitioning is another technique used to split variables so that researchers can find more coherent descriptions and explanations from the enormous data.

LEARN ABOUT: Qualitative Research Questions and Questionnaires

There are several techniques to analyze the data in qualitative research, but here are some commonly used methods,

  • Content Analysis:  It is widely accepted and the most frequently employed technique for data analysis in research methodology. It can be used to analyze the documented information from text, images, and sometimes from the physical items. It depends on the research questions to predict when and where to use this method.
  • Narrative Analysis: This method is used to analyze content gathered from various sources such as personal interviews, field observation, and  surveys . The majority of times, stories, or opinions shared by people are focused on finding answers to the research questions.
  • Discourse Analysis:  Similar to narrative analysis, discourse analysis is used to analyze the interactions with people. Nevertheless, this particular method considers the social context under which or within which the communication between the researcher and respondent takes place. In addition to that, discourse analysis also focuses on the lifestyle and day-to-day environment while deriving any conclusion.
  • Grounded Theory:  When you want to explain why a particular phenomenon happened, then using grounded theory for analyzing quality data is the best resort. Grounded theory is applied to study data about the host of similar cases occurring in different settings. When researchers are using this method, they might alter explanations or produce new ones until they arrive at some conclusion.

LEARN ABOUT: 12 Best Tools for Researchers

Data analysis in quantitative research

The first stage in research and data analysis is to make it for the analysis so that the nominal data can be converted into something meaningful. Data preparation consists of the below phases.

Phase I: Data Validation

Data validation is done to understand if the collected data sample is per the pre-set standards, or it is a biased data sample again divided into four different stages

  • Fraud: To ensure an actual human being records each response to the survey or the questionnaire
  • Screening: To make sure each participant or respondent is selected or chosen in compliance with the research criteria
  • Procedure: To ensure ethical standards were maintained while collecting the data sample
  • Completeness: To ensure that the respondent has answered all the questions in an online survey. Else, the interviewer had asked all the questions devised in the questionnaire.

Phase II: Data Editing

More often, an extensive research data sample comes loaded with errors. Respondents sometimes fill in some fields incorrectly or sometimes skip them accidentally. Data editing is a process wherein the researchers have to confirm that the provided data is free of such errors. They need to conduct necessary checks and outlier checks to edit the raw edit and make it ready for analysis.

Phase III: Data Coding

Out of all three, this is the most critical phase of data preparation associated with grouping and assigning values to the survey responses . If a survey is completed with a 1000 sample size, the researcher will create an age bracket to distinguish the respondents based on their age. Thus, it becomes easier to analyze small data buckets rather than deal with the massive data pile.

LEARN ABOUT: Steps in Qualitative Research

After the data is prepared for analysis, researchers are open to using different research and data analysis methods to derive meaningful insights. For sure, statistical analysis plans are the most favored to analyze numerical data. In statistical analysis, distinguishing between categorical data and numerical data is essential, as categorical data involves distinct categories or labels, while numerical data consists of measurable quantities. The method is again classified into two groups. First, ‘Descriptive Statistics’ used to describe data. Second, ‘Inferential statistics’ that helps in comparing the data .

Descriptive statistics

This method is used to describe the basic features of versatile types of data in research. It presents the data in such a meaningful way that pattern in the data starts making sense. Nevertheless, the descriptive analysis does not go beyond making conclusions. The conclusions are again based on the hypothesis researchers have formulated so far. Here are a few major types of descriptive analysis methods.

Measures of Frequency

  • Count, Percent, Frequency
  • It is used to denote home often a particular event occurs.
  • Researchers use it when they want to showcase how often a response is given.

Measures of Central Tendency

  • Mean, Median, Mode
  • The method is widely used to demonstrate distribution by various points.
  • Researchers use this method when they want to showcase the most commonly or averagely indicated response.

Measures of Dispersion or Variation

  • Range, Variance, Standard deviation
  • Here the field equals high/low points.
  • Variance standard deviation = difference between the observed score and mean
  • It is used to identify the spread of scores by stating intervals.
  • Researchers use this method to showcase data spread out. It helps them identify the depth until which the data is spread out that it directly affects the mean.

Measures of Position

  • Percentile ranks, Quartile ranks
  • It relies on standardized scores helping researchers to identify the relationship between different scores.
  • It is often used when researchers want to compare scores with the average count.

For quantitative research use of descriptive analysis often give absolute numbers, but the in-depth analysis is never sufficient to demonstrate the rationale behind those numbers. Nevertheless, it is necessary to think of the best method for research and data analysis suiting your survey questionnaire and what story researchers want to tell. For example, the mean is the best way to demonstrate the students’ average scores in schools. It is better to rely on the descriptive statistics when the researchers intend to keep the research or outcome limited to the provided  sample  without generalizing it. For example, when you want to compare average voting done in two different cities, differential statistics are enough.

Descriptive analysis is also called a ‘univariate analysis’ since it is commonly used to analyze a single variable.

Inferential statistics

Inferential statistics are used to make predictions about a larger population after research and data analysis of the representing population’s collected sample. For example, you can ask some odd 100 audiences at a movie theater if they like the movie they are watching. Researchers then use inferential statistics on the collected  sample  to reason that about 80-90% of people like the movie. 

Here are two significant areas of inferential statistics.

  • Estimating parameters: It takes statistics from the sample research data and demonstrates something about the population parameter.
  • Hypothesis test: I t’s about sampling research data to answer the survey research questions. For example, researchers might be interested to understand if the new shade of lipstick recently launched is good or not, or if the multivitamin capsules help children to perform better at games.

These are sophisticated analysis methods used to showcase the relationship between different variables instead of describing a single variable. It is often used when researchers want something beyond absolute numbers to understand the relationship between variables.

Here are some of the commonly used methods for data analysis in research.

  • Correlation: When researchers are not conducting experimental research or quasi-experimental research wherein the researchers are interested to understand the relationship between two or more variables, they opt for correlational research methods.
  • Cross-tabulation: Also called contingency tables,  cross-tabulation  is used to analyze the relationship between multiple variables.  Suppose provided data has age and gender categories presented in rows and columns. A two-dimensional cross-tabulation helps for seamless data analysis and research by showing the number of males and females in each age category.
  • Regression analysis: For understanding the strong relationship between two variables, researchers do not look beyond the primary and commonly used regression analysis method, which is also a type of predictive analysis used. In this method, you have an essential factor called the dependent variable. You also have multiple independent variables in regression analysis. You undertake efforts to find out the impact of independent variables on the dependent variable. The values of both independent and dependent variables are assumed as being ascertained in an error-free random manner.
  • Frequency tables: The statistical procedure is used for testing the degree to which two or more vary or differ in an experiment. A considerable degree of variation means research findings were significant. In many contexts, ANOVA testing and variance analysis are similar.
  • Analysis of variance: The statistical procedure is used for testing the degree to which two or more vary or differ in an experiment. A considerable degree of variation means research findings were significant. In many contexts, ANOVA testing and variance analysis are similar.
  • Researchers must have the necessary research skills to analyze and manipulation the data , Getting trained to demonstrate a high standard of research practice. Ideally, researchers must possess more than a basic understanding of the rationale of selecting one statistical method over the other to obtain better data insights.
  • Usually, research and data analytics projects differ by scientific discipline; therefore, getting statistical advice at the beginning of analysis helps design a survey questionnaire, select data collection methods , and choose samples.

LEARN ABOUT: Best Data Collection Tools

  • The primary aim of data research and analysis is to derive ultimate insights that are unbiased. Any mistake in or keeping a biased mind to collect data, selecting an analysis method, or choosing  audience  sample il to draw a biased inference.
  • Irrelevant to the sophistication used in research data and analysis is enough to rectify the poorly defined objective outcome measurements. It does not matter if the design is at fault or intentions are not clear, but lack of clarity might mislead readers, so avoid the practice.
  • The motive behind data analysis in research is to present accurate and reliable data. As far as possible, avoid statistical errors, and find a way to deal with everyday challenges like outliers, missing data, data altering, data mining , or developing graphical representation.

LEARN MORE: Descriptive Research vs Correlational Research The sheer amount of data generated daily is frightening. Especially when data analysis has taken center stage. in 2018. In last year, the total data supply amounted to 2.8 trillion gigabytes. Hence, it is clear that the enterprises willing to survive in the hypercompetitive world must possess an excellent capability to analyze complex research data, derive actionable insights, and adapt to the new market needs.

LEARN ABOUT: Average Order Value

QuestionPro is an online survey platform that empowers organizations in data analysis and research and provides them a medium to collect data by creating appealing surveys.

MORE LIKE THIS

data analysis on quantitative research

360 Degree Feedback Spider Chart is Back!

Aug 14, 2024

Jotform vs Wufoo

Jotform vs Wufoo: Comparison of Features and Prices

Aug 13, 2024

data analysis on quantitative research

Product or Service: Which is More Important? — Tuesday CX Thoughts

data analysis on quantitative research

Life@QuestionPro: Thomas Maiwald-Immer’s Experience

Aug 9, 2024

Other categories

  • Academic Research
  • Artificial Intelligence
  • Assessments
  • Brand Awareness
  • Case Studies
  • Communities
  • Consumer Insights
  • Customer effort score
  • Customer Engagement
  • Customer Experience
  • Customer Loyalty
  • Customer Research
  • Customer Satisfaction
  • Employee Benefits
  • Employee Engagement
  • Employee Retention
  • Friday Five
  • General Data Protection Regulation
  • Insights Hub
  • Life@QuestionPro
  • Market Research
  • Mobile diaries
  • Mobile Surveys
  • New Features
  • Online Communities
  • Question Types
  • Questionnaire
  • QuestionPro Products
  • Release Notes
  • Research Tools and Apps
  • Revenue at Risk
  • Survey Templates
  • Training Tips
  • Tuesday CX Thoughts (TCXT)
  • Uncategorized
  • What’s Coming Up
  • Workforce Intelligence
  • Privacy Policy

Research Method

Home » Quantitative Data – Types, Methods and Examples

Quantitative Data – Types, Methods and Examples

Table of Contents

 Quantitative Data

Quantitative Data

Definition:

Quantitative data refers to numerical data that can be measured or counted. This type of data is often used in scientific research and is typically collected through methods such as surveys, experiments, and statistical analysis.

Quantitative Data Types

There are two main types of quantitative data: discrete and continuous.

  • Discrete data: Discrete data refers to numerical values that can only take on specific, distinct values. This type of data is typically represented as whole numbers and cannot be broken down into smaller units. Examples of discrete data include the number of students in a class, the number of cars in a parking lot, and the number of children in a family.
  • Continuous data: Continuous data refers to numerical values that can take on any value within a certain range or interval. This type of data is typically represented as decimal or fractional values and can be broken down into smaller units. Examples of continuous data include measurements of height, weight, temperature, and time.

Quantitative Data Collection Methods

There are several common methods for collecting quantitative data. Some of these methods include:

  • Surveys : Surveys involve asking a set of standardized questions to a large number of people. Surveys can be conducted in person, over the phone, via email or online, and can be used to collect data on a wide range of topics.
  • Experiments : Experiments involve manipulating one or more variables and observing the effects on a specific outcome. Experiments can be conducted in a controlled laboratory setting or in the real world.
  • Observational studies : Observational studies involve observing and collecting data on a specific phenomenon without intervening or manipulating any variables. Observational studies can be conducted in a natural setting or in a laboratory.
  • Secondary data analysis : Secondary data analysis involves using existing data that was collected for a different purpose to answer a new research question. This method can be cost-effective and efficient, but it is important to ensure that the data is appropriate for the research question being studied.
  • Physiological measures: Physiological measures involve collecting data on biological or physiological processes, such as heart rate, blood pressure, or brain activity.
  • Computerized tracking: Computerized tracking involves collecting data automatically from electronic sources, such as social media, online purchases, or website analytics.

Quantitative Data Analysis Methods

There are several methods for analyzing quantitative data, including:

  • Descriptive statistics: Descriptive statistics are used to summarize and describe the basic features of the data, such as the mean, median, mode, standard deviation, and range.
  • Inferential statistics : Inferential statistics are used to make generalizations about a population based on a sample of data. These methods include hypothesis testing, confidence intervals, and regression analysis.
  • Data visualization: Data visualization involves creating charts, graphs, and other visual representations of the data to help identify patterns and trends. Common types of data visualization include histograms, scatterplots, and bar charts.
  • Time series analysis: Time series analysis involves analyzing data that is collected over time to identify patterns and trends in the data.
  • Multivariate analysis : Multivariate analysis involves analyzing data with multiple variables to identify relationships between the variables.
  • Factor analysis : Factor analysis involves identifying underlying factors or dimensions that explain the variation in the data.
  • Cluster analysis: Cluster analysis involves identifying groups or clusters of observations that are similar to each other based on multiple variables.

Quantitative Data Formats

Quantitative data can be represented in different formats, depending on the nature of the data and the purpose of the analysis. Here are some common formats:

  • Tables : Tables are a common way to present quantitative data, particularly when the data involves multiple variables. Tables can be used to show the frequency or percentage of data in different categories or to display summary statistics.
  • Charts and graphs: Charts and graphs are useful for visualizing quantitative data and can be used to highlight patterns and trends in the data. Some common types of charts and graphs include line charts, bar charts, scatterplots, and pie charts.
  • Databases : Quantitative data can be stored in databases, which allow for easy sorting, filtering, and analysis of large amounts of data.
  • Spreadsheets : Spreadsheets can be used to organize and analyze quantitative data, particularly when the data is relatively small in size. Spreadsheets allow for calculations and data manipulation, as well as the creation of charts and graphs.
  • Statistical software : Statistical software, such as SPSS, R, and SAS, can be used to analyze quantitative data. These programs allow for more advanced statistical analyses and data modeling, as well as the creation of charts and graphs.

Quantitative Data Gathering Guide

Here is a basic guide for gathering quantitative data:

  • Define the research question: The first step in gathering quantitative data is to clearly define the research question. This will help determine the type of data to be collected, the sample size, and the methods of data analysis.
  • Choose the data collection method: Select the appropriate method for collecting data based on the research question and available resources. This could include surveys, experiments, observational studies, or other methods.
  • Determine the sample size: Determine the appropriate sample size for the research question. This will depend on the level of precision needed and the variability of the population being studied.
  • Develop the data collection instrument: Develop a questionnaire or survey instrument that will be used to collect the data. The instrument should be designed to gather the specific information needed to answer the research question.
  • Pilot test the data collection instrument : Before collecting data from the entire sample, pilot test the instrument on a small group to identify any potential problems or issues.
  • Collect the data: Collect the data from the selected sample using the chosen data collection method.
  • Clean and organize the data : Organize the data into a format that can be easily analyzed. This may involve checking for missing data, outliers, or errors.
  • Analyze the data: Analyze the data using appropriate statistical methods. This may involve descriptive statistics, inferential statistics, or other types of analysis.
  • Interpret the results: Interpret the results of the analysis in the context of the research question. Identify any patterns, trends, or relationships in the data and draw conclusions based on the findings.
  • Communicate the findings: Communicate the findings of the analysis in a clear and concise manner, using appropriate tables, graphs, and other visual aids as necessary. The results should be presented in a way that is accessible to the intended audience.

Examples of Quantitative Data

Here are some examples of quantitative data:

  • Height of a person (measured in inches or centimeters)
  • Weight of a person (measured in pounds or kilograms)
  • Temperature (measured in Fahrenheit or Celsius)
  • Age of a person (measured in years)
  • Number of cars sold in a month
  • Amount of rainfall in a specific area (measured in inches or millimeters)
  • Number of hours worked in a week
  • GPA (grade point average) of a student
  • Sales figures for a product
  • Time taken to complete a task.
  • Distance traveled (measured in miles or kilometers)
  • Speed of an object (measured in miles per hour or kilometers per hour)
  • Number of people attending an event
  • Price of a product (measured in dollars or other currency)
  • Blood pressure (measured in millimeters of mercury)
  • Amount of sugar in a food item (measured in grams)
  • Test scores (measured on a numerical scale)
  • Number of website visitors per day
  • Stock prices (measured in dollars)
  • Crime rates (measured by the number of crimes per 100,000 people)

Applications of Quantitative Data

Quantitative data has a wide range of applications across various fields, including:

  • Scientific research: Quantitative data is used extensively in scientific research to test hypotheses and draw conclusions. For example, in biology, researchers might use quantitative data to measure the growth rate of cells or the effectiveness of a drug treatment.
  • Business and economics: Quantitative data is used to analyze business and economic trends, forecast future performance, and make data-driven decisions. For example, a company might use quantitative data to analyze sales figures and customer demographics to determine which products are most popular among which segments of their customer base.
  • Education: Quantitative data is used in education to measure student performance, evaluate teaching methods, and identify areas where improvement is needed. For example, a teacher might use quantitative data to track the progress of their students over the course of a semester and adjust their teaching methods accordingly.
  • Public policy: Quantitative data is used in public policy to evaluate the effectiveness of policies and programs, identify areas where improvement is needed, and develop evidence-based solutions. For example, a government agency might use quantitative data to evaluate the impact of a social welfare program on poverty rates.
  • Healthcare : Quantitative data is used in healthcare to evaluate the effectiveness of medical treatments, track the spread of diseases, and identify risk factors for various health conditions. For example, a doctor might use quantitative data to monitor the blood pressure levels of their patients over time and adjust their treatment plan accordingly.

Purpose of Quantitative Data

The purpose of quantitative data is to provide a numerical representation of a phenomenon or observation. Quantitative data is used to measure and describe the characteristics of a population or sample, and to test hypotheses and draw conclusions based on statistical analysis. Some of the key purposes of quantitative data include:

  • Measuring and describing : Quantitative data is used to measure and describe the characteristics of a population or sample, such as age, income, or education level. This allows researchers to better understand the population they are studying.
  • Testing hypotheses: Quantitative data is often used to test hypotheses and theories by collecting numerical data and analyzing it using statistical methods. This can help researchers determine whether there is a statistically significant relationship between variables or whether there is support for a particular theory.
  • Making predictions : Quantitative data can be used to make predictions about future events or trends based on past data. This is often done through statistical modeling or time series analysis.
  • Evaluating programs and policies: Quantitative data is often used to evaluate the effectiveness of programs and policies. This can help policymakers and program managers identify areas where improvements can be made and make evidence-based decisions about future programs and policies.

When to use Quantitative Data

Quantitative data is appropriate to use when you want to collect and analyze numerical data that can be measured and analyzed using statistical methods. Here are some situations where quantitative data is typically used:

  • When you want to measure a characteristic or behavior : If you want to measure something like the height or weight of a population or the number of people who smoke, you would use quantitative data to collect this information.
  • When you want to compare groups: If you want to compare two or more groups, such as comparing the effectiveness of two different medical treatments, you would use quantitative data to collect and analyze the data.
  • When you want to test a hypothesis : If you have a hypothesis or theory that you want to test, you would use quantitative data to collect data that can be analyzed statistically to determine whether your hypothesis is supported by the data.
  • When you want to make predictions: If you want to make predictions about future trends or events, such as predicting sales for a new product, you would use quantitative data to collect and analyze data from past trends to make your prediction.
  • When you want to evaluate a program or policy : If you want to evaluate the effectiveness of a program or policy, you would use quantitative data to collect data about the program or policy and analyze it statistically to determine whether it has had the intended effect.

Characteristics of Quantitative Data

Quantitative data is characterized by several key features, including:

  • Numerical values : Quantitative data consists of numerical values that can be measured and counted. These values are often expressed in terms of units, such as dollars, centimeters, or kilograms.
  • Continuous or discrete : Quantitative data can be either continuous or discrete. Continuous data can take on any value within a certain range, while discrete data can only take on certain values.
  • Objective: Quantitative data is objective, meaning that it is not influenced by personal biases or opinions. It is based on empirical evidence that can be measured and analyzed using statistical methods.
  • Large sample size: Quantitative data is often collected from a large sample size in order to ensure that the results are statistically significant and representative of the population being studied.
  • Statistical analysis: Quantitative data is typically analyzed using statistical methods to determine patterns, relationships, and other characteristics of the data. This allows researchers to make more objective conclusions based on empirical evidence.
  • Precision : Quantitative data is often very precise, with measurements taken to multiple decimal points or significant figures. This precision allows for more accurate analysis and interpretation of the data.

Advantages of Quantitative Data

Some advantages of quantitative data are:

  • Objectivity : Quantitative data is usually objective because it is based on measurable and observable variables. This means that different people who collect the same data will generally get the same results.
  • Precision : Quantitative data provides precise measurements of variables. This means that it is easier to make comparisons and draw conclusions from quantitative data.
  • Replicability : Since quantitative data is based on objective measurements, it is often easier to replicate research studies using the same or similar data.
  • Generalizability : Quantitative data allows researchers to generalize findings to a larger population. This is because quantitative data is often collected using random sampling methods, which help to ensure that the data is representative of the population being studied.
  • Statistical analysis : Quantitative data can be analyzed using statistical methods, which allows researchers to test hypotheses and draw conclusions about the relationships between variables.
  • Efficiency : Quantitative data can often be collected quickly and efficiently using surveys or other standardized instruments, which makes it a cost-effective way to gather large amounts of data.

Limitations of Quantitative Data

Some Limitations of Quantitative Data are as follows:

  • Limited context: Quantitative data does not provide information about the context in which the data was collected. This can make it difficult to understand the meaning behind the numbers.
  • Limited depth: Quantitative data is often limited to predetermined variables and questions, which may not capture the complexity of the phenomenon being studied.
  • Difficulty in capturing qualitative aspects: Quantitative data is unable to capture the subjective experiences and qualitative aspects of human behavior, such as emotions, attitudes, and motivations.
  • Possibility of bias: The collection and interpretation of quantitative data can be influenced by biases, such as sampling bias, measurement bias, or researcher bias.
  • Simplification of complex phenomena: Quantitative data may oversimplify complex phenomena by reducing them to numerical measurements and statistical analyses.
  • Lack of flexibility: Quantitative data collection methods may not allow for changes or adaptations in the research process, which can limit the ability to respond to unexpected findings or new insights.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Research Data

Research Data – Types Methods and Examples

Primary Data

Primary Data – Types, Methods and Examples

Research Information

Information in Research – Types and Examples

Qualitative Data

Qualitative Data – Types, Methods and Examples

Secondary Data

Secondary Data – Types, Methods and Examples

Are you an agency specialized in UX, digital marketing, or growth? Join our Partner Program

Learn / Guides / Quantitative data analysis guide

Back to guides

8 quantitative data analysis methods to turn numbers into insights

Setting up a few new customer surveys or creating a fresh Google Analytics dashboard feels exciting…until the numbers start rolling in. You want to turn responses into a plan to present to your team and leaders—but which quantitative data analysis method do you use to make sense of the facts and figures?

Last updated

Reading time.

data analysis on quantitative research

This guide lists eight quantitative research data analysis techniques to help you turn numeric feedback into actionable insights to share with your team and make customer-centric decisions. 

To pick the right technique that helps you bridge the gap between data and decision-making, you first need to collect quantitative data from sources like:

Google Analytics  

Survey results

On-page feedback scores

Fuel your quantitative analysis with real-time data

Use Hotjar’s tools to collect quantitative data that helps you stay close to customers.

Then, choose an analysis method based on the type of data and how you want to use it.

Descriptive data analysis summarizes results—like measuring website traffic—that help you learn about a problem or opportunity. The descriptive analysis methods we’ll review are:

Multiple choice response rates

Response volume over time

Net Promoter Score®

Inferential data analyzes the relationship between data—like which customer segment has the highest average order value—to help you make hypotheses about product decisions. Inferential analysis methods include:

Cross-tabulation

Weighted customer feedback

You don’t need to worry too much about these specific terms since each quantitative data analysis method listed below explains when and how to use them. Let’s dive in!

1. Compare multiple-choice response rates 

The simplest way to analyze survey data is by comparing the percentage of your users who chose each response, which summarizes opinions within your audience. 

To do this, divide the number of people who chose a specific response by the total respondents for your multiple-choice survey. Imagine 100 customers respond to a survey about what product category they want to see. If 25 people said ‘snacks’, 25% of your audience favors that category, so you know that adding a snacks category to your list of filters or drop-down menu will make the purchasing process easier for them.

💡Pro tip: ask open-ended survey questions to dig deeper into customer motivations.

A multiple-choice survey measures your audience’s opinions, but numbers don’t tell you why they think the way they do—you need to combine quantitative and qualitative data to learn that. 

One research method to learn about customer motivations is through an open-ended survey question. Giving customers space to express their thoughts in their own words—unrestricted by your pre-written multiple-choice questions—prevents you from making assumptions.

data analysis on quantitative research

Hotjar’s open-ended surveys have a text box for customers to type a response

2. Cross-tabulate to compare responses between groups

To understand how responses and behavior vary within your audience, compare your quantitative data by group. Use raw numbers, like the number of website visitors, or percentages, like questionnaire responses, across categories like traffic sources or customer segments.

#A cross-tabulated content analysis lets teams focus on work with a higher potential of success

Let’s say you ask your audience what their most-used feature is because you want to know what to highlight on your pricing page. Comparing the most common response for free trial users vs. established customers lets you strategically introduce features at the right point in the customer journey . 

💡Pro tip: get some face-to-face time to discover nuances in customer feedback.

Rather than treating your customers as a monolith, use Hotjar to conduct interviews to learn about individuals and subgroups. If you aren’t sure what to ask, start with your quantitative data results. If you notice competing trends between customer segments, have a few conversations with individuals from each group to dig into their unique motivations.

Hotjar Engage lets you identify specific customer segments you want to talk to

Mode is the most common answer in a data set, which means you use it to discover the most popular response for questions with numeric answer options. Mode and median (that's next on the list) are useful to compare to the average in case responses on extreme ends of the scale (outliers) skew the outcome.

Let’s say you want to know how most customers feel about your website, so you use an on-page feedback widget to collect ratings on a scale of one to five.

#Visitors rate their experience on a scale with happy (or angry) faces, which translates to a quantitative scale

If the mode, or most common response, is a three, you can assume most people feel somewhat positive. But suppose the second-most common response is a one (which would bring the average down). In that case, you need to investigate why so many customers are unhappy. 

💡Pro tip: watch recordings to understand how customers interact with your website.

So you used on-page feedback to learn how customers feel about your website, and the mode was two out of five. Ouch. Use Hotjar Recordings to see how customers move around on and interact with your pages to find the source of frustration.

