basic course in research methodology

ICMR School of Public Health

BASIC COURSE IN BIOMEDICAL RESEARCH

An Online Course for Medical Postgraduates and Teachers in Medical Institutions in India  

As mandated by the National Medical Commission 

Medical Postgraduates (MD, MS, MCH, DM) admitted from Academic Year 2019-2020 onwards. Teachers in medical institutions

Self-Paced; enroll and complete the course at any time

  • Video lectures
  • Presen​tation s​lides
  • Additiontal resources

Participants who successfully secure a score of 50% or above in the final proctored exam will be awarded an        e-verifiable course completion certificate.  Click here to get your certificate, if you have not received after completing the course successfully.

About the course

In order to improve the research skills of Indian medical postgraduates (PG) and teachers in medical institutions, the National Medical Commission (NMC, erstwhile Medical Council of India) has mandated a uniform research methodology course. This online course, “Basic Course in Biomedical Research”, will be offered by ICMR-National Institute of Epidemiology (ICMR-NIE), Chennai. The course will explain the fundamental concepts of research methodology in health. It will be delivered through video lectures and reading materials. Certification will be done based on lecture wise assignments and a final proctored exam.

NMC notifications

  • Clarification regarding eligibility of final year PG students without completing the 'Online course in research methods' for appearing in final medical PG exam 2023  (31 May 2023)
  • Medical teachers (12 Feb 2020)
  • Medical postgraduates (11 Dec 2019)
  • Medical postgraduates (09 July 2019)

Course Coordination Committee

Dr. Siddarth Ramji

Chairman mamc, new delhi, dr. shally awasthi, member kgmc, lucknow, dr. vijay oza, member nmc-pgmeb, dr. manoj v. murhekar, member icmr nominee icmr-nie, dr. p. manickam, member bcbr course coordinator icmr-nie.

Course Faculty

Dr Sanjay Mehendale

Md, mph, fams, fimsa, face, dr manoj murhekar, dr r ramakrishnan, msc, phd, mae, dr prabhdeep kaur , dr tarun bhatnagar, md, phd, pgdbe, dr p manickam, bsms, msc, phd, dr p ganeshkumar , dr sirshendu chaudhuri,  dr rizwan s.a, dr k jeyashree.

Teaching assistants

Dr Sharan Murali

Scientist - B

Dr Navaneeth S Krishna

Dr V Saravana Kumar

Dr Joshua Chadwick

Dr S Devika

Course Process

basic course in research methodology

  • Enrollment will open throughout the year
  • No deadline for enrolment into the course
  • No deadline for submission of assignments  
  • Participants can learn on their own pace and schedule
  • Once you secure the cut off scores in assignments (50% in every assignment for 23 lectures), candidates will become eligible for exam registration.
  • Candidates can then register for the proctored exam for the  next available date

click here to enroll

Course Assignments

Out of 25 lectures, the first 23 lectures will have online assignments consisting of 10 Multiple-Choice Questions (MCQs) each. A minimum score of 50% in every assignment is required to register for the final proctored exam.

Final Proctored Exam

When a participant successfully secures the minimum score of 50% in every assignment for 23 lectures, the exam registration link for the next available date will be provided. To register for examination, the participant will have to fill-up an online form and pay the examination fees of Rs.1000 online. The city-wise list of examination centres will be made available at the time of registration. Securing a minimum score of 50% in the proctored exam is necessary to receive the pass certificate. 

Certification

Participants who successfully secure a score of 50% or above in the final proctored exam will be awarded an e-verifiable course completion certificate

Course Syllabus

Conceptualizing a research study

  • Introduction to health research
  • Formulating research question, hypothesis and objectives
  • Literature review

Epidemiological considerations in designing a research study 

  • Measures of disease frequency
  • Descriptive study designs
  • Analytical study designs
  • Experimental study designs
  • Validity of Epidemiological studies
  • Qualitative research methods: An overview

Biostatistical considerations in designing a research study

  • Measures of study variable
  • Sampling methods
  • Calculating sample size and power

Planning a research study

  • Selection and study population
  • Study plan and project management 
  • Designing data collection tools
  • Principles of data collection tools 
  • Data management 
  • Overview of data analysis

Ethical issues in a research study

  • Ethical framework for health research 
  • Conducting clinical trials 

Writing a research protocol

  • Preparing a concept paper for research projects  
  • Elements of a protocol for research studies 
  • Publication ethics
  • Manuscript writing 
  • Grant proposal writing

basic course in research methodology

Frequently Asked Questions

You can enrol for the course if you are an medical postgraduate or a teacher in a medical institution, recognized by the National Medical Commission (NMC). 

You can enroll for the course if you are a dental postgraduate or a teacher in a dental college, recognized by the Dental Council of India.

Medical Postgraduates

As per the MCI notice dated 9 July 2019, BCBR is mandatory for Medical Postgraduates  admitted from July 2019 onwards. Medical Postgraduates include those pursuing MD/MS in  a medical college approved by the National Medical Commission (NMC).

Medical Teachers

As per the Gazette of India notification dated 12 February 2020 for ‘Minimum Qualifications  for Teachers In Medical Institutions’ approved by the National Medical Commission (NMC),  BCBR is mandatory for medical teachers for their promotion.

No. All other interested candidates including medical undergraduate students, clinical/public health/ laboratory researchers, physicians, research associates, allied health professionals, scientists, statisticians, ethics committee members, project managers and those interested in health research can enroll for the ‘Health Research Fundamentals’ (Please follow ICMR-NIE website for the same-  https://nie.gov.in/icmr_sph/HRF.html  This course is also run by the ICMR- National Institute of Epidemiology.

• Step 1 – Go to https://onlinecourses.nptel.ac.in/noc22_md01/preview

• Step 2 – Click on the tab "JOIN" seen on the right-hand corner

• Step 3 – Use your pre-existing Google or Microsoft account to login. (Please use the same email ID till the end of the course. Do not create a new account if you forget the password.)

• Step 4 – Fill “My Profile” and click SAVE.

For further details watch tutorial on “how to enrol”  https://youtu.be/e_jaFbQT2xU

Yes. After you sign in, you can click on ‘My Profile’ under which there is an option called ‘EDIT PROFILE’. You may click on it to edit the relevant details. However, you cannot change your email ID.

For further details watch tutorial on “how to sign in, course tour and edit profile” https://youtu.be/wFcTtwK39DY

Please use your regular Email as login ID. It is always advisable to remember your password. If you forget your password, you can retrieve your login credentials by using "Forgot your password?". However, if you forget the login ID, kindly send us an email or call our office to retrieve your login email ID.

For further details watch tutorial on “how to handle issues on forgot email id and password”  https://youtu.be/sTG1SlAAsHw

• Step 1: Sign in to the course page https://onlinecourses.nptel.ac.in/noc22_md01/preview

• Step 2: After signing in using your login ID and password, click “Basic course in Biomedical Research” under Course outline in the top left of the course page.

• Step 3: In the left panel, all the 25 lectures will be available. Click to open the intended lecture.

• Step 4: Below each lecture, find “Quiz: Assignment” for that lecture.

• Step 5: Click on the “Quiz: Assignment” which you would like to take. The assignment page will open.

• Step 6: Complete the assignment by choosing the appropriate answer.

• Step 7: Verify your answers before submitting and click “Submit Answers”.

• Step 8: Immediately after submission, you will get the scores.

                                If you have scored the minimum eligibility of 50%, you can move to the next assignment. 

                                If you have not scored the minimum eligibility of 50%, you can click on the ' Retake Test ' at your convenience. During the retest you will get a new set of 10 MCQs.

• You may submit the assignments any number of times until you get the minimum eligibility score of 50%. No restriction to take the retest.

• You will not be allowed to resubmit the assignment once the minimum eligibility is met. 

• There is no negative marking.

For further details watch tutorial on “How to access course materials”  https://youtu.be/GHcy660N-oM  

and “how to submit assignments”  https://youtu.be/MeYUruIdD5k

I n two ways you can check the assignment scores.

  • Once you submit the assignment you will get the score for the assignment submitted.
  • Click on the ‘Progress’ button on your course page, the lecture-wise assignment score will be visible to you.

Please follow the steps to access the course material.

1. Access course home page from the link: https://onlinecourses.nptel.ac.in/noc21_md05/preview

2. Login using the e-mail ID that was used to enrol for the course

3. Click on your user ID on the right side of login page then click on "MY COURSES" tab

4. Your course page will open, click on "Go to course" tab

5. On the left panel, click on “Basic Course in Biomedical Research” tab

6. Click the download link at the bottom of the page. This will take you to a new page where all the course materials including lectures, transcripts, and assignments are available for downloading.

You may follow the steps below for posting queries on “Basic Course in Biomedical Research”

After accessing the course materials 

1. If you have any queries/comments to be addressed after accessing the course material you can post them in the discussion forum.

2. The discussion forum can be accessed by clicking on “Ask a Question” tab in the menu bar of the “Basic Course in Biomedical Research” home page, followed by selecting the appropriate lecture from the pre-existing discussion threads.

3. You can then type your query/comment in “click here to reply”. Once you have finished typing, click on “post” to get a response from Faculty/Teaching assistants.

4. Please post any queries that you have only in the discussion threads assigned for that particular lecture [for e.g., if you have a query related to lecture 22; you need to find a thread named: “Queries/comments for lecture 22. Elements of a protocol for research studies” and post your queries therein. This will help our Faculty/Teaching assistants in noticing immediately and addressing the queries expeditiously]

5. Once you post a query, our Teaching Assistants will respond to you.

6. Please confine your questions to the lectures. It is beyond our scope to respond to any other queries.

For further details watch tutorial on “how to ask queries on lecture” https://youtu.be/RB8n-Xhzo0c

Email ID: [email protected] (All technical queries)

The registration for the certification exam will be open only to those learners who enrol for the course and secure more than or equal to 50% in every assignment for 23 lectures. A registration fee of 1000 INR should be paid to appear for the proctored exam. However, 50% of this fee will be waived for candidates belong to the SC/ST category, and persons with more than 40% disability. All exam related information will be posted in the announcements section of the course page.

News alert: UC Berkeley has announced its next university librarian

Secondary menu

  • Log in to your Library account
  • Hours and Maps
  • Connect from Off Campus
  • UC Berkeley Home

Search form

Research methods--quantitative, qualitative, and more: overview.

  • Quantitative Research
  • Qualitative Research
  • Data Science Methods (Machine Learning, AI, Big Data)
  • Text Mining and Computational Text Analysis
  • Evidence Synthesis/Systematic Reviews
  • Get Data, Get Help!

About Research Methods

This guide provides an overview of research methods, how to choose and use them, and supports and resources at UC Berkeley. 

As Patten and Newhart note in the book Understanding Research Methods , "Research methods are the building blocks of the scientific enterprise. They are the "how" for building systematic knowledge. The accumulation of knowledge through research is by its nature a collective endeavor. Each well-designed study provides evidence that may support, amend, refute, or deepen the understanding of existing knowledge...Decisions are important throughout the practice of research and are designed to help researchers collect evidence that includes the full spectrum of the phenomenon under study, to maintain logical rules, and to mitigate or account for possible sources of bias. In many ways, learning research methods is learning how to see and make these decisions."

The choice of methods varies by discipline, by the kind of phenomenon being studied and the data being used to study it, by the technology available, and more.  This guide is an introduction, but if you don't see what you need here, always contact your subject librarian, and/or take a look to see if there's a library research guide that will answer your question. 

Suggestions for changes and additions to this guide are welcome! 

START HERE: SAGE Research Methods

Without question, the most comprehensive resource available from the library is SAGE Research Methods.  HERE IS THE ONLINE GUIDE  to this one-stop shopping collection, and some helpful links are below:

  • SAGE Research Methods
  • Little Green Books  (Quantitative Methods)
  • Little Blue Books  (Qualitative Methods)
  • Dictionaries and Encyclopedias  
  • Case studies of real research projects
  • Sample datasets for hands-on practice
  • Streaming video--see methods come to life
  • Methodspace- -a community for researchers
  • SAGE Research Methods Course Mapping

Library Data Services at UC Berkeley

Library Data Services Program and Digital Scholarship Services

The LDSP offers a variety of services and tools !  From this link, check out pages for each of the following topics:  discovering data, managing data, collecting data, GIS data, text data mining, publishing data, digital scholarship, open science, and the Research Data Management Program.

Be sure also to check out the visual guide to where to seek assistance on campus with any research question you may have!

Library GIS Services

Other Data Services at Berkeley

D-Lab Supports Berkeley faculty, staff, and graduate students with research in data intensive social science, including a wide range of training and workshop offerings Dryad Dryad is a simple self-service tool for researchers to use in publishing their datasets. It provides tools for the effective publication of and access to research data. Geospatial Innovation Facility (GIF) Provides leadership and training across a broad array of integrated mapping technologies on campu Research Data Management A UC Berkeley guide and consulting service for research data management issues

General Research Methods Resources

Here are some general resources for assistance:

  • Assistance from ICPSR (must create an account to access): Getting Help with Data , and Resources for Students
  • Wiley Stats Ref for background information on statistics topics
  • Survey Documentation and Analysis (SDA) .  Program for easy web-based analysis of survey data.

Consultants

  • D-Lab/Data Science Discovery Consultants Request help with your research project from peer consultants.
  • Research data (RDM) consulting Meet with RDM consultants before designing the data security, storage, and sharing aspects of your qualitative project.
  • Statistics Department Consulting Services A service in which advanced graduate students, under faculty supervision, are available to consult during specified hours in the Fall and Spring semesters.

Related Resourcex

  • IRB / CPHS Qualitative research projects with human subjects often require that you go through an ethics review.
  • OURS (Office of Undergraduate Research and Scholarships) OURS supports undergraduates who want to embark on research projects and assistantships. In particular, check out their "Getting Started in Research" workshops
  • Sponsored Projects Sponsored projects works with researchers applying for major external grants.
  • Next: Quantitative Research >>
  • Last Updated: Apr 25, 2024 11:09 AM
  • URL: https://guides.lib.berkeley.edu/researchmethods

Banner

Research Basics: an open academic research skills course

  • Lesson 1: Using Library Tools
  • Lesson 2: Smart searching
  • Lesson 3: Managing information overload
  • Assessment - Module 1
  • Lesson 1: The ABCs of scholarly sources
  • Lesson 2: Additional ways of identifying scholarly sources
  • Lesson 3: Verifying online sources
  • Assessment - Module 2
  • Lesson 1: Creating citations
  • Lesson 2: Citing and paraphrasing
  • Lesson 3: Works cited, bibliographies, and notes
  • Assessment - Module 3
  • - For Librarians and Teachers -
  • Acknowledgements
  • Other free resources from JSTOR

JSTOR is a digital library for scholars, researchers, and students.

Learn more about JSTOR

Get Help with JSTOR

JSTOR Website & Technical Support

 Email:  [email protected]  Text:  (734)-887-7001  Call Toll Free in the U.S.:  (888)-388-3574  Call Local and International:  (734)-887-7001

Hours of operation:  Mon - Fri, 8:30 a.m. - 5:00 p.m. EDT (GMT -4:00)

Welcome to the ever-expanding universe of scholarly research!

There's a lot of digital content out there, and we want to help you get a handle on it. Where do you start? What do you do? How do you use it? Don’t worry, this course has you covered.

This introductory program was created by  JSTOR  to help you get familiar with basic research concepts needed for success in school. The course contains three modules, each made up of three short lessons and three sets of practice quizzes. The topics covered are subjects that will help you prepare for college-level research. Each module ends with an assessment to test your knowledge.

The JSTOR librarians who helped create the course hope you learn from the experience and feel ready to research when you’ve finished this program.  Select Module 1: Effective Searching to begin the course. Good luck!

  • Next: Module 1: Effective searching >>
  • Last Updated: Apr 24, 2024 6:38 AM
  • URL: https://guides.jstor.org/researchbasics

JSTOR is part of ITHAKA , a not-for-profit organization helping the academic community use digital technologies to preserve the scholarly record and to advance research and teaching in sustainable ways.

©2000-2024 ITHAKA. All Rights Reserved. JSTOR®, the JSTOR logo, JPASS®, Artstor® and ITHAKA® are registered trademarks of ITHAKA.

JSTOR.org Terms and Conditions   Privacy Policy Cookie Policy Cookie settings Accessibility

Please log in to save materials. Log in

  • Resource Library
  • Research Methods
  • VIVA Grant Recipients
  • Vgr-social-work-research

Lesson 10: Sampling in Qualitative Research

Lesson 11: qualitative measurement & rigor, lesson 12: qualitative design & data gathering, lesson 1: introduction to research, lesson 2: getting started with your research project, lesson 3: critical information literacy, lesson 4: paradigm, theory, and causality, lesson 5: research questions, lesson 6: ethics, lesson 7: measurement in quantitative research, lesson 8: sampling in quantitative research, lesson 9: quantitative research designs, powerpoint slides: sowk 621.01: research i: basic research methodology.

PowerPoint Slides: SOWK 621.01: Research I: Basic Research Methodology

The twelve lessons for SOWK 621.01: Research I: Basic Research Methodology as previously taught by Dr. Matthew DeCarlo at Radford University. Dr. DeCarlo and his team developed a complete package of materials that includes a textbook, ancillary materials, and a student workbook as part of a VIVA Open Course Grant.

The PowerPoint slides associated with the twelve lessons of the course, SOWK 621.01: Research I: Basic Research Methodology, as previously taught by Dr. Matthew DeCarlo at Radford University. 

swayam-logo

Research Methodology

Note: This exam date is subjected to change based on seat availability. You can check final exam date on your hall ticket.

Page Visits

Course layout, books and references, instructor bio.

basic course in research methodology

Prof. Soumitro Banerjee

Course certificate.

basic course in research methodology

DOWNLOAD APP

basic course in research methodology

SWAYAM SUPPORT

Please choose the SWAYAM National Coordinator for support. * :

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • BMC Med Res Methodol

Logo of bmcmrm

A tutorial on methodological studies: the what, when, how and why

Lawrence mbuagbaw.

1 Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, ON Canada

2 Biostatistics Unit/FSORC, 50 Charlton Avenue East, St Joseph’s Healthcare—Hamilton, 3rd Floor Martha Wing, Room H321, Hamilton, Ontario L8N 4A6 Canada

3 Centre for the Development of Best Practices in Health, Yaoundé, Cameroon

Daeria O. Lawson

Livia puljak.

4 Center for Evidence-Based Medicine and Health Care, Catholic University of Croatia, Ilica 242, 10000 Zagreb, Croatia

David B. Allison

5 Department of Epidemiology and Biostatistics, School of Public Health – Bloomington, Indiana University, Bloomington, IN 47405 USA

Lehana Thabane

6 Departments of Paediatrics and Anaesthesia, McMaster University, Hamilton, ON Canada

7 Centre for Evaluation of Medicine, St. Joseph’s Healthcare-Hamilton, Hamilton, ON Canada

8 Population Health Research Institute, Hamilton Health Sciences, Hamilton, ON Canada

Associated Data

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

Methodological studies – studies that evaluate the design, analysis or reporting of other research-related reports – play an important role in health research. They help to highlight issues in the conduct of research with the aim of improving health research methodology, and ultimately reducing research waste.

We provide an overview of some of the key aspects of methodological studies such as what they are, and when, how and why they are done. We adopt a “frequently asked questions” format to facilitate reading this paper and provide multiple examples to help guide researchers interested in conducting methodological studies. Some of the topics addressed include: is it necessary to publish a study protocol? How to select relevant research reports and databases for a methodological study? What approaches to data extraction and statistical analysis should be considered when conducting a methodological study? What are potential threats to validity and is there a way to appraise the quality of methodological studies?

Appropriate reflection and application of basic principles of epidemiology and biostatistics are required in the design and analysis of methodological studies. This paper provides an introduction for further discussion about the conduct of methodological studies.

The field of meta-research (or research-on-research) has proliferated in recent years in response to issues with research quality and conduct [ 1 – 3 ]. As the name suggests, this field targets issues with research design, conduct, analysis and reporting. Various types of research reports are often examined as the unit of analysis in these studies (e.g. abstracts, full manuscripts, trial registry entries). Like many other novel fields of research, meta-research has seen a proliferation of use before the development of reporting guidance. For example, this was the case with randomized trials for which risk of bias tools and reporting guidelines were only developed much later – after many trials had been published and noted to have limitations [ 4 , 5 ]; and for systematic reviews as well [ 6 – 8 ]. However, in the absence of formal guidance, studies that report on research differ substantially in how they are named, conducted and reported [ 9 , 10 ]. This creates challenges in identifying, summarizing and comparing them. In this tutorial paper, we will use the term methodological study to refer to any study that reports on the design, conduct, analysis or reporting of primary or secondary research-related reports (such as trial registry entries and conference abstracts).