Hotjar Recordings lets you watch individual visitors interact with your site, like how they scroll, hover, and click

Median reveals the middle of the road of your quantitative data by lining up all numeric values in ascending order and then looking at the data point in the middle. Use the median method when you notice a few outliers that bring the average up or down and compare the analysis outcomes.

For example, if your price sensitivity survey has outlandish responses and you want to identify a reasonable middle ground of what customers are willing to pay—calculate the median.

💡Pro-tip: review and clean your data before analysis. 

Take a few minutes to familiarize yourself with quantitative data results before you push them through analysis methods. Inaccurate or missing information can complicate your calculations, and it’s less frustrating to resolve issues at the start instead of problem-solving later. 

Here are a few data-cleaning tips to keep in mind:

Remove or separate irrelevant data, like responses from a customer segment or time frame you aren’t reviewing right now 

Standardize data from multiple sources, like a survey that let customers indicate they use your product ‘daily’ vs. on-page feedback that used the phrasing ‘more than once a week’

Acknowledge missing data, like some customers not answering every question. Just note that your totals between research questions might not match.

Ensure you have enough responses to have a statistically significant result

Decide if you want to keep or remove outlying data. For example, maybe there’s evidence to support a high-price tier, and you shouldn’t dismiss less price-sensitive respondents. Other times, you might want to get rid of obviously trolling responses.

5. Mean (AKA average)

Finding the average of a dataset is an essential quantitative data analysis method and an easy task. First, add all your quantitative data points, like numeric survey responses or daily sales revenue. Then, divide the sum of your data points by the number of responses to get a single number representing the entire dataset. 

Use the average of your quant data when you want a summary, like the average order value of your transactions between different sales pages. Then, use your average to benchmark performance, compare over time, or uncover winners across segments—like which sales page design produces the most value.

💡Pro tip: use heatmaps to find attention-catching details numbers can’t give you.

Calculating the average of your quant data set reveals the outcome of customer interactions. However, you need qualitative data like a heatmap to learn about everything that led to that moment. A heatmap uses colors to illustrate where most customers look and click on a page to reveal what drives (or drops) momentum.

data analysis on quantitative research

Hotjar Heatmaps uses color to visualize what most visitors see, ignore, and click on

6. Measure the volume of responses over time

Some quantitative data analysis methods are an ongoing project, like comparing top website referral sources by month to gauge the effectiveness of new channels. Analyzing the same metric at regular intervals lets you compare trends and changes. 

Look at quantitative survey results, website sessions, sales, cart abandons, or clicks regularly to spot trouble early or monitor the impact of a new initiative.

Here are a few areas you can measure over time (and how to use qualitative research methods listed above to add context to your results):

7. Net Promoter Score®

Net Promoter Score® ( NPS ®) is a popular customer loyalty and satisfaction measurement that also serves as a quantitative data analysis method. 

NPS surveys ask customers to rate how likely they are to recommend you on a scale of zero to ten. Calculate it by subtracting the percentage of customers who answer the NPS question with a six or lower (known as ‘detractors’) from those who respond with a nine or ten (known as ‘promoters’). Your NPS score will fall between -100 and 100, and you want a positive number indicating more promoters than detractors. 

#NPS scores exist on a scale of zero to ten

💡Pro tip : like other quantitative data analysis methods, you can review NPS scores over time as a satisfaction benchmark. You can also use it to understand which customer segment is most satisfied or which customers may be willing to share their stories for promotional materials.

data analysis on quantitative research

Review NPS score trends with Hotjar to spot any sudden spikes and benchmark performance over time

8. Weight customer feedback 

So far, the quantitative data analysis methods on this list have leveraged numeric data only. However, there are ways to turn qualitative data into quantifiable feedback and to mix and match data sources. For example, you might need to analyze user feedback from multiple surveys.

To leverage multiple data points, create a prioritization matrix that assigns ‘weight’ to customer feedback data and company priorities and then multiply them to reveal the highest-scoring option. 

Let’s say you identify the top four responses to your churn survey . Rate the most common issue as a four and work down the list until one—these are your customer priorities. Then, rate the ease of fixing each problem with a maximum score of four for the easy wins down to one for difficult tasks—these are your company priorities. Finally, multiply the score of each customer priority with its coordinating company priority scores and lead with the highest scoring idea. 

💡Pro-tip: use a product prioritization framework to make decisions.

Try a product prioritization framework when the pressure is on to make high-impact decisions with limited time and budget. These repeatable decision-making tools take the guesswork out of balancing goals, customer priorities, and team resources. Four popular frameworks are:

RICE: weighs four factors—reach, impact, confidence, and effort—to weigh initiatives differently

MoSCoW: considers stakeholder opinions on 'must-have', 'should-have', 'could-have', and 'won't-have' criteria

Kano: ranks ideas based on how likely they are to satisfy customer needs

Cost of delay analysis: determines potential revenue loss by not working on a product or initiative

Share what you learn with data visuals

Data visualization through charts and graphs gives you a new perspective on your results. Plus, removing the clutter of the analysis process helps you and stakeholders focus on the insight over the method.

Data visualization helps you:

Get buy-in with impactful charts that summarize your results

Increase customer empathy and awareness across your company with digestible insights

Use these four data visualization types to illustrate what you learned from your quantitative data analysis: 

Bar charts reveal response distribution across multiple options

Line graphs compare data points over time

Scatter plots showcase how two variables interact

Matrices contrast data between categories like customer segments, product types, or traffic source

#Bar charts, like this example, give a sense of how common responses are within an audience and how responses relate to one another

Use a variety of customer feedback types to get the whole picture

Quantitative data analysis pulls the story out of raw numbers—but you shouldn’t take a single result from your data collection and run with it. Instead, combine numbers-based quantitative data with descriptive qualitative research to learn the what, why, and how of customer experiences. 

Looking at an opportunity from multiple angles helps you make more customer-centric decisions with less guesswork.

Stay close to customers with Hotjar

Hotjar’s tools offer quantitative and qualitative insights you can use to make customer-centric decisions, get buy-in, and highlight your team’s impact.

Frequently asked questions about quantitative data analysis

What is quantitative data.

Quantitative data is numeric feedback and information that you can count and measure. For example, you can calculate multiple-choice response rates, but you can’t tally a customer’s open-ended product feedback response. You have to use qualitative data analysis methods for non-numeric feedback.

What are quantitative data analysis methods?

Quantitative data analysis either summarizes or finds connections between numerical data feedback. Here are eight ways to analyze your online business’s quantitative data:

Compare multiple-choice response rates

Cross-tabulate to compare responses between groups

Measure the volume of response over time

Net Promoter Score

Weight customer feedback

How do you visualize quantitative data?

Data visualization makes it easier to spot trends and share your analysis with stakeholders. Bar charts, line graphs, scatter plots, and matrices are ways to visualize quantitative data.

What are the two types of statistical analysis for online businesses?

Quantitative data analysis is broken down into two analysis technique types:

Descriptive statistics summarize your collected data, like the number of website visitors this month

Inferential statistics compare relationships between multiple types of quantitative data, like survey responses between different customer segments

Quantitative data analysis process

Previous chapter

Quantitative data analysis software

Next chapter

Quantitative Data Analysis

Ameer Ali at University of Sindh

  • University of Sindh

Discover the world's research

  • 25+ million members
  • 160+ million publication pages
  • 2.3+ billion citations

Rajendra Puttamanjaiah

  • Fauzatul Ma’rufah Rohmanurmeta

Herawati Susilo

  • Mohammad Zainuddin
  • Syamsul Hadi

Jamaica Y. Taypin

  • Joshua Felix M. Manimog
  • Benjamin Tagose Jr

Rodeth Jane C. Quezada

  • Muhammad Rifky Alfandi
  • Manahan Parlindungan Saragih Siallagan
  • Wulan Asti Rahayu

Agariadne Dwinggo Samala

  • Ganefri Ganefri
  • Asmar Yulastri
  • Ika Parma Dewi

Aruna Jayathilaka

  • Marianne Fallon
  • SIGISMUND PELLER

Daniel Muijs

  • B Farnsworth
  • Recruit researchers
  • Join for free
  • Login Email Tip: Most researchers use their institutional email address as their ResearchGate login Password Forgot password? Keep me logged in Log in or Continue with Google Welcome back! Please log in. Email · Hint Tip: Most researchers use their institutional email address as their ResearchGate login Password Forgot password? Keep me logged in Log in or Continue with Google No account? Sign up

PW Skills | Blog

Data Analysis Techniques in Research – Methods, Tools & Examples

' src=

Varun Saharawat is a seasoned professional in the fields of SEO and content writing. With a profound knowledge of the intricate aspects of these disciplines, Varun has established himself as a valuable asset in the world of digital marketing and online content creation.

data analysis techniques in research

Data analysis techniques in research are essential because they allow researchers to derive meaningful insights from data sets to support their hypotheses or research objectives.

Data Analysis Techniques in Research : While various groups, institutions, and professionals may have diverse approaches to data analysis, a universal definition captures its essence. Data analysis involves refining, transforming, and interpreting raw data to derive actionable insights that guide informed decision-making for businesses.

Data Analytics Course

A straightforward illustration of data analysis emerges when we make everyday decisions, basing our choices on past experiences or predictions of potential outcomes.

If you want to learn more about this topic and acquire valuable skills that will set you apart in today’s data-driven world, we highly recommend enrolling in the Data Analytics Course by Physics Wallah . And as a special offer for our readers, use the coupon code “READER” to get a discount on this course.

Table of Contents

What is Data Analysis?

Data analysis is the systematic process of inspecting, cleaning, transforming, and interpreting data with the objective of discovering valuable insights and drawing meaningful conclusions. This process involves several steps:

  • Inspecting : Initial examination of data to understand its structure, quality, and completeness.
  • Cleaning : Removing errors, inconsistencies, or irrelevant information to ensure accurate analysis.
  • Transforming : Converting data into a format suitable for analysis, such as normalization or aggregation.
  • Interpreting : Analyzing the transformed data to identify patterns, trends, and relationships.

Types of Data Analysis Techniques in Research

Data analysis techniques in research are categorized into qualitative and quantitative methods, each with its specific approaches and tools. These techniques are instrumental in extracting meaningful insights, patterns, and relationships from data to support informed decision-making, validate hypotheses, and derive actionable recommendations. Below is an in-depth exploration of the various types of data analysis techniques commonly employed in research:

1) Qualitative Analysis:

Definition: Qualitative analysis focuses on understanding non-numerical data, such as opinions, concepts, or experiences, to derive insights into human behavior, attitudes, and perceptions.

  • Content Analysis: Examines textual data, such as interview transcripts, articles, or open-ended survey responses, to identify themes, patterns, or trends.
  • Narrative Analysis: Analyzes personal stories or narratives to understand individuals’ experiences, emotions, or perspectives.
  • Ethnographic Studies: Involves observing and analyzing cultural practices, behaviors, and norms within specific communities or settings.

2) Quantitative Analysis:

Quantitative analysis emphasizes numerical data and employs statistical methods to explore relationships, patterns, and trends. It encompasses several approaches:

Descriptive Analysis:

  • Frequency Distribution: Represents the number of occurrences of distinct values within a dataset.
  • Central Tendency: Measures such as mean, median, and mode provide insights into the central values of a dataset.
  • Dispersion: Techniques like variance and standard deviation indicate the spread or variability of data.

Diagnostic Analysis:

  • Regression Analysis: Assesses the relationship between dependent and independent variables, enabling prediction or understanding causality.
  • ANOVA (Analysis of Variance): Examines differences between groups to identify significant variations or effects.

Predictive Analysis:

  • Time Series Forecasting: Uses historical data points to predict future trends or outcomes.
  • Machine Learning Algorithms: Techniques like decision trees, random forests, and neural networks predict outcomes based on patterns in data.

Prescriptive Analysis:

  • Optimization Models: Utilizes linear programming, integer programming, or other optimization techniques to identify the best solutions or strategies.
  • Simulation: Mimics real-world scenarios to evaluate various strategies or decisions and determine optimal outcomes.

Specific Techniques:

  • Monte Carlo Simulation: Models probabilistic outcomes to assess risk and uncertainty.
  • Factor Analysis: Reduces the dimensionality of data by identifying underlying factors or components.
  • Cohort Analysis: Studies specific groups or cohorts over time to understand trends, behaviors, or patterns within these groups.
  • Cluster Analysis: Classifies objects or individuals into homogeneous groups or clusters based on similarities or attributes.
  • Sentiment Analysis: Uses natural language processing and machine learning techniques to determine sentiment, emotions, or opinions from textual data.

Also Read: AI and Predictive Analytics: Examples, Tools, Uses, Ai Vs Predictive Analytics

Data Analysis Techniques in Research Examples

To provide a clearer understanding of how data analysis techniques are applied in research, let’s consider a hypothetical research study focused on evaluating the impact of online learning platforms on students’ academic performance.

Research Objective:

Determine if students using online learning platforms achieve higher academic performance compared to those relying solely on traditional classroom instruction.

Data Collection:

  • Quantitative Data: Academic scores (grades) of students using online platforms and those using traditional classroom methods.
  • Qualitative Data: Feedback from students regarding their learning experiences, challenges faced, and preferences.

Data Analysis Techniques Applied:

1) Descriptive Analysis:

  • Calculate the mean, median, and mode of academic scores for both groups.
  • Create frequency distributions to represent the distribution of grades in each group.

2) Diagnostic Analysis:

  • Conduct an Analysis of Variance (ANOVA) to determine if there’s a statistically significant difference in academic scores between the two groups.
  • Perform Regression Analysis to assess the relationship between the time spent on online platforms and academic performance.

3) Predictive Analysis:

  • Utilize Time Series Forecasting to predict future academic performance trends based on historical data.
  • Implement Machine Learning algorithms to develop a predictive model that identifies factors contributing to academic success on online platforms.

4) Prescriptive Analysis:

  • Apply Optimization Models to identify the optimal combination of online learning resources (e.g., video lectures, interactive quizzes) that maximize academic performance.
  • Use Simulation Techniques to evaluate different scenarios, such as varying student engagement levels with online resources, to determine the most effective strategies for improving learning outcomes.

5) Specific Techniques:

  • Conduct Factor Analysis on qualitative feedback to identify common themes or factors influencing students’ perceptions and experiences with online learning.
  • Perform Cluster Analysis to segment students based on their engagement levels, preferences, or academic outcomes, enabling targeted interventions or personalized learning strategies.
  • Apply Sentiment Analysis on textual feedback to categorize students’ sentiments as positive, negative, or neutral regarding online learning experiences.

By applying a combination of qualitative and quantitative data analysis techniques, this research example aims to provide comprehensive insights into the effectiveness of online learning platforms.

Also Read: Learning Path to Become a Data Analyst in 2024

Data Analysis Techniques in Quantitative Research

Quantitative research involves collecting numerical data to examine relationships, test hypotheses, and make predictions. Various data analysis techniques are employed to interpret and draw conclusions from quantitative data. Here are some key data analysis techniques commonly used in quantitative research:

1) Descriptive Statistics:

  • Description: Descriptive statistics are used to summarize and describe the main aspects of a dataset, such as central tendency (mean, median, mode), variability (range, variance, standard deviation), and distribution (skewness, kurtosis).
  • Applications: Summarizing data, identifying patterns, and providing initial insights into the dataset.

2) Inferential Statistics:

  • Description: Inferential statistics involve making predictions or inferences about a population based on a sample of data. This technique includes hypothesis testing, confidence intervals, t-tests, chi-square tests, analysis of variance (ANOVA), regression analysis, and correlation analysis.
  • Applications: Testing hypotheses, making predictions, and generalizing findings from a sample to a larger population.

3) Regression Analysis:

  • Description: Regression analysis is a statistical technique used to model and examine the relationship between a dependent variable and one or more independent variables. Linear regression, multiple regression, logistic regression, and nonlinear regression are common types of regression analysis .
  • Applications: Predicting outcomes, identifying relationships between variables, and understanding the impact of independent variables on the dependent variable.

4) Correlation Analysis:

  • Description: Correlation analysis is used to measure and assess the strength and direction of the relationship between two or more variables. The Pearson correlation coefficient, Spearman rank correlation coefficient, and Kendall’s tau are commonly used measures of correlation.
  • Applications: Identifying associations between variables and assessing the degree and nature of the relationship.

5) Factor Analysis:

  • Description: Factor analysis is a multivariate statistical technique used to identify and analyze underlying relationships or factors among a set of observed variables. It helps in reducing the dimensionality of data and identifying latent variables or constructs.
  • Applications: Identifying underlying factors or constructs, simplifying data structures, and understanding the underlying relationships among variables.

6) Time Series Analysis:

  • Description: Time series analysis involves analyzing data collected or recorded over a specific period at regular intervals to identify patterns, trends, and seasonality. Techniques such as moving averages, exponential smoothing, autoregressive integrated moving average (ARIMA), and Fourier analysis are used.
  • Applications: Forecasting future trends, analyzing seasonal patterns, and understanding time-dependent relationships in data.

7) ANOVA (Analysis of Variance):

  • Description: Analysis of variance (ANOVA) is a statistical technique used to analyze and compare the means of two or more groups or treatments to determine if they are statistically different from each other. One-way ANOVA, two-way ANOVA, and MANOVA (Multivariate Analysis of Variance) are common types of ANOVA.
  • Applications: Comparing group means, testing hypotheses, and determining the effects of categorical independent variables on a continuous dependent variable.

8) Chi-Square Tests:

  • Description: Chi-square tests are non-parametric statistical tests used to assess the association between categorical variables in a contingency table. The Chi-square test of independence, goodness-of-fit test, and test of homogeneity are common chi-square tests.
  • Applications: Testing relationships between categorical variables, assessing goodness-of-fit, and evaluating independence.

These quantitative data analysis techniques provide researchers with valuable tools and methods to analyze, interpret, and derive meaningful insights from numerical data. The selection of a specific technique often depends on the research objectives, the nature of the data, and the underlying assumptions of the statistical methods being used.

Also Read: Analysis vs. Analytics: How Are They Different?

Data Analysis Methods

Data analysis methods refer to the techniques and procedures used to analyze, interpret, and draw conclusions from data. These methods are essential for transforming raw data into meaningful insights, facilitating decision-making processes, and driving strategies across various fields. Here are some common data analysis methods:

  • Description: Descriptive statistics summarize and organize data to provide a clear and concise overview of the dataset. Measures such as mean, median, mode, range, variance, and standard deviation are commonly used.
  • Description: Inferential statistics involve making predictions or inferences about a population based on a sample of data. Techniques such as hypothesis testing, confidence intervals, and regression analysis are used.

3) Exploratory Data Analysis (EDA):

  • Description: EDA techniques involve visually exploring and analyzing data to discover patterns, relationships, anomalies, and insights. Methods such as scatter plots, histograms, box plots, and correlation matrices are utilized.
  • Applications: Identifying trends, patterns, outliers, and relationships within the dataset.

4) Predictive Analytics:

  • Description: Predictive analytics use statistical algorithms and machine learning techniques to analyze historical data and make predictions about future events or outcomes. Techniques such as regression analysis, time series forecasting, and machine learning algorithms (e.g., decision trees, random forests, neural networks) are employed.
  • Applications: Forecasting future trends, predicting outcomes, and identifying potential risks or opportunities.

5) Prescriptive Analytics:

  • Description: Prescriptive analytics involve analyzing data to recommend actions or strategies that optimize specific objectives or outcomes. Optimization techniques, simulation models, and decision-making algorithms are utilized.
  • Applications: Recommending optimal strategies, decision-making support, and resource allocation.

6) Qualitative Data Analysis:

  • Description: Qualitative data analysis involves analyzing non-numerical data, such as text, images, videos, or audio, to identify themes, patterns, and insights. Methods such as content analysis, thematic analysis, and narrative analysis are used.
  • Applications: Understanding human behavior, attitudes, perceptions, and experiences.

7) Big Data Analytics:

  • Description: Big data analytics methods are designed to analyze large volumes of structured and unstructured data to extract valuable insights. Technologies such as Hadoop, Spark, and NoSQL databases are used to process and analyze big data.
  • Applications: Analyzing large datasets, identifying trends, patterns, and insights from big data sources.

8) Text Analytics:

  • Description: Text analytics methods involve analyzing textual data, such as customer reviews, social media posts, emails, and documents, to extract meaningful information and insights. Techniques such as sentiment analysis, text mining, and natural language processing (NLP) are used.
  • Applications: Analyzing customer feedback, monitoring brand reputation, and extracting insights from textual data sources.

These data analysis methods are instrumental in transforming data into actionable insights, informing decision-making processes, and driving organizational success across various sectors, including business, healthcare, finance, marketing, and research. The selection of a specific method often depends on the nature of the data, the research objectives, and the analytical requirements of the project or organization.

Also Read: Quantitative Data Analysis: Types, Analysis & Examples

Data Analysis Tools

Data analysis tools are essential instruments that facilitate the process of examining, cleaning, transforming, and modeling data to uncover useful information, make informed decisions, and drive strategies. Here are some prominent data analysis tools widely used across various industries:

1) Microsoft Excel:

  • Description: A spreadsheet software that offers basic to advanced data analysis features, including pivot tables, data visualization tools, and statistical functions.
  • Applications: Data cleaning, basic statistical analysis, visualization, and reporting.

2) R Programming Language:

  • Description: An open-source programming language specifically designed for statistical computing and data visualization.
  • Applications: Advanced statistical analysis, data manipulation, visualization, and machine learning.

3) Python (with Libraries like Pandas, NumPy, Matplotlib, and Seaborn):

  • Description: A versatile programming language with libraries that support data manipulation, analysis, and visualization.
  • Applications: Data cleaning, statistical analysis, machine learning, and data visualization.

4) SPSS (Statistical Package for the Social Sciences):

  • Description: A comprehensive statistical software suite used for data analysis, data mining, and predictive analytics.
  • Applications: Descriptive statistics, hypothesis testing, regression analysis, and advanced analytics.

5) SAS (Statistical Analysis System):

  • Description: A software suite used for advanced analytics, multivariate analysis, and predictive modeling.
  • Applications: Data management, statistical analysis, predictive modeling, and business intelligence.

6) Tableau:

  • Description: A data visualization tool that allows users to create interactive and shareable dashboards and reports.
  • Applications: Data visualization , business intelligence , and interactive dashboard creation.

7) Power BI:

  • Description: A business analytics tool developed by Microsoft that provides interactive visualizations and business intelligence capabilities.
  • Applications: Data visualization, business intelligence, reporting, and dashboard creation.

8) SQL (Structured Query Language) Databases (e.g., MySQL, PostgreSQL, Microsoft SQL Server):

  • Description: Database management systems that support data storage, retrieval, and manipulation using SQL queries.
  • Applications: Data retrieval, data cleaning, data transformation, and database management.

9) Apache Spark:

  • Description: A fast and general-purpose distributed computing system designed for big data processing and analytics.
  • Applications: Big data processing, machine learning, data streaming, and real-time analytics.

10) IBM SPSS Modeler:

  • Description: A data mining software application used for building predictive models and conducting advanced analytics.
  • Applications: Predictive modeling, data mining, statistical analysis, and decision optimization.

These tools serve various purposes and cater to different data analysis needs, from basic statistical analysis and data visualization to advanced analytics, machine learning, and big data processing. The choice of a specific tool often depends on the nature of the data, the complexity of the analysis, and the specific requirements of the project or organization.

Also Read: How to Analyze Survey Data: Methods & Examples

Importance of Data Analysis in Research

The importance of data analysis in research cannot be overstated; it serves as the backbone of any scientific investigation or study. Here are several key reasons why data analysis is crucial in the research process:

  • Data analysis helps ensure that the results obtained are valid and reliable. By systematically examining the data, researchers can identify any inconsistencies or anomalies that may affect the credibility of the findings.
  • Effective data analysis provides researchers with the necessary information to make informed decisions. By interpreting the collected data, researchers can draw conclusions, make predictions, or formulate recommendations based on evidence rather than intuition or guesswork.
  • Data analysis allows researchers to identify patterns, trends, and relationships within the data. This can lead to a deeper understanding of the research topic, enabling researchers to uncover insights that may not be immediately apparent.
  • In empirical research, data analysis plays a critical role in testing hypotheses. Researchers collect data to either support or refute their hypotheses, and data analysis provides the tools and techniques to evaluate these hypotheses rigorously.
  • Transparent and well-executed data analysis enhances the credibility of research findings. By clearly documenting the data analysis methods and procedures, researchers allow others to replicate the study, thereby contributing to the reproducibility of research findings.
  • In fields such as business or healthcare, data analysis helps organizations allocate resources more efficiently. By analyzing data on consumer behavior, market trends, or patient outcomes, organizations can make strategic decisions about resource allocation, budgeting, and planning.
  • In public policy and social sciences, data analysis is instrumental in developing and evaluating policies and interventions. By analyzing data on social, economic, or environmental factors, policymakers can assess the effectiveness of existing policies and inform the development of new ones.
  • Data analysis allows for continuous improvement in research methods and practices. By analyzing past research projects, identifying areas for improvement, and implementing changes based on data-driven insights, researchers can refine their approaches and enhance the quality of future research endeavors.

However, it is important to remember that mastering these techniques requires practice and continuous learning. That’s why we highly recommend the Data Analytics Course by Physics Wallah . Not only does it cover all the fundamentals of data analysis, but it also provides hands-on experience with various tools such as Excel, Python, and Tableau. Plus, if you use the “ READER ” coupon code at checkout, you can get a special discount on the course.

For Latest Tech Related Information, Join Our Official Free Telegram Group : PW Skills Telegram Group

Data Analysis Techniques in Research FAQs

What are the 5 techniques for data analysis.

The five techniques for data analysis include: Descriptive Analysis Diagnostic Analysis Predictive Analysis Prescriptive Analysis Qualitative Analysis

What are techniques of data analysis in research?

Techniques of data analysis in research encompass both qualitative and quantitative methods. These techniques involve processes like summarizing raw data, investigating causes of events, forecasting future outcomes, offering recommendations based on predictions, and examining non-numerical data to understand concepts or experiences.

What are the 3 methods of data analysis?

The three primary methods of data analysis are: Qualitative Analysis Quantitative Analysis Mixed-Methods Analysis

What are the four types of data analysis techniques?