In the past 10 years, there has been an increase in the use of terms related to methodological studies (based on records retrieved with a keyword search [in the title and abstract] for “methodological review” and “meta-epidemiological study” in PubMed up to December 2019), suggesting that these studies may be appearing more frequently in the literature. See Fig.  1 .

An external file that holds a picture, illustration, etc.
Object name is 12874_2020_1107_Fig1_HTML.jpg

Trends in the number studies that mention “methodological review” or “meta-

epidemiological study” in PubMed.

The methods used in many methodological studies have been borrowed from systematic and scoping reviews. This practice has influenced the direction of the field, with many methodological studies including searches of electronic databases, screening of records, duplicate data extraction and assessments of risk of bias in the included studies. However, the research questions posed in methodological studies do not always require the approaches listed above, and guidance is needed on when and how to apply these methods to a methodological study. Even though methodological studies can be conducted on qualitative or mixed methods research, this paper focuses on and draws examples exclusively from quantitative research.

The objectives of this paper are to provide some insights on how to conduct methodological studies so that there is greater consistency between the research questions posed, and the design, analysis and reporting of findings. We provide multiple examples to illustrate concepts and a proposed framework for categorizing methodological studies in quantitative research.

What is a methodological study?

Any study that describes or analyzes methods (design, conduct, analysis or reporting) in published (or unpublished) literature is a methodological study. Consequently, the scope of methodological studies is quite extensive and includes, but is not limited to, topics as diverse as: research question formulation [ 11 ]; adherence to reporting guidelines [ 12 – 14 ] and consistency in reporting [ 15 ]; approaches to study analysis [ 16 ]; investigating the credibility of analyses [ 17 ]; and studies that synthesize these methodological studies [ 18 ]. While the nomenclature of methodological studies is not uniform, the intents and purposes of these studies remain fairly consistent – to describe or analyze methods in primary or secondary studies. As such, methodological studies may also be classified as a subtype of observational studies.

Parallel to this are experimental studies that compare different methods. Even though they play an important role in informing optimal research methods, experimental methodological studies are beyond the scope of this paper. Examples of such studies include the randomized trials by Buscemi et al., comparing single data extraction to double data extraction [ 19 ], and Carrasco-Labra et al., comparing approaches to presenting findings in Grading of Recommendations, Assessment, Development and Evaluations (GRADE) summary of findings tables [ 20 ]. In these studies, the unit of analysis is the person or groups of individuals applying the methods. We also direct readers to the Studies Within a Trial (SWAT) and Studies Within a Review (SWAR) programme operated through the Hub for Trials Methodology Research, for further reading as a potential useful resource for these types of experimental studies [ 21 ]. Lastly, this paper is not meant to inform the conduct of research using computational simulation and mathematical modeling for which some guidance already exists [ 22 ], or studies on the development of methods using consensus-based approaches.

When should we conduct a methodological study?

Methodological studies occupy a unique niche in health research that allows them to inform methodological advances. Methodological studies should also be conducted as pre-cursors to reporting guideline development, as they provide an opportunity to understand current practices, and help to identify the need for guidance and gaps in methodological or reporting quality. For example, the development of the popular Preferred Reporting Items of Systematic reviews and Meta-Analyses (PRISMA) guidelines were preceded by methodological studies identifying poor reporting practices [ 23 , 24 ]. In these instances, after the reporting guidelines are published, methodological studies can also be used to monitor uptake of the guidelines.

These studies can also be conducted to inform the state of the art for design, analysis and reporting practices across different types of health research fields, with the aim of improving research practices, and preventing or reducing research waste. For example, Samaan et al. conducted a scoping review of adherence to different reporting guidelines in health care literature [ 18 ]. Methodological studies can also be used to determine the factors associated with reporting practices. For example, Abbade et al. investigated journal characteristics associated with the use of the Participants, Intervention, Comparison, Outcome, Timeframe (PICOT) format in framing research questions in trials of venous ulcer disease [ 11 ].

How often are methodological studies conducted?

There is no clear answer to this question. Based on a search of PubMed, the use of related terms (“methodological review” and “meta-epidemiological study”) – and therefore, the number of methodological studies – is on the rise. However, many other terms are used to describe methodological studies. There are also many studies that explore design, conduct, analysis or reporting of research reports, but that do not use any specific terms to describe or label their study design in terms of “methodology”. This diversity in nomenclature makes a census of methodological studies elusive. Appropriate terminology and key words for methodological studies are needed to facilitate improved accessibility for end-users.

Why do we conduct methodological studies?

Methodological studies provide information on the design, conduct, analysis or reporting of primary and secondary research and can be used to appraise quality, quantity, completeness, accuracy and consistency of health research. These issues can be explored in specific fields, journals, databases, geographical regions and time periods. For example, Areia et al. explored the quality of reporting of endoscopic diagnostic studies in gastroenterology [ 25 ]; Knol et al. investigated the reporting of p -values in baseline tables in randomized trial published in high impact journals [ 26 ]; Chen et al. describe adherence to the Consolidated Standards of Reporting Trials (CONSORT) statement in Chinese Journals [ 27 ]; and Hopewell et al. describe the effect of editors’ implementation of CONSORT guidelines on reporting of abstracts over time [ 28 ]. Methodological studies provide useful information to researchers, clinicians, editors, publishers and users of health literature. As a result, these studies have been at the cornerstone of important methodological developments in the past two decades and have informed the development of many health research guidelines including the highly cited CONSORT statement [ 5 ].

Where can we find methodological studies?

Methodological studies can be found in most common biomedical bibliographic databases (e.g. Embase, MEDLINE, PubMed, Web of Science). However, the biggest caveat is that methodological studies are hard to identify in the literature due to the wide variety of names used and the lack of comprehensive databases dedicated to them. A handful can be found in the Cochrane Library as “Cochrane Methodology Reviews”, but these studies only cover methodological issues related to systematic reviews. Previous attempts to catalogue all empirical studies of methods used in reviews were abandoned 10 years ago [ 29 ]. In other databases, a variety of search terms may be applied with different levels of sensitivity and specificity.

Some frequently asked questions about methodological studies

In this section, we have outlined responses to questions that might help inform the conduct of methodological studies.

Q: How should I select research reports for my methodological study?

A: Selection of research reports for a methodological study depends on the research question and eligibility criteria. Once a clear research question is set and the nature of literature one desires to review is known, one can then begin the selection process. Selection may begin with a broad search, especially if the eligibility criteria are not apparent. For example, a methodological study of Cochrane Reviews of HIV would not require a complex search as all eligible studies can easily be retrieved from the Cochrane Library after checking a few boxes [ 30 ]. On the other hand, a methodological study of subgroup analyses in trials of gastrointestinal oncology would require a search to find such trials, and further screening to identify trials that conducted a subgroup analysis [ 31 ].

The strategies used for identifying participants in observational studies can apply here. One may use a systematic search to identify all eligible studies. If the number of eligible studies is unmanageable, a random sample of articles can be expected to provide comparable results if it is sufficiently large [ 32 ]. For example, Wilson et al. used a random sample of trials from the Cochrane Stroke Group’s Trial Register to investigate completeness of reporting [ 33 ]. It is possible that a simple random sample would lead to underrepresentation of units (i.e. research reports) that are smaller in number. This is relevant if the investigators wish to compare multiple groups but have too few units in one group. In this case a stratified sample would help to create equal groups. For example, in a methodological study comparing Cochrane and non-Cochrane reviews, Kahale et al. drew random samples from both groups [ 34 ]. Alternatively, systematic or purposeful sampling strategies can be used and we encourage researchers to justify their selected approaches based on the study objective.

Q: How many databases should I search?

A: The number of databases one should search would depend on the approach to sampling, which can include targeting the entire “population” of interest or a sample of that population. If you are interested in including the entire target population for your research question, or drawing a random or systematic sample from it, then a comprehensive and exhaustive search for relevant articles is required. In this case, we recommend using systematic approaches for searching electronic databases (i.e. at least 2 databases with a replicable and time stamped search strategy). The results of your search will constitute a sampling frame from which eligible studies can be drawn.

Alternatively, if your approach to sampling is purposeful, then we recommend targeting the database(s) or data sources (e.g. journals, registries) that include the information you need. For example, if you are conducting a methodological study of high impact journals in plastic surgery and they are all indexed in PubMed, you likely do not need to search any other databases. You may also have a comprehensive list of all journals of interest and can approach your search using the journal names in your database search (or by accessing the journal archives directly from the journal’s website). Even though one could also search journals’ web pages directly, using a database such as PubMed has multiple advantages, such as the use of filters, so the search can be narrowed down to a certain period, or study types of interest. Furthermore, individual journals’ web sites may have different search functionalities, which do not necessarily yield a consistent output.

Q: Should I publish a protocol for my methodological study?

A: A protocol is a description of intended research methods. Currently, only protocols for clinical trials require registration [ 35 ]. Protocols for systematic reviews are encouraged but no formal recommendation exists. The scientific community welcomes the publication of protocols because they help protect against selective outcome reporting, the use of post hoc methodologies to embellish results, and to help avoid duplication of efforts [ 36 ]. While the latter two risks exist in methodological research, the negative consequences may be substantially less than for clinical outcomes. In a sample of 31 methodological studies, 7 (22.6%) referenced a published protocol [ 9 ]. In the Cochrane Library, there are 15 protocols for methodological reviews (21 July 2020). This suggests that publishing protocols for methodological studies is not uncommon.

Authors can consider publishing their study protocol in a scholarly journal as a manuscript. Advantages of such publication include obtaining peer-review feedback about the planned study, and easy retrieval by searching databases such as PubMed. The disadvantages in trying to publish protocols includes delays associated with manuscript handling and peer review, as well as costs, as few journals publish study protocols, and those journals mostly charge article-processing fees [ 37 ]. Authors who would like to make their protocol publicly available without publishing it in scholarly journals, could deposit their study protocols in publicly available repositories, such as the Open Science Framework ( https://osf.io/ ).

Q: How to appraise the quality of a methodological study?

A: To date, there is no published tool for appraising the risk of bias in a methodological study, but in principle, a methodological study could be considered as a type of observational study. Therefore, during conduct or appraisal, care should be taken to avoid the biases common in observational studies [ 38 ]. These biases include selection bias, comparability of groups, and ascertainment of exposure or outcome. In other words, to generate a representative sample, a comprehensive reproducible search may be necessary to build a sampling frame. Additionally, random sampling may be necessary to ensure that all the included research reports have the same probability of being selected, and the screening and selection processes should be transparent and reproducible. To ensure that the groups compared are similar in all characteristics, matching, random sampling or stratified sampling can be used. Statistical adjustments for between-group differences can also be applied at the analysis stage. Finally, duplicate data extraction can reduce errors in assessment of exposures or outcomes.

Q: Should I justify a sample size?

A: In all instances where one is not using the target population (i.e. the group to which inferences from the research report are directed) [ 39 ], a sample size justification is good practice. The sample size justification may take the form of a description of what is expected to be achieved with the number of articles selected, or a formal sample size estimation that outlines the number of articles required to answer the research question with a certain precision and power. Sample size justifications in methodological studies are reasonable in the following instances:

  • Comparing two groups
  • Determining a proportion, mean or another quantifier
  • Determining factors associated with an outcome using regression-based analyses

For example, El Dib et al. computed a sample size requirement for a methodological study of diagnostic strategies in randomized trials, based on a confidence interval approach [ 40 ].

Q: What should I call my study?

A: Other terms which have been used to describe/label methodological studies include “ methodological review ”, “methodological survey” , “meta-epidemiological study” , “systematic review” , “systematic survey”, “meta-research”, “research-on-research” and many others. We recommend that the study nomenclature be clear, unambiguous, informative and allow for appropriate indexing. Methodological study nomenclature that should be avoided includes “ systematic review” – as this will likely be confused with a systematic review of a clinical question. “ Systematic survey” may also lead to confusion about whether the survey was systematic (i.e. using a preplanned methodology) or a survey using “ systematic” sampling (i.e. a sampling approach using specific intervals to determine who is selected) [ 32 ]. Any of the above meanings of the words “ systematic” may be true for methodological studies and could be potentially misleading. “ Meta-epidemiological study” is ideal for indexing, but not very informative as it describes an entire field. The term “ review ” may point towards an appraisal or “review” of the design, conduct, analysis or reporting (or methodological components) of the targeted research reports, yet it has also been used to describe narrative reviews [ 41 , 42 ]. The term “ survey ” is also in line with the approaches used in many methodological studies [ 9 ], and would be indicative of the sampling procedures of this study design. However, in the absence of guidelines on nomenclature, the term “ methodological study ” is broad enough to capture most of the scenarios of such studies.

Q: Should I account for clustering in my methodological study?

A: Data from methodological studies are often clustered. For example, articles coming from a specific source may have different reporting standards (e.g. the Cochrane Library). Articles within the same journal may be similar due to editorial practices and policies, reporting requirements and endorsement of guidelines. There is emerging evidence that these are real concerns that should be accounted for in analyses [ 43 ]. Some cluster variables are described in the section: “ What variables are relevant to methodological studies?”

A variety of modelling approaches can be used to account for correlated data, including the use of marginal, fixed or mixed effects regression models with appropriate computation of standard errors [ 44 ]. For example, Kosa et al. used generalized estimation equations to account for correlation of articles within journals [ 15 ]. Not accounting for clustering could lead to incorrect p -values, unduly narrow confidence intervals, and biased estimates [ 45 ].

Q: Should I extract data in duplicate?

A: Yes. Duplicate data extraction takes more time but results in less errors [ 19 ]. Data extraction errors in turn affect the effect estimate [ 46 ], and therefore should be mitigated. Duplicate data extraction should be considered in the absence of other approaches to minimize extraction errors. However, much like systematic reviews, this area will likely see rapid new advances with machine learning and natural language processing technologies to support researchers with screening and data extraction [ 47 , 48 ]. However, experience plays an important role in the quality of extracted data and inexperienced extractors should be paired with experienced extractors [ 46 , 49 ].

Q: Should I assess the risk of bias of research reports included in my methodological study?

A : Risk of bias is most useful in determining the certainty that can be placed in the effect measure from a study. In methodological studies, risk of bias may not serve the purpose of determining the trustworthiness of results, as effect measures are often not the primary goal of methodological studies. Determining risk of bias in methodological studies is likely a practice borrowed from systematic review methodology, but whose intrinsic value is not obvious in methodological studies. When it is part of the research question, investigators often focus on one aspect of risk of bias. For example, Speich investigated how blinding was reported in surgical trials [ 50 ], and Abraha et al., investigated the application of intention-to-treat analyses in systematic reviews and trials [ 51 ].

Q: What variables are relevant to methodological studies?

A: There is empirical evidence that certain variables may inform the findings in a methodological study. We outline some of these and provide a brief overview below:

  • Country: Countries and regions differ in their research cultures, and the resources available to conduct research. Therefore, it is reasonable to believe that there may be differences in methodological features across countries. Methodological studies have reported loco-regional differences in reporting quality [ 52 , 53 ]. This may also be related to challenges non-English speakers face in publishing papers in English.
  • Authors’ expertise: The inclusion of authors with expertise in research methodology, biostatistics, and scientific writing is likely to influence the end-product. Oltean et al. found that among randomized trials in orthopaedic surgery, the use of analyses that accounted for clustering was more likely when specialists (e.g. statistician, epidemiologist or clinical trials methodologist) were included on the study team [ 54 ]. Fleming et al. found that including methodologists in the review team was associated with appropriate use of reporting guidelines [ 55 ].
  • Source of funding and conflicts of interest: Some studies have found that funded studies report better [ 56 , 57 ], while others do not [ 53 , 58 ]. The presence of funding would indicate the availability of resources deployed to ensure optimal design, conduct, analysis and reporting. However, the source of funding may introduce conflicts of interest and warrant assessment. For example, Kaiser et al. investigated the effect of industry funding on obesity or nutrition randomized trials and found that reporting quality was similar [ 59 ]. Thomas et al. looked at reporting quality of long-term weight loss trials and found that industry funded studies were better [ 60 ]. Kan et al. examined the association between industry funding and “positive trials” (trials reporting a significant intervention effect) and found that industry funding was highly predictive of a positive trial [ 61 ]. This finding is similar to that of a recent Cochrane Methodology Review by Hansen et al. [ 62 ]
  • Journal characteristics: Certain journals’ characteristics may influence the study design, analysis or reporting. Characteristics such as journal endorsement of guidelines [ 63 , 64 ], and Journal Impact Factor (JIF) have been shown to be associated with reporting [ 63 , 65 – 67 ].
  • Study size (sample size/number of sites): Some studies have shown that reporting is better in larger studies [ 53 , 56 , 58 ].
  • Year of publication: It is reasonable to assume that design, conduct, analysis and reporting of research will change over time. Many studies have demonstrated improvements in reporting over time or after the publication of reporting guidelines [ 68 , 69 ].
  • Type of intervention: In a methodological study of reporting quality of weight loss intervention studies, Thabane et al. found that trials of pharmacologic interventions were reported better than trials of non-pharmacologic interventions [ 70 ].
  • Interactions between variables: Complex interactions between the previously listed variables are possible. High income countries with more resources may be more likely to conduct larger studies and incorporate a variety of experts. Authors in certain countries may prefer certain journals, and journal endorsement of guidelines and editorial policies may change over time.

Q: Should I focus only on high impact journals?

A: Investigators may choose to investigate only high impact journals because they are more likely to influence practice and policy, or because they assume that methodological standards would be higher. However, the JIF may severely limit the scope of articles included and may skew the sample towards articles with positive findings. The generalizability and applicability of findings from a handful of journals must be examined carefully, especially since the JIF varies over time. Even among journals that are all “high impact”, variations exist in methodological standards.

Q: Can I conduct a methodological study of qualitative research?

A: Yes. Even though a lot of methodological research has been conducted in the quantitative research field, methodological studies of qualitative studies are feasible. Certain databases that catalogue qualitative research including the Cumulative Index to Nursing & Allied Health Literature (CINAHL) have defined subject headings that are specific to methodological research (e.g. “research methodology”). Alternatively, one could also conduct a qualitative methodological review; that is, use qualitative approaches to synthesize methodological issues in qualitative studies.

Q: What reporting guidelines should I use for my methodological study?

A: There is no guideline that covers the entire scope of methodological studies. One adaptation of the PRISMA guidelines has been published, which works well for studies that aim to use the entire target population of research reports [ 71 ]. However, it is not widely used (40 citations in 2 years as of 09 December 2019), and methodological studies that are designed as cross-sectional or before-after studies require a more fit-for purpose guideline. A more encompassing reporting guideline for a broad range of methodological studies is currently under development [ 72 ]. However, in the absence of formal guidance, the requirements for scientific reporting should be respected, and authors of methodological studies should focus on transparency and reproducibility.

Q: What are the potential threats to validity and how can I avoid them?

A: Methodological studies may be compromised by a lack of internal or external validity. The main threats to internal validity in methodological studies are selection and confounding bias. Investigators must ensure that the methods used to select articles does not make them differ systematically from the set of articles to which they would like to make inferences. For example, attempting to make extrapolations to all journals after analyzing high-impact journals would be misleading.

Many factors (confounders) may distort the association between the exposure and outcome if the included research reports differ with respect to these factors [ 73 ]. For example, when examining the association between source of funding and completeness of reporting, it may be necessary to account for journals that endorse the guidelines. Confounding bias can be addressed by restriction, matching and statistical adjustment [ 73 ]. Restriction appears to be the method of choice for many investigators who choose to include only high impact journals or articles in a specific field. For example, Knol et al. examined the reporting of p -values in baseline tables of high impact journals [ 26 ]. Matching is also sometimes used. In the methodological study of non-randomized interventional studies of elective ventral hernia repair, Parker et al. matched prospective studies with retrospective studies and compared reporting standards [ 74 ]. Some other methodological studies use statistical adjustments. For example, Zhang et al. used regression techniques to determine the factors associated with missing participant data in trials [ 16 ].

With regard to external validity, researchers interested in conducting methodological studies must consider how generalizable or applicable their findings are. This should tie in closely with the research question and should be explicit. For example. Findings from methodological studies on trials published in high impact cardiology journals cannot be assumed to be applicable to trials in other fields. However, investigators must ensure that their sample truly represents the target sample either by a) conducting a comprehensive and exhaustive search, or b) using an appropriate and justified, randomly selected sample of research reports.