The four types of data analysis techniques are: Descriptive Analysis Diagnostic Analysis Predictive Analysis Prescriptive Analysis

card-img

  • Data Curation: How Does Data Curation Enhance Quality? Why Is It Essential?

Data curation

Data curation is the process of creating, maintaining, and organizing a collection of datasets. Read this article to understand what…

  • Differences Between Data Science and Analytics: Process, Skills, Responsibilities

Data Science and Analytics

Confused between data science and analytics? Understand the differences between data science and analytics and learn how each field contributes…

  • Predictive Analytics Examples: Real World Applications and Insights

predictive analytics examples

There are many predictive analytics examples in the real world in various applications and insights. Predictive analytics in Machine learning…

right adv

Related Articles

  • Comprehensive Data Analytics Syllabus: Courses and Curriculum
  • Best Data Analytics Certification Programs for Career Advancement
  • Google Data Analytics Professional Certificate Review, Cost, Eligibility
  • Business Intelligence and Analytics, Key Concepts, and Application
  • Types Of Regression Analysis In Machine Learning
  • What is Data Analytics in Database?
  • How to Analysis of Survey Data: Methods & Examples

bottom banner

Information

  • Author Services

Initiatives

You are accessing a machine-readable page. In order to be human-readable, please install an RSS reader.

All articles published by MDPI are made immediately available worldwide under an open access license. No special permission is required to reuse all or part of the article published by MDPI, including figures and tables. For articles published under an open access Creative Common CC BY license, any part of the article may be reused without permission provided that the original article is clearly cited. For more information, please refer to https://www.mdpi.com/openaccess .

Feature papers represent the most advanced research with significant potential for high impact in the field. A Feature Paper should be a substantial original Article that involves several techniques or approaches, provides an outlook for future research directions and describes possible research applications.

Feature papers are submitted upon individual invitation or recommendation by the scientific editors and must receive positive feedback from the reviewers.

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Original Submission Date Received: .

  • Active Journals
  • Find a Journal
  • Proceedings Series
  • For Authors
  • For Reviewers
  • For Editors
  • For Librarians
  • For Publishers
  • For Societies
  • For Conference Organizers
  • Open Access Policy
  • Institutional Open Access Program
  • Special Issues Guidelines
  • Editorial Process
  • Research and Publication Ethics
  • Article Processing Charges
  • Testimonials
  • Preprints.org
  • SciProfiles
  • Encyclopedia

land-logo

Article Menu

  • Subscribe SciFeed
  • Recommended Articles
  • Google Scholar
  • on Google Scholar
  • Table of Contents

Find support for a specific problem in the support section of our website.

Please let us know what you think of our products and services.

Visit our dedicated information section to learn more about MDPI.

JSmol Viewer

Research on quantitative analysis methods for the spatial characteristics of traditional villages based on three-dimensional point cloud data: a case study of liukeng village, jiangxi, china.

data analysis on quantitative research

1. Introduction

2. literature review, 2.1. research on spatial characteristics of traditional villages, 2.2. new developments in the study of spatial characteristics in traditional villages brought by 3d point cloud data, 3. materials and methods, 3.1. study area, 3.2. methods, 3.2.1. step i: field data collection: obtaining 3d point cloud data through low-altitude uav aerial photography and handheld laser scanners, 3.2.2. step ii: data processing: point cloud preprocessing and object classification, 3.2.3. step iii: data analysis and application: extraction of quantitative indicators of village spatial characteristics and interpretation of construction wisdom, 4.1. topographic environment: visualization and interpretation of feng shui concepts and site selection wisdom, 4.1.1. interpretation of the connotation and wisdom in feng shui forest, 4.1.2. micro-topography-based quantification of water management, 4.2. street spaces: spatial scale and hierarchical division, 4.2.1. quantification of street space scale, 4.2.2. hierarchy of street spaces, 4.3. building elements: characteristics and morphology of residential courtyards, 4.3.1. quantitative analysis of residential courtyard scale, 4.3.2. summary of the form of residential courtyards, 5. discussion, 5.1. strategy for utilizing 3d point cloud data, 5.2. innovations, 5.3. limitations, 5.4. future application scenarios, 5.4.1. village spatial basic information data layer, 5.4.2. village historical and cultural knowledge application layer, 5.4.3. village public display and tour service layer, 6. conclusions, author contributions, data availability statement, conflicts of interest.

  • Zhao, X.; Xue, P.; Wang, F.; Qin, Y.; Duan, X.; Yang, Z. How to become one? The modern bond of traditional villages in centralized contiguous protection and utilization areas in China. Habitat Int. 2024 , 145 , 103018. [ Google Scholar ] [ CrossRef ]
  • Opinions on the Implementation of the Project for the Inheritance and Development of Chinese Excellent Traditional Culture. Available online: https://www.gov.cn/zhengce/2017-01/25/content_5163472.htm (accessed on 1 July 2024).
  • Yan, K. Research on traditional villages’ protection system in China. Mod. Urban Res. 2016 , 1 , 2–9. [ Google Scholar ]
  • Long, H.; Tu, S.; Ge, D.; Li, T.; Liu, Y. The allocation and management of critical resources in rural China under restructuring: Problems and prospects. J. Rural Stud. 2016 , 47 , 392–412. [ Google Scholar ] [ CrossRef ]
  • Gao, J.; Wu, B. Revitalizing traditional villages through rural tourism: A case study of Yuanjia Village, Shaanxi Province, China. Tour. Manag. 2017 , 63 , 223–233. [ Google Scholar ] [ CrossRef ]
  • Chen, W.; Yang, Z.; Yang, L.; Wu, J.; Bian, J.; Zeng, J.; Liu, Z. Identifying the spatial differentiation factors of traditional villages in China. Herit. Sci. 2023 , 11 , 149. [ Google Scholar ] [ CrossRef ]
  • Liu, P.; Zeng, C.; Liu, R. Environmental adaptation of traditional Chinese settlement patterns and its landscape gene mapping. Habitat Int. 2023 , 135 , 102808. [ Google Scholar ] [ CrossRef ]
  • Zhang, C.; Chen, J. Spatial Morphology Optimization of Rural Planning Based on Space of Flow: An Empirical Study of Zepan Village in China. Land 2023 , 12 , 841. [ Google Scholar ] [ CrossRef ]
  • Jiang, Y.; Li, N.; Wang, Z. Parametric Reconstruction of Traditional Village Morphology Based on the Space Gene Perspective—The Case Study of Xiaoxi Village in Western Hunan, China. Sustainability 2023 , 15 , 2088. [ Google Scholar ] [ CrossRef ]
  • Peng, Y. Analysis of Traditional Village Settlements Landscape ; China Architecture & Building Press: Beijing, China, 1992. [ Google Scholar ]
  • Liu, P. Ancient Villages: Harmonious Gathering Spaces ; Shanghai Sanlian Bookstore: Shanghai, China, 1997. [ Google Scholar ]
  • Liu, C.; Cao, Y.; Yang, C.; Zhou, Y.; Ai, M. Pattern identification and analysis for the traditional village using low altitude UAV-borne remote sensing: Multifeatured geospatial data to support rural landscape investigation, documentation and management. J. Cult. Herit. 2020 , 44 , 185–195. [ Google Scholar ] [ CrossRef ]
  • Pham, T.H.; Ichalal, D.; Mammar, S. Complete coverage path planning for pests-ridden in precision agriculture using UAV. In Proceedings of the 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), Nanjing, China, 2 November 2020; pp. 1–6. [ Google Scholar ]
  • Zhang, C.; Xiong, W.; Shao, T.; Zhang, Y.; Zhang, Z.; Zhao, F. Analyses of the Spatial Morphology of Traditional Yunnan Villages Utilizing Unmanned Aerial Vehicle Remote Sensing. Land 2023 , 12 , 2011. [ Google Scholar ] [ CrossRef ]
  • Teng, Z.; Li, C.; Zhao, W.; Wang, Z.; Li, R.; Zhang, L.; Song, Y.; Mahdi, A.; Abbasi, M. Extraction and Analysis of Spatial Feature Data of Traditional Villages Based on the Unmanned Aerial Vehicle (UAV) Image. Mob. Inf. Syst. 2022 , 2022 , 4663740. [ Google Scholar ] [ CrossRef ]
  • Nikolakopoulos, K.G.; Soura, K.; Koukouvelas, I.K.; Argyropoulos, N.G. UAV vs classical aerial photogrammetry for archaeological studies. J. Archaeol. Sci. Rep. 2017 , 14 , 758–773. [ Google Scholar ] [ CrossRef ]
  • Alshawabkeh, Y.; Baik, A.; Fallatah, A. As-Textured As-Built BIM Using Sensor Fusion, Zee Ain Historical Village as a Case Study. Remote Sens. 2021 , 13 , 5135. [ Google Scholar ] [ CrossRef ]
  • Lin, G.; Giordano, A.; Sang, K.; Stendardo, L.; Yang, X. Application of Territorial Laser Scanning in 3D Modeling of Traditional Village: A Case Study of Fenghuang Village in China. Isprs Int. J. Geo-Inf. 2021 , 10 , 770. [ Google Scholar ] [ CrossRef ]
  • Moyano, J.; Nieto-Julián, J.E.; Lenin, L.M.; Bruno, S. Operability of Point Cloud Data in an Architectural Heritage Information Model. Int. J. Arch. Herit. 2022 , 16 , 1588–1607. [ Google Scholar ] [ CrossRef ]
  • Yin, J.; Yang, W.; Kong, Z. Extraction Method of Optimal Scenic Routes in Traditional Villages based on ArcGIS: A Case Study of the World Cultural Heritage Site of Kaiping Diaolou and Villages. Planner 2015 , 1 , 90–94. [ Google Scholar ]
  • Wang, M.; Yang, J.; Hsu, W.; Zhang, C.; Liu, H. Service Facilities in Heritage Tourism: Identification and Planning Based on Space Syntax. Information 2021 , 12 , 504. [ Google Scholar ] [ CrossRef ]
  • Lin, Z.; Liang, Y.; Liu, X. Study on spatial form evolution of traditional villages in Jiuguan under the influence of historic transportation network. Herit. Sci. 2024 , 12 , 15–29. [ Google Scholar ] [ CrossRef ]
  • Zhu, Q.; Liu, S. Spatial Morphological Characteristics and Evolution of Traditional Villages in the Mountainous Area of Southwest Zhejiang. ISPRS Int. J. Geo-Inf. 2023 , 12 , 317. [ Google Scholar ] [ CrossRef ]
  • Song, W.; Li, H. Spatial pattern evolution of rural settlements from 1961 to 2030 in Tongzhou District, China. Land Use Policy 2020 , 99 , 105044. [ Google Scholar ] [ CrossRef ]
  • Chen, Y.; Shu, B.; Amani-Beni, M.; Wei, D. Spatial distribution patterns of rural settlements in the multi-ethnic gathering areas, southwest China: Ethnic inter-embeddedness perspective. J. Asian Arch. Build. Eng. 2024 , 23 , 372–385. [ Google Scholar ] [ CrossRef ]
  • Ma, H.; Tong, Y. Spatial differentiation of traditional villages using ArcGIS and GeoDa: A case study of Southwest China. Ecol. Inf. 2022 , 68 , 101416. [ Google Scholar ] [ CrossRef ]
  • Yang, X.; Kong, Z.; Li, X. Research on the Spatial Pattern of Traditional Villages Based on Spatial Syntax: A Case Study of Baishe Village. Iop Conf. Ser. Earth Environ. Sci. 2019 , 295 , 32071. [ Google Scholar ] [ CrossRef ]
  • Liu, W.; Henneberry, S.R.; Ni, J.; Radmehr, R.; Wei, C. Socio-cultural roots of rural settlement dispersion in Sichuan Basin: The perspective of Chinese lineage. Land Use Policy 2019 , 88 , 104162. [ Google Scholar ] [ CrossRef ]
  • Chen, X.; Xie, W.; Li, H. The spatial evolution process, characteristics and driving factors of traditional villages from the perspective of the cultural ecosystem: A case study of Chengkan Village. Habitat Int. 2020 , 104 , 102250. [ Google Scholar ] [ CrossRef ]
  • Zhang, W.M.; Xin, J.; HE, G. Study on Spatial Structure and Form of Rural Residential Based on Fractal Theory: A Case Study on Pinggu District in Beijing. J. Nat. Resour. 2015 , 30 , 1534–1546. [ Google Scholar ] [ CrossRef ]
  • Yongmei, D.; Xueyi, S.; Wenjie, D. A Quantitative Study on Spatial Structure and Form of Rural Residential Area Based on Fractal Theory. Res. Soil Water Conserv. 2016 , 6 , 48. [ Google Scholar ]
  • Pu, X.; Wang, Z.; Huang, Q. Analysis of the Boundary Form of Rural Settlements. Archit. Cult. 2013 , 8 , 48–49. [ Google Scholar ]
  • Williams, K.; Duvernoy, S. The Shadow of Euclid on Architecture. Math. Intell. 2014 , 36 , 37–48. [ Google Scholar ] [ CrossRef ]
  • Pu, X.; Wang, Z.; Gao, L.; Huang, Q. Directional Quantitative Study on the Plan Form of Rural Settlements. J. Archit. 2013 , 5 , 111–115. [ Google Scholar ]
  • Pandi, S. Research on the Evolution of Traditional Village Public Space Based on Spatial Syntax—Take Peicheng Village, Henan Province as an Example. Sci. Discov. 2022 , 10 , 450–458. [ Google Scholar ] [ CrossRef ]
  • Wei, T.; Hongye, C.; Jieyong, L. Spatial form and spatial cognition of traditional village in syntactical view: A case study of Xiaozhou Village, Guangzhou. Acta Geogr. Sin. 2013 , 68 , 209–218. [ Google Scholar ] [ CrossRef ]
  • Badwi, I.M.; Ellaithy, H.M.; Youssef, H.E. 3D-GIS Parametric Modelling for Virtual Urban Simulation Using CityEngine. Ann. GIS 2022 , 28 , 325–341. [ Google Scholar ] [ CrossRef ]
  • Montenegro, N. City Information Modelling: Parametric Urban Models including Design Support Data ; ISCTE Lisboa: Lisbon, Portugal, 2012. [ Google Scholar ]
  • Hu, Z.; Strobl, J.; Min, Q.; Tan, M.; Chen, F. Visualizing the cultural landscape gene of traditional settlements in China: A semiotic perspective. Herit. Sci. 2021 , 9 , 115. [ Google Scholar ] [ CrossRef ]
  • Koziatek, O.; Dragićević, S. iCity 3D: A geosimualtion method and tool for three-dimensional modeling of vertical urban development. Landsc. Urban Plan 2017 , 167 , 356–367. [ Google Scholar ] [ CrossRef ]
  • Murty, V.R.K.; Shankar, S. Towards a Scalable Architecture for Smart Villages: The Discovery Phase. Sustainability 2020 , 12 , 7580. [ Google Scholar ] [ CrossRef ]
  • Meng, F.; Quan, R.; Ding, L. Application of 3D Laser Scanning and Oblique Photography Techniques in Renovation Projects of Old Buildings. Bull. Surv. Mapp. 2022 , 2 , 212–217. [ Google Scholar ]
  • Cheng, W.; Feng, X. Application of Low-altitude Multi-rotor UAV Aerial Survey in the Pre-site Observation of Landscape Architecture Planning and Design. Chin. Gard. 2018 , 34 , 97–101. [ Google Scholar ]
  • Yang, Y.; Tang, X.; Zhan, Q. Traditional Settlement Investigation and Application Prospects Based on Low-altitude UAV Aerial Survey Technology: A Case Study of Laomendong in Nanjing City. Chin. Gard. 2021 , 37 , 72–76. [ Google Scholar ]
  • Chen, Y.; Samuelson, H.W.; Tong, Z. Integrated design workflow and a new tool for urban rainwater management. J. Environ. Manag. 2016 , 180 , 45–51. [ Google Scholar ] [ CrossRef ]
  • Pan, Y.; Tian, T. The dissemination and evolution of Jiangxi Pan-Tianmen-style residential buildings. Archit. Herit. 2018 , 4 , 22–28. [ Google Scholar ] [ CrossRef ]
  • GB/T 14912-2005 ; Specifications for 1:500 1:1 000 1:2000 Field Digital Mapping. National Technical Committee for Geographic Information Standardisation: Beijing, China, 2017.

Click here to enlarge figure

HierarchySpatial CharacteristicsQuantitative IndicatorsAnalysis Software/Explanation
Topographic
Environment
Interpretation of Feng Shui Forest Topographic elevation, Feng Shui forest protection rangeArcgis 10.8
Village Water ManagementWater source, water volume, irrigation pathsGrasshopper 7.0
Rainwater runoff
Street SpacesStreet ScaleStreet widthDirect calculation from point cloud
Street HierarchyDistribution of streets
Placement of House Doors in Streets
Combination of point cloud model statistics and field surveys
Individual
Buildings
Courtyard Space AreaBuilding footprint areaDirect calculation from point cloud
SaturationRatio of courtyard area to the area of the circumscribed rectangleHigher value indicates more saturated courtyard space
Boundary Coefficient Ratio of courtyard perimeter to the perimeter of the circumscribed rectangleThe value closer to 1 indicates a more regular courtyard shape
Courtyard FormCombination and expansion relationships of courtyardsPoint cloud model statistics
HierarchyBasic FeaturesSpecific ContentComputational/Analytical Methods
Terrain environmentGroundSlope, direction, elevationMountain and ground slope, slope direction, elevationIn combination with gis
ForestShapeShape index of tree crown projection in forest landIn combination with gis
Area Area of tree crown projection in forest land Direct calculation from point cloud
Height Average height and height variation in forest landDirect calculation from point cloud
WaterLength, width Length and width of the minimum bounding rectangle of pond contoursDirect calculation from point cloud
Perimeter, areaPerimeter and area of pond contoursDirect calculation from point cloud
VolumeWater storage capacity of pondsPhysical simulation based on 3D data
Street hierarchySpaceWidth Width of streets, i.e., distance between outer walls of buildings on both sidesDirect calculation from point cloud
Height Height of streets, i.e., height of buildings along the street and variations along the roadDirect calculation from point cloud
Height-to-width ratioHeight-to-width ratio of streets and variations along the roadDirect calculation from point cloud
Visibility analysisVisibility analysis of landmark featuresPhysical simulation based on 3D data
InterfaceSlope, directionSlope and direction of street surfacesIn combination with gis
SinuosityRatio of actual length of street centerline to endpoint lengthDirect calculation from point cloud
Distribution densityPublic space ratio: ratio of public space area to total base areaDirect calculation from point cloud
Building hierarchySpaceBuilding heightHeight from ground to flat/sloping roofs, ridge height and eave height of sloping roofs (individual/average)Direct calculation from point cloud
Overall height distribution and height differences of building clustersDirect calculation from point cloud
RoofNumber of buildings Number of buildings divided by roof typeDirect calculation from point cloud
Slope, directionSlope and direction of roofs (individual/average)Direct calculation from point cloud
ShapeLength-to-width ratio of roofs (individual/average)Direct calculation from point cloud
Length, width Length and width of roofs (individual/average)Direct calculation from point cloud
GroundShapeLength-to-width ratio of building footprints (individual/average)Direct calculation from point cloud
AreaBuilding footprint area = roof projection area—eave area (individual/average)Direct calculation from point cloud
The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

Li, Z.; Wang, T.; Sun, S. Research on Quantitative Analysis Methods for the Spatial Characteristics of Traditional Villages Based on Three-Dimensional Point Cloud Data: A Case Study of Liukeng Village, Jiangxi, China. Land 2024 , 13 , 1261. https://doi.org/10.3390/land13081261

Li Z, Wang T, Sun S. Research on Quantitative Analysis Methods for the Spatial Characteristics of Traditional Villages Based on Three-Dimensional Point Cloud Data: A Case Study of Liukeng Village, Jiangxi, China. Land . 2024; 13(8):1261. https://doi.org/10.3390/land13081261

Li, Zhe, Tianlian Wang, and Su Sun. 2024. "Research on Quantitative Analysis Methods for the Spatial Characteristics of Traditional Villages Based on Three-Dimensional Point Cloud Data: A Case Study of Liukeng Village, Jiangxi, China" Land 13, no. 8: 1261. https://doi.org/10.3390/land13081261

Article Metrics

Article access statistics, further information, mdpi initiatives, follow mdpi.

MDPI

Subscribe to receive issue release notifications and newsletters from MDPI journals

Quantitative and qualitative similarity measure for data clustering analysis

  • Published: 08 August 2024

Cite this article

data analysis on quantitative research

  • Jamil AlShaqsi   ORCID: orcid.org/0000-0002-4408-7967 1 ,
  • Wenjia Wang   ORCID: orcid.org/0000-0001-9372-0418 2 ,
  • Osama Drogham 3 , 4 &
  • Rami S. Alkhawaldeh   ORCID: orcid.org/0000-0002-2413-7074 5  

80 Accesses

6 Altmetric

Explore all metrics

This paper introduces a novel similarity function that evaluates both the quantitative and qualitative similarities between data instances, named QQ-Means (Qualitative and Quantitative-Means). The values are naturally scaled to fall within the range of − 1 to 1. The magnitude signifies the extent of quantitative similarity, while the sign denotes qualitative similarity. The effectiveness of the QQ-Means for cluster analysis is tested by incorporating it into the K-means clustering algorithm. We compare the results of the proposed distance measure with commonly used distance or similarity measures such as Euclidean distance, Hamming distance, Mutual Information, Manhattan distance, and Chebyshev distance. These measures are also applied to the classic K-means algorithm or its variations to ensure consistency in the experimental procedure and conditions. The QQ-Means similarity metric was evaluated on gene-expression datasets and real-world complex datasets. The experimental findings demonstrate the effectiveness of the novel similarity measurement method in extracting valuable information from the data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save.

  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime

Price includes VAT (Russian Federation)

Instant access to the full article PDF.

Rent this article via DeepDyve

Institutional subscriptions

data analysis on quantitative research

Similar content being viewed by others

data analysis on quantitative research

Impact of Distance Measures on the Performance of Clustering Algorithms

data analysis on quantitative research

Band-based similarity indices for gene expression classification and clustering

Explore related subjects.

  • Artificial Intelligence

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author upon reasonable request.

UCI machine learning repository: https://archive.ics.uci.edu/

Rehman, A., Naz, S., Razzak, I.: Leveraging big data analytics in healthcare enhancement: trends, challenges and opportunities. Multimed. Syst. 28 (4), 1339–1371 (2022)

Article   Google Scholar  

Cantelmi, R., Di Gravio, G., Patriarca, R.: Reviewing qualitative research approaches in the context of critical infrastructure resilience. Environ. Syst. Decis. 41 (3), 341–376 (2021)

Ikotun, A.M., Ezugwu, A.E., Abualigah, L., Abuhaija, B., Heming, J.: K-means clustering algorithms: a comprehensive review, variants analysis, and advances in the era of big data. Inform. Sci. 622 , 178–210 (2023)

Oyewole, G.J., Thopil, G.A.: Data clustering: application and trends. Artif. Intell. Rev. 56 (7), 6439–6475 (2023)

Dorgham, O., Naser, M., Ryalat, M., Hyari, A., Al-Najdawi, N., Mirjalili, S.: U-NetCTS: U-Net deep neural network for fully automatic segmentation of 3D CT DICOM volume. Smart Health 26 , 100304 (2022)

Ran, X., Xi, Y., Lu, Y., Wang, X., Lu, Z.: Comprehensive survey on hierarchical clustering algorithms and the recent developments. Artif. Intell. Rev. 56 (8), 8219–8264 (2023)

Hassaoui, M., Hanini, M., El Kafhali, S.: Unsupervised clustering for a comparative methodology of machine learning models to detect domain-generated algorithms based on an alphanumeric features analysis. J. Netw. Syst. Manage. 32 (1), 1–38 (2024)

Li, B., Mostafavi, A.: Unraveling fundamental properties of power system resilience curves using unsupervised machine learning. Energy AI (2024). https://doi.org/10.1016/j.egyai.2024.100351

Sarker, I.H.: Deep learning: a comprehensive overview on techniques, taxonomy, applications and research directions. SN Comput. Sci. 2 (6), 420 (2021)

Klemm, C., Vennemann, P.: Modeling and optimization of multi-energy systems in mixed-use districts: a review of existing methods and approaches. Renew. Sustain. Energy Rev. 135 , 110206 (2021)

Lee, J.H., Moon, I.-C., Oh, R.: Similarity search on wafer bin map through nonparametric and hierarchical clustering. IEEE Trans. Semicond. Manuf. 34 (4), 464–474 (2021)

José-García, A., Handl, J., Gómez-Flores, W., Garza-Fabre, M.: An evolutionary many-objective approach to multiview clustering using feature and relational data. Appl. Soft Comput. 108 , 107425 (2021)

Irfan, S., Dwivedi, G., Ghosh, S.: Optimization of k-means clustering using genetic algorithm. In: 2017 International Conference on Computing and Communication Technologies for Smart Nation (IC3TSN), IEEE, pp. 156–161 (2017).

Verma, T., Gopalakrishnan, P.: Categorising the existing irradiance based blind control occupant behavior models (bc-obms) using unsupervised machine learning approach: a case of office building in india. Energy and Buildings 279 , 112700 (2023)

He, Q., Borgonovi, F., Suárez-Álvarez, J.: Clustering sequential navigation patterns in multiple-source reading tasks with dynamic time warping method. J. Comput. Assist. Learn. 39 (3), 719–736 (2023)

Fkih, F.: Similarity measures for collaborative filtering-based recommender systems: review and experimental comparison. J. King Saud Univ.-Comput. Inform. Sci. 34 (9), 7645–7669 (2022)

Google Scholar  

Sharma, K.K., Seal, A., Yazidi, A., Selamat, A., Krejcar, O.: Clustering uncertain data objects using jeffreys-divergence and maximum bipartite matching based similarity measure. IEEE Access 9 , 79505–79519 (2021)

Sharma, K.K., Seal, A., Yazidi, A., Krejcar, O.: A new adaptive mixture distance-based improved density peaks clustering for gearbox fault diagnosis. IEEE Trans. Instrum. Measure. 71 , 1–16 (2022)

Bui, Q.-T., Ngo, M.-P., Snasel, V., Pedrycz, W., Vo, B.: Information measures based on similarity under neutrosophic fuzzy environment and multi-criteria decision problems. Eng. Appl. Artif. Intell. 122 , 106026 (2023)

Cheng, L., Zhu, P., Sun, W., Han, Z., Tang, K., Cui, X.: Time series classification by euclidean distance-based visibility graph. Phys. A: Stat. Mech. Its Appl. 625 , 129 (2023)

Mao, J., Jain, A.K.: A self-organizing network for hyperellipsoidal clustering (hec). IEEE Trans. Neural Netw. 7 (1), 16–29 (1996)

Kouser, K., Sunita, S.: A comparative study of k means algorithm by different distance measures. Int. J. Innov. Res. Comput. Commun. Eng. 1 (9), 2443–2447 (2013)

Lance, G.N., Williams, W.T.: Mixed-data classificatory programs I-agglomerative systems. Aust. Comput. J. 1 (1), 15–20 (1967)

Hedges, T.: An empirical modification to linear wave theory. Proc. Ins. Civil Eng. 61 (3), 575–579 (1976)

Cheng, H., Liu, Z., Hou, L., Yang, J.: Sparsity-induced similarity measure and its applications. IEEE Trans. Circuits Syst. Video Technol. 26 (4), 613–626 (2012)

Simovici, D.A.: CLUSTERING: Theoretical and Practical Aspects. World Scientific, Singapore (2021)

Book   Google Scholar  

Huang, Z.: A fast clustering algorithm to cluster very large categorical data sets in data mining. Dmkd 3 (8), 34–39 (1997)

Tversky, A.: Features of similarity. Psychol. Rev. 84 (4), 327 (1977)

Chaturvedi, A., Green, P.E., Caroll, J.D.: K-modes clustering. J. Classif. 18 , 35–55 (2001)

Article   MathSciNet   Google Scholar  

Jiang, Y., Wang, X., Zheng, H.-T.: A semantic similarity measure based on information distance for ontology alignment. Inform. Sci. 278 , 76–87 (2014)

Gong, H., Li, Y., Zhang, J., Zhang, B., Wang, X.: A new filter feature selection algorithm for classification task by ensembling pearson correlation coefficient and mutual information. Eng. Appl. Artif. Intell. 131 , 107865 (2024)

Zhou, H., Wang, X., Zhang, Y.: Feature selection based on weighted conditional mutual information. Appl. Comput. Inform. 20 (1/2), 55–68 (2024)

He, Z., Xu, X., Deng, S.: K-anmi: a mutual information based clustering algorithm for categorical data. Inform. Fusion 9 (2), 223–233 (2008)

Velesaca, H.O., Bastidas, G., Rouhani, M., Sappa, A.D.: Multimodal image registration techniques: a comprehensive survey. Multimed. Tools Appl. (2024). https://doi.org/10.1007/s11042-023-17991-2

Lin, Y.-S., Jiang, J.-Y., Lee, S.-J.: A similarity measure for text classification and clustering. IEEE Trans. Knowl. Data Eng. 26 (7), 1575–1590 (2013)

Ashraf, S., Naeem, M., Khan, A., Rehman, N., Pandit, M., et al.: Novel information measures for fermatean fuzzy sets and their applications to pattern recognition and medical diagnosis. Comput. Intell. Neurosci. (2023). https://doi.org/10.1155/2023/9273239

Salcedo, G.E., Montoya, A.M., Arenas, A.F.: A spectral similarity measure between time series applied to the identification of protein-protein interactions. In: BIOMAT 2014: International Symposium on Mathematical and Computational Biology, World Scientific, pp. 129–139 (2015)

Dubey, V.K., Saxena, A.K.: A sequential cosine similarity based feature selection technique for high dimensional datasets. In: 2015 39th National Systems Conference (NSC), IEEE, pp. 1–5 (2015)

Verde, R., Irpino, A., Balzanella, A.: Dimension reduction techniques for distributional symbolic data. IEEE Trans. Cybern. 46 (2), 344–355 (2015)

Li, T., Rezaeipanah, A., El Din, E.M.T.: An ensemble agglomerative hierarchical clustering algorithm based on clusters clustering technique and the novel similarity measurement. J. King Saud Univ.-Comput. Inform. Sci. 34 (6), 3828–3842 (2022)

Bagherinia, A., Minaei-Bidgoli, B., Hosseinzadeh, M., Parvin, H.: Reliability-based fuzzy clustering ensemble. Fuzzy Sets Syst. 413 , 1–28 (2021)

Dogan, A., Birant, D.: K-centroid link: a novel hierarchical clustering linkage method. Appl. Intell. (2022). https://doi.org/10.1007/s10489-021-02624-8

Ma, T., Zhang, Z., Guo, L., Wang, X., Qian, Y., Al-Nabhan, N.: Semi-supervised selective clustering ensemble based on constraint information. Neurocomputing 462 , 412–425 (2021)

Al-Shaqsi, J.,Wang, W.: A clustering ensemble method for clustering mixed data. In: The 2010 International Joint Conference on Neural Networks (IJCNN), pp. 1–8 (2010). IEEE

Poggiali, A., Berti, A., Bernasconi, A., Del Corso, G.M., Guidotti, R.: Quantum clustering with k-means: a hybrid approach. Theor. Comput. Sci. (2024). https://doi.org/10.1016/j.tcs.2024.114466

Hu, H., Liu, J., Zhang, X., Fang, M.: An effective and adaptable k-means algorithm for big data cluster analysis. Pattern Recognit. 139 , 109404 (2023)

Al Shaqsi, J., Wang, W.: Estimating the predominant number of clusters in a dataset. Intelligent Data Analysis 17(4), 603–626 (2013)

Theodoridis, S., Koutroumbas, K.: Pattern Recognition. Elsevier, Amsterdam (2006)

Halkidi, M., Batistakis, Y., Vazirgiannis, M.: Cluster validity methods: part I. ACM Sigmod Record 31 (2), 40–45 (2002)

Aranganayagi, S., Thangavel, K.: Improved k-modes for categorical clustering using weighted dissimilarity measure. Int. J. Comput. Inform. Eng. 3 (3), 729–735 (2009)

He, Z., Xu, X., Deng, S.: Scalable algorithms for clustering large datasets with mixed type attributes. Int. J. Intell. Syst. 20 (10), 1077–1089 (2005)

Yeung, K.Y., Ruzzo, W.L.: Details of the adjusted rand index and clustering algorithms, supplement to the paper an empirical study on principal component analysis for clustering gene expression data. Bioinformatics 17 (9), 763–774 (2001)

Yang, Y., Guan, X., You, J.: Clope: a fast and effective clustering algorithm for transactional data. In: Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 682–687 (2002)

Tasoulis, D.K., Vrahatis, M.N.: Generalizing the k-windows clustering algorithm in metric spaces. Math. Comput. Model. 46 (1–2), 268–277 (2007)

Xiao, Y., Li, H.-B., Zhang, Y.-P.: Dbgsa: a novel data adaptive bregman clustering algorithm. Eng. Appl. Artif. Intell. 131 , 107846 (2024)

Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7 , 1–30 (2006)

MathSciNet   Google Scholar  

Chai, J.S., Selvachandran, G., Smarandache, F., Gerogiannis, V.C., Son, L.H., Bui, Q.-T., Vo, B.: New similarity measures for single-valued neutrosophic sets with applications in pattern recognition and medical diagnosis problems. Complex intell. systems. 7 , 703–723 (2021)

Ghobaei-Arani, M.: A workload clustering based resource provisioning mechanism using biogeography based optimization technique in the cloud based systems. Soft Comput. 25 (5), 3813–3830 (2021)

Rezaeipanah, A., Amiri, P., Nazari, H., Mojarad, M., Parvin, H.: An energy-aware hybrid approach for wireless sensor networks using re-clustering-based multi-hop routing. Wirel. Personal Commun. 120 (4), 3293–3314 (2021)

Li, G., Chen, Y., Cao, D., Qu, X., Cheng, B., Li, K.: Extraction of descriptive driving patterns from driving data using unsupervised algorithms. Mech. Syst. Signal Proc. 156 , 107589 (2021)

Al Shaqsi, J., Borghan, M., Drogham, O., Al Whahaibi, S.: A machine learning approach to predict the parameters of covid-19 severity to improve the diagnosis protocol in oman. SN Appl. Sci. 5 (10), 273 (2023)

Al Shaqsi, J., Drogham, O., Aburass, S.: Advanced machine learning based exploration for predicting pandemic fatality: Oman dataset. Inform. Med. Unlocked 43 , 101393 (2023)

Zhang, C., Huang, W., Niu, T., Liu, Z., Li, G., Cao, D.: Review of clustering technology and its application in coordinating vehicle subsystems. Automot. Innov. 6 (1), 89–115 (2023)

Yeung, K.Y., Medvedovic, M., Bumgarner, R.E.: Clustering gene-expression data with repeated measurements. Genome Biol. 4 , 1–17 (2003)

Fiorini, S.: Gene expression cancer RNA-Seq data set (2021)

Zhang, Y., Deng, Q., Liang, W., Zou, X., et al.: An efficient feature selection strategy based on multiple support vector machine technology with gene expression data. BioMed Res. Int. 20 , 18 (2018). https://doi.org/10.1155/2018/7538204

Weinstein, J.N., Collisson, E.A., Mills, G.B., Shaw, K.R., Ozenberger, B.A., Ellrott, K., Shmulevich, I., Sander, C., Stuart, J.M.: The cancer genome atlas pan-cancer analysis project. Nat. Genet. 45 (10), 1113–1120 (2013)

Download references

This work is funded.

Author information

Authors and affiliations.

Information Systems Department, Sultanate Qaboos University, Muscat, Oman

Jamil AlShaqsi

School of Computing Sciences, University of East Anglia, Norwich, UK

Wenjia Wang

Prince Abdullah bin Ghazi Faculty of Information and Communication Technology, Al-Balqa Applied University, Al-Salt, 19117, Jordan

Osama Drogham

School of Information Technology, Skyline University College, University City of Sharjah, Sharjah, 1797, United Arab Emirates

Department of Computer Information Systems, The University of Jordan, Aqaba, 77110, Jordan

Rami S. Alkhawaldeh

You can also search for this author in PubMed   Google Scholar

Contributions

Conceptualization, A, J., W, W.; methodology, A, J., W, W.; software, A, J., W, W., D, O., A, R.; formal analysis, A, J., A, R.; investigation, A, J., W, W., A, R.; resources, A, J., W, W., D, O., A, R.; data curation, W, W., D, O., A, R.; writing—original draft preparation, A, J., W, W., D, O.; writing—review and editing, A, R., A, J.; visualization, A, J., W, W., A, R.; supervision, A, J., W, W.; project administration,A, J., W, W.; funding acquisition, A, J., D, O. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Jamil AlShaqsi .

Ethics declarations

Conflict of interest.

The author(s) declare(s) that there is no conflict of interest regarding the publication of this paper.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's note.

Springer nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A Proof of the Properties of the proposed Distance metric

As the core of our proposed similarity measure lies in the new distance metric and thus it is necessary this appendix provides the mathematical proofs that the distance function is a metric.

Definition of the distance function: For two data points x and y \(\in\) \(\Re\) , the distance \(\delta\) (x, y) between them is defined as

Theorem 1: \(\delta\) is a metric on R, and satisfies the following three properties:

\(\delta \left( x,y\right) \ge 0\)

\(\mathrm {symmetry:\ }\delta \left( x,y\right) =\delta \left( y,x\right)\)

Triangle inequality: \(\delta \left( x,y\right) \le \delta \left( x,z\right) +\delta \left( z,y\right) ,\ \forall \ x,y,\ z\ \in \ R\)

The proof of this theorem is carried out for all possible cases on real positive and negative real domains separately below.

Firstly, we consider R \({}^{+}\) x R \({}^{+}\) [0, 1]

(N.B we assume \(0\ \epsilon \ R^+\) .)

Let \(y=a\) be fixed. Then as x varies, the function \(x\mapsto \delta \left( x,a\right)\) has a curve as shown in Fig. 6 .

When \(x\ge a,\mathrm{\; \; }\delta \left( x,y\right) =\frac{x-a}{x} =1-\frac{a}{x} ,\mathrm{\; \; \; }{\mathop {\lim }\limits _{x\rightarrow \infty }} \left( 1-\frac{a}{x} \right) \Rightarrow 1\)

Corollary A1

\(\delta\) is a metric on R \({}^{+}\) , and satisfies the following three properties:

figure 6

Illustration of the distance function on the + real domain

Triangle inequality: \(\delta \left( x,y\right) \le \delta \left( x,z\right) +\delta \left( z,y\right) ,\ \forall \ x,y,\ z\ \in \ R^+\)

The first two points are very clear but the third point is less obvious. Therefore, we have to consider 6 cases to prove it.

CASE 1: \(\varvec{x}\varvec{\le }\varvec{y}\varvec{\le }\varvec{z}\)

Hence on this case \(\delta \left( x,y\right) \le \delta \left( x,z\right) +\delta \left( z,y\right)\)

CASE 2: \(\varvec{x}\varvec{\le }\varvec{z}\varvec{\le }\varvec{y}\)

CASE 3: \(\varvec{y}\varvec{\le }\varvec{x}\varvec{\le }\varvec{z}\)

By CASE 1, \(\delta \left( y,x\right) \le \delta \left( y,z\right) +\delta \left( z,x\right)\)

Hence, by symmetry of \(\delta \left( x,y\right) \le \delta \left( x,z\right) +\delta \left( z,y\right)\)

CASE 4: \(\varvec{y}\varvec{\le }\varvec{z}\varvec{\le }\varvec{x}\)

By CASE 2, \(\delta \left( y,x\right) \le \delta \left( y,z\right) +\delta \left( z,x\right)\)

Again, the result holds in this case by symmetry.

CASE 5: \(\varvec{z}\varvec{\le }\varvec{x}\varvec{\le }\varvec{y}\)

Here Triangle inequality holds in this case.

CASE 6: \(\varvec{z}\varvec{\le }\varvec{y}\varvec{\le }\varvec{x}\)

By case 5, \(\delta \left( y,z\right) +\delta \left( z,x\right) \ge \delta \left( y,x\right)\)

Since we have considered all possible orderings of x ,  y ,  z and in all cases the Triangle inequality holds, the theorem is established.

Corollary A2

\(\delta\) is a metric on R \({}^{-}\)

Corollary 3: \(\delta\) is a metric on \(R^+\bigcup {\ \left\{ 0\right\} }\ \textrm{where}\ \delta \left( 0,0\right) \ \mathrm {is\ assumed\ to\ be\ 0\ on\ }R^+\bigcup {\ \left\{ 0\right\} .}\)

Again consider (1) and (2) of a metric are obvious but it is the Triangle inequality that needs careful consideration if all three values of x ,  y ,  z are positive (or negative) the result holds.

If all are ZERO , the result is obvious.

So \(\delta\) is a metric on \({\varvec{R}}^{\varvec{+}}\bigcup {\left\{ \varvec{0}\right\} }\varvec{\ }\varvec{or}\varvec{\ \ }{\varvec{R}}^{\varvec{-}}\bigcup {\left\{ \varvec{0}\right\} }\)

We now have to consider the cases where not all of \(x,y,\textrm{and}\ z\) are either \(\ge 0\ \textrm{or}\ \le 0.\)

Consider the cases where one value is negative and two values are \(\ge 0\)

Case 1: \(\varvec{x}\varvec{\le }\varvec{0}\varvec{\ }\varvec{\textrm{and}}\varvec{\ }\varvec{0}\varvec{\le }\varvec{y}\varvec{\ }\varvec{\le }\varvec{z}.\)

Case 1a: \(x=-a,\ \left( a>0\right) \ \textrm{and}\ 0<a\le y\le z\)

Theorem \(\delta \left( x,z\right) +\delta \left( z,y\right) -\delta \left( x,y\right)\)

Case 1b: \(x=-a,\ \left( a>0\right) \ \textrm{and}\ 0\le y\le a\le z\)

Case 1c: \(x=-a,\ \left( a>0\right) \ \textrm{and}\ 0\le y\le z\le a\)

So for case 1 the Triangle inequality holds.

Case 2: \(\varvec{x}<0\ \varvec{\textrm{and}}\varvec{\ }\varvec{0}\varvec{\le }\varvec{z}\varvec{\ }\varvec{\le }\varvec{y}.\)

Again let \(x=-a,\ \left( a>0\right) .\)

Case 2a: \(a\le z\ \le y\)

Case 2b: \(\ 0\le z\ \le a\ \le y.\)

Case 2c: \(\ 0\le z\ \le y\ \le a,\ \ \textrm{if}\ z\ \ne \ 0\)

Hence, case 2 is established.

Hence, the case where x is only negative value is established.

Now, consider the case where y is the only negative value but \(x\ge 0\ \textrm{and}\ z\ge 0.\)

Case 3: \(\varvec{y}<0\ \varvec{\textrm{and}}\varvec{\ }\varvec{0}\varvec{\le }\varvec{x}\varvec{\ }\varvec{\le }\varvec{z}\)

Case 3a: \(0<b\le x\ \le z\)

ase 3b: \(0\le x\le b\ \le z,\ \left( b>0\right)\)

Case 3c: \(0\le x\le z\ \le b\)

\(\textrm{if}\) z = 0  then x = 0  as well

Hence, the Triangle inequality for case 3 is established.

Case 4: \(\varvec{\ }\varvec{y}<0\ \varvec{\textrm{and}}\varvec{\ }\varvec{0}\varvec{\le }\varvec{z}\varvec{\ }\varvec{\le }\varvec{x}\)

Case 4a: \(0<b\le z\ \le x\)

Case 4b: \(0\le z\le b\ \le x\)

Case 4c: \(0\le z\le x\ \le b\)

if z = 0 then z = 0 also and then

here the Triangle inequality holds for case 4.

Case 5: \(\ z<0\; \text{and}\; 0\le x\ \le y\)

Case 5a: \(0<c\le x\ \le y\)

Case 5b: \(0\le x\le c\ \le y\)

Case 5c: \(0\le x\le y\ \le c\)

if y = 0 then x = 0 also and

Hence, the Triangle inequality holds for this case.

Case 6: \(\varvec{z}<0\ \varvec{\textrm{and}}\varvec{\ }\varvec{0}\varvec{\le }\varvec{y}\varvec{\ }\varvec{\le }\varvec{x}\)

Case 6a: \(0<c\le y\ \le x\)

Case 6b: \(0\le y\le c\ \le x\)

Case 6c: \(0\le y\le x\ \le c\)

If x = 0 then y = 0 also then, \(\delta \left( x,z\right) +\delta \left( z,y\right) -\delta \left( x,y\right) =1+1-0>0.\)

Hence, the Triangle inequality holds for case 6.

Hence the case where just one value of x ,  y ,  z is negative we have established that the \(\Delta\) inequality holds.

Now consider the case where just two values of x ,  y ,  z are negative and the remaining value is \(\ge 0\)

by the results above since either just one of the values \(-x,-y,-z\) is negative or all values \(-x,-y,-z\) are \(\ge 0\) , or being 0. Hence, in all possible cases, the Triangle inequality holds and we have established the Theorem that \(\delta\) is a metric on R.

It is interesting to draw the distance curve for the metric on the whole of one dimension space R(- \(\mathrm {\infty }\) , + \(\mathrm {\infty }\) ) extended on Figs.  6 and 7 .

figure 7

Illustration of the new distance metric

The following properties can be seen from the figure.

When two data samples x and y have the same sign, i.e. \(\textrm{if}\ y>0\ and\ x\ge 0\ then\ \delta \left( x,y\right) \in \left[ 0,1\right]\) .

Specifically,

When one of two points, say y, is fixed at a, then,

When x and y have different signs, e.g. \(\textrm{if}\ y>0\ and\ x\le 0\ then\ \delta \left( x,y\right) \in \left[ 1,2\right]\) , representing both quantitative and qualitative difference.

When both data points are zeros, i.e.

When one of two is zero,

When one data point is approaching infinite, the distance is limited to one,

This property can be further explored and potentially used to deal with data outliers because the distance is bounded so that the influence of a data point larger than a given value, e.g. outlier, is limited, and the farther out an outlier is, the less influence it will have, which is not the case in other distance-based measures.

Special non-differential points: when y = 0, x = a, (or x = 0, y = a), the distance curve reaches its peak values 0 or 2, at x = a and x = -a respectively, where the distance function is still continuous but unsmooth, i.e. not differentiable .

More in-depth analysis is required on its theoretical properties and usefulness in various applications.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

AlShaqsi, J., Wang, W., Drogham, O. et al. Quantitative and qualitative similarity measure for data clustering analysis. Cluster Comput (2024). https://doi.org/10.1007/s10586-024-04664-4

Download citation

Received : 11 April 2024

Revised : 15 June 2024

Accepted : 05 July 2024

Published : 08 August 2024

DOI : https://doi.org/10.1007/s10586-024-04664-4

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • K-means clustering
  • Similarity measure
  • Clustering analysis
  • Quantitative and qualitative similarity
  • Clustering purity
  • Find a journal
  • Publish with us
  • Track your research

Logo for VCU Pressbooks

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

Part 4: Using qualitative methods

19. A survey of approaches to qualitative data analysis

Chapter outline.

  • Ethical responsibility and cultural respect (6 minute read)
  • Critical considerations (6 minute read)
  • Preparations: Creating a plan for qualitative data analysis (11 minute read)
  • Thematic analysis (15 minute read)
  • Content analysis (13 minute read)
  • Grounded theory analysis (7 minute read)
  • Photovoice (5 minute read)

Content warning: Examples in this chapter contain references to LGBTQ+ ageing, damaged-centered research, long-term older adult care, family violence and violence against women, vocational training, financial hardship, educational practices towards rights and justice, Schizophrenia, mental health stigma, and water rights and water access.

Just a brief disclaimer, this chapter is not intended to be a comprehensive discussion on qualitative data analysis. It does offer an overview of some of the diverse approaches that can be used for qualitative data analysis, but as you will read, even within each one of these there are variations in how they might be implemented in a given project. If you are passionate (or at least curious 😊) about conducting qualitative research, use this as a starting point to help you dive deeper into some of these strategies. Please note that there are approaches to analysis that are not addressed in this chapter, but still may be very valuable qualitative research tools. Examples include heuristic analysis, [1] narrative analysis, [2] discourse analysis, [3] and visual analysis, [4] among a host of others. These aren’t mentioned to confuse or overwhelm you, but instead to suggest that qualitative research is a broad field with many options. Before we begin reviewing some of these strategies, here a few considerations regarding ethics, cultural responsibility, power and control that should influence your thinking and planning as you map out your data analysis plan.

19.1 Ethical responsibility and cultural respectfulness

Learning objectives.

Learners will be able to…

  • Identify how researchers can conduct ethically responsible qualitative data analysis.
  • Explain the role of culture and cultural context in qualitative data analysis (for both researcher and participant)

The ethics of deconstructing stories

Throughout this chapter, I will consistently suggest that you will be deconstructing data . That is to say, you will be taking the information that participants share with you through their words, performances, videos, documents, photos, and artwork, then breaking it up into smaller points of data, which you will then reassemble into your findings. We have an ethical responsibility to treat what is shared with a sense of respect during this process of deconstruction and reconstruction . This means that we make conscientious efforts not to twist, change, or subvert the meaning of data as we break them down or string them back together.

The act of bringing together people’s stories through qualitative research is not an easy one and shouldn’t be taken lightly. Through the informed consent process, participants should learn about the ways in which their information will be used in your research, including giving them a general idea what will happen in your analysis and what format the end results of that process will likely be.

A deep understanding of cultural context as we make sense of meaning

Similar to the ethical considerations we need to keep in mind as we deconstruct stories, we also need to work diligently to understand the cultural context in which these stories are shared. This requires that we approach the task of analysis with a sense of cultural humility, meaning that we don’t assume that our perspective or worldview as the researcher is the same as our participants. Their life experiences may be quite different from our own, and because of this, the meaning in their stories may be very different than what we might initially expect.

As such, we need to ask questions to better understand words, phrases, ideas, gestures, etc. that seem to have particular significance to participants. We also can use activities like member checking , another tool to support qualitative rigor , to ensure that our findings are accurately interpreted by vetting them with participants prior to the study conclusion. We can spend a good amount of time getting to know the groups and communities that we work with, paying attention to their values, priorities, practices, norms, strengths, and challenges. Finally, we can actively work to challenge more traditional methods research and support more participatory models that advance community co-researchers or consistent oversight of research by community advisory groups to inform, challenge, and advance this process; thus elevating the wisdom of community members and their influence (and power) in the research process.

Image of a black box with an anti-sign over it with an arrow labeled data going in and an arrow labeled findings going out.

Accounting for our influence in the analysis process

Along with our ethical responsibility to our research participants, we also have an accountability to research consumers, the scientific community at large, and other stakeholders in our qualitative research. As qualitative researchers (or quantitative researchers, for that matter), people should expect that we have attempted, to the best of our abilities, to account for our role in the research process. This is especially true in analysis. Our finding should not emerge from some ‘black box’, where raw data goes in and findings pop out the other side, with no indication of how we arrive at them. Thus, an important part of rigor is transparency and the use of tools such as writing in reflexive journals , memoing , and creating an audit trail to assist us in documenting both our thought process and activities in reaching our findings. There will be more about this in Chapter 20 dedicated to qualitative rigor.

Key Takeaways

  • Ethics, as it relates specifically to the analysis phase of qualitative research, requires that we are especially thoughtful in how we treat the data that participants share with us. This data often represents very intimate parts of people’s lives and/or how they view the world. Therefore, we need to actively conduct our analysis in a way that does not misrepresent, compromise the privacy of, and/or disenfranchise or oppress our participants and the groups they belong to.
  • Part of demonstrating this ethical commitment to analysis involves capturing and documenting our influence as researchers to the qualitative research process.

After you have had a chance to read through this chapter, come back to this exercise. Think about your qualitative proposal. Based on the strategies that you might consider for analysis of your qualitative data:

  • What ethical concerns do you have specific to this approach to analyzing your data?
  • What steps might you take to anticipate and address these concerns?