Even applicability to high impact journals may vary based on the investigators’ definition, and over time. For example, for high impact journals in the field of general medicine, Bouwmeester et al. included the Annals of Internal Medicine (AIM), BMJ, the Journal of the American Medical Association (JAMA), Lancet, the New England Journal of Medicine (NEJM), and PLoS Medicine ( n  = 6) [ 75 ]. In contrast, the high impact journals selected in the methodological study by Schiller et al. were BMJ, JAMA, Lancet, and NEJM ( n  = 4) [ 76 ]. Another methodological study by Kosa et al. included AIM, BMJ, JAMA, Lancet and NEJM ( n  = 5). In the methodological study by Thabut et al., journals with a JIF greater than 5 were considered to be high impact. Riado Minguez et al. used first quartile journals in the Journal Citation Reports (JCR) for a specific year to determine “high impact” [ 77 ]. Ultimately, the definition of high impact will be based on the number of journals the investigators are willing to include, the year of impact and the JIF cut-off [ 78 ]. We acknowledge that the term “generalizability” may apply differently for methodological studies, especially when in many instances it is possible to include the entire target population in the sample studied.

Finally, methodological studies are not exempt from information bias which may stem from discrepancies in the included research reports [ 79 ], errors in data extraction, or inappropriate interpretation of the information extracted. Likewise, publication bias may also be a concern in methodological studies, but such concepts have not yet been explored.

A proposed framework

In order to inform discussions about methodological studies, the development of guidance for what should be reported, we have outlined some key features of methodological studies that can be used to classify them. For each of the categories outlined below, we provide an example. In our experience, the choice of approach to completing a methodological study can be informed by asking the following four questions:

  • What is the aim?

A methodological study may be focused on exploring sources of bias in primary or secondary studies (meta-bias), or how bias is analyzed. We have taken care to distinguish bias (i.e. systematic deviations from the truth irrespective of the source) from reporting quality or completeness (i.e. not adhering to a specific reporting guideline or norm). An example of where this distinction would be important is in the case of a randomized trial with no blinding. This study (depending on the nature of the intervention) would be at risk of performance bias. However, if the authors report that their study was not blinded, they would have reported adequately. In fact, some methodological studies attempt to capture both “quality of conduct” and “quality of reporting”, such as Richie et al., who reported on the risk of bias in randomized trials of pharmacy practice interventions [ 80 ]. Babic et al. investigated how risk of bias was used to inform sensitivity analyses in Cochrane reviews [ 81 ]. Further, biases related to choice of outcomes can also be explored. For example, Tan et al investigated differences in treatment effect size based on the outcome reported [ 82 ].

Methodological studies may report quality of reporting against a reporting checklist (i.e. adherence to guidelines) or against expected norms. For example, Croituro et al. report on the quality of reporting in systematic reviews published in dermatology journals based on their adherence to the PRISMA statement [ 83 ], and Khan et al. described the quality of reporting of harms in randomized controlled trials published in high impact cardiovascular journals based on the CONSORT extension for harms [ 84 ]. Other methodological studies investigate reporting of certain features of interest that may not be part of formally published checklists or guidelines. For example, Mbuagbaw et al. described how often the implications for research are elaborated using the Evidence, Participants, Intervention, Comparison, Outcome, Timeframe (EPICOT) format [ 30 ].

Sometimes investigators may be interested in how consistent reports of the same research are, as it is expected that there should be consistency between: conference abstracts and published manuscripts; manuscript abstracts and manuscript main text; and trial registration and published manuscript. For example, Rosmarakis et al. investigated consistency between conference abstracts and full text manuscripts [ 85 ].

In addition to identifying issues with reporting in primary and secondary studies, authors of methodological studies may be interested in determining the factors that are associated with certain reporting practices. Many methodological studies incorporate this, albeit as a secondary outcome. For example, Farrokhyar et al. investigated the factors associated with reporting quality in randomized trials of coronary artery bypass grafting surgery [ 53 ].

Methodological studies may also be used to describe methods or compare methods, and the factors associated with methods. Muller et al. described the methods used for systematic reviews and meta-analyses of observational studies [ 86 ].

Some methodological studies synthesize results from other methodological studies. For example, Li et al. conducted a scoping review of methodological reviews that investigated consistency between full text and abstracts in primary biomedical research [ 87 ].

Some methodological studies may investigate the use of names and terms in health research. For example, Martinic et al. investigated the definitions of systematic reviews used in overviews of systematic reviews (OSRs), meta-epidemiological studies and epidemiology textbooks [ 88 ].

In addition to the previously mentioned experimental methodological studies, there may exist other types of methodological studies not captured here.

  • 2. What is the design?

Most methodological studies are purely descriptive and report their findings as counts (percent) and means (standard deviation) or medians (interquartile range). For example, Mbuagbaw et al. described the reporting of research recommendations in Cochrane HIV systematic reviews [ 30 ]. Gohari et al. described the quality of reporting of randomized trials in diabetes in Iran [ 12 ].

Some methodological studies are analytical wherein “analytical studies identify and quantify associations, test hypotheses, identify causes and determine whether an association exists between variables, such as between an exposure and a disease.” [ 89 ] In the case of methodological studies all these investigations are possible. For example, Kosa et al. investigated the association between agreement in primary outcome from trial registry to published manuscript and study covariates. They found that larger and more recent studies were more likely to have agreement [ 15 ]. Tricco et al. compared the conclusion statements from Cochrane and non-Cochrane systematic reviews with a meta-analysis of the primary outcome and found that non-Cochrane reviews were more likely to report positive findings. These results are a test of the null hypothesis that the proportions of Cochrane and non-Cochrane reviews that report positive results are equal [ 90 ].

  • 3. What is the sampling strategy?

Methodological reviews with narrow research questions may be able to include the entire target population. For example, in the methodological study of Cochrane HIV systematic reviews, Mbuagbaw et al. included all of the available studies ( n  = 103) [ 30 ].

Many methodological studies use random samples of the target population [ 33 , 91 , 92 ]. Alternatively, purposeful sampling may be used, limiting the sample to a subset of research-related reports published within a certain time period, or in journals with a certain ranking or on a topic. Systematic sampling can also be used when random sampling may be challenging to implement.

  • 4. What is the unit of analysis?

Many methodological studies use a research report (e.g. full manuscript of study, abstract portion of the study) as the unit of analysis, and inferences can be made at the study-level. However, both published and unpublished research-related reports can be studied. These may include articles, conference abstracts, registry entries etc.

Some methodological studies report on items which may occur more than once per article. For example, Paquette et al. report on subgroup analyses in Cochrane reviews of atrial fibrillation in which 17 systematic reviews planned 56 subgroup analyses [ 93 ].

This framework is outlined in Fig.  2 .

An external file that holds a picture, illustration, etc.
Object name is 12874_2020_1107_Fig2_HTML.jpg

A proposed framework for methodological studies

Conclusions

Methodological studies have examined different aspects of reporting such as quality, completeness, consistency and adherence to reporting guidelines. As such, many of the methodological study examples cited in this tutorial are related to reporting. However, as an evolving field, the scope of research questions that can be addressed by methodological studies is expected to increase.

In this paper we have outlined the scope and purpose of methodological studies, along with examples of instances in which various approaches have been used. In the absence of formal guidance on the design, conduct, analysis and reporting of methodological studies, we have provided some advice to help make methodological studies consistent. This advice is grounded in good contemporary scientific practice. Generally, the research question should tie in with the sampling approach and planned analysis. We have also highlighted the variables that may inform findings from methodological studies. Lastly, we have provided suggestions for ways in which authors can categorize their methodological studies to inform their design and analysis.

Acknowledgements

Abbreviations, authors’ contributions.

LM conceived the idea and drafted the outline and paper. DOL and LT commented on the idea and draft outline. LM, LP and DOL performed literature searches and data extraction. All authors (LM, DOL, LT, LP, DBA) reviewed several draft versions of the manuscript and approved the final manuscript.

This work did not receive any dedicated funding.

Availability of data and materials

Ethics approval and consent to participate.

Not applicable.

Consent for publication

Competing interests.

DOL, DBA, LM, LP and LT are involved in the development of a reporting guideline for methodological studies.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

  • Top Courses
  • Online Degrees
  • Find your New Career
  • Join for Free

Learn Essential Research Skills

Understand research principles, methodologies, and best practices.

The language used throughout the course, in both instruction and assessments.

Choose the Research Course That Aligns Best With Your Educational Goals

basic course in research methodology

University of London

Understanding Research Methods

Skills you'll gain : Planning, Writing

(7.3K reviews)

Mixed · Course · 1 - 4 Weeks

basic course in research methodology

University of Cape Town

Understanding Clinical Research: Behind the Statistics

Skills you'll gain : Basic Descriptive Statistics, Data Analysis, General Statistics, Probability & Statistics, Statistical Tests, Critical Thinking, Probability Distribution, Statistical Visualization

(3.3K reviews)

Beginner · Course · 1 - 3 Months

basic course in research methodology

University of California, Davis

Market Research

Skills you'll gain : Market Research, Research and Design, Marketing, Market Analysis, Communication, Business Research, Data Analysis, User Research, Critical Thinking, Decision Making, Strategy, Survey Creation, Business Communication, Customer Analysis, People Analysis, General Statistics, Correlation And Dependence, Data Visualization, Probability & Statistics, Storytelling, Data Analysis Software, Social Media, Writing, Digital Marketing

(1.3K reviews)

Beginner · Specialization · 3 - 6 Months

basic course in research methodology

Queen Mary University of London

Research Methodologies

Skills you'll gain : Exploratory Data Analysis, Market Research, Critical Thinking, Data Management, Research and Design, User Experience, Business Communication, Customer Analysis, Data Analysis, User Research, Experiment

(151 reviews)

Beginner · Course · 1 - 4 Weeks

basic course in research methodology

American Psychological Association

Psychological Research

Skills you'll gain : Data Analysis, General Statistics, Research and Design, Training

(93 reviews)

basic course in research methodology

École Polytechnique

How to Write and Publish a Scientific Paper (Project-Centered Course)

(2.5K reviews)

Placeholder

Stanford University

Introduction to Statistics

Skills you'll gain : General Statistics, Probability & Statistics, Statistical Analysis, Critical Thinking, Basic Descriptive Statistics, Data Analysis, Statistical Tests, Mathematics, Probability Distribution, Problem Solving

(3K reviews)

Placeholder

Johns Hopkins University

Introduction to Systematic Review and Meta-Analysis

Mixed · Course · 1 - 3 Months

Placeholder

Yale University

Understanding Medical Research: Your Facebook Friend is Wrong

Skills you'll gain : General Statistics

(1.9K reviews)

Placeholder

University of Amsterdam

Methods and Statistics in Social Sciences

Skills you'll gain : Probability & Statistics, Statistical Tests, General Statistics, Correlation And Dependence, Statistical Programming, Basic Descriptive Statistics, Statistical Analysis, Research and Design, Data Analysis, Regression, Adaptability, Computational Thinking, Critical Thinking, People Analysis, Theoretical Computer Science, Writing, Probability Distribution, Problem Solving, R Programming, Experiment, Computer Programming

Placeholder

Research for Impact

Skills you'll gain : Communication

(149 reviews)

Placeholder

Clinical Trials Operations

Skills you'll gain : Leadership and Management, Data Management, Clinical Data Management, Operations Management, Communication, Data Analysis, Recruitment, Statistical Analysis

(308 reviews)

Searches related to research

In summary, here are 10 of our most popular research courses.

  • Understanding Research Methods :   University of London
  • Understanding Clinical Research: Behind the Statistics :   University of Cape Town
  • Market Research :   University of California, Davis
  • Research Methodologies :   Queen Mary University of London
  • Psychological Research :   American Psychological Association
  • How to Write and Publish a Scientific Paper (Project-Centered Course) :   École Polytechnique
  • Introduction to Statistics :   Stanford University
  • Introduction to Systematic Review and Meta-Analysis :   Johns Hopkins University
  • Understanding Medical Research: Your Facebook Friend is Wrong :   Yale University
  • Methods and Statistics in Social Sciences :   University of Amsterdam

Frequently Asked Questions about Research

What is research ‎.

Research is the act of collecting information about a particular topic, organizing it, and analyzing it. When you conduct research, you're doing more than just opening a book or website and looking at details of a specific subject. Research involves approaching an issue or topic systematically and carefully documenting what you observe or study. When you take part in research, you may not always find the answers to the questions you're seeking to solve; in fact, you might even open up more questions, which leads to more research. In that way, research can become a multilayered quest for answers and meaning. ‎

Why is it important to learn research? ‎

Research is more than an educational tool. For generations, research has proven theories, led to breakthroughs, and helped people learn about the world around them. Diligent work in research has led to the development of new technologies, medications, and innovations that make the world a better place. You can bring public awareness to an issue or subject with your research, or you can sow the seeds for new ideas that no one has ever discussed before. Don't just think of research as a way to learn—think of it as a way to make the world around you better. ‎

What are typical careers that use research? ‎

Research is a broad field that touches a wide range of disciplines, so you can find a career in research in any number of subjects, including in academia or in social science fields like history, archaeology, and sociology. Research is key in the medical and bioscience disciplines, especially when it comes to developing new medications and cures for disease. You may also find jobs as a forensic researcher in the criminal justice world or as a computer science researcher in the information technology sector. The possibilities for research careers are wide, and chances are you can find a research job that suits your interests. ‎

How can online courses on Coursera help me learn research? ‎

When you take research courses on Coursera, you can learn about research methods and techniques or dig deeper into specific topics like clinical research, research for social work, or market research and consumer behavior. You can learn about how to write and publish a scientific paper, understand concepts of research design, explore data analysis and interpretation, and more. ‎

What skills or experience do I need to already have, before starting to learn about research? ‎

Anyone, regardless of skill level or experience, can learn about health research. But it helps to have a background and interest in this field of study so you can understand the results and are capable of accurately interpreting the data. Beginner courses are a great place to start if you are new to the field and want to start exploring medical research. ‎

What kind of people are best suited for roles in research? ‎

Health care workers and especially those with a background in clinical research are best suited for roles in health research. People with an understanding of fieldwork and clinical research and who have a background in chemistry, biology, public health, or anthropology are great candidates for roles in health research. Health research is about innovative thinking that can benefit a society today and for years to come. It requires a person to be meticulous, forward-thinking, and dedicated to the task at hand. People best suited for roles in research should also desire to read and interpret the research of other professionals in their field. ‎

What are common career paths for someone in research? ‎

People in research can pursue a career path for research organizations including universities, governmental bodies, and health policy organizations. Health researchers not only work in laboratories but also write and manage government grants for teams of researchers. For those with a background in computer science, medical researchers may also work solely on analyzing data and presenting findings to management teams. ‎

What topics can I study that are related to research? ‎

An important topic to study in medical research is the interpretation of data obtained during clinical trials. These topics explore how to read, organize, and share the data. They also explain various types of trial design. If you are interested in public health as it relates to health research, topics like epidemiology in public health on the local and national level may be of interest to you. You can also explore specific medical research topics, including neuroscience, drug development, and precision medicine. Topics surrounding mindfulness and how it relates to health care can help learners understand how pain management, stress, and sleep issues can be alleviated. If you’re interested in how to think about data, topics that explain how to perform systematic reviews will help you learn how to describe the process used to collect data and how to interpret the end results. ‎

What are the benefits of taking an online Research course? ‎

Online Research courses offer a convenient and flexible way to enhance your knowledge or learn new Research skills. Choose from a wide range of Research courses offered by top universities and industry leaders tailored to various skill levels. ‎

What Research courses are best for training and upskilling employees or the workforce? ‎

When looking to enhance your workforce's skills in Research, it's crucial to select a course that aligns with their current abilities and learning objectives. Our Skills Dashboard is an invaluable tool for identifying skill gaps and choosing the most appropriate course for effective upskilling. For a comprehensive understanding of how our courses can benefit your employees, explore the enterprise solutions we offer. Discover more about our tailored programs at Coursera for Business here . ‎

Other topics to explore

Placeholder

X

Short courses

Menu

Introduction to Research Methods and Statistics

  • 9:30am to 5pm

Book a place

We don't have a date for this course yet. Subscribe to the CASC mailing list for updates on new courses and dates.

This five-day short course will give you a comprehensive introduction to the fundamental aspects of research methods and statistics . It's suitable for those new to quantitative research.

You'll look at topics ranging from study design, data type and graphs through to choice and interpretation of statistical tests - with a particular focus on standard errors, confidence intervals and p-values.

This course takes place over five days (9:30am to 5pm).  

This course is delivered by UCL's Centre for Applied Statistics Courses (CASC), part of the UCL Great Ormond Street Institute of Child Health (ICH).

Course content

During this basic introductory course in research methodology and statistical analyses you'll cover a variety of topics.

This is a theory-led course, but you'll be given plenty of opportunities to apply the concepts via practical and interactive activities integrated throughout.

The topics covered include:

  • Introduction to quantitative research
  • Research question development
  • Study design, sampling and confounding
  • Types of data
  • Graphical displays of data and results
  • Summarising numeric and categorical data
  • Numeric and categorical differences between groups
  • Hypothesis testing
  • Confidence intervals and p-values
  • Parametric statistical tests
  • Non-parametric tests
  • Bootstrapping
  • Regression analysis

Many examples used in the course are related to health research, but the concepts you'll learn about can be applied to most other fields.

Eligibility

The course is suitable for those new to quantitative research.

Learning outcomes

By the end of this course you should have a good, practical understanding of:

  • research design considerations (question formulation, sample selection and randomisation, study design, and research protocols)
  • data types, and appropriate summaries and graphs of samples and differences
  • standard errors, confidence intervals and p-values
  • parametric and nonparametric assumptions and tests
  • how to select an appropriate statistical test

Cost and concessions

The fees are:

  • External delegates (non UCL) - £750
  • UCL staff, students, alumni - £375*
  • ICH/GOSH staff and doctoral students - free

* valid UCL email address and/or UCL alumni number required upon registration.

Certificates

You can request a certificate of attendance for all of our courses once you've completed it. Please send your request to [email protected]

Include the following in your email:

  • the name of the completed course for which you'd like a certificate
  • how you'd like your name presented on the certificate (if the name/format differs from the details you gave during registration)

Cancellations

Read the cancellation policy for this course on the ICH website. Please send all cancellation requests to  [email protected]

Find out about CASC's other statistics courses

CASC's stats courses are for anyone requiring an understanding of research methodology and statistical analyses. The courses will allow non-statisticians to interpret published research and/or undertake their own research studies.

Find out more about CASC's full range of statistics courses , and the continuing statistics training scheme (book six one-day courses and get a seventh free.)

Course team

Dr Eirini Koutoumanou

Dr Eirini Koutoumanou

Eirini has a BSc in Statistics from Athens University of Economics and Business and an MSc in Statistics from Lancaster University (funded by the Engineering and Physical Sciences Research Council). She joined UCL GOS Institute of Child Health in 2008 to develop a range of short courses for anyone interested in learning new statistical skills. Soon after, CASC was born. In 2014, she was promoted to Senior Teaching Fellow. In 2019, she successfully passed her PhD viva on the topic of Copula models and their application within paediatric data. Since early 2020 she has been co-directing CASC with its founder, Emeritus Professor Angie Wade, and has been the sole Director of CASC since January 2022. Eirini was promoted to Associate Professor (Teaching) with effect from October 2022.

Dr Chibueze Ogbonnaya

Dr Chibueze Ogbonnaya

Since joining the teaching team at CASC in February 2019, Chibueze has contributed to the teaching and development of short courses. He currently leads and co-leads short courses on MATLAB, missing data, regression analysis and survival analysis. Chibueze has a BSc in Statistics from the University of Nigeria, where he briefly worked as a teaching assistant after graduation. He then moved to the University of Nottingham for his MSc and PhD in Statistics. His research interests include functional data analysis, applied machine learning and distribution theory.

Dr Catalina Rivera Suarez

Dr Catalina Rivera Suarez

Catalina has been an Associate Lecturer (Teaching) at CASC since January 2021. She has a PhD in Psychology and an MSc in Applied Statistics from Indiana University. She’s passionate about teaching courses in research methods, statistics, and statistical software. Catalina’s research focuses on studying how caregivers support the development of children's attentional control and language. She implements multilevel modeling techniques to investigate the moment-to-moment dynamics of shared joint visual engagement, as well as the quality of the language input, influencing infant learning and sustained attention at multiple timescales.  

Dr Manolis Bagkeris

Dr Manolis Bagkeris

Manolis has a BSc in Statistics and Actuarial-Financial Mathematics from the University of the Aegean and an MSc in Medical Statistics from the Athens University of Economics and Business (AUEB). He’s worked as a research assistant at University of Crete, UCL and Imperial College London. He’s been working at CASC since November 2021, providing short courses in research methods and statistics for people who want to develop or enhance their knowledge in interpreting and undertaking their own research. His interests include paediatric epidemiology, clinical and population health, HIV, mental health and development. He was awarded a PhD from UCL in 2021 on the topic of frailty, falls, bone mineral density and fractures among HIV-positive and HIV-negative controls in England and Ireland.

"All sessions were exceptionally organised and presented in a clear and engaging style. The lecturers were incredibly knowledgeable and flexible and patient to the different levels of understanding in the room. The key concepts of making inferences set out at the beginning and carried throughout were especially helpful.

"Explaining the visual representation of data was very useful, as was having examples in the workbooks to learn from and 'correct'."

"The most memorable session for me was the one about significance testing. I am sure it will be very useful in my practice."

Course information last modified: 25 Mar 2024, 09:38

Length and time commitment

  • Time commitment: 9:30am to 5pm
  • Course length: 5 days
  • 238: ICH, Wellcome Trust Building, 30 Guildford Street, London, WC1N 1EH, United Kingdom

Contact information

  • CASC Short Course Administrator
  • [email protected]
  • 020 7905 2768 (registration, payment), or 07730 405 980 (course specifics)

Related Short Courses

  • A-Z Sitemap
  • Indigenous Education
  • Academic Calendars
  • Course Schedule
  • Dates & Deadlines
  • Course Registration
  • Faculty & Staff Links
  • Williams Lake
  • News & Events
  • Career Connections
  • Student Email
  • Staff Email
  • TRUemployee
  • Register now

Section Menu

  • Open Learning
  • Program Advising
  • Programs FAQ
  • TRU Start BC
  • Arts and Science Breadth Requirements
  • Business Breadth Requirements
  • Courses FAQ
  • Course Delivery Formats
  • Education and Social Work Professional Development Courses
  • Health Sciences Transition Courses
  • Nursing Transition Courses
  • Summer Science Lab Courses
  • Information Sessions
  • Registration FAQ
  • Keys to Success
  • Moodle Tutorials
  • Finance FAQ
  • Educational Advising
  • ProctorU FAQ
  • Canadian Invigilator Network (CIN)
  • GDBA/MBA Exam Schedule
  • Student Forms
  • Academic Integrity and Student Conduct
  • Formal Transfer Credit
  • Registration
  • Final Grades
  • Grading Systems and Procedures
  • Student Academic Appeals
  • Program Completion and Graduation
  • Release of Student Information
  • Accessibility Services
  • Writing Support
  • Library Services
  • Career Planning
  • Open Learning Calendar
  • Transferring Credit to Other Institutions
  • University of Victoria Transfer Credit
  • First Nations Language Centres
  • Partnerships Contact
  • Transfer FAQ
  • Credit Bank
  • Campus Students
  • Open Learning Faculty Members
  • Open Learning News
  • Open Learning Teaching Excellence Awards
  • Learning Technology

RSMT 3501: Introduction to Research Methods

This course will provide an opportunity for participants to establish or advance their understanding of research through critical exploration of research language, ethics, and approaches. The course introduces the language of research, ethical principles and challenges, and the elements of the research process within quantitative, qualitative, and mixed methods approaches. Participants will use these theoretical underpinnings to begin to critically review literature relevant to their field or interests and determine how research findings are useful in forming their understanding of their work, social, local and global environment .

Online, Paced

  • 60 credits of coursework

Credit will only be granted for one of HEAL 350, HLTH 3501 or RSMT 3501 .

Learning outcomes

  • Understand research terminology
  • Be aware of the ethical principles of research, ethical challenges and approval processes
  • Describe quantitative, qualitative and mixed methods approaches to research
  • Identify the components of a literature review process
  • Critically analyze published research

Course topics

  • Module 1: Foundations
  • Module 2: Quantitative Research
  • Module 3: Qualitative Research
  • Module 4: Mixed Methods Research

Required text and materials

The following materials are rquired for this course:

  • Creswell, J. W. (2023). Research design: Qualitative, Quantitative and Mixed Methods Approaches (6th Ed.) Sage Publications. Type: Textbook. ISBN: 9781071817940
  • Thompson Rivers University Library. (2011). APA Citation Style - Quick Guide (6th ed.). Retrieved from https://tru.ca/__shared/assets/apastyle31967.pdf

Optional materials

Students are recommended to have access to a print copy of a dictionary of epidemiology, research or statistics or an online glossary.

A highly recommended dictionary is: Porta, M. (2014). A dictionary of epidemiology (6th ed). New York, NY: Oxford University Press.

Assessments

To successfully complete this course, students must achieve a passing grade of 50% or higher on the overall course and 50% or higher on the mandatory final project.

Tri-council Ethics Certification

As part of the module on Research Ethics, students will work through the Tri-council Research Ethics Certification online program that will provide them with a certificate of completion. Students will need to submit a copy of this certification as part of their final project to complete the course.

Open Learning Faculty Member Information

An Open Learning Faculty Member is available to assist students. Students will receive the necessary contact information at the start of the course.

  • Terms & Privacy
  • Emergency Information
  • Accreditation
  • Accessibility Feedback
  • Current Students
  • Prospective Students
  • Open Learning Students
  • Faculty & Staff
  • Financial Aid
  • All Student Services
  • Careers at TRU
  • News & Events
  • Conference Centre
  • Room Bookings

TRU Logo

This course is currently unavailable.

Please continue to check here for availability.

This course is not currently available for registration.

Registrations will open as follows: - March (for May course start dates) - July (for September course start dates) - November (for January course start dates)

swayam-logo

Basic Research

Page Visits

Course layout, books and references, instructor bio.

basic course in research methodology

Dr. Premavathy Vijayan

  • Sivoka Human Resource Management and Karangal Trust honoured Dr.Premavathy Vijayan with Tamil Tharagai 2017 award in recognition for her contributions towards Higher Education for Women on the eve of Women's day March 8th 2017 
  • The National Award for "Outstanding Services for the Empowerment of Persons with Disabilities 2010" by the President of India Smt.Prathiba Patilon 3.12.2010 
  • The Best Special Teacher award by Christoffel Blinden Mission in Appreciation of the Pioneering and Dedicated Services Rendered to the cause of Integrated Education of Visually Handicappedon 6.5.1993 
  • The Best Trainer for the Women with Visual Impairment by All India Confederation of the Blind,New Delhi in 1986.

Course certificate

basic course in research methodology

DOWNLOAD APP

basic course in research methodology

SWAYAM SUPPORT

Please choose the SWAYAM National Coordinator for support. * :

Social Research in Education

Social Research in Education at Winchester offers a programme of focused study of research methods applicable to educational settings and educational enquiry. You are equipped and encouraged to develop an in-depth understanding of research methods, research design, and the cultural and ethical contexts in which educational research takes place. 

Book case with several books

Course overview

The course helps you to develop advanced qualitative and quantitative research skills, which support you in starting or enhancing a career in research or as a senior professional able to support others in research endeavours, for example in schools.

We focus on research design, which enables you to select appropriate approaches and methods to carry out investigations. It provides you with the opportunity to develop intellectual and practical skills, along with the ability to analyse and communicate complex ideas, and creatively plan and manage an independent postgraduate research project in education. It also equips you with the necessary skills to undertake further doctoral study.

You study core modules in Quantitative Methods in Social Research, Qualitative Methods in Social Research, and Theory, and Practice and Ethics in Social Research. You may choose to target a particular aspect of educational practice for data collection, although assignments analyse data collection methods, analysis approaches or ethical aspects of the research rather than the content of the practice.

There is also a final dissertation project, for which you choose an empirical or theoretical aspect of research methodology and explore it. This may also include an investigation of an aspect of education that interests you. You participate in workshops and seminars, and on-going online and face-to-face discussions with tutors and other students. These include debating issues such as ethical considerations in research, and help develop some of the underpinning research skills.

What you need to know

Course start date.

On campus, Winchester

Course length

  • 1 year full-time
  • 3 years part-time

Apply online

Typical offer

A first or second-class honours degree

From £9,550 pa

Course features

  • Develop your skills in research design
  • Complete intensive training in social research methods and approaches
  • Learn to present aspects of research in a range of engaging ways

Course details

Suitable for applicants from:.

UK, EU, World

Work experience

Students who are not currently working in an educational setting need to establish clear links with at least one setting for research purposes.

Learning and teaching

Start dates: September

Distance learning available:  For research methods modules. Independent study supervisions may be conducted by Skype or email.

Teaching takes place: Weekends. However, the Theory, Practice and Ethics in Social Research module is taught at the summer school in June/July, and one weekend in September.

Workshops and seminars develop some of the underpinning research skills. Students are part of ongoing online and face-to-face discussions with tutors and other students, and are equipped to present aspects of research in a range of ways.

Taught elements of the course take place on campus in Winchester

Assessed work includes portfolios of completed tasks, essays, presentations and posters; all assessments are given numerical grades. For the dissertation, students choose an empirical or theoretical aspect of research methodology, and explore this through a project which may also explore an aspect of education that interests them.

Our validated courses may adopt a range of means of assessing your learning. An indicative, and not necessarily comprehensive, list of assessment types you might encounter includes essays, portfolios, supervised independent work, presentations, written exams, or practical performances.

We ensure all students have an equal opportunity to achieve module learning outcomes. As such, where appropriate and necessary, students with recognised disabilities may have alternative assignments set that continue to test how successfully they have met the module's learning outcomes.

Further details on assessment types used can be found by attending an open evening or contacting our teaching staff.

We are committed to providing timely and appropriate feedback to you on your academic progress and achievement in order to enable you to reflect on your progress and plan your academic and skills development effectively. You are also encouraged to seek additional feedback from your course tutors.

Further information

For more information about our regulations for this course, please see our Academic Regulations, Policies and Procedures section.

Please note the modules listed are correct at the time of publishing. The University cannot guarantee the availability of all modules listed and modules may be subject to change. The University will notify applicants of any changes made to the core modules listed. For further information please refer to winchester.ac.uk/termsandconditions

In this module you will be introduced to the selection and use of qualitative and quantitative methods for data collection and analysis in social research contexts. This will be done in both empirical and theoretical research contexts and will explore the merits of employing a mixed methods approach. You will consider the theoretical and practical contexts in which researchers choose particular methods. You will reflect in depth on the experience of data collection, in order to refine your skills and to extend your repertoire. You will develop your understanding of different approaches to handling data for analysis using qualitative methods (such as thematic analysis) and quantitative methods (including using data analysis software).

In this module you will experience, evaluate and analyse a range of qualitative data collection and analysis techniques, which you will then be able to apply in social research contexts. You will consider the theoretical and practical contexts in which researchers choose particular qualitative methods in both theoretical and empirical research. You will consider the merits of employing a mixed methods approach in greater depth. You will reflect on the experience of data collection, in order to refine your skills and to extend your repertoire. By the end of this module, you will have extensive experience of using different qualitative and quantitative methods, including the use of software-aided data handling. As a key element of this module, you will explore in detail one (or more) method of collecting data, presentation of which will form the basis for the assessment task. 

In this triple module, you will further extend your understanding of research practice by examining different theoretical positions and approaches to research. You will explore issues of ontology and epistemology and the ways in which these influence choices of research approach and methodology in greater depth. You will develop your understanding of the situated nature of research ethics, and different stances taken by researchers in relation to ethical issues, as well as exploring the ethical demands of research governance.

The dissertation enables students present a detailed and critical reflective analysis of the use of one or more approaches to researching. In preparation for the award of MRes (Masters in Social Research in Education), students will focus on the research methodology to develop their understanding of research in social contexts. Students will be supported by a dissertation supervisor in the preparation of their work.

Entry requirements

Normally a first or second-class Honours degree or professional experience in the area of study.

Course enquiries and applications

Send us a message.

If English is not your first language: IELTS 6.0 overall with a minimum of 5.5 in writing or equivalent.

Applications need to be submitted before the deadline published on our website. Late applications can be accepted throughout the remainder of the application year, for more information see our How to Apply section. 

If you are living outside of the UK or Europe, you can find out more about how to join this course by emailing our International Recruitment Team at  [email protected] .

2024/2025 Course Tuition Fees 

basic course in research methodology

Additional tuition fee information

If you are a UK student starting your degree in January / September 2024, the first year will cost you £9,550**.

If finance is a worry for you, we are here to help. Take a look at the range of support we have on offer. This is a great investment you are making in your future, so make sure you know what is on offer to support you.

**The University of Winchester will charge the maximum approved tuition fee per year.

Additional costs

As one of our students all of your teaching and assessments are included in your tuition fees, including, lectures/guest lectures and tutorials, seminars, laboratory sessions and specialist teaching facilities. You will also have access to a wide range of student support and IT services.

Printing and binding

The University is pleased to offer our students a free printing allowance of £5 each academic year. This will print around 500 A4 mono pages. If students wish to print more, printer credit can be topped up by the student. The University and Student Union are champions of sustainability and we ask all our students to consider the environmental impact before printing. 

SCHOLARSHIPS, BURSARIES AND AWARDS

We have a variety of scholarship and bursaries available to support you financially with the cost of your course. To see if you’re eligible, please see our Scholarships and Awards.

CAREER PROSPECTS

Graduates of the course are equipped to pursue careers in educational research, as research officers working for educational bodies such as local authorities, as contract researchers, or as project officers working on funded projects in higher education or research institutes.

Student with careers staff member

“The MSc programmes at Winchester provide you with an excellent foundation from which to pursue your career” Steve – MSc Graduate

How to apply for this course

We want your application process to be as simple as possible. Find out everything you need to know about the application process, how to apply, your offer and how to secure your place.

Programme Leader: Kerry Ball

View our related courses in teaching, education and childhood studies.

Take a look at all our courses within the subject area of Teaching, Education and Childhood Studies

Information for International Students

Our international students come from all over the world and we understand that some things are a little different when applying and then arriving at the University. We have therefore provided a list of some of the countries we work in with specific information included on Entry Requirements, Funding Opportunities, Visas and other useful information.

basic course in research methodology

Come visit us

See our open days.

This website uses cookies to improve user experience. By using our website, you consent to all cookies in accordance with our Cookie Policy . I agree

basic course in research methodology

College of Science

  • UTA Planetarium
  • Degree Programs
  • Departments
  • Financial Aid
  • College Info
  • Be A Maverick

COS pre-med students get hands-on clinical medicine training

Thursday, May 30, 2024 • Greg Pederson :

Clinical Workshop

A group of College of Science pre-medical students recently received valuable hands-on clinical training during a workshop in the new Smart Hospital at The University of Texas at Arlington.

The Clinical Experience Workshop, held May 13-23 in the Social Work and CONHI Smart Hospital Building, allowed 10 pre-med students to participate in experiential activities as well as to interact one-on-one with “patients” who were portrayed by students from the UTA Department of Theatre Arts.

Students were able to learn skills including checking vital signs, starting an IV line, and delivering a baby, all by utilizing the lifelike manikins in the state-of-the-art Smart Hospital. They also learned various medical procedures and participated in virtual reality exercises in the Smart Hospital’s simulation lab.

“This was a clinical experiential opportunity for pre-med students with no clinical background to be immersed in clinical medicine, learn basic skills, and experience actual patient encounters with simulated patients who were actually trained UTA theater students,” said Dr. Steve Gellman, College of Science pre-med consultant and co-director of the minor in medical humanities and bioethics program.

During the live patient portion of the workshop, each theater student portrayed a patient with specific symptoms which the pre-med students attempted to diagnose.

Assisting in the workshop were Dr. Jocelyn Zee, DO, a COS alumna and 2016 recipient of the UTA Distinguished Alumni Award; Allante Milsap, a medical student from UT Southwestern Medical Center in Dallas; Paul Koester, a medical student from Texas College of Osteopathic Medicine in Fort Worth; Jennifer Roye, UTA assistant dean for simulation and technology; and Erica Hinojosa, UTA simulation technology manager.

Clinical experience workshop

“The workshop was so much fun — for the students and staff. There was universal agreement that this was a valuable and memorable experience that will have a lasting impact on the participants,” Gellman said. “Experiential learning is an excellent path toward meaningful and lasting education, especially for teaching the important humanities aspect of patient care.”

The workshop, which was made possible by funds from the UTA Libraries Department of Experiential Learning and the College of Science, is just one of the many ways the College of Science helps to prepare students for medical and other health professions schools.

The Office of Health Professions has two advisors (Sandy Hobart and Haylei Dishinger) and offers test prep classes, a pre-med preceptorship program, career information events featuring health professionals from various fields, an annual Health Professions Fair, and more. The office also oversees the Joint Admission Medical Program (JAMP), which is led by Greg Hale, COS assistant dean. JAMP supports and encourages highly qualified, economically disadvantaged Texas resident students pursuing a medical education. A variety of health profession student organizations offer clinics and workshops as well as networking and volunteer opportunities.

Another popular program the office offers is an EMT class, which has been held at UTA for the past two years and will again be open to students in Fall 2024, from August 25 to December 2. The class allows students to earn an EMT certification via a hybrid online and in-person class, with in-person sessions once a week on the UTA campus. The class is offered in partnership with UT Dallas and University Emergency Medical Response and is not a UTA course. For more information about the course, please email Sheila Elliott, program director, at [email protected] .

The UTA College of Science, a Carnegie R1 research institution, is preparing the next generation of leaders in science through innovative education and hands-on research and offers programs in Biology, Chemistry & Biochemistry, Data Science, Earth & Environmental Sciences, Health Professions, Mathematics, Physics and Psychology. To support educational and research efforts visit the  giving page , or if you're a prospective student interested in beginning your #MaverickScience journey visit our  future students page .

News & Events

  • Events Calendar
  • Be a Maverick
  • Give to the College

COLLEGE OF SCIENCE

Life Sciences Building, Room 206 501 S. Nedderman Drive Box 19047 Arlington, TX 76019

Social Media

Phone: 817-272-3491 Fax: 817-272-3511 Email: [email protected]

A new future of work: The race to deploy AI and raise skills in Europe and beyond

At a glance.

Amid tightening labor markets and a slowdown in productivity growth, Europe and the United States face shifts in labor demand, spurred by AI and automation. Our updated modeling of the future of work finds that demand for workers in STEM-related, healthcare, and other high-skill professions would rise, while demand for occupations such as office workers, production workers, and customer service representatives would decline. By 2030, in a midpoint adoption scenario, up to 30 percent of current hours worked could be automated, accelerated by generative AI (gen AI). Efforts to achieve net-zero emissions, an aging workforce, and growth in e-commerce, as well as infrastructure and technology spending and overall economic growth, could also shift employment demand.

By 2030, Europe could require up to 12 million occupational transitions, double the prepandemic pace. In the United States, required transitions could reach almost 12 million, in line with the prepandemic norm. Both regions navigated even higher levels of labor market shifts at the height of the COVID-19 period, suggesting that they can handle this scale of future job transitions. The pace of occupational change is broadly similar among countries in Europe, although the specific mix reflects their economic variations.

Businesses will need a major skills upgrade. Demand for technological and social and emotional skills could rise as demand for physical and manual and higher cognitive skills stabilizes. Surveyed executives in Europe and the United States expressed a need not only for advanced IT and data analytics but also for critical thinking, creativity, and teaching and training—skills they report as currently being in short supply. Companies plan to focus on retraining workers, more than hiring or subcontracting, to meet skill needs.

Workers with lower wages face challenges of redeployment as demand reweights toward occupations with higher wages in both Europe and the United States. Occupations with lower wages are likely to see reductions in demand, and workers will need to acquire new skills to transition to better-paying work. If that doesn’t happen, there is a risk of a more polarized labor market, with more higher-wage jobs than workers and too many workers for existing lower-wage jobs.

Choices made today could revive productivity growth while creating better societal outcomes. Embracing the path of accelerated technology adoption with proactive worker redeployment could help Europe achieve an annual productivity growth rate of up to 3 percent through 2030. However, slow adoption would limit that to 0.3 percent, closer to today’s level of productivity growth in Western Europe. Slow worker redeployment would leave millions unable to participate productively in the future of work.

Businessman and skilled worker in high tech enterprise, using VR glasses - stock photo

Demand will change for a range of occupations through 2030, including growth in STEM- and healthcare-related occupations, among others

This report focuses on labor markets in nine major economies in the European Union along with the United Kingdom, in comparison with the United States. Technology, including most recently the rise of gen AI, along with other factors, will spur changes in the pattern of labor demand through 2030. Our study, which uses an updated version of the McKinsey Global Institute future of work model, seeks to quantify the occupational transitions that will be required and the changing nature of demand for different types of jobs and skills.

Our methodology

We used methodology consistent with other McKinsey Global Institute reports on the future of work to model trends of job changes at the level of occupations, activities, and skills. For this report, we focused our analysis on the 2022–30 period.

Our model estimates net changes in employment demand by sector and occupation; we also estimate occupational transitions, or the net number of workers that need to change in each type of occupation, based on which occupations face declining demand by 2030 relative to current employment in 2022. We included ten countries in Europe: nine EU members—the Czech Republic, Denmark, France, Germany, Italy, Netherlands, Poland, Spain, and Sweden—and the United Kingdom. For the United States, we build on estimates published in our 2023 report Generative AI and the future of work in America.

We included multiple drivers in our modeling: automation potential, net-zero transition, e-commerce growth, remote work adoption, increases in income, aging populations, technology investments, and infrastructure investments.