19.2 Critical considerations

  • Explain how data analysis may be used as tool for power and control
  • Develop steps that reflect increased opportunities for empowerment of your study population, especially during the data analysis phase

How are participants present in the analysis process; What power or influence do they have

Remember, research is political. We need to consider that our findings represent ideas that are shared with us by living and breathing human beings and often the groups and communities that they represent. They have been gracious enough to share their time and their stories with us, yet they often have a limited role once we gather data from them. They are essentially putting their trust in us that we won’t be misrepresenting or culturally appropriating their stories in ways that will be harmful, damaging, or demeaning. Elliot (2016) [5] discusses the problems of "damaged-centered" research , which is research that portrays groups of people or communities as flawed, surrounded by problems, or incapable of producing change. Her work specifically references the way research and media have often portrayed people from the Appalachian region, and how these influences have perpetuated, reinforced, and even created stereotypes that these communities face. We need to thoughtfully consider how the research we are involved in will reflect on our participants and their communities.

Now, some research approaches, particularly participatory approaches, suggest that participants should be trained and actively engaged throughout the research process, helping to shape how our findings are presented and how the target population is portrayed. Implementing a participatory approach requires academic researchers to give up some of their power and control to community co-researchers. Ideally these co-researchers provide their input and are active members in determining what the findings are and interpreting why/how they are important. I believe this is a standard we need to strive for. However, this is the exception, not the rule. As such, if you are participating in a more traditional research role where community participants are not actively engaged, whenever possible, it is good practice to find ways to allow participants or other representatives to help lend their validation to our findings. While to a smaller extent, these opportunities suggest ways that community members can be empowered during the research process (and researchers can turn over some of our control). You may do this through activities like consulting with community representatives early and often during the analysis process and using member checking (referenced above and in our chapter on qualitative rigor) to help review and refine results. These are distinct and important roles for the community and do not mean that community members become researchers; but that they lend their perspectives in helping the researcher to interpret their findings.

The bringing together of voices: What does this represent and to whom

As social work researchers, we need to be mindful that research is a tool for advancing social justice. However, that doesn’t mean that all research fulfills that capacity or that all parties perceive it in this way. Qualitative research generally involves a relatively small number of participants (or even a single person) sharing their stories. As researchers, we then bring together this data in the analysis phase in an attempt to tell a broader story about the issue we are studying. Our findings often reflect commonalities and patterns, but also should highlight contradictions, tensions, and dissension about the topic.

Reflexive Journal Entry Prompt

Pause for a minute. Think about what the findings for your research proposal might represent.

  • What do they represent to you as a researcher?
  • What do they represent to participants directly involved in your study?
  • What do they represent to the families of these participants?
  • What do they represent to the groups and communities that represent or are connected to your population?

For each of the perspectives outlined in the reflexive journal entry prompt above, there is no single answer. As a student researcher, your study might represent a grade, an opportunity to learn more about a topic you are interested in, and a chance to hone your skills as a researcher. For participants, the findings might represent a chance to share their input or frustration that they are being misrepresented. Community members might view the research findings with skepticism that research produces any kind of change or anger that findings bring unwanted attention to the community. Obviously we can’t foretell all the answers to these questions, but thinking about them can help us to thoughtfully and carefully consider how we go about collecting, analyzing and presenting our data. We certainly need to be honest and transparent in our data analysis, but additionally, we need to consider how our analysis impacts others. It is especially important that we anticipate this and integrate it early into our efforts to educate our participants on what the research will involve, including potential risks.

It is important to note here that there are a number of perspectives that are rising to challenge traditional research methods. These challenges are often grounded in issues of power and control that we have been discussing, recognizing that research has and continues to be used as a tool for oppression and division. These perspectives include but are not limited to: Afrocentric methodologies, Decolonizing methodologies, Feminist methodologies, and Queer methodologies. While it’s a poor substitute for not diving deeper into these valuable contributions, I do want to offer a few resources if you are interested in learning more about these perspectives and how they can help to more inclusively define the research process.

  • Research findings can represent many different things to many different stakeholders. Rather than as an afterthought, as qualitative researchers, we need to thoughtfully consider a range of these perspectives prior to and throughout the analysis to reduce the risk of oppression and misrepresentation through our research.
  • There are a variety of strategies and whole alternative research paradigms that can aid qualitative researchers in conducting research in more empowering ways when compared to traditional research methods where the researcher largely maintain control and ownership of the research process and agenda.

This type of research means that African indigenous culture must be understood and kept at the forefront of any research and recommendations affecting indigenous communities and their culture.

Afrocentric methodologies : These methods represent research that is designed, conducted, and disseminated in ways that center and affirm African cultures, knowledge, beliefs, and values.

  • Pellerin, M. (2012). Benefits of Afrocentricity in exploring social phenomena: Understanding Afrocentricity as a social science methodology .
  • University of Illinois Library. (n.d.). The Afrocentric Research Center .

Decolonizing methodologies : These methods represent research that is designed, conducted, and disseminated in ways to reclaim control over indigenous ways of knowing and being. [6]

  • Paris, D., & Winn, M. T. (Eds.). (2013).  Humanizing research: Decolonizing qualitative inquiry with youth and communities . Sage Publications.
  • Smith, L. T. (2012). Decolonizing methodologies: Research and indigenous peoples (2nd ed.). Zed Books Ltd.

Feminist methodologies : Research methods in this tradition seek to, “remove the power imbalance between research and subject; (are) politically motivated in that (they) seeks to change social inequality; and (they) begin with the standpoints and experiences of women”. [7]

  • Gill, J. (n.d.) Feminist research methodologies. Feminist Perspectives on Media and Technology .
  • U.C.Davis., Feminist Research Institute. (n.d.). What is feminist research?

Queer(ing) methodologies : Research methods using this approach aim to question, challenge and often reject knowledge that is commonly accepted and privileged in society and elevate and empower knowledge and perspectives that are often perceived as non-normative.

  • de Jong, D. H. (2014). A new paradigm in social work research: It’s here, it’s queer, get used to it! .
  • Ghaziani, A., & Brim, M. (Eds.). (2019).  Imagining queer methods . NYU Press.

19.3 Preparations: Creating a plan for qualitative data analysis

  • Identify how your research question, research aim, sample selection, and type of data may influence your choice of analytic methods
  • Outline the steps you will take in preparation for conducting qualitative data analysis in your proposal

Now we can turn our attention to planning your analysis. The analysis should be anchored in the purpose of your study. Qualitative research can serve a range of purposes. Below is a brief list of general purposes we might consider when using a qualitative approach.

  • Are you trying to understand how a particular group is affected by an issue?
  • Are you trying to uncover how people arrive at a decision in a given situation?
  • Are you trying to examine different points of view on the impact of a recent event?
  • Are you trying to summarize how people understand or make sense of a condition?
  • Are you trying to describe the needs of your target population?

If you don’t see the general aim of your research question reflected in one of these areas, don’t fret! This is only a small sampling of what you might be trying to accomplish with your qualitative study. Whatever your aim, you need to have a plan for what you will do once you have collected your data.

Decision Point: What are you trying to accomplish with your data?

  • Consider your research question. What do you need to do with the qualitative data you are gathering to help answer that question?

To help answer this question, consider:

  • What action verb(s) can be associated with your project and the qualitative data you are collecting? Does your research aim to summarize, compare, describe, examine, outline, identify, review, compose, develop, illustrate, etc.?
  • Then, consider noun(s) you need to pair with your verb(s)—perceptions, experiences, thoughts, reactions, descriptions, understanding, processes, feelings, actions responses, etc.

Iterative or linear

We touched on this briefly in Chapter 17 about qualitative sampling, but this is a n important distinction to consider. Some qualitative research is linear , meaning it follows more of a tra ditionally quantitative process: create a plan, gather data, and analyze data; each step is completed before we proceed to the next. You can think of this like how information is presented in this book. We discuss each topic, one after another. 

However, many times qualitative research is iterative , or evolving in cycles. An iterative approach means that once we begin collecting data, we also begin analyzing data as it is coming in. This early and ongoing analysis of our (incomplete) data then impacts our continued planning, data gathering and future analysis. Again, coming back to this book, while it may be written linear, we hope that you engage with it iteratively as you are building your proposal. By this we mean that you will revisit previous sections so you can understand how they fit together and you are in continuous process of building and revising how you think about the concepts you are learning about. 

As you may have guessed, there are benefits and challenges to both linear and iterative approaches. A linear approach is much more straightforward, each step being fairly defined. However, linear research being more defined and rigid also presents certain challenges. A linear approach assumes that we know what we need to ask or look for at the very beginning of data collection, which often is not the case.

Comparison of linear and iterative systematic approaches. Linear approach box is a series of boxes with arrows between them in a line. The first box is "create a plan", then "gather data", ending with "analyze data". The iterative systematic approach is a series of boxes in a circle with arrows between them, with the boxes labeled "planning", "data gathering", and "analyzing the data".

With iterative research, we have more flexibility to adapt our approach as we learn new things. We still need to keep our approach systematic and organized, however, so that our work doesn’t become a free-for-all. As we adapt, we do not want to stray too far from the original premise of our study. It’s also important to remember with an iterative approach that we may risk ethical concerns if our work extends beyond the original boundaries of our informed consent and IRB agreement. If you feel that you do need to modify your original research plan in a significant way as you learn more about the topic, you can submit an addendum to modify your original application that was submitted. Make sure to keep detailed notes of the decisions that you are making and what is informing these choices. This helps to support transparency and your credibility throughout the research process.

Decision Point: Will your analysis reflect more of a linear or an iterative approach?

  • What justifies or supports this decision?

Think about:

  • Fit with your research question
  • Available time and resources
  • Your knowledge and understanding of the research process
  • What evidence are you basing this on?
  • How might this help or hinder your qualitative research process?
  • How might this help or hinder you in a practice setting as you work with clients?

Acquainting yourself with your data

As y ou begin your analysis, y ou need to get to know your data. This usually means reading through your data prior to any attempt at breaking it apart and labeling it. You mig ht read through a couple of times, in fact. This helps give you a more comprehensive feel for each piece of data and the data as a whole, again, before you start to break it down into smaller units or deconstruct it. This is especially important if others assisted us in the data collection process. We often gather data as part of team and everyone involved in the analysis needs to be very familiar with all of the data. 

Capturing your reaction to the data

During the review process, our understanding of the data often evolves as we observe patterns and trends. It is a good practice to document your reaction and evolving understanding. Your reaction can include noting phrases or ideas that surprise you, similarities or distinct differences in responses, additional questions that the data brings to mind, among other things. We often record these reactions directly in the text or artifact if we have the ability to do so, such as making a comment in a word document associated with a highlighted phrase. If this isn’t possible, you will want to have a way to track what specific spot(s) in your data your reactions are referring to. In qualitative research we refer to this process as memoing . Memoing is a strategy that helps us to link our findings to our raw data, demonstrating transparency. If you are using a Computre-Assisted Qualitative Data Analysis Software (CAQDAS) software package, memoing functions are generally built into the technology.

Capturing your emerging understanding of the data

During your reviewing and memoing you will start to develop and evolve your understanding of what the data means. This understanding should be dynamic and flexible, but you want to have a way to capture this understanding as it evolves. You may include this as part of your memoing or as part of your codebook where you are tracking the main ideas that are emerging and what they mean. Figure 19.3 is an example of how your thinking might change about a code and how you can go about capturing it. Coding is a part of the qualitative data analysis process where we begin to interpret and assign meaning to the data. It represents one of the first steps as we begin to filter the data through our own subjective lens as the researcher. We will discuss coding in much more detail in the sections below covering various different approaches to analysis.

Figure 19.3 Example of coding in a codebook

Decision Point: How to capture your thoughts?

  • What will this look like?
  • How often will you do it?
  • How will you keep it organized and consistent over time?

In addition, you will want to be actively using your reflexive journal during this time. Document your thoughts and feelings throughout the research process. This will promote transparency and help account for your role in the analysis.

For entries during your analysis, respond to questions such as these in your journal:

  • What surprises you about what participants are sharing?
  • How has this information challenged you to look at this topic differently?
  • Where might these have come from?
  • How might these be influencing your study?
  • How will you proceed differently based on what you are learning?

By including community members as active co-researchers, they can be invaluable in reviewing, reacting to and leading the interpretation of data during your analysis. While it can certainly be challenging to converge on an agreed-upon version of the results; their insider knowledge and lived experience can provide very important insights into the data analysis process.

Determining when you are finished

When conducting quantitative research, it is perhaps easier to decide when we are finished with our analysis. We determine the tests we need to run, we perform them, we interpret them, and for the most part, we call it a day. It’s a bit more nebulous for qualitative research. There is no hard and fast rule for when we have completed our qualitative analysis. Rather, our decision to end the analysis should be guided by reflection and consideration of a number of important questions. These questions are presented below to help ensure that your analysis results in a finished product that is comprehensive, systematic, and coherent.

Have I answered my research question?

Your analysis should be clearly connected to and in service of answering your research question. Your examination of the data should help you arrive at findings that sufficiently address the question that you set out to answer. You might find that it is surprisingly easy to get distracted while reviewing all your data. Make sure as you conducted the analysis you keep coming back to your research question.

Have I utilized all my data?

Unless you have intentionally made the decision that certain portions of your data are not relevant for your study, make sure that you don’t have sources or segments of data that aren’t incorporated into your analysis. Just because some data doesn’t “fit” the general trends you are uncovering, find a way to acknowledge this in your findings as well so that these voices don’t get lost in your data.

Have I fulfilled my obligation to my participants?

As a qualitative researcher, you are a craftsperson. You are taking raw materials (e.g. people’s words, observations, photos) and bringing them together to form a new creation, your findings. These findings need to both honor the original integrity of the data that is shared with you, but also help tell a broader story that answers your research question(s).

Have I fulfilled my obligation to my audience?

Not only do your findings need to help answer your research question, but they need to do so in a way that is consumable for your audience. From an analysis standpoint, this means that we need to make sufficient efforts to condense our data. For example, if you are conducting a thematic analysis, you don’t want to wind up with 20 themes. Having this many themes suggests that you aren’t finished looking at how these ideas relate to each other and might be combined into broader themes. Having these sufficiently reduced to a handful of themes will help tell a more complete story, one that is also much more approachable and meaningful for your reader.

In the following subsections, there is information regarding a variety of different approaches to qualitative analysis. In designing your qualitative study, you would identify an analytical approach as you plan out your project. The one you select would depend on the type of data you have and what you want to accomplish with it.

  • Qualitative research analysis requires preparation and careful planning. You will need to take time to familiarize yourself with the data in general sense before you begin analyzing.
  • Once you begin your analysis, make sure that you have strategies for capture and recording both your reaction to the data and your corresponding developing understanding of what the collective meaning of the data is (your results). Qualitative research is not only invested in the end results but also the process at which you arrive at them.

Decision Point: When will you stop?

  • How will you know when you are finished? What will determine your endpoint?
  • How will you monitor your work so you know when it’s over?

19.4 Thematic analysis

  • Explain defining features of thematic analysis as a strategy for qualitative data analysis and identify when it is most effectively used
  • Formulate an initial thematic analysis plan (if appropriate for your research proposal)

What are you trying to accomplish with thematic analysis?

As its name suggests, with thematic analysis we are attempting to identify themes or common ideas across our data. Themes can help us to:

  • Determine shared meaning or significance of an event
  • Povide a more complete understanding of concept or idea by exposing different dimensions of the topic
  • Explore a range of values, beliefs or perceptions on a given topic

Themes help us to identify common ways that people are making sense of their world. Let’s say that you are studying empowerment of older adults in assisted living facilities by interviewing residents in a number of these facilities. As you review your transcripts, you note that a number of participants are talking about the importance of maintaining connection to previous aspects of their life (e.g. their mosque, their Veterans of Foreign Wars (VFW) Post, their Queer book club) and having input into how the facility is run (e.g. representative on the board, community town hall meetings). You might note that these are two emerging themes in your data. After you have deconstructed your data, you will likely end up with a handful (likely three or four) central ideas or take-aways that become the themes or major findings of your research.

Variations in approaches to thematic analysis

There are a variety of ways to approach qualitative data analysis, but even within the broad approach of thematic analysis, there is variation. Some thematic analysis takes on an inductive analysis approach. In this case, we would first deconstruct our data into small segments representing distinct ideas (this is explained further in the section below on coding data). We then go on to see which of these pieces seem to group together around common ideas.

In direct contrast, you might take a deductive analysis approach (like we discussed in Chapter 8 ), in which you start with some idea about what grouping might look like and we see how well our data fits into those pre-identified groupings. These initial deductive groupings (we call these a priori categories) often come from an existing theory related to the topic we are studying. You may also elect to use a combination of deductive and inductive strategies, especially if you find that much of your data is not fitting into deductive categories and you decide to let new categories inductively emerge.

A couple things to note here. If you are using a deductive approach, be clear in specifying where your a priori categories came from. For instance, perhaps you are interested in studying the conceptualization of social work in other cultures. You begin your analysis with prior research conducted by Tracie Mafile’o (2004) that identified the concepts of fekau’aki (connecting) and fakatokilalo (humility) as being central to Tongan social work practice. [8] You decide to use these two concepts as part of your initial deductive framework, because you are interested in studying a population that shares much in common with the Tongan people. When using an inductive approach, you need to plan to use memoing and reflexive journaling to document where the new categories or themes are coming from.

Coding data

Coding is the process of breaking down your data into smaller meaningful units. Just like any story is made up by the bringing together of many smaller ideas, you need to uncover and label these smaller ideas within each piece of your data. After you have reviewed each piece of data you will go back and assign labels to words, phrases, or pieces of data that represent separate ideas that can stand on their own. Identifying and labeling codes can be tricky. When attempting to locate units of data to code, look for pieces of data that seem to represent an idea in-and-of-itself; a unique thought that stands alone. For additional information about coding, check out this brief video from Duke’s Social Science Research Institute on this topic. It offers a nice concise overview of coding and also ties into our previous discussion of memoing to help encourage rigor in your analysis process.

As suggested in the video [9] , when you identify segments of data and are considering what to label them ask yourself:

  • How does this relate to/help to answer my research question?
  • How does this connect with what we know from the existing literature?
  • How does this fit (or contrast) with the rest of my data?

You might do the work of coding in the margins if you are working with hard copies, or you might do this through the use of comments or through copying and pasting if you are working with digital materials (like pasting them into an excel sheet, as in the example below). If you are using a CAQDAS, there will be a function(s) built into the software to accomplish this.

Regardless of which strategy you use, the central task of thematic analysis is to have a way to label discrete segments of your data with a short phrase that reflects what it stands for. As you come across segments that seem to mean the same thing, you will want to use the same code. Make sure to select the words to represent your codes wisely, so that they are clear and memorable. When you are finished, you will likely have hundreds (if not thousands!) of different codes – again, a story is made up of many different ideas and you are bringing together many different stories! A cautionary note, if you are physically manipulating your data in some way, for example copying and pasting, which I frequently do, you need to have a way to trace each code or little segment back to its original home (the artifact that it came from).

When I’m working with interview data, I will assign each interview transcript a code and use continuous line numbering. That way I can label each segment of data or code with a corresponding transcript code and line number so I can find where it came from in case I need to refer back to the original.

The following is an excerpt from a portion of an autobiographical memoir (Wolf, 2010) [10] . Continuous numbers have been added to the transcript to identify line numbers (Figure 19.4). A few preliminary codes have been identified from this data and entered into a data matrix (below) with information to trace back to the raw data (transcript) (Figure 19.5).

Figure 19.4 Example portion of memoir from Wolf (2010)
1 I have a vivid picture in my mind of my mother, sitting at a kitchen table,
2 listening to the announcement of FDR’s Declaration of War in his famous “date
3 which will live in infamy” speech delivered to Congress on December 8, 1941:
4 “The United States was suddenly and deliberately attacked by naval and air forces
5 of the Empire of Japan.” I still can hear his voice.
6
7 I couldn’t understand “war,” of course, but I knew that something terrible had
8 happened; and I wanted it to stop so my mother wouldn’t be unhappy. I later
9 asked my older brother what war was and when it would be over. He said, “Not
10 soon, so we better get ready for it, and, remember, kid, I’m a Captain and you’re a
11 private.”
12
13 So the war became a family matter in some sense: my mother’s sorrow (thinking,
14 doubtless, about the fate and future of her sons) and my brother’s assertion of
15 male authority and superiority always thereafter would come to mind in times of
16 international conflict—just as Pearl Harbor, though it was far from the mainland,
17 always would be there for America as an icon of victimization, never more so than
18 in the semi-paranoid aftermath of “9/11” with its disastrous consequences in
19 Iraq. History always has a personal dimension.
Figure 19.5 Example of data matrix from Wolf (2010) memoir segment
I have a vivid picture in my mind of my mother, sitting at a kitchen table, listening to the announcement of FDR’s Declaration of War in his famous “date which will live in infamy” speech delivered to Congress on December 8, 1941: “The United States was suddenly and deliberately attacked by naval and air forces of the Empire of Japan.” I still can hear his voice. Wolf Memoir 1-5 Memories
I couldn’t understand “war,” of course, but I knew that something terrible had happened; and I wanted it to stop so my mother wouldn’t be unhappy. Wolf Memoir 7-8 Meaning of War
I later asked my older brother what war was and when it would be over. He said, “Not soon, so we better get ready for it, and, remember, kid, I’m a Captain and you’re a private.” Wolf Memoir 8-11 Meaning of War; Memories

Below is another excerpt from the same memoir [11]

What segments of this interview can you pull out and what initial code would you place on them?

Create a data matrix as you reflect on this.

It was painful to think, even at an early age, that a part of the world I was beginning to love—Europe—was being substantially destroyed by the war; that cities with their treasures, to say nothing of innocent people, were being bombed and consumed in flames. I was a patriotic young American and wanted “us” to win the war, but I also wanted Europe to be saved.

Some displaced people began to arrive in our apartment house, and even as I knew that they had suffered in Europe, their names and language pointed back to a civilized Europe that I wanted to experience. One person, who had studied at Heidelberg, told me stories about student life in the early part of the 20 th  century that inspired me to want to become an accomplished student, if not a “student prince.” He even had a dueling scar. A baby-sitter showed me a photo of herself in a feathered hat, standing on a train platform in Bratislava. I knew that she belonged in a world that was disappearing.

For those of us growing up in New York City in the 1940s, Japan, following Pearl Harbor and the “death march” in Corregidor, seemed to be our most hated enemy. The Japanese were portrayed as grotesque and blood-thirsty on posters. My friends and I were fighting back against the “Japs” in movie after movie: Gung Ho, Back to Bataan, The Purple Heart, Thirty Seconds Over Tokyo, They Were Expendable, and Flying Tigers, to name a few.

We wanted to be like John Wayne when we grew up. It was only a few decades after the war, when we realized the horrors of Hiroshima and Nagasaki, that some of us began to understand that the Japanese, whatever else was true, had been dehumanized as a people; that we had annihilated, guiltlessly at the time, hundreds of thousands of non-combatants in a horrific flash. It was only after the publication of John Hersey’s Hiroshima(1946), that we began to think about other sides of the war that patriotic propaganda had concealed.

When my friends and I went to summer camp in the foothills of the Berkshires during the late years of the war and sang patriotic songs around blazing bonfires, we weren’t thinking about the firestorms of Europe (Dresden) and Japan. We were worried that our counselors would be drafted and suddenly disappear, leaving us unprotected.

Identifying, reviewing, and refining themes

Now we have our codes, we need to find a sensible way of putting them together. Remember, we want to narrow this vast field of hundreds of codes down to a small handful of themes. If we don’t review and refine all these codes, the story we are trying to tell with our data becomes distracting and diffuse. An example is provided below to demonstrate this process. 

As we refine our thematic analysis, our first step will be to identify groups of codes that hang together or seem to be related. Let’s say y ou are studying the experience of people who are in a vocational preparation program and you have codes labeled “worrying about paying the bills” and “loss of benefits”. You might group these codes into a category you label “income & expenses” (Figrue 19.6). 

Figure 19.6 Example of evolving code structure, I
Worrying about paying the bills Income & expenses Seem to be talking about financial stressors and potential impact on resources
Loss of benefits
Figure 19.7 Example of evolving code structure, II
Worrying about Paying the bills Income & expenses Seem to be talking about financial stressors and potential impact on resources Financial insecurities Expanded category to also encompass personal factor- confidence related to issue
Loss of benefits
Not confident managing money

You may review and refine the groups of your codes many times during the course of your analysis, including shifting codes around from one grouping to another as you get a clearer picture of what each of the groups represent. This reflects the iterative process we were describing earlier. While you are shifting codes and relabeling categories, track this! A research journal is a good place to do this. So, as in the example above, you would have a journal entry that explains that you changed the label on the category from “income & expenses” to “financial insecurities” and you would briefly explain why. Your research journal can take many different forms. It can be hard copy, an evolving word document, or a spreadsheet with multiple tabs (Figure 19.8). 

Figure 19.8 Research journal entry tracking code development, I

Now, eventually you may decide that some of these categories can also be grouped together, but still stand alone as separate ideas. Continuing with our example above, you have another category labeled “financial potential” that contains codes like “money to do things” and “saving for my future”. You determine that “financial insecurities” and “financial potential” are related, but distinctly different aspects of a broader grouping, which you go on to label “financial considerations”. This broader grouping reflects both the more worrisome or stressful aspects of people’s experiences that you have interviewed, but also the optimism and hope that was reflected related to finances and future work (Figure 19.9).

Figure 19.9 Example of evolving code structure, III
Worrying about paying the bills Income & expenses Seem to be talking about financial stressors and potential impact on resources Financial insecurities Expanded category to also encompass personal factor- confidence related to issue Financial considerations
Loss of benefits
Not confident managing money
Money to do things Financial potential Reflects positive aspects related to earnings
Saving for my future

This broadest grouping then becomes your theme and utilizing the categories and the codes contained therein, you create a description of what each of your themes means based on the data you have collected, and again, can record this in your research journal entry (Figure 19.10).

Figure 19.10 Research journal entry tracking code development, II

Building a thematic representation

However, providing a list of themes may not really tell the whole story of your study. It may fail to explain to your audience how these individual themes relate to each other. A thematic map or thematic array can do just that: provides a visual representation of how each individual category fits with the others. As you build your thematic representation, be thoughtful of how you position each of your themes, as this spatially tells part of the story. [12] You should also make sure that the relationships between the themes represented in your thematic map or array are narratively explained in your text as well.