Two scenarios are used to bookend the work-automation model: “late” and “early.” For Europe, we modeled a “faster” scenario and a “slower” one. For the faster scenario, we use the midpoint—the arithmetical average between our late and early scenarios. For the slower scenario, we use a “mid late” trajectory, an arithmetical average between a late adoption scenario and the midpoint scenario. For the United States, we use the midpoint scenario, based on our earlier research.

We also estimate the productivity effects of automation, using GDP per full-time-equivalent (FTE) employee as the measure of productivity. We assumed that workers displaced by automation rejoin the workforce at 2022 productivity levels, net of automation, and in line with the expected 2030 occupational mix.

Amid tightening labor markets and a slowdown in productivity growth, Europe and the United States face shifts in labor demand, spurred not only by AI and automation but also by other trends, including efforts to achieve net-zero emissions, an aging population, infrastructure spending, technology investments, and growth in e-commerce, among others (see sidebar, “Our methodology”).

Our analysis finds that demand for occupations such as health professionals and other STEM-related professionals would grow by 17 to 30 percent between 2022 and 2030, (Exhibit 1).

By contrast, demand for workers in food services, production work, customer services, sales, and office support—all of which declined over the 2012–22 period—would continue to decline until 2030. These jobs involve a high share of repetitive tasks, data collection, and elementary data processing—all activities that automated systems can handle efficiently.

Up to 30 percent of hours worked could be automated by 2030, boosted by gen AI, leading to millions of required occupational transitions

By 2030, our analysis finds that about 27 percent of current hours worked in Europe and 30 percent of hours worked in the United States could be automated, accelerated by gen AI. Our model suggests that roughly 20 percent of hours worked could still be automated even without gen AI, implying a significant acceleration.

These trends will play out in labor markets in the form of workers needing to change occupations. By 2030, under the faster adoption scenario we modeled, Europe could require up to 12.0 million occupational transitions, affecting 6.5 percent of current employment. That is double the prepandemic pace (Exhibit 2). Under a slower scenario we modeled for Europe, the number of occupational transitions needed would amount to 8.5 million, affecting 4.6 percent of current employment. In the United States, required transitions could reach almost 12.0 million, affecting 7.5 percent of current employment. Unlike Europe, this magnitude of transitions is broadly in line with the prepandemic norm.

Both regions navigated even higher levels of labor market shifts at the height of the COVID-19 period. While these were abrupt and painful to many, given the forced nature of the shifts, the experience suggests that both regions have the ability to handle this scale of future job transitions.

Smiling female PhD student discussing with man at desk in innovation lab - stock photo

Businesses will need a major skills upgrade

The occupational transitions noted above herald substantial shifts in workforce skills in a future in which automation and AI are integrated into the workplace (Exhibit 3). Workers use multiple skills to perform a given task, but for the purposes of our quantification, we identified the predominant skill used.

Demand for technological skills could see substantial growth in Europe and in the United States (increases of 25 percent and 29 percent, respectively, in hours worked by 2030 compared to 2022) under our midpoint scenario of automation adoption (which is the faster scenario for Europe).

Demand for social and emotional skills could rise by 11 percent in Europe and by 14 percent in the United States. Underlying this increase is higher demand for roles requiring interpersonal empathy and leadership skills. These skills are crucial in healthcare and managerial roles in an evolving economy that demands greater adaptability and flexibility.

Conversely, demand for work in which basic cognitive skills predominate is expected to decline by 14 percent. Basic cognitive skills are required primarily in office support or customer service roles, which are highly susceptible to being automated by AI. Among work characterized by these basic cognitive skills experiencing significant drops in demand are basic data processing and literacy, numeracy, and communication.

Demand for work in which higher cognitive skills predominate could also decline slightly, according to our analysis. While creativity is expected to remain highly sought after, with a potential increase of 12 percent by 2030, work activities characterized by other advanced cognitive skills such as advanced literacy and writing, along with quantitative and statistical skills, could decline by 19 percent.

Demand for physical and manual skills, on the other hand, could remain roughly level with the present. These skills remain the largest share of workforce skills, representing about 30 percent of total hours worked in 2022. Growth in demand for these skills between 2022 and 2030 could come from the build-out of infrastructure and higher investment in low-emissions sectors, while declines would be in line with continued automation in production work.

Business executives report skills shortages today and expect them to worsen

A survey we conducted of C-suite executives in five countries shows that companies are already grappling with skills challenges, including a skills mismatch, particularly in technological, higher cognitive, and social and emotional skills: about one-third of the more than 1,100 respondents report a shortfall in these critical areas. At the same time, a notable number of executives say they have enough employees with basic cognitive skills and, to a lesser extent, physical and manual skills.

Within technological skills, companies in our survey reported that their most significant shortages are in advanced IT skills and programming, advanced data analysis, and mathematical skills. Among higher cognitive skills, significant shortfalls are seen in critical thinking and problem structuring and in complex information processing. About 40 percent of the executives surveyed pointed to a shortage of workers with these skills, which are needed for working alongside new technologies (Exhibit 4).

Two IT co-workers code on laptop or technology for testing, web design or online startup - stock photo

Companies see retraining as key to acquiring needed skills and adapting to the new work landscape

Surveyed executives expect significant changes to their workforce skill levels and worry about not finding the right skills by 2030. More than one in four survey respondents said that failing to capture the needed skills could directly harm financial performance and indirectly impede their efforts to leverage the value from AI.

To acquire the skills they need, companies have three main options: retraining, hiring, and contracting workers. Our survey suggests that executives are looking at all three options, with retraining the most widely reported tactic planned to address the skills mismatch: on average, out of companies that mentioned retraining as one of their tactics to address skills mismatch, executives said they would retrain 32 percent of their workforce. The scale of retraining needs varies in degree. For example, respondents in the automotive industry expect 36 percent of their workforce to be retrained, compared with 28 percent in the financial services industry. Out of those who have mentioned hiring or contracting as their tactics to address the skills mismatch, executives surveyed said they would hire an average of 23 percent of their workforce and contract an average of 18 percent.

Occupational transitions will affect high-, medium-, and low-wage workers differently

All ten European countries we examined for this report may see increasing demand for top-earning occupations. By contrast, workers in the two lowest-wage-bracket occupations could be three to five times more likely to have to change occupations compared to the top wage earners, our analysis finds. The disparity is much higher in the United States, where workers in the two lowest-wage-bracket occupations are up to 14 times more likely to face occupational shifts than the highest earners. In Europe, the middle-wage population could be twice as affected by occupational transitions as the same population in United States, representing 7.3 percent of the working population who might face occupational transitions.

Enhancing human capital at the same time as deploying the technology rapidly could boost annual productivity growth

About quantumblack, ai by mckinsey.

QuantumBlack, McKinsey’s AI arm, helps companies transform using the power of technology, technical expertise, and industry experts. With thousands of practitioners at QuantumBlack (data engineers, data scientists, product managers, designers, and software engineers) and McKinsey (industry and domain experts), we are working to solve the world’s most important AI challenges. QuantumBlack Labs is our center of technology development and client innovation, which has been driving cutting-edge advancements and developments in AI through locations across the globe.

Organizations and policy makers have choices to make; the way they approach AI and automation, along with human capital augmentation, will affect economic and societal outcomes.

We have attempted to quantify at a high level the potential effects of different stances to AI deployment on productivity in Europe. Our analysis considers two dimensions. The first is the adoption rate of AI and automation technologies. We consider the faster scenario and the late scenario for technology adoption. Faster adoption would unlock greater productivity growth potential but also, potentially, more short-term labor disruption than the late scenario.

The second dimension we consider is the level of automated worker time that is redeployed into the economy. This represents the ability to redeploy the time gained by automation and productivity gains (for example, new tasks and job creation). This could vary depending on the success of worker training programs and strategies to match demand and supply in labor markets.

We based our analysis on two potential scenarios: either all displaced workers would be able to fully rejoin the economy at a similar productivity level as in 2022 or only some 80 percent of the automated workers’ time will be redeployed into the economy.

Exhibit 5 illustrates the various outcomes in terms of annual productivity growth rate. The top-right quadrant illustrates the highest economy-wide productivity, with an annual productivity growth rate of up to 3.1 percent. It requires fast adoption of technologies as well as full redeployment of displaced workers. The top-left quadrant also demonstrates technology adoption on a fast trajectory and shows a relatively high productivity growth rate (up to 2.5 percent). However, about 6.0 percent of total hours worked (equivalent to 10.2 million people not working) would not be redeployed in the economy. Finally, the two bottom quadrants depict the failure to adopt AI and automation, leading to limited productivity gains and translating into limited labor market disruptions.

Managers discussing work while futuristic AI computer vision analyzing, ccanning production line - stock photo

Four priorities for companies

The adoption of automation technologies will be decisive in protecting businesses’ competitive advantage in an automation and AI era. To ensure successful deployment at a company level, business leaders can embrace four priorities.

Understand the potential. Leaders need to understand the potential of these technologies, notably including how AI and gen AI can augment and automate work. This includes estimating both the total capacity that these technologies could free up and their impact on role composition and skills requirements. Understanding this allows business leaders to frame their end-to-end strategy and adoption goals with regard to these technologies.

Plan a strategic workforce shift. Once they understand the potential of automation technologies, leaders need to plan the company’s shift toward readiness for the automation and AI era. This requires sizing the workforce and skill needs, based on strategically identified use cases, to assess the potential future talent gap. From this analysis will flow details about the extent of recruitment of new talent, upskilling, or reskilling of the current workforce that is needed, as well as where to redeploy freed capacity to more value-added tasks.

Prioritize people development. To ensure that the right talent is on hand to sustain the company strategy during all transformation phases, leaders could consider strengthening their capabilities to identify, attract, and recruit future AI and gen AI leaders in a tight market. They will also likely need to accelerate the building of AI and gen AI capabilities in the workforce. Nontechnical talent will also need training to adapt to the changing skills environment. Finally, leaders could deploy an HR strategy and operating model to fit the post–gen AI workforce.

Pursue the executive-education journey on automation technologies. Leaders also need to undertake their own education journey on automation technologies to maximize their contributions to their companies during the coming transformation. This includes empowering senior managers to explore automation technologies implications and subsequently role model to others, as well as bringing all company leaders together to create a dedicated road map to drive business and employee value.

AI and the toolbox of advanced new technologies are evolving at a breathtaking pace. For companies and policy makers, these technologies are highly compelling because they promise a range of benefits, including higher productivity, which could lift growth and prosperity. Yet, as this report has sought to illustrate, making full use of the advantages on offer will also require paying attention to the critical element of human capital. In the best-case scenario, workers’ skills will develop and adapt to new technological challenges. Achieving this goal in our new technological age will be highly challenging—but the benefits will be great.

Eric Hazan is a McKinsey senior partner based in Paris; Anu Madgavkar and Michael Chui are McKinsey Global Institute partners based in New Jersey and San Francisco, respectively; Sven Smit is chair of the McKinsey Global Institute and a McKinsey senior partner based in Amsterdam; Dana Maor is a McKinsey senior partner based in Tel Aviv; Gurneet Singh Dandona is an associate partner and a senior expert based in New York; and Roland Huyghues-Despointes is a consultant based in Paris.

Explore a career with us

Related articles.

""

Generative AI and the future of work in America

McKinsey partners Lareina Yee and Michael Chui

The economic potential of generative AI: The next productivity frontier

What every CEO should know about generative AI

What every CEO should know about generative AI

  • Open access
  • Published: 27 May 2024

Current status of community resources and priorities for weed genomics research

  • Jacob Montgomery 1 ,
  • Sarah Morran 1 ,
  • Dana R. MacGregor   ORCID: orcid.org/0000-0003-0543-0408 2 ,
  • J. Scott McElroy   ORCID: orcid.org/0000-0003-0331-3697 3 ,
  • Paul Neve   ORCID: orcid.org/0000-0002-3136-5286 4 ,
  • Célia Neto   ORCID: orcid.org/0000-0003-3256-5228 4 ,
  • Martin M. Vila-Aiub   ORCID: orcid.org/0000-0003-2118-290X 5 ,
  • Maria Victoria Sandoval 5 ,
  • Analia I. Menéndez   ORCID: orcid.org/0000-0002-9681-0280 6 ,
  • Julia M. Kreiner   ORCID: orcid.org/0000-0002-8593-1394 7 ,
  • Longjiang Fan   ORCID: orcid.org/0000-0003-4846-0500 8 ,
  • Ana L. Caicedo   ORCID: orcid.org/0000-0002-0378-6374 9 ,
  • Peter J. Maughan 10 ,
  • Bianca Assis Barbosa Martins 11 ,
  • Jagoda Mika 11 ,
  • Alberto Collavo 11 ,
  • Aldo Merotto Jr.   ORCID: orcid.org/0000-0002-1581-0669 12 ,
  • Nithya K. Subramanian   ORCID: orcid.org/0000-0002-1659-7396 13 ,
  • Muthukumar V. Bagavathiannan   ORCID: orcid.org/0000-0002-1107-7148 13 ,
  • Luan Cutti   ORCID: orcid.org/0000-0002-2867-7158 14 ,
  • Md. Mazharul Islam 15 ,
  • Bikram S. Gill   ORCID: orcid.org/0000-0003-4510-9459 16 ,
  • Robert Cicchillo 17 ,
  • Roger Gast 17 ,
  • Neeta Soni   ORCID: orcid.org/0000-0002-4647-8355 17 ,
  • Terry R. Wright   ORCID: orcid.org/0000-0002-3969-2812 18 ,
  • Gina Zastrow-Hayes 18 ,
  • Gregory May 18 ,
  • Jenna M. Malone   ORCID: orcid.org/0000-0002-9637-2073 19 ,
  • Deepmala Sehgal   ORCID: orcid.org/0000-0002-4141-1784 20 ,
  • Shiv Shankhar Kaundun   ORCID: orcid.org/0000-0002-7249-2046 20 ,
  • Richard P. Dale 20 ,
  • Barend Juan Vorster   ORCID: orcid.org/0000-0003-3518-3508 21 ,
  • Bodo Peters 11 ,
  • Jens Lerchl   ORCID: orcid.org/0000-0002-9633-2653 22 ,
  • Patrick J. Tranel   ORCID: orcid.org/0000-0003-0666-4564 23 ,
  • Roland Beffa   ORCID: orcid.org/0000-0003-3109-388X 24 ,
  • Alexandre Fournier-Level   ORCID: orcid.org/0000-0002-6047-7164 25 ,
  • Mithila Jugulam   ORCID: orcid.org/0000-0003-2065-9067 15 ,
  • Kevin Fengler 18 ,
  • Victor Llaca   ORCID: orcid.org/0000-0003-4822-2924 18 ,
  • Eric L. Patterson   ORCID: orcid.org/0000-0001-7111-6287 14 &
  • Todd A. Gaines   ORCID: orcid.org/0000-0003-1485-7665 1  

Genome Biology volume  25 , Article number:  139 ( 2024 ) Cite this article

335 Accesses

1 Altmetric

Metrics details

Weeds are attractive models for basic and applied research due to their impacts on agricultural systems and capacity to swiftly adapt in response to anthropogenic selection pressures. Currently, a lack of genomic information precludes research to elucidate the genetic basis of rapid adaptation for important traits like herbicide resistance and stress tolerance and the effect of evolutionary mechanisms on wild populations. The International Weed Genomics Consortium is a collaborative group of scientists focused on developing genomic resources to impact research into sustainable, effective weed control methods and to provide insights about stress tolerance and adaptation to assist crop breeding.

Each year globally, agricultural producers and landscape managers spend billions of US dollars [ 1 , 2 ] and countless hours attempting to control weedy plants and reduce their adverse effects. These management methods range from low-tech (e.g., pulling plants from the soil by hand) to extremely high-tech (e.g., computer vision-controlled spraying of herbicides). Regardless of technology level, effective control methods serve as strong selection pressures on weedy plants and often result in rapid evolution of weed populations resistant to such methods [ 3 , 4 , 5 , 6 , 7 ]. Thus, humans and weeds have been locked in an arms race, where humans develop new or improved control methods and weeds adapt and evolve to circumvent such methods.

Applying genomics to weed science offers a unique opportunity to study rapid adaptation, epigenetic responses, and examples of evolutionary rescue of diverse weedy species in the face of widespread and powerful selective pressures. Furthermore, lessons learned from these studies may also help to develop more sustainable control methods and to improve crop breeding efforts in the face of our ever-changing climate. While other research fields have used genetics and genomics to uncover the basis of many biological traits [ 8 , 9 , 10 , 11 ] and to understand how ecological factors affect evolution [ 12 , 13 ], the field of weed science has lagged behind in the development of genomic tools essential for such studies [ 14 ]. As research in human and crop genetics pushes into the era of pangenomics (i.e., multiple chromosome scale genome assemblies for a single species [ 15 , 16 ]), publicly available genomic information is still lacking or severely limited for the majority of weed species. Recent reviews of current weed genomes identified 26 [ 17 ] and 32 weed species with sequenced genomes [ 18 ]—many assembled to a sub-chromosome level.

Here, we summarize the current state of weed genomics, highlighting cases where genomics approaches have successfully provided insights on topics such as population genetic dynamics, genome evolution, and the genetic basis of herbicide resistance, rapid adaptation, and crop dedomestication. These highlighted investigations all relied upon genomic resources that are relatively rare for weedy species. Throughout, we identify additional resources that would advance the field of weed science and enable further progress in weed genomics. We then introduce the International Weed Genomics Consortium (IWGC), an open collaboration among researchers, and describe current efforts to generate these additional resources.

Evolution of weediness: potential research utilizing weed genomics tools

Weeds can evolve from non-weed progenitors through wild colonization, crop de-domestication, or crop-wild hybridization [ 19 ]. Because the time span in which weeds have evolved is necessarily limited by the origins of agriculture, these non-weed relatives often still exist and can be leveraged through population genomic and comparative genomic approaches to identify the adaptive changes that have driven the evolution of weediness. The ability to rapidly adapt, persist, and spread in agroecosystems are defining features of weedy plants, leading many to advocate agricultural weeds as ideal candidates for studying rapid plant adaptation [ 20 , 21 , 22 , 23 ]. The insights gained from applying plant ecological approaches to the study of rapid weed adaptation will move us towards the ultimate goals of mitigating such adaptation and increasing the efficacy of crop breeding and biotechnology [ 14 ].

Biology and ecological genomics of weeds

The impressive community effort to create and maintain resources for Arabidopsis thaliana ecological genomics provides a motivating example for the emerging study of weed genomics [ 24 , 25 , 26 , 27 ]. Arabidopsis thaliana was the first flowering plant species to have its genome fully sequenced [ 28 ] and rapidly became a model organism for plant molecular biology. As weedy genomes become available, collection, maintenance, and resequencing of globally distributed accessions of these species will help to replicate the success found in ecological studies of A. thaliana [ 29 , 30 , 31 , 32 , 33 , 34 , 35 ]. Evaluation of these accessions for traits of interest to produce large phenomics data sets (as in [ 36 , 37 , 38 , 39 , 40 ]) enables genome-wide association studies and population genomics analyses aimed at dissecting the genetic basis of variation in such traits [ 41 ]. Increasingly, these resources (e.g. the 1001 genomes project [ 29 ]) have enabled A. thaliana to be utilized as a model species to explore the eco-evolutionary basis of plant adaptation in a more realistic ecological context. Weedy species should supplement lessons in eco-evolutionary genomics learned from these experiments in A. thaliana .

Untargeted genomic approaches for understanding the evolutionary trajectories of populations and the genetic basis of traits as described above rely on the collection of genotypic information from across the genome of many individuals. While whole-genome resequencing accomplishes this requirement and requires no custom methodology, this approach provides more information than is necessary and is prohibitively expensive in species with large genomes. Development and optimization of genotype-by-sequencing methods for capturing reduced representations of newly sequence genomes like those described by [ 42 , 43 , 44 ] will reduce the cost and computational requirements of genetic mapping and population genetic experiments. Most major weed species do not currently have protocols for stable transformation, a key development in the popularity of A. thaliana as a model organism and a requirement for many functional genomic approaches. Functional validation of genes/variants believed to be responsible for traits of interest in weeds has thus far relied on transiently manipulating endogenous gene expression [ 45 , 46 ] or ectopic expression of a transgene in a model system [ 47 , 48 , 49 ]. While these methods have been successful, few weed species have well-studied viral vectors to adapt for use in virus induced gene silencing. Spray induced gene silencing is another potential option for functional investigation of candidate genes in weeds, but more research is needed to establish reliable delivery and gene knockdown [ 50 ]. Furthermore, traits with complex genetic architecture divergent between the researched and model species may not be amenable to functional genomic approaches using transgenesis techniques in model systems. Developing protocols for reduced representation sequencing, stable transformation, and gene editing/silencing in weeds will allow for more thorough characterization of candidate genetic variants underlying traits of interest.