Figure 19.11 offers an illustration of the beginning of thematic map for the theme we had been developing in the examples above. I emphasize that this is the beginning because we would likely have a few other themes (not just “financial considerations”). These other themes might have codes or categories in common with this theme, and these connections would be visual evident in our map. As you can see in the example, the thematic map allows the reader, reviewer, or researcher can quickly see how these ideas relate to each other. Each of these themes would be explained in greater detail in our write up of the results. Additionally, sample quotes from the data that reflected those themes are often included.

Beginning of thematic map with a rectangle at the top labeled "financial considerations". To lines branch off to triangles, one labeled "financial potential" and the other triangle labeled "financial insecurities". From the triangle labeled "financial potential" there are two lines going down and connecting with two circles, one labeled "money to do things" and the other "saving for my future". From the triangle labeled "financial insecurities", there were 3 lines going down and each connecting with a circle, one labeled "worrying about the bills", one labeled "loss of benefits" and the final labeled "not confident managing money". This is collectively meant to display the connection between these ideas in building this theme.

  • Thematic analysis offers qualitative researchers a method of data analysis through which we can identify common themes or broader ideas that are represented in our qualitative data.
  • Themes are identified through an iterative process of coding and categorizing (or grouping) to identify trends during your analysis.
  • Tracking and documenting this process of theme identification is an important part of utilizing this approach.

References for learning more about Thematic Analysis

Clarke, V. (2017, December 9). What is thematic analysis?

Maguire, M., & Delahunt, B. (2017). Doing a thematic analysis: A practical, step-by-step guide for learning and teaching scholars .

Nowell et al. (2017). Thematic analysis: Striving to meet the trustworthiness criteria .

The University of Auckland. (n.d.). Thematic analysis: A reflexive approach .

A few exemplars of studies employing Thematic Analysis

Bastiaensens et al. (2019). “Were you cyberbullied? Let me help you.” Studying adolescents’ online peer support of cyberbullying victims using thematic analysis of online support group Fora .

Borgström, Å., Daneback, K., & Molin, M. (2019). Young people with intellectual disabilities and social media: A literature review and thematic analysis .

Kapoulitsas, M., & Corcoran, T. (2015). Compassion fatigue and resilience: A qualitative analysis of social work practice .

19.5 Content analysis

  • Explain defining features of content analysis as a strategy for analyzing qualitative data
  • Determine when content analysis can be most effectively used
  • Formulate an initial content analysis plan (if appropriate for your research proposal)

What are you trying to accomplish with content analysis

Much like with thematic analysis, if you elect to use content analysis to analyze your qualitative data, you will be deconstructing the artifacts that you have sampled and looking for similarities across these deconstructed parts. Also consistent with thematic analysis, you will be seeking to bring together these similarities in the discussion of your findings to tell a collective story of what you learned across your data. While the distinction between thematic analysis and content analysis is somewhat murky, if you are looking to distinguish between the two, content analysis:

  • Places greater emphasis on determining the unit of analysis. Just to quickly distinguish, when we discussed sampling in Chapter 10 we also used the term “unit of analysis. As a reminder, when we are talking about sampling, unit of analysis refers to the entity that a researcher wants to say something about at the end of her study (individual, group, or organization). However, for our purposes when we are conducting a content analysis, this term has to do with the ‘chunk’ or segment of data you will be looking at to reflect a particular idea. This may be a line, a paragraph, a section, an image or section of an image, a scene, etc., depending on the type of artifact you are dealing with and the level at which you want to subdivide this artifact.
  • Content analysis is also more adept at bringing together a variety of forms of artifacts in the same study. While other approaches can certainly accomplish this, content analysis more readily allows the researcher to deconstruct, label and compare different kinds of ‘content’. For example, perhaps you have developed a new advocacy training for community members. To evaluate your training you want to analyze a variety of products they create after the workshop, including written products (e.g. letters to their representatives, community newsletters), audio/visual products (e.g. interviews with leaders, photos hosted in a local art exhibit on the topic) and performance products (e.g. hosting town hall meetings, facilitating rallies). Content analysis can allow you the capacity to examine evidence across these different formats.

For some more in-depth discussion comparing these two approaches, including more philosophical differences between the two, check out this article by Vaismoradi, Turunen, and Bondas (2013) . [13]

Variations in the approach

There are also significant variations among different content analysis approaches. Some of these approaches are more concerned with quantifying (counting) how many times a code representing a specific concept or idea appears. These are more quantitative and deductive in nature. Other approaches look for codes to emerge from the data to help describe some idea or event. These are more qualitative and inductive . Hsieh and Shannon (2005) [14] describe three approaches to help understand some of these differences:

  • Conventional Content Analysis. Starting with a general idea or phenomenon you want to explore (for which there is limited data), coding categories then emerge from the raw data. These coding categories help us understand the different dimensions, patterns, and trends that may exist within the raw data collected in our research.
  • Directed Content Analysis. Starts with a theory or existing research for which you develop your initial codes (there is some existing research, but incomplete in some aspects) and uses these to guide your initial analysis of the raw data to flesh out a more detailed understanding of the codes and ultimately, the focus of your study.
  • Summative Content Analysis. Starts by examining how many times and where codes are showing up in your data, but then looks to develop an understanding or an “interpretation of the underlying context” (p.1277) for how they are being used. As you might have guessed, this approach is more likely to be used if you’re studying a topic that already has some existing research that forms a basic place to begin the analysis.

This is only one system of categorization for different approaches to content analysis. If you are interested in utilizing a content analysis for your proposal, you will want to design an approach that fits well with the aim of your research and will help you generate findings that will help to answer your research question(s). Make sure to keep this as your north star, guiding all aspects of your design.

Determining your codes

We are back to coding! As in thematic analysis, you will be coding your data (labeling smaller chunks of information within each data artifact of your sample). In content analysis, you may be using pre-determined codes, such as those suggested by an existing theory (deductive) or you may seek out emergent codes that you uncover as you begin reviewing your data (inductive). Regardless of which approach you take, you will want to develop a well-documented codebook.

A codebook is a document that outlines the list of codes you are using as you analyze your data, a descriptive definition of each of these codes, and any decision-rules that apply to your codes. A decision-rule provides information on how the researcher determines what code should be placed on an item, especially when codes may be similar in nature. If you are using a deductive approach, your codebook will largely be formed prior to analysis, whereas if you use an inductive approach, your codebook will be built over time. To help illustrate what this might look like, Figure 19.12 offers a brief excerpt of a codebook from one of the projects I’m currently working on.

Excel sheet labeled "codes after team meeting on 4/12/19, perceptions on ageing project". Columns are labeled "codes", "descriptions", "decision rules". The rows are labeled "housing", "health" and "preparedness for ageing"

Coding, comparing, counting

Once you have (or are developing) your codes, your next step will be to actually code your data. In most cases, you are looking for your coding structure (your list of codes) to have good coverage . This means that most of the content in your sample should have a code applied to it. If there are large segments of your data that are uncoded, you are potentially missing things. Now, do note that I said most of the time. There are instances when we are using artifacts that may contain a lot of information, only some of which will apply to what we are studying. In these instances, we obviously wouldn’t be expecting the same level of coverage with our codes. As you go about coding you may change, refine and adapt your codebook as you go through your data and compare the information that reflects each code. As you do this, keep your research journal handy and make sure to capture and record these changes so that you have a trail documenting the evolution of your analysis. Also, as suggested earlier, content analysis may also involve some degree of counting as well. You may be keeping a tally of how many times a particular code is represented in your data, thereby offering your reader both a quantification of how many times (and across how many sources) a code was reflected and a narrative description of what that code came to mean.

Representing the findings from your coding scheme

Finally, you need to consider how you will represent the findings from your coding work. This may involve listing out narrative descriptions of codes, visual representations of what each code came to mean or how they related to each other, or a table that includes examples of how your data reflected different elements of your coding structure. However you choose to represent the findings of your content analysis, make sure the resulting product answers your research question and is readily understandable and easy-to-interpret for your audience.

  • Much like thematic analysis, content analysis is concerned with breaking up qualitative data so that you can compare and contrast ideas as you look across all your data, collectively. A couple of distinctions between thematic and content analysis include content analysis’s emphasis on more clearly specifying the unit of analysis used for the purpose of analysis and the flexibility that content analysis offers in comparing across different types of data.
  • Coding involves both grouping data (after it has been deconstructed) and defining these codes (giving them meaning). If we are using a deductive approach to analysis, we will start with the code defined. If we are using an inductive approach, the code will not be defined until the end of the analysis.

Identify a qualitative research article that uses content analysis (do a quick search of “qualitative” and “content analysis” in your research search engine of choice).

  • How do the authors display their findings?
  • What was effective in their presentation?
  • What was ineffective in their presentation?

Resources for learning more about Content Analysis

Bengtsson, M. (2016). How to plan and perform a qualitative study using content analysis .

Colorado State University (n.d.) Writing@CSU Guide: Content analysis .

Columbia University Mailman School of Public Health, Population Health. (n.d.) Methods: Content analysis

Mayring, P. (2000, June). Qualitative content analysis . 

A few exemplars of studies employing Content Analysis

Collins et al. (2018). Content analysis of advantages and disadvantages of drinking among individuals with the lived experience of homelessness and alcohol use disorders .

Corley, N. A., & Young, S. M. (2018). Is social work still racist? A content analysis of recent literature .

Deepak et al. (2016). Intersections between technology, engaged learning, and social capital in social work education .

19.6 Grounded theory analysis

  • Explain defining features of grounded theory analysis as a strategy for qualitative data analysis and identify when it is most effectively used
  • Formulate an initial grounded theory analysis plan (if appropriate for your research proposal)

What are you trying to accomplish with grounded theory analysis

Just to be clear, grounded theory doubles as both qualitative research design (we will talk about some other qualitative designs in Chapter 22 ) and a type of qualitative data analysis. Here we are specifically interested in discussing grounded theory as an approach to analysis in this chapter. With a grounded theory analysis , we are attempting to come up with a common understanding of how some event or series of events occurs based on our examination of participants’ knowledge and experience of that event. Let’s consider the potential this approach has for us as social workers in the fight for social justice. Using grounded theory analysis we might try to answer research questions like:

  • How do communities identity, organize, and challenge structural issues of racial inequality?
  • How do immigrant families respond to threat of family member deportation?
  • How has the war on drugs campaign shaped social welfare practices?

In each of these instances, we are attempting to uncover a process that is taking place. To do so, we will be analyzing data that describes the participants’ experiences with these processes and attempt to draw out and describe the components that seem quintessential to understanding this process.

Differences in approaches to grounded theory analysis largely lie in the amount (and types) of structure that are applied to the analysis process. Strauss and Corbin (2014) [15] suggest a highly structured approach to grounded theory analysis, one that moves back and forth between the data and the evolving theory that is being developed, making sure to anchor the theory very explicitly in concrete data points. With this approach, the researcher role is more detective-like; the facts are there, and you are uncovering and assembling them, more reflective of deductive reasoning . While Charmaz (2014) [16]  suggests a more interpretive approach to grounded theory analysis, where findings emerge as an exchange between the unique and subjective (yet still accountable) position of the researcher(s) and their understanding of the data, acknowledging that another researcher might emerge with a different theory or understanding. So in this case, the researcher functions more as a liaison, where they bridge understanding between the participant group and the scientific community, using their own unique perspective to help facilitate this process. This approach reflects inductive reasoning .

Coding in grounded theory

Coding in grounded theory is generally a sequential activity. First, the researcher engages in open coding of the data. This involves reviewing the data to determine the preliminary ideas that seem important and potential labels that reflect their significance for the event or process you are studying. Within this open coding process, the researcher will also likely develop subcategories that help to expand and provide a richer understanding of what each of the categories can mean. Next, axial coding will revisit the open codes and identify connections between codes, thereby beginning to group codes that share a relationship. Finally, selective or theoretical coding explores how the relationships between these concepts come together, providing a theory that describes how this event or series of events takes place, often ending in an overarching or unifying idea tying these concepts together. Dr. Tiffany Gallicano [17] has a helpful blog post that walks the reader through examples of each stage of coding. Figure 19.13 offers an example of each stage of coding in a study examining experiences of students who are new to online learning and how they make sense of it. Keep in mind that this is an evolving process and your document should capture this changing process. You may notice that in the example “Feels isolated from professor and classmates” is listed under both axial codes “Challenges presented by technology” and “Course design”. This isn’t an error; it just represents that it isn’t yet clear if this code is most reflective of one of these two axial codes or both. Eventually, the placement of this code may change, but we will make sure to capture why this change is made.

Figure 19.13 Example of open, axial, and selective coding
Anxious about using new tools Challenges presented by technology Doubts, insecurities and frustration experienced by new online learners
Lack of support for figuring technology out
Feels isolated from professor and classmates
Twice the work—learn the content and how to use the technology
Limited use of teaching activities (e.g. “all we do is respond to discussion boards”) Course design
Feels isolated from professor and classmates
Unclear what they should be taking away from course work and materials
Returning student, feel like I’m too old to learn this stuff Learner characteristics
Home feels chaotic, hard to focus on learning

Constant comparison

While ground theory is not the only approach to qualitative analysis that utilizes constant comparison, it is certainly widely associated with this approach. Constant comparison reflects the motion that takes place throughout the analytic process (across the levels of coding described above), whereby as researchers we move back and forth between the data and the emerging categories and our evolving theoretical understanding. We are continually checking what we believe to be the results against the raw data. It is an ongoing cycle to help ensure that we are doing right by our data and helps ensure the trustworthiness of our research. Ground theory often relies on a relatively large number of interviews and usually will begin analysis while the interviews are ongoing. As a result, the researcher(s) work to continuously compare their understanding of findings against new and existing data that they have collected.

data analysis on quantitative research

Developing your theory

Remember, the aim of using a grounded theory approach to your analysis is to develop a theory, or an explanation of how a certain event/phenomenon/process occurs. As you bring your coding process to a close, you will emerge not just with a list of ideas or themes, but an explanation of how these ideas are interrelated and work together to produce the event you are studying. Thus, you are building a theory that explains the event you are studying that is grounded in the data you have gathered.

Thinking about power and control as we build theories

I want to bring the discussion back to issues of power and control in research. As discussed early in this chapter, regardless of what approach we are using to analyze our data we need to be concerned with the potential for abuse of power in the research process and how this can further contribute to oppression and systemic inequality. I think this point can be demonstrated well here in our discussion of grounded theory analysis. Since grounded theory is often concerned with describing some aspect of human behavior: how people respond to events, how people arrive at decisions, how human processes work. Even though we aren’t necessarily seeking generalizable results in a qualitative study, research consumers may still be influenced by how we present our findings. This can influence how they perceive the population that is represented in our study. For example, for many years science did a great disservice to families impacted by schizophrenia, advancing the theory of the schizophrenogenic mother [18] . Using pseudoscience , the scientific community misrepresented the influence of parenting (a process), and specifically the mother’s role in the development of the disorder of schizophrenia. You can imagine the harm caused by this theory to family dynamics, stigma, institutional mistrust, etc. To learn more about this you can read this brief but informative editorial article by Anne Harrington in the Lancet . [19] Instances like these should haunt and challenge the scientific community to do better. Engaging community members in active and more meaningful ways in research is one important way we can respond. Shouldn’t theories be built by the people they are meant to represent?

  • Ground theory analysis aims to develop a common understanding of how some event or series of events occurs based on our examination of participants’ knowledge and experience of that event.
  • Using grounded theory often involves a series of coding activities (e.g. open, axial, selective or theoretical) to help determine both the main concepts that seem essential to understanding an event, but also how they relate or come together in a dynamic process.
  • Constant comparison is a tool often used by qualitative researchers using a grounded theory analysis approach in which they move back and forth between the data and the emerging categories and the evolving theoretical understanding they are developing.

Resources for learning more about Grounded Theory

Chun Tie, Y., Birks, M., & Francis, K. (2019). Grounded theory research: A design framework for novice researchers .

Gibbs, G.R. (2015, February 4). A discussion with Kathy Charmaz on Grounded Theory .

Glaser, B.G., & Holton, J. (2004, May). Remodeling grounded theory .

Mills, J., Bonner, A., & Francis, K. (2006). The development of Constructivist Grounded Theory .

A few exemplars of studies employing Grounded Theory

Burkhart, L., & Hogan, N. (2015). Being a female veteran: A grounded theory of coping with transitions .

Donaldson, W. V., & Vacha-Haase, T. (2016). Exploring staff clinical knowledge and practice with LGBT residents in long-term care: A grounded theory of cultural competency and training needs .

Vanidestine, T., & Aparicio, E. M. (2019). How social welfare and health professionals understand “Race,” Racism, and Whiteness: A social justice approach to grounded theory .

19.7 Photovoice

  • Explain defining features of photovoice as a strategy for qualitative data analysis and identify when it is most effectively used
  • Formulate an initial analysis plan using photovoice (if appropriate for your research proposal)

What are you trying to accomplish with photovoice analysis?

Photovoice is an approach to qualitative research that combines the steps of data gathering and analysis with visual and narrative data. The ultimate aim of the analysis is to produce some kind of desired change with and for the community of participants. While other analysis approaches discussed here may involve including participants more actively in the research process, it is certainly not the norm. However, with photovoice, it is. Using an approach that involves photovoice will generally assume that the participants in your study will be taking on a very active role throughout the research process, to the point of acting as co-researchers. This is especially evident during the analysis phase of your work.

As an example of this work, Mitchell (2018) [20] combines photovoice and an environmental justice approach to engage a Native American community around the significance and the implications of water for their tribe. This research is designed to help raise awareness and support advocacy efforts for improved access to and quality of natural resources for this group. Photovoice has grown out of participatory and community-based research traditions that assume that community members have their own expertise they bring to the research process, and that they should be involved, empowered, and mutually benefit from research that is being conducted. This mutual benefit means that this type of research involves some kind of desired and very tangible changes for participants; the research will support something that community members want to see happen. Examples of these changes could be legislative action, raising community awareness, or changing some organizational practice(s).

Training your team

Because this approach involve s participants not just sharing information, but actually utilizing research skills to help collect and interpret data, as a researcher you need to take on an educator role and share your research expertise in preparing them to do so. After recruiting and gathering informed consent, part of the on-boarding process will be to determine the focus of your study. Some photovoice projects are more prescribed, where the researcher comes with an idea and seeks to partner with a specific group or community to explore this topic. At other times, the researcher joins with the community first, and collectively they determine the focus of the study and craft the research question. Once this focus has been determined and shared, the team will be charged with gathering photos or videos that represent responses to the research question for each individual participant. Depending on the technology used to capture these photos (e.g. cameras, ipads, video recorders, cell phones), training may need to be provided.

Once photos have been captured, team members will be asked to provide a caption or description that helps to interpret what their picture(s) mean in relation to the focus of the study. After this, the team will collectively need to seek out themes and patterns across the visual and narrative representations. This means you may employ different elements of thematic or content analysis to help you interpret the collective meaning across the data and you will need to train your team to utilize these approaches.

Converging on a shared story

Once you have found common themes, together you will work to assemble these into a cohesive broader story or message regarding the focus of your topic. Now remember, the participatory roots of photovoice suggest that the aim of this message is to seek out, support, encourage or demand some form of change or transformation, so part of what you will want to keep in mind is that this is intended to be a persuasive story. Your research team will need to consider how to put your findings together in a way that supports this intended change. The packaging and format of your findings will have important implications for developing and disseminating the final products of qualitative research. Chapter 21 focuses more specifically on decisions connected with this phase of the research process.

  • Photovoice is a unique approach to qualitative research that combines visual and narrative information in an attempt to produce more meaningful and accessible results as an alternative to other traditional research methods.
  • A cornerstone of Photovoice research involves the training and participation of community members during the analysis process. Additionally, the results of the analysis are often intended for some form of direct change or transformation that is valued by the community.

After learning about these different types of qualitative analysis:

  • Which of these approaches make the most sense to you and how you view the world?
  • Which of them are most appealing and why?
  • Which do you want to learn more about?

Decision Point: How will you conduct your analysis?

  • What makes this the most effective choice?
  • Outline the steps you plan to take to conduct your analysis
  • What peer-reviewed resources have you gathered to help you learn more about this method of analysis? (keep these handy for when you write-up your study!)

Resources for learning more about Photovice:

Liebenberg, L. (2018). Thinking critically about photovoice: Achieving empowerment and social change .

Mangosing, D. (2015, June 18). Photovoice training and orientation .

University of Kansas, Community Toolbox. (n.d.). Section 20. Implementing Photovoice in Your Community .

Woodgate et al. (2017, January). Worth a thousand words? Advantages, challenges and opportunities in working with photovoice as a qualitative research method with youth and their families .

A few exemplars of studies employing Photovoice:

Fisher-Borne, M., & Brown, A. (2018). A case study using Photovoice to explore racial and social identity among young Black men: Implications for social work research and practice .

Houle et al. (2018). Public housing tenants’ perspective on residential environment and positive well-being: An empowerment-based Photovoice study and its implications for social work .

Mitchell, F. M. (2018). “Water Is Life”: Using photovoice to document American Indian perspectives on water and health .

Media Attributions

  • no black box © Cory Cummings
  • iterative v linear © Cory Cummings
  • discussing around table © Activités culturelles UdeM is licensed under a Public Domain license
  • thematic map © Cory Cummings
  • codebook and decision rules
  • constant compare © JohannaMarie is licensed under a CC0 (Creative Commons Zero) license
  • community meeting © Korean Resource Center 민족학교 is licensed under a CC BY-ND (Attribution NoDerivatives) license
  • photo exhibit © University of the Fraser Valley, I Lead Abbey Youth 4 Change is licensed under a CC BY (Attribution) license
  • Kleining, G., & Witt, H. (2000). The qualitative heuristic approach: A methodology for discovery in psychology and the social sciences. Rediscovering the method of introspection as an example. Forum Qualitative Sozialforschung/Forum: Qualitative Social Research, 1 (1). ↵
  • Burck, C. (2005). Comparing qualitative research methodologies for systemic research: The use of grounded theory, discourse analysis and narrative analysis. Journal of Family Therapy, 27 (3), 237-262. ↵
  • Mogashoa, T. (2014). Understanding critical discourse analysis in qualitative research. International Journal of Humanities Social Sciences and Education, 1 (7), 104-113. ↵
  • Contandriopoulos, D., Larouche, C., Breton, M., & Brousselle, A. (2018). A sociogram is worth a thousand words: proposing a method for the visual analysis of narrative data. Qualitative Research, 18 (1), 70-87. ↵
  • Elliott, L. (2016, January, 16). Dangers of “damage-centered” research . The Ohio State University, College of Arts and Sciences: Appalachian Student Resources. https://u.osu.edu/appalachia/2016/01/16/dangers-of-damage-centered-research/ ↵
  • Smith, L. T. (2012). Decolonizing methodologies: Research and indigenous peoples (2nd ed.). Zed Books Ltd. ↵
  • PAR-L. (2010). Introduction to feminist research . [Webpage]. https://www2.unb.ca/parl/research.htm#:~:text=Methodologically%2C%20feminist%20research%20differs%20from,standpoints%20and%20experiences%20of%20women . ↵
  • Mafile'o, T. (2004). Exploring Tongan Social Work: Fekau'aki (Connecting) and Fakatokilalo (Humility). Qualitative Social Work, 3 (3), 239-257. ↵
  • Duke Mod U Social Science Research Institute. (2016, November 11). How to know you are coding correct: Qualitative research methods. [Video]. YouTube. https://www.youtube.com/watch?v=iL7Ww5kpnIM&feature=youtu.be ↵
  • Wolf, H. R. (2010). Growing up in New York City: A generational memoir (1941-1960). American Studies Journal, 54. http://www.asjournal.org/54-2010/growing-up-in-new-york-city/ ↵
  • Clarke, V., Braun, V., & Hayfield, N. (2015). Thematic analysis. In J. A. Smith (ed.) Qualitative psychology: A practical guide to research methods , (3rd ed.). 222-248. ↵
  • Vaismoradi, M., Turunen, H., & Bondas, T. (2013). Content analysis and thematic analysis: Implications for conducting a qualitative descriptive study. Nursing & Health Sciences, 15 (3), 398-405. ↵
  • Hsieh, H. F., & Shannon, S. E. (2005). Three approaches to qualitative content analysis. Qualitative Health Research, 15 (9), 1277-1288. ↵
  • Corbin, J., & Strauss, A. (2014). Basics of qualitative research: Techniques and procedures for developing grounded theory . Sage publications. ↵
  • Charmaz, K. (2014). Constructing grounded theory . Sage Publications ↵
  • Gallicano, T. (2013, July 22). An example of how to perform open coding, axial coding and selective coding. [Blog post]. https://prpost.wordpress.com/2013/07/22/an-example-of-how-to-perform-open-coding-axial-coding-and-selective-coding/ ↵
  • Harrington, A. (2012). The fall of the schizophrenogenic mother. The Lancet, 379 (9823), 1292-1293. ↵
  • Mitchell, F. M. (2018). “Water Is Life”: Using photovoice to document American Indian perspectives on water and health. S ocial Work Research, 42 (4), 277-289. ↵

The act of breaking piece of qualitative data apart during the analysis process to discern meaning and ultimately, the results of the study.

The act of putting the deconstructed qualitative back together during the analysis process in the search for meaning and ultimately the results of the study.

Member checking involves taking your results back to participants to see if we "got it right" in our analysis. While our findings bring together many different peoples' data into one set of findings, participants should still be able to recognize their input and feel like their ideas and experiences have been captured adequately.

Rigor is the process through which we demonstrate, to the best of our ability, that our research is empirically sound and reflects a scientific approach to knowledge building.

The idea that researchers are responsible for conducting research that is ethical, honest, and following accepted research practices.

The process of research is record and described in such a way that the steps the researcher took throughout the research process are clear.

A research journal that helps the researcher to reflect on and consider their thoughts and reactions to the research process and how it may be shaping the study

Memoing is the act of recording your thoughts, reactions, quandaries as you are reviewing the data you are gathering.

An audit trail is a system of documenting in qualitative research analysis that allows you to link your final results with your original raw data. Using an audit trail, an independent researcher should be able to start with your results and trace the research process backwards to the raw data. This helps to strengthen the trustworthiness of the research.

Research that portrays groups of people or communities as flawed, surrounded by problems, or incapable of producing change. 

Research methodologies that center and affirm African cultures, knowledge, beliefs, and values. 

Research methods that reclaim control over indigenous ways of knowing and being.

Research methods in this tradition seek to, "remove the power imbalance between research and subject; (are) politically motivated in that (they) seeks to change social inequality; and (they) begin with the standpoints and experiences of women". [1]

Research methods using this approach aim to question, challenge and/or reject knowledge that is commonly accepted and privileged in society and elevate and empower knowledge and perspectives that are often perceived as non-normative.

A research process where you create a plan, you gather your data, you analyze your data and each step is completed before you proceed to the next.

An iterative approach means that after planning and once we begin collecting data, we begin analyzing as data as it is coming in.  This early analysis of our (incomplete) data, then impacts our planning, ongoing data gathering and future analysis as it progresses.

The point where gathering more data doesn't offer any new ideas or perspectives on the issue you are studying.  Reaching saturation is an indication that we can stop qualitative data collection.

These are software tools that can aid qualitative researchers in managing, organizing and manipulating/analyzing their data.

A document that we use to keep track of and define the codes that we have identified (or are using) in our qualitative data analysis.

Part of the qualitative data analysis process where we begin to interpret and assign meaning to the data.

Thematic analysis is an approach to qualitative analysis, in which the researcher attempts to identify themes or patterns across their data to better understand the topic being studied.

An approach to data analysis in which we gather our data first and then generate a theory about its meaning through our analysis.

An approach to data analysis in which the researchers begins their analysis using a theory to see if their data fits within this theoretical framework (tests the theory).

Categories that we use that are determined ahead of time, based on existing literature/knowledge.

A data matrix is a tool used by researchers to track and organize data and findings during qualitative analysis.

A visual representation of how each individual category fits with the others when using thematic analysis to analyze your qualitative data.

An approach to data analysis that seeks to identify patterns, trends, or ideas across qualitative data through processes of coding and categorization.

entity that a researcher wants to say something about at the end of her study (individual, group, or organization)

A decision-rule provides information on how the researcher determines what code should be placed on an item, especially when codes may be similar in nature.

In qualitative data, coverage refers to the amount of data that can be categorized or sorted using the code structure that we are using (or have developed) in our study. With qualitative research, our aim is to have good coverage with our code structure.

A form of qualitative analysis that aims to develop a theory or understanding of how some event or series of events occurs by closely examining participant knowledge and experience of that event(s).

starts by reading existing theories, then testing hypotheses and revising or confirming the theory

a paradigm based on the idea that social context and interaction frame our realities

when a researcher starts with a set of observations and then moves from particular experiences to a more general set of propositions about those experiences

An initial phase of coding that involves reviewing the data to determine the preliminary ideas that seem important and potential labels that reflect their significance.  

Axial coding is phase of qualitative analysis in which the research will revisit the open codes and identify connections between codes, thereby beginning to group codes that share a relationship.

Selective or theoretical coding is part of a qualitative analysis process that seeks to determine how important concepts and their relationships to each other come together, providing a theory that describes the focus of the study. It often results in an overarching or unifying idea tying these concepts together.

Constant comparison reflects the motion that takes place in some qualitative analysis approaches whereby the researcher moves back and forth between the data and the emerging categories and evolving understanding they have in their results. They are continually checking what they believed to be the results against the raw data they are working with.

Trustworthiness is a quality reflected by qualitative research that is conducted in a credible way; a way that should produce confidence in its findings.

claims about the world that appear scientific but are incompatible with the values and practices of science

Photovoice is a technique that merges pictures with narrative (word or voice data that helps that interpret the meaning or significance of the visual artifact. It is often used as a tool in CBPR.

Graduate research methods in social work Copyright © 2021 by Matthew DeCarlo, Cory Cummings, Kate Agnelli is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

Log in using your username and password

  • Search More Search for this keyword Advanced search
  • Latest Content
  • BMJ Journals

You are here

  • Volume 11, Issue 1
  • Mycophenolate and azathioprine efficacy in interstitial lung disease: a systematic review and meta-analysis
  • Article Text
  • Article info
  • Citation Tools
  • Rapid Responses
  • Article metrics

Download PDF

  • http://orcid.org/0000-0003-2254-5119 Francesco Lombardi 1 ,
  • http://orcid.org/0000-0002-1340-2688 Iain Stewart 2 ,
  • http://orcid.org/0000-0002-8250-6464 Laura Fabbri 2 ,
  • Wendy Adams 3 ,
  • http://orcid.org/0000-0003-0784-1331 Leticia Kawano-Dourado 4 , 5 ,
  • Christopher J Ryerson 6 and
  • http://orcid.org/0000-0002-7929-2119 Gisli Jenkins 7
  • REMAP-ILD Consortium
  • 1 Pulmonary Medicine , Policlinico Universitario Agostino Gemelli , Roma , Italy
  • 2 National Heart & Lung Institute , Imperial College London , London , UK
  • 3 Action for Pulmonary Fibrosis , London , UK
  • 4 HCOR Research Institute , Hospital do Coracao , Sao Paulo , Brazil
  • 5 Pulmonary Division , University of Sao Paulo , Sao Paulo , Brazil
  • 6 Medicine , The University of British Columbia , Vancouver , British Columbia , Canada
  • 7 Imperial College London , London , UK
  • Correspondence to Dr Francesco Lombardi; lombardi.f89{at}gmail.com

Objectives Mycophenolate mofetil (MMF) and azathioprine (AZA) are immunomodulatory treatments in interstitial lung disease (ILD). This systematic review aimed to evaluate the efficacy of MMF or AZA on pulmonary function in ILD.

Design Population included any ILD diagnosis, intervention included MMF or AZA treatment, outcome was delta change from baseline in per cent predicted forced vital capacity (%FVC) and gas transfer (diffusion lung capacity of carbon monoxide, %DLco). The primary endpoint compared outcomes relative to placebo comparator, the secondary endpoint assessed outcomes in treated groups only.

Eligibility criteria Randomised controlled trials (RCTs) and prospective observational studies were included. No language restrictions were applied. Retrospective studies and studies with high-dose concomitant steroids were excluded.

Data synthesis The systematic search was performed on 9 May. Meta-analyses according to drug and outcome were specified with random effects, I 2 evaluated heterogeneity and Grading of Recommendations, Assessment, Development and Evaluation evaluated certainty of evidence. Primary endpoint analysis was restricted to RCT design, secondary endpoint included subgroup analysis according to prospective observational or RCT design.

Results A total of 2831 publications were screened, 12 were suitable for quantitative synthesis. Three MMF RCTs were included with no significant effect on the primary endpoints (%FVC 2.94, 95% CI −4.00 to 9.88, I 2 =79.3%; %DLco −2.03, 95% CI −4.38 to 0.32, I 2 =0.0%). An overall 2.03% change from baseline in %FVC (95% CI 0.65 to 3.42, I 2 =0.0%) was observed in MMF, and RCT subgroup summary estimated a 4.42% change from baseline in %DL CO (95% CI 2.05 to 6.79, I 2 =0.0%). AZA studies were limited. All estimates were considered very low certainty evidence.

Conclusions There were limited RCTs of MMF or AZA and their benefit in ILD was of very low certainty. MMF may support preservation of pulmonary function, yet confidence in the effect was weak. To support high certainty evidence, RCTs should be designed to directly assess MMF efficacy in ILD.

PROSPERO registration number CRD42023423223.

  • Interstitial Fibrosis
  • Respiratory Function Test

Data availability statement

Data are available in a public, open access repository. We cited published study.

This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See:  http://creativecommons.org/licenses/by-nc/4.0/ .

https://doi.org/10.1136/bmjresp-2023-002163

Statistics from Altmetric.com

Request permissions.

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.

WHAT IS ALREADY KNOWN ON THIS TOPIC

Mycophenolate mofetil (MMF) and azathioprine (AZA) are two immunomodulatory drugs used in the treatment of connective tissue disease with both drugs having mechanisms that target lymphocytes. While increasingly used in treatment of interstitial lung disease (ILD), there is limited evidence for the efficacy of MMF or AZA in improving outcomes.

WHAT THIS STUDY ADDS

We undertook a systematic review and meta-analysis to assess whether administration MMF or AZA in ILD was associated with changes in pulmonary function and gas transfer. There was an unclear benefit of MMF on ILD. There was no significant difference in outcome when compared with placebo or standard of care. A minor increase in per cent predicted forced vital capacity and diffusion lung capacity of carbon monoxide from baseline was observed in MMF. Studies on AZA were limited.

HOW THIS STUDY MIGHT AFFECT RESEARCH, PRACTICE OR POLICY

Findings may provide indication of an attenuation on lung function decline, however, all estimates should be considered weak evidence with a high likelihood that additional trials may change effect estimates in a manner sufficient to influence decision-making. The limited number of controlled studies in MMF and AZA highlight an important need for additional well-designed randomised controlled trials to directly test their efficacy in ILD.

Introduction

Interstitial lung disease (ILD) is a diverse group of conditions that affect the interstitial structure of the lungs. These diseases can be characterised by progressive lung damage, resulting in symptoms such as dyspnoea, decreased exercise tolerance and a diminished quality of life. 1 Forced vital capacity (FVC) and the diffusion lung capacity of carbon monoxide (DL CO ) are widely used to assess the severity of disease and predict prognosis of people with ILD. 2

Mycophenolate mofetil (MMF) and azathioprine (AZA) are two immunomodulatory drugs commonly used in the treatment of connective tissue disease (CTD) and associated ILD (CTD-ILD). MMF works by blocking the de novo synthesis of DNA, thereby inhibiting the proliferation of lymphocytes. AZA is a purine analogue that hinders purine synthesis and becomes incorporated into DNA during the anabolic process. Similar to MMF, this mechanism of action makes both drugs more specific for targeting lymphocytes, as lymphocytes do not have a salvage pathway in DNA synthesis. 3

There is limited evidence for the safety or efficacy of MMF or AZA in improving outcomes for people with ILD. 4 This systematic review and meta-analysis aims to assess whether the administration of MMF or AZA in ILD is associated with changes in pulmonary function and gas transfer, and to synthesise evidence of safety profiles.

Search strategy

The prespecified protocol was submitted to PROSPERO on 3 May 2023 and registered on 16 May 2023 (CRD42023423223). The search strategy was last performed on 9 May 2023.

The population was defined as people with ILD (Idiopathic pulmonary fibrosis (IPF), chronic hypersensitivity pneumonia and all CTD-ILD, including systemic scleroderma) the intervention was MMF or AZA; the comparator was placebo or standard of care; the primary outcomes were per cent predicted FVC (%FVC) and DL CO (%DL CO ). Adverse events, respiratory symptoms, quality of life and mortality were investigated as secondary outcomes. Relevant studies were searched in Medline and Embase using comprehensive search terms ( online supplemental documents 1 and 2 ). Relevant ongoing trials were searched on clinicaltrials.gov ( online supplemental document 3 ).

Supplemental material

Inclusion criteria.

Eligible studies included interventional randomised controlled trials (RCTs) and observational prospective studies of adults (>18 years old) diagnosed with any ILD, where at least one arm was treated with MMF or AZA. Low doses of steroids concomitant with or prior to MMF or AZA treatment were allowed, while we excluded studies with concomitant high-dose therapies (≥20 mg/day of prednisone or equivalent). Finally, we excluded studies that did not report %FVC or %DL CO . No language restrictions were applied.

Study selection and data extraction

Two authors (FL and LF) independently assessed the titles and abstracts of the identified studies according to the eligibility criteria. Subsequently, two authors (FL and LF) evaluated the full text of the selected articles to determine their inclusion. Any disagreements were resolved through discussion and consensus with a third author (IS) resolving any remaining disagreements.

Data were independently extracted using a proforma and confirmed by two authors (FL and LF). Extracted data included study design, authors, year of publication; patient data namely age, reported sex or gender, duration of disease at the time of evaluation, aetiology of the disease and intervention characteristics, including MMF or AZA treatment, dose and duration of treatments. Primary outcomes of interest, %FVC and %DL CO , were extracted, along with any secondary outcomes reported, at baseline and follow-up time point closest to 12 months.

Continuous primary outcomes were collected as mean and SD at baseline and follow-up time points. When studies reported other summary values, these were converted to mean and SD. 5 Secondary outcomes reported as dichotomous and categorical variables were extracted as ratio and/or per cent.

Risk of bias

Two authors (FL and LF) independently used the Cochrane ‘Risk of Bias’ assessment tool 2.0 to evaluate the included RCTs prior to quantitative synthesis. 6 Risk of bias in the observational prospective studies was assessed using the Newcastle-Ottawa Quality Assessment Scale. 7 To assess the risk of bias in single-arm observational cohorts, specifically for evaluation of ‘selection bias’ and ‘comparative bias’ on the Newcastle-Ottawa Quality Assessment Scale, baseline time points were considered as the ‘not exposed cohort’ and the follow-up time point as the ‘exposed cohort’. Studies that were determined to have a high risk of bias were excluded from quantitative synthesis.

Statistical analysis

When two or more studies were available for a specific treatment, a random effects meta-analysis with inverse-variance was performed to evaluate the effect of the treatment on %FVC and %DL CO values. Estimates were expressed as weighted mean difference (WMD) with 95% CI.

Where there were sufficient RCT data, the primary endpoint analysis assessed the delta difference in %FVC and %DL CO at follow-up from baseline in respiratory function for MMF or AZA relative to the comparator. In a secondary endpoint analysis, the difference in %FVC and %DL CO between follow-up and baseline in people receiving of MMF or AZA was compared. Analyses were performed according to drug, prespecified subgroup analyses were performed according to study design (RCT or prospective observation study) and follow-up time (6 months or 12 months and over).

Heterogeneity was evaluated using I 2 statistic to interpret the proportion of the total variability that was due to between-study heterogeneity, as well as inspection of forest plots. All analyses were performed by using Stata SE V.17.0.

Assessment of certainty of evidence

The Grading of Recommendations, Assessment, Development and Evaluation (GRADE) approach was used to assess the certainty of evidence in effect estimates from RCT data exclusively. The level of certainty was evaluated as high, moderate, low or very low, considering factors of risk of bias, inconsistency, indirectness, imprecision and publication bias. 8 Publication bias was inspected with asymmetry in funnel plots and Egger’s test.

Patient and public involvement

Representatives from the Action for Pulmonary Fibrosis charity were involved in the design and dissemination of this systematic review. Members of the REMAP-ILD Consortium include charity representatives.

Search of relevant studies

A total of 2831 publications from Embase and Medline were identified. After removal of duplicates and evaluating the titles and abstracts, 23 studies were assessed for eligibility. Among these, 11 studies were excluded due to retrospective design (n=2), incompleteness (n=2), lack of the outcome of interest (n=2) or the presence of concomitant treatment with high doses of steroids (n=5) ( figure 1 , online supplemental table 1 ). A total of 13 studies were eligible for qualitative synthesis ( table 1 ). 9–21 Separately, four ongoing MMF studies were identified, including one phase II RCT, two open-label trials and one prospective cohort study; two studies address pulmonary involvement of systemic sclerosis, one study recruits participants with fibrotic hypersensitivity pneumonitis and one study focuses on idiopathic inflammatory myopathy ILD ( online supplemental document 3 ).

  • Download figure
  • Open in new tab
  • Download powerpoint

Preferred reporting items for systematic review and meta-analysis (PRISMA) flow of study search and inclusion. AZA, azathioprine; MMF, mycophenolate mofetil.

  • View inline

Reported study characteristics of included cohorts

A moderate risk of bias was observed for the blinding of outcome assessment in all the included RCTs, 12 14 15 19–21 as there were no mentioned strategies to blind the pulmonary function test evaluations ( figure 2A ). Roig et al 21 and Zhang et al 20 were considered at high risk of bias in terms of blinding of participants and personnel, as they compared intravenous and oral (per os) treatments without implementing a double dummy strategy. Due to the high risks of bias across a number of domains and insufficient data reporting, the study by Roig et al 21 was excluded from quantitative synthesis. In the assessment of prospective observational studies, six studies 10 11 13 16–18 had selection bias in the ascertainment of exposure, but all studies were considered adequate ( figure 2B , online supplemental table 2 ).

Qualitative synthesis: risk of bias. (A) Risk of bias in RCTs assessed using Cochrane ROB2.0 tool. (B) Risk of bias assessed using Newcastle-Ottawa Quality assessment scale for cohort studies. Green has been assessed as: three or four stars in selection bias; two stars in comparability, three stars in outcome. Yellow has been assessed as: two stars in selection bias; one star in comparability, two stars in outcome. RCTs, randomised controlled trial; ROB2.0, Risk of Bias 2.0.

MMF and AZA efficacy in primary endpoint relative to comparator

MMF or AZA were tested in a total of four trials, with three trials using MMF 15 19 20 and one trial using AZA. 14 Only MMF trials were included in primary analysis with a total of 249 participants, of which 119 were in the intervention arm and 130 were in the comparator arm ( figure 3A ). In primary analysis, the overall delta change in %FVC values from baseline to follow-up was not significantly different between the intervention and comparator arms (WMD 2.94, 95% CI −4.00 to 9.88, I 2 =79.3%). Significant heterogeneity was observed and the estimate was interpreted to have very low certainty ( table 2 , online supplemental figure 1A ).

Primary endpoint analysis of efficacy on pulmonary function relative to comparator. (A) Forest plot of difference in %FVC in treatment of MMF versus comparators at follow-up. (B) Forest plot of difference in %DLco in treatment of MMF versus comparators at follow-up. Positive values indicate improvement relative to comparator, negative values indicate decline relative to comparator. Presented with cohort size (N) for intervention and comparator, weighted mean difference (WMD) and 95% CI. Follow-up time reported in months. %DLco, per cent predicted diffusion lung capacity of carbon monoxide; %FVC, per cent predicted forced vital capacity; MMF, mycophenolate mofetil.

GRADE approach to rate certainty of effect estimates

The overall delta change in %DL CO from baseline to follow-up was not significantly different in the interventional arm compared with the comparator arm (WMD %DLco −2.03, 95% CI −4.38 to 0.32, I 2 =0.0% ( figure 3B ). Heterogeneity was not observed and the estimate was interpreted to have very low certainty ( table 2 , online supplemental figure 2B ).

MMF or AZA efficacy in secondary endpoints

A total of 6 prospective observational studies 9–11 16–18 and 5 RCTs 12 14 15 19 20 were included in secondary analysis of the difference between follow-up and baseline in %FVC, including a combined sample of 267 evaluated at baseline and 244 at follow-up, representing 7.5% loss to follow up. In prespecified subgroup analysis by drug ( online supplemental figure 3A ), treatment with AZA suggested a decline in %FVC with treatment, although this was not statistically significant (two studies; WMD −6.14, 95% CI −12.88 to 0.61, I 2 =48.3%). Treatment with MMF was observed to have a small and significant increase in %FVC value at follow-up (nine studies; WMD 2.03, 95% CI 0.65 to 3.42, I 2 =0.0%). Additional subgroup analyses performed on MMF treatment observed similar effect sizes according to study design and very low certainty of evidence ( figure 4A , table 2 ), while a greater effect of MMF was observed at follow-up of 12 months or over with no significant heterogeneity between time points ( online supplemental figure 4A ).

Secondary endpoint analysis of efficacy on pulmonary function compared with baseline. Subgroup analysis of MMF overall and summary estimates presented by study design of trial or prospective observational study. 4 (A) Forest plot of change in %FVC at follow-up versus baseline. (B) Forest plot of change in %DLco versus baseline. Positive values indicate improvement relative to baseline, negative values indicate decline relative to baseline. Presented with cohort size (N) for intervention and comparator, weighted mean difference (WMD) and 95% CIs. Follow-up time reported in months. %DLco, per cent predicted diffusion lung capacity of carbon monoxide; %FVC, per cent predicted forced vital capacity; MMF, mycophenolate mofetil.

Data from a total of 7 observational studies 9–11 13 16–18 and 5 RCTs 12 14 15 19 20 were available for analysis of %DL CO , including 262 and 234 patients, respectively, at baseline and follow-up representing a 10.7% loss to follow up. In subgroup analysis by drug ( online supplemental figure 3B ), treatment with AZA suggested a decline (two studies; −5.72, 95% CI −13.79 to 2.34, I 2 =49.8%), while treatment with MMF suggested an increase (10 studies; 1.62, 95% CI −1.70 to 4.94, I 2 =60.5%), although effect estimates did not reach significance and substantial heterogeneity was observed. Additional subgroup analyses performed on MMF treatment observed a significant decline in %DL CO in prospective observation studies (WMD −1.36, 95% CI −2.37 to −0.36, I 2 =0.0%) and a significant improvement in RCTs (WMD 4.42, 95% CI 2.05 to 6.79; I 2 =0.0%), with substantial heterogeneity between subgroups and very low certainty in evidence ( figure 4B , table 2 ). Subgroup analysis on follow-up time did not observe a significant effect in %DL CO with no significant heterogeneity observed between groups ( figure 4B ).

Qualitative synthesis of adverse events

All the studies reported adverse events. The most frequent adverse events in the treated arms were diarrhoea and pneumonia, followed by lympho/leucopenia, anaemia and skin infection ( online supplemental table 3 ).

Four studies reported on respiratory symptoms. 11 12 15 18 In the study by Mankikian et al , no significant difference was observed in the change from baseline in dyspnoea and cough between the treated patients and the placebo group. Naidu et al reported an improvement in respiratory symptoms in both arms of the study, with no significant difference between the treatment and control groups. Liossis et al reported an improvement in respiratory symptoms compared with baseline after administration of MMF. Vaiarello et al evaluated symptoms during a cardiopulmonary exercise test before and after MMF treatment, observing no significant difference in dyspnoea measured by the Borg scale.

Two studies reported change in quality of life. 12 15 Mankikian et al and Naidu et al evaluated the change of quality of life between the interventional and the control arm using respectively the SF-36 V.1.3 questionnaire and the Medical Outcome Survey SF-36 V.2. Both these studies reported no difference in the QoL in MMF arm compared with control. None of the included studies reported on mortality.

This systematic review and meta-analysis suggested an unclear benefit of MMF or AZA on FVC or DL CO in people with ILD. Secondary endpoint analysis of change over time stratified by treatment suggested a minor increase in %FVC or %DL CO  compared with baseline in MMF treated groups. The review highlighted a limited number of trials and prospective observational studies that directly tested the effect of MMF or AZA on lung function in the current literature, particularly precluding interpretations on the efficacy of AZA.

All estimates based on MMF RCT data were of very low GRADE certainty of evidence. Risk of bias was deemed moderate as one trial included unblinded participants, one study was post hoc analysis of trial data, and all trials had potential issues in blinding of outcome assessment. Heterogeneity and differences in the direction of effect across RCTs contributed to inconsistency. Imprecision was considered high due to limited RCTs, small samples and small effect sizes with wide CIs. Indirectness was deemed moderate as studies included different diagnoses. There was no strong evidence of publication bias. While these findings provide some indication of the effect, all estimates should be considered weak evidence with a high likelihood that additional studies may change effect estimates in a manner sufficient to influence decision-making.

Primary endpoint analysis in MMF observed no significant effect of treatment vs comparator groups for %FVC or %DL CO , although a non-significant effect in %DL CO favoured comparator. In contrast, secondary endpoint analysis suggested that MMF treatments could improve on baseline pulmonary function, although this may be insufficient relative to placebo. In further subanalyses restricted to MMF, greater improvement in %FVC was observed at longer follow-up, with no difference according to study design. Conversely, greater improvement in %DL CO was observed in trial designs, with no difference according to follow-up timing. While heterogeneity was minimised in subgroup analyses, effect sizes were small.

In the narrative review of adverse events, we found that both treatments were well tolerated, however, studies on real-world data suggest difficulties in tolerability. 4 The most frequent adverse events observed with MMF and AZA treatment included respiratory infections and haematological disorders. It is noteworthy that these adverse events were often mild and did not typically require specific treatment nor differ to events encountered in standard treatments. MMF or AZA interruption due to adverse events led to treatment discontinuation only in a few cases. Symptoms appeared to slightly improve after treatment commenced, but stricter interventional vs placebo studies are needed to assess the real effect on patient-reported outcomes.

The first meta-analysis examining the safety and efficacy of MMF in ILD associated with systemic sclerosis, conducted by Tzouvelekis et al included both retrospective and one prospective study. The outcomes of their study align with our findings, indicating an acceptable safety profile for MMF without clear evidence regarding its effectiveness on pulmonary function. 22 Similarly, network meta-analysis in systemic sclerosis associated ILD did not identify significant treatment efficacy of MMF, nor AZA in combination with cyclosporin-A. 23 Further studies are necessary across ILD diagnoses to ascertain potential efficacy in disease subtypes.

This study employed a comprehensive search strategy and strict inclusion criteria, which focused on prospective designs and trials. To support quality, estimates were specifically provided for trial designs along with GRADE assessment. We did not include restrictions on study language or cohort size. MMF and AZA were evaluated in prespecified subgroup analysis based on drug. Where study designs included other treatments, data were collected to support interpretation of MMF or AZA with omission of the drug in comparator arms. Effects regarding AZA should be interpreted with great caution due to limited studies and insufficient studies for primary analysis. Those involving AZA included an active intervention of Cyclosporin-A in the comparator, with addition of AZA in the treatment group, precluded specific interpretation of AZA alone. The limited representation of AZA in the recent literature may be partially attributed to the results of the PANTHER trial, where AZA in combination with n-acetylcysteine and prednisone led to worse outcomes in patients with IPF. 24 Mankikian et al designed an RCT randomising rituximab+MMF versus MMF, we extracted data only from the MMF arm for secondary endpoints. 12 Furthermore, studies were not consistent in ILD diagnosis inclusion, with the majority of prospective observational studies including systemic sclerosis-associated ILD; trials included IPF, non-specific interstitial pneumonia and CTD-ILD, which may contribute to heterogeneity in effect estimates. While ongoing studies were identified, MMF studies did not included blinded phase III RCTs and no AZA studies were identified.

In conclusion, the beneficial impact of MMF and AZA on pulmonary function in patients with ILD is uncertain with some weak evidence that suggests a need to further investigate the effect of MMF in preserving function. While MMF and AZA were generally well tolerated in patients with ILD, it is important to note that the certainty of effects on pulmonary function was very low. Further well-designed RCTs across diagnoses of fibrotic and inflammatory ILD are necessary to support high certainty evidence.

Ethics statements

Patient consent for publication.

Not applicable.