Beyond rapid adaptation, some weedy species offer an opportunity to better understand co-evolution, like that between plants and pollinators and how their interaction leads to the spread of weedy alleles (Additional File 1 : Table S1). A suite of plant–insect traits has co-evolved to maximize the attraction of the insect pollinator community and the efficiency of pollen deposition between flowers ensuring fruit and seed production in many weeds [ 51 , 52 ]. Genetic mapping experiments have identified genes and genetic variants responsible for many floral traits affecting pollinator interaction including petal color [ 53 , 54 , 55 , 56 ], flower symmetry and size [ 57 , 58 , 59 ], and production of volatile organic compounds [ 60 , 61 , 62 ] and nectar [ 63 , 64 , 65 ]. While these studies reveal candidate genes for selection under co-evolution, herbicide resistance alleles may also have pleiotropic effects on the ecology of weeds [ 66 ], altering plant-pollinator interactions [ 67 ]. Discovery of genes and genetic variants involved in weed-pollinator interaction and their molecular and environmental control may create opportunities for better management of weeds with insect-mediated pollination. For example, if management can disrupt pollinator attraction/interaction with these weeds, the efficiency of reproduction may be reduced.

A more complete understanding of weed ecological genomics will undoubtedly elucidate many unresolved questions regarding the genetic basis of various aspects of weediness. For instance, when comparing populations of a species from agricultural and non-agricultural environments, is there evidence for contemporary evolution of weedy traits selected by agricultural management or were “natural” populations pre-adapted to agroecosystems? Where there is differentiation between weedy and natural populations, which traits are under selection and what is the genetic basis of variation in those traits? When comparing between weedy populations, is there evidence for parallel versus non-parallel evolution of weediness at the phenotypic and genotypic levels? Such studies may uncover fundamental truths about weediness. For example, is there a common phenotypic and/or genotypic basis for aspects of weediness among diverse weed species? The availability of characterized accessions and reference genomes for species of interest are required for such studies but only a few weedy species have these resources developed.

Population genomics

Weed species are certainly fierce competitors, able to outcompete crops and endemic species in their native environment, but they are also remarkable colonizers of perturbed habitats. Weeds achieve this through high fecundity, often producing tens of thousands of seeds per individual plant [ 68 , 69 , 70 ]. These large numbers in terms of demographic population size often combine with outcrossing reproduction to generate high levels of diversity with local effective population sizes in the hundreds of thousands [ 71 , 72 ]. This has two important consequences: weed populations retain standing genetic variation and generate many new mutations, supporting weed success in the face of harsh control. The generation of genomic tools to monitor weed populations at the molecular level is a game-changer to understanding weed dynamics and precisely testing the effect of artificial selection (i.e., management) and other evolutionary mechanisms on the genetic make-up of populations.

Population genomic data, without any environmental or phenotypic information, can be used to scan the genomes of weed and non-weed relatives to identify selective sweeps, pointing at loci supporting weed adaptation on micro- or macro-evolutionary scales. Two recent within-species examples include weedy rice, where population differentiation between weedy and domesticated populations was used to identify the genetic basis of weedy de-domestication [ 73 ], and common waterhemp, where consistent allelic differences among natural and agricultural collections resolved a complex set of agriculturally adaptive alleles [ 74 , 75 ]. A recent comparative population genomic study of weedy barnyardgrass and crop millet species has demonstrated how inter-specific investigations can resolve the signatures of crop and weed evolution [ 76 ] (also see [ 77 ] for a non-weed climate adaptation example). Multiple sequence alignments across numerous species provide complementary insight into adaptive convergence over deeper timescales, even with just one genomic sample per species (e.g., [ 78 , 79 ]). Thus, newly sequenced weed genomes combined with genomes available for closely related crops (outlined by [ 14 , 80 ]) and an effort to identify other non-weed wild relatives will be invaluable in characterizing the genetic architecture of weed adaptation and evolution across diverse species.

Weeds experience high levels of genetic selection, both artificial in response to agricultural practices and particularly herbicides, and natural in response to the environmental conditions they encounter [ 81 , 82 ]. Using genomic analysis to identify loci that are the targets of selection, whether natural or artificial, would point at vulnerabilities that could be leveraged against weeds to develop new and more sustainable management strategies [ 83 ]. This is a key motivation to develop genotype-by-environment association (GEA) and selective sweep scan approaches, which allow researchers to resolve the molecular basis of multi-dimensional adaptation [ 84 , 85 ]. GEA approaches, in particular, have been widely used on landscape-wide resequencing collections to determine the genetic basis of climate adaptation (e.g., [ 27 , 86 , 87 ]), but have yet to be fully exploited to diagnose the genetic basis of the various aspects of weediness [ 88 ]. Armed with data on environmental dimensions of agricultural settings, such as focal crop, soil quality, herbicide use, and climate, GEA approaches can help disentangle how discrete farming practices have influenced the evolution of weediness and resolve broader patterns of local adaptation across a weed’s range. Although non-weedy relatives are not technically required for GEA analyses, inclusion of environmental and genomic data from weed progenitors can further distinguish genetic variants underpinning weed origins from those involved in local adaptation.

New weeds emerge frequently [ 89 ], either through hybridization between species as documented for sea beet ( Beta vulgaris ssp. maritima) hybridizing with crop beet to produce progeny that are well adapted to agricultural conditions [ 90 , 91 , 92 ], or through the invasion of alien species that find a new range to colonize. Biosecurity measures are often in place to stop the introduction of new weeds; however, the vast scale of global agricultural commodity trade precludes the possibility of total control. Population genomic analysis is now able to measure gene flow between populations [ 74 , 93 , 94 , 95 ] and identify populations of origin for invasive species including weeds [ 96 , 97 , 98 ]. For example, the invasion route of the pest fruitfly Drosophila suzukii from Eastern Asia to North America and Europe through Hawaii was deciphered using Approximate Bayesian Computation on high-throughput sequencing data from a global sample of multiple populations [ 99 ]. Genomics can also be leveraged to predict invasion rather than explain it. The resequencing of a global sample of common ragweed ( Ambrosia artemisiifolia L.) elucidated a complex invasion route whereby Europe was invaded by multiple introductions of American ragweed that hybridized in Europe prior to a subsequent introduction to Australia [ 100 , 101 ]. In this context, the use of genomically informed species distribution models helps assess the risk associated with different source populations, which in the case of common ragweed, suggests that a source population from Florida would allow ragweed to invade most of northern Australia [ 102 ]. Globally coordinated research efforts to understand potential distribution models could support the transformation of biosecurity from perspective analysis towards predictive risk assessment.

Herbicide resistance and weed management

Herbicide resistance is among the numerous weedy traits that can evolve in plant populations exposed to agricultural selection pressures. Over-reliance on herbicides to control weeds, along with low diversity and lack of redundancy in weed management strategies, has resulted in globally widespread herbicide resistance [ 103 ]. To date, 272 herbicide-resistant weed species have been reported worldwide, and at least one resistance case exists for 21 of the 31 existing herbicide sites of action [ 104 ]—significantly limiting chemical weed control options available to agriculturalists. This limitation of control options is exacerbated by the recent lack of discovery of herbicides with new sites of action [ 105 ].

Herbicide resistance may result from several different physiological mechanisms. Such mechanisms have been classified into two main groups, target-site resistance (TSR) [ 4 , 106 ] and non-target-site resistance (NTSR) [ 4 , 107 ]. The first group encompasses changes that reduce binding affinity between a herbicide and its target [ 108 ]. These changes may provide resistance to multiple herbicides that have a common biochemical target [ 109 ] and can be effectively managed through mixture and/or rotation of herbicides targeting different sites of action [ 110 ]. The second group (NTSR), includes alterations in herbicide absorption, translocation, sequestration, and/or metabolism that may lead to unpredictable pleotropic cross-resistance profiles where structurally and functionally diverse herbicides are rendered ineffective by one or more genetic variant(s) [ 47 ]. This mechanism of resistance threatens not only the efficacy of existing herbicidal chemistries, but also ones yet to be discovered. While TSR is well understood because of the ease of identification and molecular characterization of target site variants, NTSR mechanisms are significantly more challenging to research because they are often polygenic, and the resistance causing element(s) are not well understood [ 111 ].

Improving the current understanding of metabolic NTSR mechanisms is not an easy task, since genes of diverse biochemical functions are involved, many of which exist as extensive gene families [ 109 , 112 ]. Expression changes of NTSR genes have been implicated in several resistance cases where the protein products of the genes are functionally equivalent across sensitive and resistant plants, but their relative abundance leads to resistance. Thus, regulatory elements of NTSR genes have been scrutinized to understand their role in NTSR mechanisms [ 113 ]. Similarly, epigenetic modifications have been hypothesized to play a role in NTSR, with much remaining to be explored [ 114 , 115 , 116 ]. Untargeted approaches such as genome-wide association, selective sweep scans, linkage mapping, RNA-sequencing, and metabolomic profiling have proven helpful to complement more specific biochemical- and chemo-characterization studies towards the elucidation of NTSR mechanisms as well as their regulation and evolution [ 47 , 117 , 118 , 119 , 120 , 121 , 122 , 123 , 124 ]. Even in cases where resistance has been attributed to TSR, genetic mapping approaches can detect other NTSR loci contributing to resistance (as shown by [ 123 ]) and provide further evidence for the role of TSR mutations across populations. Knowledge of the genetic basis of NTSR will aid the rational design of herbicides by screening new compounds for interaction with newly discovered NTSR proteins during early research phases and by identifying conserved chemical structures that interact with these proteins that should be avoided in small molecule design.

Genomic resources can also be used to predict the protein structure for novel herbicide target site and metabolism genes. This will allow for prediction of efficacy and selectivity for new candidate herbicides in silico to increase herbicide discovery throughput as well as aid in the design and development of next-generation technologies for sustainable weed management. Proteolysis targeting chimeras (PROTACs) have the potential to bind desired targets with great selectivity and degrade proteins by utilizing natural protein ubiquitination and degradation pathways within plants [ 125 ]. Spray-induced gene silencing in weeds using oligonucleotides has potential as a new, innovative, and sustainable method for weed management, but improved methods for design and delivery of oligonucleotides are needed to make this technique a viable management option [ 50 ]. Additionally, success in the field of pharmaceutical drug discovery in the development of molecules modulating protein–protein interactions offers another potential avenue towards the development of herbicides with novel targets [ 126 , 127 ]. High-quality reference genomes allow for the design of new weed management technologies like the ones listed here that are specific to—and effective across—weed species but have a null effect on non-target organisms.

Comparative genomics and genome biology

The genomes of weed species are as diverse as weed species themselves. Weeds are found across highly diverged plant families and often have no phylogenetically close model or crop species relatives for comparison. On all measurable metrics, weed genomes run the gamut. Some have smaller genomes like Cyperus spp. (~ 0.26 Gb) while others are larger, such as Avena fatua (~ 11.1 Gb) (Table  1 ). Some have high heterozygosity in terms of single-nucleotide polymorphisms, such as the Amaranthus spp., while others are primarily self-pollinated and quite homozygous, such as Poa annua [ 128 , 129 ]. Some are diploid such as Conyza canadensis and Echinochloa haploclada while others are polyploid such as C. sumetrensis , E. crus-galli , and E. colona [ 76 ]. The availability of genomic resources in these diverse, unexplored branches of the tree of life allows us to identify consistencies and anomalies in the field of genome biology.

The weed genomes published so far have focused mainly on weeds of agronomic crops, and studies have revolved around their ability to resist key herbicides. For example, genomic resources were vital in the elucidation of herbicide resistance cases involving target site gene copy number variants (CNVs). Gene CNVs of 5-enolpyruvylshikimate-3-phosphate synthase ( EPSPS ) have been found to confer resistance to the herbicide glyphosate in diverse weed species. To date, nine species have independently evolved EPSPS CNVs, and species achieve increased EPSPS copy number via different mechanisms [ 153 ]. For instance, the EPSPS CNV in Bassia scoparia is caused by tandem duplication, which is accredited to transposable element insertions flanking EPSPS and subsequent unequal crossing over events [ 154 , 155 ]. In Eleusine indica , a EPSPS CNV was caused by translocation of the EPSPS locus into the subtelomere followed by telomeric sequence exchange [ 156 ]. One of the most fascinating genome biology discoveries in weed science has been that of extra-chromosomal circular DNAs (eccDNAs) that harbor the EPSPS gene in the weed species Amaranthus palmeri [ 157 , 158 ]. In this case, the eccDNAs autonomously replicate separately from the nuclear genome and do not reintegrate into chromosomes, which has implications for inheritance, fitness, and genome structure [ 159 ]. These discoveries would not have been possible without reference assemblies of weed genomes, next-generation sequencing, and collaboration with experts in plant genomics and bioinformatics.

Another question that is often explored with weedy genomes is the nature and composition of gene families that are associated with NTSR. Gene families under consideration often include cytochrome P450s (CYPs), glutathione- S -transferases (GSTs), ABC transporters, etc. Some questions commonly considered with new weed genomes include how many genes are in each of these gene families, where are they located, and which weed accessions and species have an over-abundance of them that might explain their ability to evolve resistance so rapidly [ 76 , 146 , 160 , 161 ]? Weed genome resources are necessary to answer questions about gene family expansion or contraction during the evolution of weediness, including the role of polyploidy in NTSR gene family expansion as explored by [ 162 ].

Translational research and communication with weed management stakeholders

Whereas genomics of model plants is typically aimed at addressing fundamental questions in plant biology, and genomics of crop species has the obvious goal of crop improvement, goals of genomics of weedy plants also include the development of more effective and sustainable strategies for their management. Weed genomic resources assist with these objectives by providing novel molecular ecological and evolutionary insights from the context of intensive anthropogenic management (which is lacking in model plants), and offer knowledge and resources for trait discovery for crop improvement, especially given that many wild crop relatives are also important agronomic weeds (e.g., [ 163 ]). For instance, crop-wild relatives are valuable for improving crop breeding for marginal environments [ 164 ]. Thus, weed genomics presents unique opportunities and challenges relative to plant genomics more broadly. It should also be noted that although weed science at its core is an applied discipline, it draws broadly from many scientific disciplines such as, plant physiology, chemistry, ecology, and evolutionary biology, to name a few. The successful integration of weed-management strategies, therefore, requires extensive collaboration among individuals collectively possessing the necessary expertise [ 165 ].

With the growing complexity of herbicide resistance management, practitioners are beginning to recognize the importance of understanding resistance mechanisms to inform appropriate management tactics [ 14 ]. Although weed science practitioners do not need to understand the technical details of weed genomics, their appreciation of the power of weed genomics—together with their unique insights from field observations—will yield novel opportunities for applications of weed genomics to weed management. In particular, combining field management history with information on weed resistance mechanisms is expected to provide novel insights into evolutionary trajectories (e.g. [ 6 , 166 ]), which can be utilized for disrupting evolutionary adaptation. It can be difficult to obtain field history information from practitioners, but developing an understanding among them of the importance of such information can be invaluable.

Development of weed genomics resources by the IWGC

Weed genomics is a fast-growing field of research with many recent breakthroughs and many unexplored areas of study. The International Weed Genomics Consortium (IWGC) started in 2021 to address the roadblocks listed above and to promote the study of weedy plants. The IWGC is an open collaboration among academic, government, and industry researchers focused on producing genomic tools for weedy species from around the world. Through this collaboration, our initial aim is to provide chromosome-level reference genome assemblies for at least 50 important weedy species from across the globe that are chosen based on member input, economic impact, and global prevalence (Fig.  1 ). Each genome will include annotation of gene models and repetitive elements and will be freely available through public databases with no intellectual property restrictions. Additionally, future funding of the IWGC will focus on improving gene annotations and supplementing these reference genomes with tools that increase their utility.

figure 1

The International Weed Genomics Consortium (IWGC) collected input from the weed genomics community to develop plans for weed genome sequencing, annotation, user-friendly genome analysis tools, and community engagement

Reference genomes and data analysis tools

The first objective of the IWGC is to provide high-quality genomic resources for agriculturally important weeds. The IWGC therefore created two main resources for information about, access to, or analysis of weed genomic data (Fig.  1 ). The IWGC website (available at [ 167 ]) communicates the status and results of genome sequencing projects, information on training and funding opportunities, upcoming events, and news in weed genomics. It also contains details of all sequenced species including genome size, ploidy, chromosome number, herbicide resistance status, and reference genome assembly statistics. The IWGC either compiles existing data on genome size, ploidy, and chromosome number, or obtains the data using flow cytometry and cytogenetics (Fig.  1 ; Additional File 2 : Fig S1-S4). Through this website, users can request an account to access our second main resource, an online genome database called WeedPedia (accessible at [ 168 ]), with an account that is created within 3–5 working days of an account request submission. WeedPedia hosts IWGC-generated and other relevant publicly accessible genomic data as well as a suite of bioinformatic tools. Unlike what is available for other fields, weed science did not have a centralized hub for genomics information, data, and analysis prior to the IWGC. Our intention in creating WeedPedia is to encourage collaboration and equity of access to information across the research community. Importantly, all genome assemblies and annotations from the IWGC (Table  1 ), along with the raw data used to produce them, will be made available through NCBI GenBank. Upon completion of a 1-year sponsoring member data confidentiality period for each species (dates listed in Table  1 ), scientific teams within the IWGC produce the first genome-wide investigation to submit for publication including whole genome level analyses on genes, gene families, and repetitive sequences as well as comparative analysis with other species. Genome assemblies and data will be publicly available through NCBI as part of these initial publications for each species.

WeedPedia is a cloud-based omics database management platform built from the software “CropPedia” and licensed from KeyGene (Wageningen, The Netherlands). The interface allows users to access, visualize, and download genome assemblies along with structural and functional annotation. The platform includes a genome browser, comparative map viewer, pangenome tools, RNA-sequencing data visualization tools, genetic mapping and marker analysis tools, and alignment capabilities that allow searches by keyword or sequence. Additionally, genes encoding known target sites of herbicides have been specially annotated, allowing users to quickly identify and compare these genes of interest. The platform is flexible, making it compatible with future integration of other data types such as epigenetic or proteomic information. As an online platform with a graphical user interface, WeedPedia provides user-friendly, intuitive tools that encourage users to integrate genomics into their research while also allowing more advanced users to download genomic data to be used in custom analysis pipelines. We aspire for WeedPedia to mimic the success of other public genomic databases such as NCBI, CoGe, Phytozome, InsectBase, and Mycocosm to name a few. WeedPedia currently hosts reference genomes for 40 species (some of which are currently in their 1-year confidentiality period) with additional genomes in the pipeline to reach a currently planned total of 55 species (Table  1 ). These genomes include both de novo reference genomes generated or in progress by the IWGC (31 species; Table  1 ), and publicly available genome assemblies of 24 weedy or related species that were generated by independent research groups (Table  2 ). As of May 2024, WeedPedia has over 370 registered users from more than 27 countries spread across 6 continents.

The IWGC reference genomes are generated in partnership with the Corteva Agriscience Genome Center of Excellence (Johnston, Iowa) using a combination of single-molecule long-read sequencing, optical genome maps, and chromosome conformation mapping. This strategy has already yielded highly contiguous, phased, chromosome-level assemblies for 26 weed species, with additional assemblies currently in progress (Table  1 ). The IWGC assemblies have been completed as single or haplotype-resolved double-haplotype pseudomolecules in inbreeding and outbreeding species, respectively, with multiple genomes being near gapless. For example, the de novo assemblies of the allohexaploids Conyza sumatrensis and Chenopodium album have all chromosomes captured in single scaffolds and most chromosomes being gapless from telomere to telomere. Complementary full-length isoform (IsoSeq) sequencing of RNA collected from diverse tissue types and developmental stages assists in the development of gene models during annotation.

As with accessibility of data, a core objective of the IWGC is to facilitate open access to sequenced germplasm when possible for featured species. Historically, the weed science community has rarely shared or adopted standard germplasm (e.g., specific weed accessions). The IWGC has selected a specific accession of each species for reference genome assembly (typically susceptible to herbicides). In collaboration with a parallel effort by the Herbicide Resistant Plants committee of the Weed Science Society of America, seeds of the sequenced weed accessions will be deposited in the United States Department of Agriculture Germplasm Resources Information Network [ 186 ] for broad access by the scientific community and their accession numbers will be listed on the IWGC website. In some cases, it is not possible to generate enough seed to deposit into a public repository (e.g., plants that typically reproduce vegetatively, that are self-incompatible, or that produce very few seeds from a single individual). In these cases, the location of collection for sequenced accessions will at least inform the community where the sequenced individual came from and where they may expect to collect individuals with similar genotypes. The IWGC ensures that sequenced accessions are collected and documented to comply with the Nagoya Protocol on access to genetic resources and the fair and equitable sharing of benefits arising from their utilization under the Convention on Biological Diversity and related Access and Benefit Sharing Legislation [ 187 ]. As additional accessions of weed species are sequenced (e.g., pangenomes are obtained), the IWGC will facilitate germplasm sharing protocols to support collaboration. Further, to simplify the investigation of herbicide resistance, the IWGC will link WeedPedia with the International Herbicide-Resistant Weed Database [ 104 ], an already widely known and utilized database for weed scientists.