Ethics approval

No ethical approval was sought as the study uses summary information from published literature.

Acknowledgments

We express our gratitude to librarian Jacqueline Kemp, Imperial College London, for her valuable assistance in the development of the search strategy. Additionally, we would like to extend our thanks to Dr Liu Bin, Imperial College London, for providing the translation of Chinese manuscripts.

  • Fischer A , et al
  • Larrieu S ,
  • Si-Mohamed S , et al
  • Broen JCA ,
  • van Laar JM
  • Donohoe K , et al
  • McGrath S ,
  • Steele R , et al
  • Higgins JPT ,
  • Altman DG ,
  • Gøtzsche PC , et al
  • O’Connell D , et al
  • Santesso N ,
  • Glenton C ,
  • Dahm P , et al
  • Shenin M , et al
  • Amberger C , et al
  • Liossis SNC ,
  • Andonopoulos AP
  • Mankikian J ,
  • Reynaud-Gaubert M , et al
  • Mendoza FA ,
  • Lee JB , et al
  • Nadashkevich O ,
  • Fritzler M , et al
  • Naidu GSRSNK ,
  • Sharma SK ,
  • Adarsh MB , et al
  • Chiarolanza I ,
  • Cuomo G , et al
  • Simeón-Aznar CP ,
  • Fonollosa-Plá V ,
  • Tolosa-Vilella C , et al
  • Vaiarello V ,
  • Schiavetto S ,
  • Foti F , et al
  • Volkmann ER ,
  • Tashkin DP ,
  • Li N , et al
  • Zhang H , et al
  • Herrero A ,
  • Arroyo-Cózar M , et al
  • Tzouvelekis A ,
  • Galanopoulos N ,
  • Bouros E , et al
  • Sebastiani M ,
  • Fenu MA , et al
  • Idiopathic Pulmonary Fibrosis Clinical Research Network ,
  • Anstrom KJ , et al

Supplementary materials

Supplementary data.

This web only file has been produced by the BMJ Publishing Group from an electronic file supplied by the author(s) and has not been edited for content.

  • Data supplement 1

Twitter @istamina, @IPFdoc

FL and IS contributed equally.

Collaborators REMAP-ILD Consortium: Alexandre Biasi Cavalcanti (Hospital of Coracao), Ali Mojibian (Black Tusk Research Group), Amanda Bravery (Imperial College Clinical Trials Unit), Amanda Goodwin (University of Nottingham), Ana Etges (Federal University of Rio Grande do Sul), Ana Sousa Marcelino Boshoff (Imperial College Clinical Trials Unit), Andreas Guenther (Justus-Liebig-University of Giessen), Andrew Briggs (London School of Hygiene and Tropical Medicine), Andrew Palmer (University of Tasmania), Andrew Wilson (University of East Anglia), Anjali Crawshaw (University Hospitals Birmingham), Anna-MariaHoffmann-Vold (Oslo University Hospital), Anne Bergeron (University Hospitals Geneva), Anne Holland (Monash University), Anthony Gordon (Imperial College London), Antje Prasse (Hannover Medical School), Argyrios Tzouvelekis (Yale University), Athina Trachalaki (Imperial College London), Athol Wells (Royal Brompton Hospital), Avinash Anil Nair (Christian Medical College Vellore), Barbara Wendelberger (Berry Consultants), Ben Hope-Gill (Cardiff and Vale University Hospital), Bhavika Kaul (U.S. Department of Veterans Affairs Center for Innovation in Quality, Effectiveness, and Safety; Baylor College of Medicine and University of California San Francisco), Bibek Gooptu (University of Leicester), Bruno Baldi (Pulmonary Division, Heart Institute (InCor), University of Sao Paulo Medical School, Sao Paulo, Brazil), Bruno Crestani (Public Assistance Hospital of Paris), Carisi Anne Polanczyk (Federal University of Rio Grande do Sul), Carlo Vancheri (University of Catania), Carlos Robalo (European Respiratory Society), Charlotte Summers (University of Cambridge), Chris Grainge (University of Newcastle), Chris Ryerson (Department of Medicine and Centre of Heart Lung Innovations, University of British Columbia), Christophe von Garnier (Centre Hospitalier Universitaire Vaudois), Christopher Huntley (University Hospitals Birmingham), Claudia Ravaglia (University of Bologna), Claudia Valenzuela (Hospital Universitario de La Princesa), Conal Hayton (Manchester University Hospital), Cormac McCarthy (University College Dublin), Daniel Chambers (Queensland Health), Dapeng Wang (National Heart and Lung Institute, Imperial College London), Daphne Bablis (Imperial College Clinical Trials Unit), David Thicket (University of Birmingham), David Turner (University of East Anglia), Deepak Talwar (Metro Respiratory Centre Pulmonology & Sleep Medicine), Deji Adegunsoye (University of Chicago), Devaraj Anand (Royal Brompton Hospital), Devesh Dhasmana (University of St. Andrews), Dhruv Parek (Brimingham University), Diane Griffiths (University Hospitals Birmingham), Duncan Richards (Oxford University), Eliana Santucci (Hospital of Coracao), Elisabeth Bendstrup (Aarhus University), Elisabetta Balestro (University of Padua), Eliza Tsitoura (University of Crete), Emanuela Falaschetti (Imperial College London), Emma Karlsen (Black Tusk Research Group), Ena Gupta (University of Vermont Health Network), Erica Farrand (University of California, San Fransisco), Fasihul Khan (University of Nottingham), Felix Chua (Royal Brompton Hospital), Fernando J Martinez (Weill Cornell Medicine), Francesco Bonella (Essen University Hospital), Francesco Lombardi (Division of Pulmonary Medicine, Fondazione Policlinico Universitario Agostino Gemelli IRCCS), Gary M Hunninghake (Brigham and Women's Hospital), Gauri Saini (Nottingham University Hospital), George Chalmers (Glasgow Royal Infirmary), Gisli Jenkins (Imperial College London), Gunnar Gudmundsson (University of Iceland), Harold Collard (University of California, San Francisco), Helen Parfrey (Royal Papworth Hospital NHS Foundation Trust), Helmut Prosch (Medical University of Vienna), Hernan Fainberg (Imperial College London), Huzaifa Adamali (North Bristol NHS Trust), Iain Stewart (National Heart and Lung Institute, Imperial College London), Ian Forrest (Newcastle Hospitals NHS Foundation Trust), Ian Glaspole (Alfred Hospital), Iazsmin Bauer-Ventura (The University of Chicago), Imre Noth (University of Virginia), Ingrid Cox (University of Tasmania), Irina Strambu (University of Medicine and Pharmacy), Jacobo Sellares (Hospital Clínic de Barcelona), James Eaden (Sheffield University Hospitals), Janet Johnston (Manchester Royal Infirmary NHS Foundation Trust), Jeff Swigris (National Jewish Health), John Blaikley (Manchester University), John S Kim (University of Virginia), Jonathan Chung (The University of Chicago), Joseph A Lasky (Tulane & Pulmonary Fibrosis Foundation), Joseph Jacob (University College London), Joyce Lee (University of Colorado), Juergen Behr (Ludwig Maximilian University of Munich), Karin Storrer (Federal University of Sao Paulo), Karina Negrelli (Hospital of Curacao), Katarzyna Lewandowska (Institute of Tuberculosis and Lung Diseases), Kate Johnson (The University of British Colombia), Katerina Antoniou (University of Crete), Katrin Hostettler (University Hospital Basel), Kerri Johannson (University of Calgary), Killian Hurley (Royal College of Surgeons, Ireland), Kirsty Hett (Cardiff and Vale University Health Board), Larissa Schwarzkopf (The Institute for Therapy Research), Laura Fabbri (National Heart and Lung Institute, Imperial College London), Laura Price (Royal Brompton Hospital), Laurence Pearmain (Manchester University), Leticia Kawano-Dourado (Hcor Research Institute, Hospital do Coracao, Sao Paulo, Brazil. 2. Pulmonary Division, University of Sao Paulo, Sao Paulo, Brazil. 3. MAGIC Evidence Ecosystem Foundation, Oslo, Norway), Liam Galvin (European Pulmonary Fibrosis Federation), Lisa G. Spencer (Liverpool University Hospitals NHS Foundation Trust), Lisa Watson (Sheffield University Hospitals), Louise Crowley (Queen Elizabeth Hospital, University Hospitals Birmingham), Luca Richeldi (Agostino Gemelli IRCCS University Hospital Foundation), Lucilla Piccari (Department of Pulmonary Medicine, Hospital del Mar, Barcelona (Spain)), Manuela Funke Chambour (University of Bern), Maria Molina-Molina (IDIBELL Bellvitge Biomedical Research Institute), Mark Jones (Southampton University), Mark Spears (University of Dundee Scotland), Mark Toshner (University of Cambridge), Marlies Wijsenbeek-Lourens (Erasmus University Medical Hospital), Martin Brutsche (Kantonsspital St.Gallen), Martina Vasakova (Faculty Thomayer Hospital), Melanie Quintana (Berry Consultants), Michael Gibbons (University of Exeter), Michael Henry (Cork University Hospital), Michael Keane (University College Dublin), Michael Kreuter (Heidelberg University Hospital), Milena Man Iuliu Hatieganu (University of Medicine and Pharmacy), Mohsen Sadatsafavi (The University of British Colombia), Naftali Kaminski (Yale University), Nazia Chaudhuri (Ulster University), Nick Weatherley (Sheffield University Hospitals), Nik Hirani (The University of Edinburgh), Ovidiu Fira Mladinescu Victor Babes (University of Medicine and Pharmacy), Paolo Spagnolo (University of Padua), Paul Beirne (Leeds Teaching Hospitals NHS Foundation Trust), Peter Bryce (Pulmonary Fibrosis Trust), Peter George (Royal Brompton Hospital), Philip L Molyneaux (Imperial College London), Pilar Rivera Ortega (Interstitial Lung Disease Unit, Department of Respiratory Medicine, Wythenshawe Hospital. Manchester University NHS Foundation Trust. United Kingdom.), Radu Crisan-Dabija (University of Medicine and Pharmacy "Grigore T. Popa" Iasi), Rahul Maida (University of Birmingham), Raphael Borie (Public Assistance Hospital of Paris), Roger Lewis (Berry Consultants), Rui Rolo (Braga Hospital), Sabina Guler (University Hospital of Bern), Sabrina Paganoni (Massachusetts General Hospital), Sally Singh (University of Leicester.), Sara Freitas (University Hospital Coimbra), Sara Piciucchi (Department of Radiology, GB Morgagni Hospital; Azienda USL Romagna), Shama Malik (Action for Pulmonary Fibrosis), Shaney Barratt (North Bristol NHS Trust), Simon Hart (University of Hull), Simone Dal Corso (Monash University), Sophie Fletcher (Southampton University), Stefan Stanel (Manchester University NHS Foundation Trust), Stephen Bianchi (Thornbury Hospital), Steve Jones (Action for Pulmonary Fibrosis), Wendy Adams (Action for Pulmonary Fibrosis).

Contributors FL: protocol development, formal analysis, data curation, writing–original draft. IS: protocol development, formal analysis, methodology, supervision, writing–original draft, guarantor. LF: protocol development, data curation, writing–review and editing. WA: protocol development, writing–review and editing. LK-D: protocol development, writing–review and editing. CJR: protocol development, writing–review and editing. GJ: conceptualisation, protocol development, supervision, writing–review and editing.

Funding The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors.

Competing interests GJ is supported by a National Institute for Health Research (NIHR) Research Professorship (NIHR reference RP-2017-08-ST2-014). GJ is a trustee of Action for Pulmonary Fibrosis and reports personal fees from Astra Zeneca, Biogen, Boehringer Ingelheim, Bristol Myers Squibb, Chiesi, Daewoong, Galapagos, Galecto, GlaxoSmithKline, Heptares, NuMedii, PatientMPower, Pliant, Promedior, Redx, Resolution Therapeutics, Roche, Veracyte and Vicore. CJR reports grants from Boehringer Ingelheim, and honoraria or consulting fees from Boehringer Ingelheim, Pliant Therapeutics, Astra Zeneca, Trevi Therapeutics, Veracyte, Hoffmann-La Roche, Cipla. FL, IS, LF, WA and LK-D report no competing interests.

Patient and public involvement Patients and/or the public were involved in the design, or conduct, or reporting, or dissemination plans of this research. Refer to the Methods section for further details.

Provenance and peer review Not commissioned; externally peer reviewed.

Supplemental material This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.

Read the full text or download the PDF:

  • Download PDF
  • Share X Facebook Email LinkedIn
  • Permissions

Rape-Related Pregnancies in the 14 US States With Total Abortion Bans

  • 1 Planned Parenthood of Montana, Billings, Montana
  • 2 Resound Research for Reproductive Health, Austin, Texas
  • 3 Hunter College, City University of New York, New York
  • 4 Department of Medicine, Cambridge Health Alliance, Cambridge, Massachusetts
  • 5 Department of Medicine, University of California, San Francisco
  • Editor's Note Access to Safe Abortion for Survivors of Rape Deborah Grady, MD, MPH; Sharon K. Inouye, MD, MPH; Mitchell H. Katz, MD JAMA Internal Medicine
  • Medical News in Brief 65 000 Rape-Related Pregnancies Took Place in US States With Abortion Bans Emily Harris JAMA
  • Correction Error in Methods, Results, and Table 2 JAMA Internal Medicine

Many US women report experiencing sexual violence, and many seek abortion for rape-related pregnancies. 1 Following the US Supreme Court’s 2022 Dobbs v Jackson Women’s Health Organization ( Dobbs ) decision overturning Roe v Wade , 14 states have outlawed abortion at any gestational duration. 2 Although 5 of these states allow exceptions for rape-related pregnancies, stringent gestational duration limits apply, and survivors must report the rape to law enforcement, a requirement likely to disqualify most survivors of rape, of whom only 21% report their rape to police. 3

  • Editor's Note Access to Safe Abortion for Survivors of Rape JAMA Internal Medicine

Read More About

Dickman SL , White K , Himmelstein DU , Lupez E , Schrier E , Woolhandler S. Rape-Related Pregnancies in the 14 US States With Total Abortion Bans. JAMA Intern Med. 2024;184(3):330–332. doi:10.1001/jamainternmed.2024.0014

Manage citations:

© 2024

Artificial Intelligence Resource Center

Best of JAMA Network 2022

Browse and subscribe to JAMA Network podcasts!

Others Also Liked

Select your interests.

Customize your JAMA Network experience by selecting one or more topics from the list below.

  • Academic Medicine
  • Acid Base, Electrolytes, Fluids
  • Allergy and Clinical Immunology
  • American Indian or Alaska Natives
  • Anesthesiology
  • Anticoagulation
  • Art and Images in Psychiatry
  • Artificial Intelligence
  • Assisted Reproduction
  • Bleeding and Transfusion
  • Caring for the Critically Ill Patient
  • Challenges in Clinical Electrocardiography
  • Climate and Health
  • Climate Change
  • Clinical Challenge
  • Clinical Decision Support
  • Clinical Implications of Basic Neuroscience
  • Clinical Pharmacy and Pharmacology
  • Complementary and Alternative Medicine
  • Consensus Statements
  • Coronavirus (COVID-19)
  • Critical Care Medicine
  • Cultural Competency
  • Dental Medicine
  • Dermatology
  • Diabetes and Endocrinology
  • Diagnostic Test Interpretation
  • Drug Development
  • Electronic Health Records
  • Emergency Medicine
  • End of Life, Hospice, Palliative Care
  • Environmental Health
  • Equity, Diversity, and Inclusion
  • Facial Plastic Surgery
  • Gastroenterology and Hepatology
  • Genetics and Genomics
  • Genomics and Precision Health
  • Global Health
  • Guide to Statistics and Methods
  • Hair Disorders
  • Health Care Delivery Models
  • Health Care Economics, Insurance, Payment
  • Health Care Quality
  • Health Care Reform
  • Health Care Safety
  • Health Care Workforce
  • Health Disparities
  • Health Inequities
  • Health Policy
  • Health Systems Science
  • History of Medicine
  • Hypertension
  • Images in Neurology
  • Implementation Science
  • Infectious Diseases
  • Innovations in Health Care Delivery
  • JAMA Infographic
  • Law and Medicine
  • Leading Change
  • Less is More
  • LGBTQIA Medicine
  • Lifestyle Behaviors
  • Medical Coding
  • Medical Devices and Equipment
  • Medical Education
  • Medical Education and Training
  • Medical Journals and Publishing
  • Mobile Health and Telemedicine
  • Narrative Medicine
  • Neuroscience and Psychiatry
  • Notable Notes
  • Nutrition, Obesity, Exercise
  • Obstetrics and Gynecology
  • Occupational Health
  • Ophthalmology
  • Orthopedics
  • Otolaryngology
  • Pain Medicine
  • Palliative Care
  • Pathology and Laboratory Medicine
  • Patient Care
  • Patient Information
  • Performance Improvement
  • Performance Measures
  • Perioperative Care and Consultation
  • Pharmacoeconomics
  • Pharmacoepidemiology
  • Pharmacogenetics
  • Pharmacy and Clinical Pharmacology
  • Physical Medicine and Rehabilitation
  • Physical Therapy
  • Physician Leadership
  • Population Health
  • Primary Care
  • Professional Well-being
  • Professionalism
  • Psychiatry and Behavioral Health
  • Public Health
  • Pulmonary Medicine
  • Regulatory Agencies
  • Reproductive Health
  • Research, Methods, Statistics
  • Resuscitation
  • Rheumatology
  • Risk Management
  • Scientific Discovery and the Future of Medicine
  • Shared Decision Making and Communication
  • Sleep Medicine
  • Sports Medicine
  • Stem Cell Transplantation
  • Substance Use and Addiction Medicine
  • Surgical Innovation
  • Surgical Pearls
  • Teachable Moment
  • Technology and Finance
  • The Art of JAMA
  • The Arts and Medicine
  • The Rational Clinical Examination
  • Tobacco and e-Cigarettes
  • Translational Medicine
  • Trauma and Injury
  • Treatment Adherence
  • Ultrasonography
  • Users' Guide to the Medical Literature
  • Vaccination
  • Venous Thromboembolism
  • Veterans Health
  • Women's Health
  • Workflow and Process
  • Wound Care, Infection, Healing
  • Register for email alerts with links to free full-text articles
  • Access PDFs of free articles
  • Manage your interests
  • Save searches and receive search alerts

IMAGES

  1. Week 12: Quantitative Research Methods

    data analysis on quantitative research

  2. Quantitative Analysis

    data analysis on quantitative research

  3. Tools for data analysis in quantitative research

    data analysis on quantitative research

  4. Quantitative Data: What it is, Types & Examples

    data analysis on quantitative research

  5. Quantitative Data

    data analysis on quantitative research

  6. Quantitative Data Analysis for Survey Research

    data analysis on quantitative research

COMMENTS

  1. Quantitative Data Analysis: A Comprehensive Guide

    Quantitative data analysis is a systematic process of examining, interpreting, and drawing meaningful conclusions from numerical data. It involves the application of statistical methods, mathematical models, and computational techniques to understand patterns, relationships, and trends within datasets.

  2. A Really Simple Guide to Quantitative Data Analysis

    It is important to know w hat kind of data you are planning to collect or analyse as this w ill. affect your analysis method. A 12 step approach to quantitative data analysis. Step 1: Start with ...

  3. Quantitative Data Analysis 101

    Learn the basics of quantitative data analysis, including the most popular analysis methods and techniques, explained simply with examples.

  4. (PDF) Quantitative Analysis: the guide for beginners

    Quantitative data were analysed using quantitative univariate descriptive analysis expressed in contingency (frequency) tables, bar charts, and graphs to show nominal scores and statistical ...

  5. What Is Quantitative Research?

    Quantitative research is the process of collecting and analyzing numerical data. It can be used to find patterns and averages, make predictions, test causal relationships, and generalize results to wider populations.

  6. Data Analysis in Quantitative Research

    Quantitative data analysis serves as part of an essential process of evidence-making in health and social sciences. It is adopted for any types of research question and design whether it is descriptive, explanatory, or causal. However, compared with qualitative...

  7. Part II: Data Analysis Methods in Quantitative Research

    Data Analysis Methods in Quantitative Research We started this module with levels of measurement as a way to categorize our data. Data analysis is directed toward answering the original research question and achieving the study purpose (or aim).

  8. Quantitative Research

    Quantitative Research Quantitative research is a type of research that collects and analyzes numerical data to test hypotheses and answer research questions. This research typically involves a large sample size and uses statistical analysis to make inferences about a population based on the data collected. It often involves the use of surveys, experiments, or other structured data collection ...

  9. Quantitative Data Analysis: A Complete Guide

    Quantitative data analysis is the process of analyzing and interpreting numerical data. It helps you make sense of information by identifying patterns, trends, and relationships between variables through mathematical calculations and statistical tests. With quantitative data analysis, you turn spreadsheets of individual data points into ...

  10. Quantitative Data Analysis

    Quantitative data analysis may include the calculation of frequencies of variables and differences between variables. A quantitative approach is usually associated with finding evidence to either support or reject hypotheses you have formulated at the earlier stages of your research process. The same figure within data set can be interpreted in ...

  11. Qualitative vs Quantitative Research Methods & Data Analysis

    The main difference between quantitative and qualitative research is the type of data they collect and analyze. Quantitative research collects numerical data and analyzes it using statistical methods. The aim is to produce objective, empirical data that can be measured and expressed in numerical terms.

  12. Introduction to Data Analysis

    What is Data Analysis? According to the federal government, data analysis is "the process of systematically applying statistical and/or logical techniques to describe and illustrate, condense and recap, and evaluate data" ( Responsible Conduct in Data Management ). Important components of data analysis include searching for patterns, remaining ...

  13. A Practical Guide to Writing Quantitative and Qualitative Research

    The development of research questions is a process based on knowledge of current trends, cutting-edge studies, and technological advances in the research field. Excellent research questions are focused and require a comprehensive literature search and in-depth understanding of the problem being investigated.

  14. Data Analysis in Research: Types & Methods

    Data analysis in research is an illustrative method of applying the right statistical or logical technique so that the raw data makes sense.

  15. Quantitative Data

    Quantitative data refers to numerical data that can be measured or counted. This type of data is often used in scientific research and is typically collected through methods such as surveys, experiments, and statistical analysis.

  16. Quantitative Data Analysis Methods, Types + Techniques

    Quantitative data analysis pulls the story out of raw numbers—but you shouldn't take a single result from your data collection and run with it. Instead, combine numbers-based quantitative data with descriptive qualitative research to learn the what, why, and how of customer experiences.

  17. (PDF) Quantitative Data Analysis

    Quantitative data analysis is a systematic process of both collecting and evaluating measurable. and verifiable data. It contains a statistical mechanism of assessing or analyzing quantitative ...

  18. Quantitative Data Analysis: Types, Analysis & Examples

    What is the Quantitative Analysis Method? Quantitative Analysis refers to a mathematical approach that gathers and evaluates measurable and verifiable data. This method is utilized to assess performance and various aspects of a business or research. It involves the use of mathematical and statistical techniques to analyze data. Quantitative methods emphasize objective measurements, focusing on ...

  19. Data Analysis Techniques for Quantitative Study

    This chapter describes the types of data analysis techniques in quantitative research and sampling strategies suitable for quantitative studies, particularly probability sampling, to produce credible and trustworthy explanations of a phenomenon. Initially, it briefly...

  20. Front Matter

    This book focuses on the overall methodology and research mind-set for how to approach quantitative data analysis and how to use statistics tests as part of analyzing research data.

  21. Introduction to Quantitative Data Analysis in the Behavioral and Social

    Guides readers through the quantitative data analysis process including contextualizing data within a research situation, connecting data to the appropriate statistical tests, and drawing valid conclusions Introduction to Quantitative Data Analysis in the Behavioral and Social Sciences presents a clear and accessible introduction to the basics of quantitative data analysis and focuses on how ...

  22. PDF A Really Simple Guide to Quantitative Data Analysis

    based decisions rather than exact mathematical proof.The quantitative research processThis guide focuses on descriptive statistics and statistical testing as these are the c. mmon forms of quantitative data analysis required at the university and research level. It is assumed that dat. ollowing stages:Define your aim and research questionsCarry ...

  23. Data Analysis Techniques In Research

    Data analysis techniques in research are categorized into qualitative and quantitative methods, each with its specific approaches and tools. These techniques are instrumental in extracting meaningful insights, patterns, and relationships from data to support informed decision-making, validate hypotheses, and derive actionable recommendations.

  24. Research on Quantitative Analysis Methods for the Spatial

    Traditional villages are important carriers of cultural heritage, and the quantitative study of their spatial characteristics is an important approach to their preservation. However, the rapid extraction, statistics, and estimation of the rich spatial characteristic indicators in these villages have become bottlenecks in traditional village research. This paper employs UAV (unmanned aerial ...

  25. Drop‐out rates in animal‐assisted psychotherapy

    This quantitative meta-analysis aimed at shedding light on the question whether the inclusion of animals in psychotherapy could reduce drop-out rates. Therefore, the drop-out rates of 60 animal-assisted psychotherapy samples from 57 empirical studies were compared systematically.

  26. Quantitative and qualitative similarity measure for data clustering

    This paper introduces a novel similarity function that evaluates both the quantitative and qualitative similarities between data instances, named QQ-Means (Qualitative and Quantitative-Means). The values are naturally scaled to fall within the range of − 1 to 1. The magnitude signifies the extent of quantitative similarity, while the sign denotes qualitative similarity. The effectiveness of ...

  27. 19. A survey of approaches to qualitative data analysis

    Some qualitative research is linear, meaning it follows more of a tra ditionally quantitative process: create a plan, gather data, and analyze data; each step is completed before we proceed to the next. You can think of this like how information is presented in this book.

  28. Mycophenolate and azathioprine efficacy in interstitial lung disease: a

    Primary endpoint analysis was restricted to RCT design, secondary endpoint included subgroup analysis according to prospective observational or RCT design. Results A total of 2831 publications were screened, 12 were suitable for quantitative synthesis.

  29. Rape-Related Pregnancies in the 14 US States With Total Abortion Bans

    The data we analyzed did not provide information about pregnancy outcomes. Waris Chiranand suggests that we overestimated rape-related pregnancies in states with total abortion bans, but this apparent difference is related to the denominator used in the calculations.