Training and collaboration in weed genomics

Beyond producing genomic tools and resources, a priority of the IWGC is to enable the utilization of these resources across a wide range of stakeholders. A holistic approach to training is required for weed science generally [ 188 ], and we would argue even more so for weed genomics. To accomplish our training goals, the IWGC is developing and delivering programs aimed at the full range of IWGC stakeholders and covering a breadth of relevant topics. We have taken care to ensure our approaches are diverse as to provide training to researchers with all levels of existing experience and differing reasons for engaging with these tools. Throughout, the focus is on ensuring that our training and outreach result in impacts that benefit a wide range of stakeholders.

Although recently developed tools are incredibly enabling and have great potential to replace antiquated methodology [ 189 ] and to solve pressing weed science problems [ 14 ], specialized computational skills are required to fully explore and unlock meaning from these highly complex datasets. Collaboration with, or training of, computational biologists equipped with these skills and resources developed by the IWGC will enable weed scientists to expand research programs and better understand the genetic underpinnings of weed evolution and herbicide resistance. To fill existing skill gaps, the IWGC is developing summer bootcamps and online modules directed specifically at weed scientists that will provide training on computational skills (Fig.  1 ). Because successful utilization of the IWGC resources requires more than general computational skills, we have created three targeted workshops that teach practical skills related to genomics databases, molecular biology, and population genomics (available at [ 190 ]). The IWGC has also hosted two official conference meetings, one in September of 2021 and one in January of 2023, with more conferences planned. These conferences have included invited speakers to present successful implementations of weed genomics, educational workshops to build computational skills, and networking opportunities for research to connect and collaborate.

Engagement opportunities during undergraduate degrees have been shown to improve academic outcomes [ 191 , 192 ]. As one activity to help achieve this goal, the IWGC has sponsored opportunities for US undergraduates to undertake a 10-week research experience, which includes an introduction to bioinformatics, a plant genomics research project that results in a presentation, and access to career building opportunities in diverse workplace environments. To increase equitable access to conferences and professional communities, we supported early career researchers to attend the first two IWGC conferences in the USA as well as workshops and bootcamps in Europe, South America, and Australia. These hybrid or in-person travel grants are intentionally designed to remove barriers and increase participation of individuals from backgrounds and experiences currently underrepresented within weed/plant science or genomics [ 193 ]. Recipients of these travel awards gave presentations and gained the measurable benefits that come from either virtual or in-person participation in conferences [ 194 ]. Moving forward, weed scientists must amass skills associated with genomic analyses and collaborate with other area experts to fully leverage resources developed by the IWGC.

The tools generated through the IWGC will enable many new research projects with diverse objectives like those listed above. In summary, contiguous genome assemblies and complete annotation information will allow weed scientists to join plant breeders in the use of genetic mapping for many traits including stress tolerance, plant architecture, and herbicide resistance (especially important for cases of NTSR). These assemblies will also allow for investigations of population structure, gene flow, and responses to evolutionary mechanisms like genetic bottlenecking and artificial selection. Understanding gene sequences across diverse weed species will be vital in modeling new herbicide target site proteins and designing novel effective herbicides with minimal off-target effects. The IWGC website will improve accessibility to weed genomics data by providing a single hub for reference genomes as well as phenotypic and genotypic information for accessions shared with the IWGC. Deposition of sequenced germplasm into public repositories will ensure that researchers are able to access and utilize these accessions in their own research to make the field more standardized and equitable. WeedPedia allows users of all backgrounds to quickly access information of interest such as herbicide target site gene sequence or subcellular localization of protein products for different genes. Users can also utilize server-based tools such as BLAST and genome browsing similar to other public genomic databases. Finally, the IWGC is committed to training and connecting weed genomicists through hosting trainings, workshops, and conferences.

Conclusions

Weeds are unique and fascinating plants, having significant impacts on agriculture and ecosystems; and yet, aspects of their biology, ecology, and genetics remain poorly understood. Weeds represent a unique area within plant biology, given their repeated rapid adaptation to sudden and severe shifts in the selective landscape of anthropogenic management practices. The production of a public genomics database with reference genomes and annotations for over 50 weed species represents a substantial step forward towards research goals that improve our understanding of the biology and evolution of weeds. Future work is needed to improve annotations, particularly for complex gene families involved in herbicide detoxification, structural variants, and mobile genetic elements. As reference genome assemblies become available; standard, affordable methods for gathering genotype information will allow for the identification of genetic variants underlying traits of interest. Further, methods for functional validation and hypothesis testing are needed in weeds to validate the effect of genetic variants detected through such experiments, including systems for transformation, gene editing, and transient gene silencing and expression. Future research should focus on utilizing weed genomes to investigate questions about evolutionary biology, ecology, genetics of weedy traits, and weed population dynamics. The IWGC plans to continue the public–private partnership model to host the WeedPedia database over time, integrate new datasets such as genome resequencing and transcriptomes, conduct trainings, and serve as a research coordination network to ensure that advances in weed science from around the world are shared across the research community (Fig.  1 ). Bridging basic plant genomics with translational applications in weeds is needed to deliver on the potential of weed genomics to improve weed management and crop breeding.

Availability of data and materials

All genome assemblies and related sequencing data produced by the IWGC will be available through NCBI as part of publications reporting the first genome-wide analysis for each species.

Gianessi LP, Nathan PR. The value of herbicides in U.S. crop production. Weed Technol. 2007;21(2):559–66.

Article   Google Scholar  

Pimentel D, Lach L, Zuniga R, Morrison D. Environmental and economic costs of nonindigenous species in the United States. Bioscience. 2000;50(1):53–65.

Barrett SH. Crop mimicry in weeds. Econ Bot. 1983;37(3):255–82.

Powles SB, Yu Q. Evolution in action: plants resistant to herbicides. Annu Rev Plant Biol. 2010;61:317–47.

Article   CAS   PubMed   Google Scholar  

Thurber CS, Reagon M, Gross BL, Olsen KM, Jia Y, Caicedo AL. Molecular evolution of shattering loci in U.S. weedy rice. Mol Ecol. 2010;19(16):3271–84.

Article   PubMed   PubMed Central   Google Scholar  

Comont D, Lowe C, Hull R, Crook L, Hicks HL, Onkokesung N, et al. Evolution of generalist resistance to herbicide mixtures reveals a trade-off in resistance management. Nat Commun. 2020;11(1):3086.

Article   CAS   PubMed   PubMed Central   Google Scholar  

Ashworth MB, Walsh MJ, Flower KC, Vila-Aiub MM, Powles SB. Directional selection for flowering time leads to adaptive evolution in Raphanus raphanistrum (wild radish). Evol Appl. 2016;9(4):619–29.

Chan EK, Rowe HC, Kliebenstein DJ. Understanding the evolution of defense metabolites in Arabidopsis thaliana using genome-wide association mapping. Genetics. 2010;185(3):991–1007.

Frayling TM, Timpson NJ, Weedon MN, Zeggini E, Freathy RM, Lindgren CM, et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science. 2007;316(5826):889–94.

Harkess A, Zhou J, Xu C, Bowers JE, Van der Hulst R, Ayyampalayam S, et al. The asparagus genome sheds light on the origin and evolution of a young Y chromosome. Nat Commun. 2017;8(1):1279.

Periyannan S, Moore J, Ayliffe M, Bansal U, Wang X, Huang L, et al. The gene Sr33 , an ortholog of barley Mla genes, encodes resistance to wheat stem rust race Ug99. Science. 2013;341(6147):786–8.

Ågren J, Oakley CG, McKay JK, Lovell JT, Schemske DW. Genetic mapping of adaptation reveals fitness tradeoffs in Arabidopsis thaliana . Proc Natl Acad Sci U S A. 2013;110(52):21077–82.

Article   PubMed Central   Google Scholar  

Schartl M, Walter RB, Shen Y, Garcia T, Catchen J, Amores A, et al. The genome of the platyfish, Xiphophorus maculatus , provides insights into evolutionary adaptation and several complex traits. Nat Genet. 2013;45(5):567–72.

Ravet K, Patterson EL, Krähmer H, Hamouzová K, Fan L, Jasieniuk M, et al. The power and potential of genomics in weed biology and management. Pest Manag Sci. 2018;74(10):2216–25.

Hufford MB, Seetharam AS, Woodhouse MR, Chougule KM, Ou S, Liu J, et al. De novo assembly, annotation, and comparative analysis of 26 diverse maize genomes. Science. 2021;373(6555):655–62.

Liao W-W, Asri M, Ebler J, Doerr D, Haukness M, Hickey G, et al. A draft human pangenome reference. Nature. 2023;617(7960):312–24.

Huang Y, Wu D, Huang Z, Li X, Merotto A, Bai L, et al. Weed genomics: yielding insights into the genetics of weedy traits for crop improvement. aBIOTECH. 2023;4:20–30.

Chen K, Yang H, Wu D, Peng Y, Lian L, Bai L, et al. Weed biology and management in the multi-omics era: progress and perspectives. Plant Commun. 2024;5(4):100816.

De Wet JMJ, Harlan JR. Weeds and domesticates: evolution in the man-made habitat. Econ Bot. 1975;29(2):99–108.

Mahaut L, Cheptou PO, Fried G, Munoz F, Storkey J, Vasseur F, et al. Weeds: against the rules? Trends Plant Sci. 2020;25(11):1107–16.

Neve P, Vila-Aiub M, Roux F. Evolutionary-thinking in agricultural weed management. New Phytol. 2009;184(4):783–93.

Article   PubMed   Google Scholar  

Sharma G, Barney JN, Westwood JH, Haak DC. Into the weeds: new insights in plant stress. Trends Plant Sci. 2021;26(10):1050–60.

Vigueira CC, Olsen KM, Caicedo AL. The red queen in the corn: agricultural weeds as models of rapid adaptive evolution. Heredity (Edinb). 2013;110(4):303–11.

Donohue K, Dorn L, Griffith C, Kim E, Aguilera A, Polisetty CR, et al. Niche construction through germination cueing: life-history responses to timing of germination in Arabidopsis thaliana . Evolution. 2005;59(4):771–85.

PubMed   Google Scholar  

Exposito-Alonso M. Seasonal timing adaptation across the geographic range of Arabidopsis thaliana . Proc Natl Acad Sci U S A. 2020;117(18):9665–7.

Fournier-Level A, Korte A, Cooper MD, Nordborg M, Schmitt J, Wilczek AM. A map of local adaptation in Arabidopsis thaliana . Science. 2011;334(6052):86–9.

Hancock AM, Brachi B, Faure N, Horton MW, Jarymowycz LB, Sperone FG, et al. Adaptation to climate across the Arabidopsis thaliana genome. Science. 2011;334(6052):83–6.

Initiative TAG. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana . Nature. 2000;408(6814):796–815.

Alonso-Blanco C, Andrade J, Becker C, Bemm F, Bergelson J, Borgwardt KM, et al. 1,135 genomes reveal the global pattern of polymorphism in Arabidopsis thaliana . Cell. 2016;166(2):481–91.

Durvasula A, Fulgione A, Gutaker RM, Alacakaptan SI, Flood PJ, Neto C, et al. African genomes illuminate the early history and transition to selfing in Arabidopsis thaliana . Proc Natl Acad Sci U S A. 2017;114(20):5213–8.

Frachon L, Mayjonade B, Bartoli C, Hautekèete N-C, Roux F. Adaptation to plant communities across the genome of Arabidopsis thaliana . Mol Biol Evol. 2019;36(7):1442–56.

Fulgione A, Koornneef M, Roux F, Hermisson J, Hancock AM. Madeiran Arabidopsis thaliana reveals ancient long-range colonization and clarifies demography in Eurasia. Mol Biol Evol. 2018;35(3):564–74.

Fulgione A, Neto C, Elfarargi AF, Tergemina E, Ansari S, Göktay M, et al. Parallel reduction in flowering time from de novo mutations enable evolutionary rescue in colonizing lineages. Nat Commun. 2022;13(1):1461.

Kasulin L, Rowan BA, León RJC, Schuenemann VJ, Weigel D, Botto JF. A single haplotype hyposensitive to light and requiring strong vernalization dominates Arabidopsis thaliana populations in Patagonia. Argentina Mol Ecol. 2017;26(13):3389–404.

Picó FX, Méndez-Vigo B, Martínez-Zapater JM, Alonso-Blanco C. Natural genetic variation of Arabidopsis thaliana is geographically structured in the Iberian peninsula. Genetics. 2008;180(2):1009–21.

Atwell S, Huang YS, Vilhjálmsson BJ, Willems G, Horton M, Li Y, et al. Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines. Nature. 2010;465(7298):627–31.

Flood PJ, Kruijer W, Schnabel SK, van der Schoor R, Jalink H, Snel JFH, et al. Phenomics for photosynthesis, growth and reflectance in Arabidopsis thaliana reveals circadian and long-term fluctuations in heritability. Plant Methods. 2016;12(1):14.

Marchadier E, Hanemian M, Tisné S, Bach L, Bazakos C, Gilbault E, et al. The complex genetic architecture of shoot growth natural variation in Arabidopsis thaliana . PLoS Genet. 2019;15(4):e1007954.

Tisné S, Serrand Y, Bach L, Gilbault E, Ben Ameur R, Balasse H, et al. Phenoscope: an automated large-scale phenotyping platform offering high spatial homogeneity. Plant J. 2013;74(3):534–44.

Tschiersch H, Junker A, Meyer RC, Altmann T. Establishment of integrated protocols for automated high throughput kinetic chlorophyll fluorescence analyses. Plant Methods. 2017;13:54.

Chen X, MacGregor DR, Stefanato FL, Zhang N, Barros-Galvão T, Penfield S. A VEL3 histone deacetylase complex establishes a maternal epigenetic state controlling progeny seed dormancy. Nat Commun. 2023;14(1):2220.

Choi M, Scholl UI, Ji W, Liu T, Tikhonova IR, Zumbo P, et al. Genetic diagnosis by whole exome capture and massively parallel DNA sequencing. Proc Natl Acad Sci U S A. 2009;106(45):19096–101.

Davey JW, Blaxter ML. RADSeq: next-generation population genetics. Brief Funct Genomics. 2010;9(5–6):416–23.

Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, et al. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE. 2011;6(5):e19379.

MacGregor DR. What makes a weed a weed? How virus-mediated reverse genetics can help to explore the genetics of weediness. Outlooks Pest Manag. 2020;31(5):224–9.

Mellado-Sánchez M, McDiarmid F, Cardoso V, Kanyuka K, MacGregor DR. Virus-mediated transient expression techniques enable gene function studies in blackgrass. Plant Physiol. 2020;183(2):455–9.

Dimaano NG, Yamaguchi T, Fukunishi K, Tominaga T, Iwakami S. Functional characterization of Cytochrome P450 CYP81A subfamily to disclose the pattern of cross-resistance in Echinochloa phyllopogon . Plant Mol Biol. 2020;102(4–5):403–16.

de Figueiredo MRA, Küpper A, Malone JM, Petrovic T, de Figueiredo ABTB, Campagnola G, et al. An in-frame deletion mutation in the degron tail of auxin coreceptor IAA2 confers resistance to the herbicide 2,4-D in Sisymbrium orientale . Proc Natl Acad Sci U S A. 2022;119(9):e2105819119.

Patzoldt WL, Hager AG, McCormick JS, Tranel PJ. A codon deletion confers resistance to herbicides inhibiting protoporphyrinogen oxidase. Proc Natl Acad Sci U S A. 2006;103(33):12329–34.

Zabala-Pardo D, Gaines T, Lamego FP, Avila LA. RNAi as a tool for weed management: challenges and opportunities. Adv Weed Sci. 2022;40(spe1):e020220096.

Fattorini R, Glover BJ. Molecular mechanisms of pollination biology. Annu Rev Plant Biol. 2020;71:487–515.

Rollin O, Benelli G, Benvenuti S, Decourtye A, Wratten SD, Canale A, et al. Weed-insect pollinator networks as bio-indicators of ecological sustainability in agriculture. A review Agron Sustain Dev. 2016;36(1):8.

Irwin RE, Strauss SY. Flower color microevolution in wild radish: evolutionary response to pollinator-mediated selection. Am Nat. 2005;165(2):225–37.

Ma B, Wu J, Shi T-L, Yang Y-Y, Wang W-B, Zheng Y, et al. Lilac ( Syringa oblata ) genome provides insights into its evolution and molecular mechanism of petal color change. Commun Biol. 2022;5(1):686.

Xing A, Wang X, Nazir MF, Zhang X, Wang X, Yang R, et al. Transcriptomic and metabolomic profiling of flavonoid biosynthesis provides novel insights into petals coloration in Asian cotton ( Gossypium arboreum L.). BMC Plant Biol. 2022;22(1):416.

Zheng Y, Chen Y, Liu Z, Wu H, Jiao F, Xin H, et al. Important roles of key genes and transcription factors in flower color differences of Nicotiana alata . Genes (Basel). 2021;12(12):1976.

Krizek BA, Anderson JT. Control of flower size. J Exp Bot. 2013;64(6):1427–37.

Powell AE, Lenhard M. Control of organ size in plants. Curr Biol. 2012;22(9):R360–7.

Spencer V, Kim M. Re"CYC"ling molecular regulators in the evolution and development of flower symmetry. Semin Cell Dev Biol. 2018;79:16–26.

Amrad A, Moser M, Mandel T, de Vries M, Schuurink RC, Freitas L, et al. Gain and loss of floral scent production through changes in structural genes during pollinator-mediated speciation. Curr Biol. 2016;26(24):3303–12.

Delle-Vedove R, Schatz B, Dufay M. Understanding intraspecific variation of floral scent in light of evolutionary ecology. Ann Bot. 2017;120(1):1–20.

Pichersky E, Gershenzon J. The formation and function of plant volatiles: perfumes for pollinator attraction and defense. Curr Opin Plant Biol. 2002;5(3):237–43.

Ballerini ES, Kramer EM, Hodges SA. Comparative transcriptomics of early petal development across four diverse species of Aquilegia reveal few genes consistently associated with nectar spur development. BMC Genom. 2019;20(1):668.

Corbet SA, Willmer PG, Beament JWL, Unwin DM, Prys-Jones OE. Post-secretory determinants of sugar concentration in nectar. Plant Cell Environ. 1979;2(4):293–308.

Galliot C, Hoballah ME, Kuhlemeier C, Stuurman J. Genetics of flower size and nectar volume in Petunia pollination syndromes. Planta. 2006;225(1):203–12.

Vila-Aiub MM, Neve P, Powles SB. Fitness costs associated with evolved herbicide resistance alleles in plants. New Phytol. 2009;184(4):751–67.

Baucom RS. Evolutionary and ecological insights from herbicide-resistant weeds: what have we learned about plant adaptation, and what is left to uncover? New Phytol. 2019;223(1):68–82.

Bajwa AA, Latif S, Borger C, Iqbal N, Asaduzzaman M, Wu H, et al. The remarkable journey of a weed: biology and management of annual ryegrass ( Lolium rigidum ) in conservation cropping systems of Australia. Plants (Basel). 2021;10(8):1505.

Bitarafan Z, Andreasen C. Fecundity allocation in some european weed species competing with crops. Agronomy. 2022;12(5):1196.

Costea M, Weaver SE, Tardif FJ. The biology of Canadian weeds. 130. Amaranthus retroflexus L., A. powellii , A. powellii S. Watson, and A. hybridus L. Can J Plant Sci. 2004;84(2):631–68.

Dixon A, Comont D, Slavov GT, Neve P. Population genomics of selectively neutral genetic structure and herbicide resistance in UK populations of Alopecurus myosuroides . Pest Manag Sci. 2021;77(3):1520–9.

Kersten S, Chang J, Huber CD, Voichek Y, Lanz C, Hagmaier T, et al. Standing genetic variation fuels rapid evolution of herbicide resistance in blackgrass. Proc Natl Acad Sci U S A. 2023;120(16):e2206808120.

Qiu J, Zhou Y, Mao L, Ye C, Wang W, Zhang J, et al. Genomic variation associated with local adaptation of weedy rice during de-domestication. Nat Commun. 2017;8(1):15323.

Kreiner JM, Caballero A, Wright SI, Stinchcombe JR. Selective ancestral sorting and de novo evolution in the agricultural invasion of Amaranthus tuberculatus . Evolution. 2022;76(1):70–85.

Kreiner JM, Latorre SM, Burbano HA, Stinchcombe JR, Otto SP, Weigel D, et al. Rapid weed adaptation and range expansion in response to agriculture over the past two centuries. Science. 2022;378(6624):1079–85.

Wu D, Shen E, Jiang B, Feng Y, Tang W, Lao S, et al. Genomic insights into the evolution of Echinochloa species as weed and orphan crop. Nat Commun. 2022;13(1):689.

Yeaman S, Hodgins KA, Lotterhos KE, Suren H, Nadeau S, Degner JC, et al. Convergent local adaptation to climate in distantly related conifers. Science. 2016;353(6306):1431–3.

Haudry A, Platts AE, Vello E, Hoen DR, Leclercq M, Williamson RJ, et al. An atlas of over 90,000 conserved noncoding sequences provides insight into crucifer regulatory regions. Nat Genet. 2013;45(8):891–8.

Sackton TB, Grayson P, Cloutier A, Hu Z, Liu JS, Wheeler NE, et al. Convergent regulatory evolution and loss of flight in paleognathous birds. Science. 2019;364(6435):74–8.

Ye CY, Fan L. Orphan crops and their wild relatives in the genomic era. Mol Plant. 2021;14(1):27–39.

Clements DR, Jones VL. Ten ways that weed evolution defies human management efforts amidst a changing climate. Agronomy. 2021;11(2):284.

Article   CAS   Google Scholar  

Weinig C. Rapid evolutionary responses to selection in heterogeneous environments among agricultural and nonagricultural weeds. Int J Plant Sci. 2005;166(4):641–7.

Cousens RD, Fournier-Level A. Herbicide resistance costs: what are we actually measuring and why? Pest Manag Sci. 2018;74(7):1539–46.

Lasky JR, Josephs EB, Morris GP. Genotype–environment associations to reveal the molecular basis of environmental adaptation. Plant Cell. 2023;35(1):125–38.

Lotterhos KE. The effect of neutral recombination variation on genome scans for selection. G3-Genes Genom Genet. 2019;9(6):1851–67.

Lovell JT, MacQueen AH, Mamidi S, Bonnette J, Jenkins J, Napier JD, et al. Genomic mechanisms of climate adaptation in polyploid bioenergy switchgrass. Nature. 2021;590(7846):438–44.

Todesco M, Owens GL, Bercovich N, Légaré J-S, Soudi S, Burge DO, et al. Massive haplotypes underlie ecotypic differentiation in sunflowers. Nature. 2020;584(7822):602–7.

Revolinski SR, Maughan PJ, Coleman CE, Burke IC. Preadapted to adapt: Underpinnings of adaptive plasticity revealed by the downy brome genome. Commun Biol. 2023;6(1):326.

Kuester A, Conner JK, Culley T, Baucom RS. How weeds emerge: a taxonomic and trait-based examination using United States data. New Phytol. 2014;202(3):1055–68.

Arnaud JF, Fénart S, Cordellier M, Cuguen J. Populations of weedy crop-wild hybrid beets show contrasting variation in mating system and population genetic structure. Evol Appl. 2010;3(3):305–18.

Ellstrand NC, Schierenbeck KA. Hybridization as a stimulus for the evolution of invasiveness in plants? Proc Natl Acad Sci U S A. 2000;97(13):7043–50.

Nakabayashi K, Leubner-Metzger G. Seed dormancy and weed emergence: from simulating environmental change to understanding trait plasticity, adaptive evolution, and population fitness. J Exp Bot. 2021;72(12):4181–5.

Busi R, Yu Q, Barrett-Lennard R, Powles S. Long distance pollen-mediated flow of herbicide resistance genes in Lolium rigidum . Theor Appl Genet. 2008;117(8):1281–90.

Délye C, Clément JAJ, Pernin F, Chauvel B, Le Corre V. High gene flow promotes the genetic homogeneity of arable weed populations at the landscape level. Basic Appl Ecol. 2010;11(6):504–12.

Roumet M, Noilhan C, Latreille M, David J, Muller MH. How to escape from crop-to-weed gene flow: phenological variation and isolation-by-time within weedy sunflower populations. New Phytol. 2013;197(2):642–54.

Moghadam SH, Alebrahim MT, Mohebodini M, MacGregor DR. Genetic variation of Amaranthus retroflexus L. and Chenopodium album L. (Amaranthaceae) suggests multiple independent introductions into Iran. Front Plant Sci. 2023;13:1024555.

Muller M-H, Latreille M, Tollon C. The origin and evolution of a recent agricultural weed: population genetic diversity of weedy populations of sunflower ( Helianthus annuus L.) in Spain and France. Evol Appl. 2011;4(3):499–514.

Wesse C, Welk E, Hurka H, Neuffer B. Geographical pattern of genetic diversity in Capsella bursa-pastoris (Brassicaceae) -A global perspective. Ecol Evol. 2021;11(1):199–213.

Fraimout A, Debat V, Fellous S, Hufbauer RA, Foucaud J, Pudlo P, et al. Deciphering the routes of invasion of Drosophila suzukii by means of ABC random forest. Mol Biol Evol. 2017;34(4):980–96.

CAS   PubMed   PubMed Central   Google Scholar  

Battlay P, Wilson J, Bieker VC, Lee C, Prapas D, Petersen B, et al. Large haploblocks underlie rapid adaptation in the invasive weed Ambrosia artemisiifolia . Nat Commun. 2023;14(1):1717.

van Boheemen LA, Hodgins KA. Rapid repeatable phenotypic and genomic adaptation following multiple introductions. Mol Ecol. 2020;29(21):4102–17.

Putra A, Hodgins K, Fournier-Level A. Assessing the invasive potential of different source populations of ragweed ( Ambrosia artemisiifolia L.) through genomically-informed species distribution modelling. Authorea. 2023;17(1):e13632.

Google Scholar  

Bourguet D, Delmotte F, Franck P, Guillemaud T, Reboud X, Vacher C, et al. Heterogeneity of selection and the evolution of resistance. Trends Ecol Evol. 2013;28(2):110–8.

The International Herbicide-Resistant Weed Database. www.weedscience.org . Accessed 20 June 2023.

Powles S. Herbicide discovery through innovation and diversity. Adv Weed Sci. 2022;40(spe1):e020220074.

Murphy BP, Tranel PJ. Target-site mutations conferring herbicide resistance. Plants (Basel). 2019;8(10):382.

Gaines TA, Duke SO, Morran S, Rigon CAG, Tranel PJ, Küpper A, et al. Mechanisms of evolved herbicide resistance. J Biol Chem. 2020;295(30):10307–30.

Lonhienne T, Cheng Y, Garcia MD, Hu SH, Low YS, Schenk G, et al. Structural basis of resistance to herbicides that target acetohydroxyacid synthase. Nat Commun. 2022;13(1):3368.

Comont D, MacGregor DR, Crook L, Hull R, Nguyen L, Freckleton RP, et al. Dissecting weed adaptation: fitness and trait correlations in herbicide-resistant Alopecurus myosuroides . Pest Manag Sci. 2022;78(7):3039–50.

Neve P. Simulation modelling to understand the evolution and management of glyphosate resistance in weeds. Pest Manag Sci. 2008;64(4):392–401.

Torra J, Alcántara-de la Cruz R. Molecular mechanisms of herbicide resistance in weeds. Genes (Basel). 2022;13(11):2025.

Délye C, Gardin JAC, Boucansaud K, Chauvel B, Petit C. Non-target-site-based resistance should be the centre of attention for herbicide resistance research: Alopecurus myosuroides as an illustration. Weed Res. 2011;51(5):433–7.

Chandra S, Leon RG. Genome-wide evolutionary analysis of putative non-specific herbicide resistance genes and compilation of core promoters between monocots and dicots. Genes (Basel). 2022;13(7):1171.

Margaritopoulou T, Tani E, Chachalis D, Travlos I. Involvement of epigenetic mechanisms in herbicide resistance: the case of Conyza canadensis . Agriculture. 2018;8(1):17.

Pan L, Guo Q, Wang J, Shi L, Yang X, Zhou Y, et al. CYP81A68 confers metabolic resistance to ALS and ACCase-inhibiting herbicides and its epigenetic regulation in Echinochloa crus-galli . J Hazard Mater. 2022;428:128225.

Sen MK, Hamouzová K, Košnarová P, Roy A, Soukup J. Herbicide resistance in grass weeds: Epigenetic regulation matters too. Front Plant Sci. 2022;13:1040958.

Han H, Yu Q, Beffa R, González S, Maiwald F, Wang J, et al. Cytochrome P450 CYP81A10v7 in Lolium rigidum confers metabolic resistance to herbicides across at least five modes of action. Plant J. 2021;105(1):79–92.

Kubis GC, Marques RZ, Kitamura RS, Barroso AA, Juneau P, Gomes MP. Antioxidant enzyme and Cytochrome P450 activities are involved in horseweed ( Conyza sumatrensis ) resistance to glyphosate. Stress. 2023;3(1):47–57.

Qiao Y, Zhang N, Liu J, Yang H. Interpretation of ametryn biodegradation in rice based on joint analyses of transcriptome, metabolome and chemo-characterization. J Hazard Mater. 2023;445:130526.

Rouse CE, Roma-Burgos N, Barbosa Martins BA. Physiological assessment of non–target site restistance in multiple-resistant junglerice ( Echinochloa colona ). Weed Sci. 2019;67(6):622–32.

Abou-Khater L, Maalouf F, Jighly A, Alsamman AM, Rubiales D, Rispail N, et al. Genomic regions associated with herbicide tolerance in a worldwide faba bean ( Vicia faba L.) collection. Sci Rep. 2022;12(1):158.

Gupta S, Harkess A, Soble A, Van Etten M, Leebens-Mack J, Baucom RS. Interchromosomal linkage disequilibrium and linked fitness cost loci associated with selection for herbicide resistance. New Phytol. 2023;238(3):1263–77.

Kreiner JM, Tranel PJ, Weigel D, Stinchcombe JR, Wright SI. The genetic architecture and population genomic signatures of glyphosate resistance in Amaranthus tuberculatus . Mol Ecol. 2021;30(21):5373–89.

Parcharidou E, Dücker R, Zöllner P, Ries S, Orru R, Beffa R. Recombinant glutathione transferases from flufenacet-resistant black-grass ( Alopecurus myosuroides Huds.) form different flufenacet metabolites and differ in their interaction with pre- and post-emergence herbicides. Pest Manag Sci. 2023;79(9):3376–86.

Békés M, Langley DR, Crews CM. PROTAC targeted protein degraders: the past is prologue. Nat Rev Drug Discov. 2022;21(3):181–200.

Acuner Ozbabacan SE, Engin HB, Gursoy A, Keskin O. Transient protein-protein interactions. Protein Eng Des Sel. 2011;24(9):635–48.

Lu H, Zhou Q, He J, Jiang Z, Peng C, Tong R, et al. Recent advances in the development of protein–protein interactions modulators: mechanisms and clinical trials. Signal Transduct Target Ther. 2020;5(1):213.

Benson CW, Sheltra MR, Maughan PJ, Jellen EN, Robbins MD, Bushman BS, et al. Homoeologous evolution of the allotetraploid genome of Poa annua L. BMC Genom. 2023;24(1):350.

Robbins MD, Bushman BS, Huff DR, Benson CW, Warnke SE, Maughan CA, et al. Chromosome-scale genome assembly and annotation of allotetraploid annual bluegrass ( Poa annua L.). Genome Biol Evol. 2022;15(1):evac180.

Montgomery JS, Giacomini D, Waithaka B, Lanz C, Murphy BP, Campe R, et al. Draft genomes of Amaranthus tuberculatus , Amaranthus hybridus and Amaranthus palmeri . Genome Biol Evol. 2020;12(11):1988–93.

Jeschke MR, Tranel PJ, Rayburn AL. DNA content analysis of smooth pigweed ( Amaranthus hybridus ) and tall waterhemp ( A. tuberculatus ): implications for hybrid detection. Weed Sci. 2003;51(1):1–3.

Rayburn AL, McCloskey R, Tatum TC, Bollero GA, Jeschke MR, Tranel PJ. Genome size analysis of weedy Amaranthus species. Crop Sci. 2005;45(6):2557–62.

Laforest M, Martin SL, Bisaillon K, Soufiane B, Meloche S, Tardif FJ, et al. The ancestral karyotype of the Heliantheae Alliance, herbicide resistance, and human allergens: Insights from the genomes of common and giant ragweed. Plant Genome . 2024;e20442. https://doi.org/10.1002/tpg2.20442 .

Mulligan GA. Chromosome numbers of Canadian weeds. I Canad J Bot. 1957;35(5):779–89.

Meyer L, Causse R, Pernin F, Scalone R, Bailly G, Chauvel B, et al. New gSSR and EST-SSR markers reveal high genetic diversity in the invasive plant Ambrosia artemisiifolia L. and can be transferred to other invasive Ambrosia species. PLoS One. 2017;12(5):e0176197.

Pustahija F, Brown SC, Bogunić F, Bašić N, Muratović E, Ollier S, et al. Small genomes dominate in plants growing on serpentine soils in West Balkans, an exhaustive study of 8 habitats covering 308 taxa. Plant Soil. 2013;373(1):427–53.

Kubešová M, Moravcova L, Suda J, Jarošík V, Pyšek P. Naturalized plants have smaller genomes than their non-invading relatives: a flow cytometric analysis of the Czech alien flora. Preslia. 2010;82(1):81–96.

Thébaud C, Abbott RJ. Characterization of invasive Conyza species (Asteraceae) in Europe: quantitative trait and isozyme analysis. Am J Bot. 1995;82(3):360–8.

Garcia S, Hidalgo O, Jakovljević I, Siljak-Yakovlev S, Vigo J, Garnatje T, et al. New data on genome size in 128 Asteraceae species and subspecies, with first assessments for 40 genera, 3 tribes and 2 subfamilies. Plant Biosyst. 2013;147(4):1219–27.

Zhao X, Yi L, Ren Y, Li J, Ren W, Hou Z, et al. Chromosome-scale genome assembly of the yellow nutsedge ( Cyperus esculentus ). Genome Biol Evol. 2023;15(3):evad027.

Bennett MD, Leitch IJ, Hanson L. DNA amounts in two samples of angiosperm weeds. Ann Bot. 1998;82:121–34.

Schulz-Schaeffer J, Gerhardt S. Cytotaxonomic analysis of the Euphorbia spp. (leafy spurge) complex. II: Comparative study of the chromosome morphology. Biol Zentralbl. 1989;108(1):69–76.

Schaeffer JR, Gerhardt S. The impact of introgressive hybridization on the weediness of leafy spurge. Leafy Spurge Symposium. 1989;1989:97–105.

Bai C, Alverson WS, Follansbee A, Waller DM. New reports of nuclear DNA content for 407 vascular plant taxa from the United States. Ann Bot. 2012;110(8):1623–9.

Aarestrup JR, Karam D, Fernandes GW. Chromosome number and cytogenetics of Euphorbia heterophylla L. Genet Mol Res. 2008;7(1):217–22.

Wang L, Sun X, Peng Y, Chen K, Wu S, Guo Y, et al. Genomic insights into the origin, adaptive evolution, and herbicide resistance of Leptochloa chinensis , a devastating tetraploid weedy grass in rice fields. Mol Plant. 2022;15(6):1045–58.

Paril J, Pandey G, Barnett EM, Rane RV, Court L, Walsh T, et al. Rounding up the annual ryegrass genome: high-quality reference genome of Lolium rigidum . Front Genet. 2022;13:1012694.

Weiss-Schneeweiss H, Greilhuber J, Schneeweiss GM. Genome size evolution in holoparasitic Orobanche (Orobanchaceae) and related genera. Am J Bot. 2006;93(1):148–56.

Towers G, Mitchell J, Rodriguez E, Bennett F, Subba Rao P. Biology & chemistry of Parthenium hysterophorus L., a problem weed in India. Biol Rev. 1977;48:65–74.

CAS   Google Scholar  

Moghe GD, Hufnagel DE, Tang H, Xiao Y, Dworkin I, Town CD, et al. Consequences of whole-genome triplication as revealed by comparative genomic analyses of the wild radish ( Raphanus raphanistrum ) and three other Brassicaceae species. Plant Cell. 2014;26(5):1925–37.

Zhang X, Liu T, Wang J, Wang P, Qiu Y, Zhao W, et al. Pan-genome of Raphanus highlights genetic variation and introgression among domesticated, wild, and weedy radishes. Mol Plant. 2021;14(12):2032–55.

Chytrý M, Danihelka J, Kaplan Z, Wild J, Holubová D, Novotný P, et al. Pladias database of the Czech flora and vegetation. Preslia. 2021;93(1):1–87.

Patterson EL, Pettinga DJ, Ravet K, Neve P, Gaines TA. Glyphosate resistance and EPSPS gene duplication: Convergent evolution in multiple plant species. J Hered. 2018;109(2):117–25.

Jugulam M, Niehues K, Godar AS, Koo DH, Danilova T, Friebe B, et al. Tandem amplification of a chromosomal segment harboring 5-enolpyruvylshikimate-3-phosphate synthase locus confers glyphosate resistance in Kochia scoparia . Plant Physiol. 2014;166(3):1200–7.

Patterson EL, Saski CA, Sloan DB, Tranel PJ, Westra P, Gaines TA. The draft genome of Kochia scoparia and the mechanism of glyphosate resistance via transposon-mediated EPSPS tandem gene duplication. Genome Biol Evol. 2019;11(10):2927–40.

Zhang C, Johnson N, Hall N, Tian X, Yu Q, Patterson E. Subtelomeric 5-enolpyruvylshikimate-3-phosphate synthase ( EPSPS ) copy number variation confers glyphosate resistance in Eleusine indica . Nat Commun. 2023;14:4865.

Koo D-H, Molin WT, Saski CA, Jiang J, Putta K, Jugulam M, et al. Extrachromosomal circular DNA-based amplification and transmission of herbicide resistance in crop weed Amaranthus palmeri . Proc Natl Acad Sci U S A. 2018;115(13):3332–7.

Molin WT, Yaguchi A, Blenner M, Saski CA. The eccDNA Replicon: A heritable, extranuclear vehicle that enables gene amplification and glyphosate resistance in Amaranthus palmeri . Plant Cell. 2020;32(7):2132–40.

Jugulam M. Can non-Mendelian inheritance of extrachromosomal circular DNA-mediated EPSPS gene amplification provide an opportunity to reverse resistance to glyphosate? Weed Res. 2021;61(2):100–5.

Kreiner JM, Giacomini DA, Bemm F, Waithaka B, Regalado J, Lanz C, et al. Multiple modes of convergent adaptation in the spread of glyphosate-resistant Amaranthus tuberculatus . Proc Natl Acad Sci U S A. 2019;116(42):21076–84.

Cai L, Comont D, MacGregor D, Lowe C, Beffa R, Neve P, et al. The blackgrass genome reveals patterns of non-parallel evolution of polygenic herbicide resistance. New Phytol. 2023;237(5):1891–907.

Chen K, Yang H, Peng Y, Liu D, Zhang J, Zhao Z, et al. Genomic analyses provide insights into the polyploidization-driven herbicide adaptation in Leptochloa weeds. Plant Biotechnol J. 2023;21(8):1642–58.

Ohadi S, Hodnett G, Rooney W, Bagavathiannan M. Gene flow and its consequences in Sorghum spp. Crit Rev Plant Sci. 2017;36(5–6):367–85.

Renzi JP, Coyne CJ, Berger J, von Wettberg E, Nelson M, Ureta S, et al. How could the use of crop wild relatives in breeding increase the adaptation of crops to marginal environments? Front Plant Sci. 2022;13:886162.

Ward SM, Cousens RD, Bagavathiannan MV, Barney JN, Beckie HJ, Busi R, et al. Agricultural weed research: a critique and two proposals. Weed Sci. 2014;62(4):672–8.

Evans JA, Tranel PJ, Hager AG, Schutte B, Wu C, Chatham LA, et al. Managing the evolution of herbicide resistance. Pest Manag Sci. 2016;72(1):74–80.

International Weed Genomics Consortium Website. https://www.weedgenomics.org . Accessed 20 June 2023.

WeedPedia Database. https://weedpedia.weedgenomics.org/ . Accessed 20 June 2023.

Hall N, Chen J, Matzrafi M, Saski CA, Westra P, Gaines TA, et al. FHY3/FAR1 transposable elements generate adaptive genetic variation in the Bassia scoparia genome. bioRxiv . 2023; DOI: https://doi.org/10.1101/2023.05.26.542497 .

Jarvis DE, Sproul JS, Navarro-Domínguez B, Krak K, Jaggi K, Huang Y-F, et al. Chromosome-scale genome assembly of the hexaploid Taiwanese goosefoot “Djulis” ( Chenopodium formosanum ). Genome Biol Evol. 2022;14(8):evac120.

Ferreira LAI, de Oliveira RS, Jr., Constantin J, Brunharo C. Evolution of ACCase-inhibitor resistance in Chloris virgata is conferred by a Trp2027Cys mutation in the herbicide target site. Pest Manag Sci. 2023;79(12):5220–9.

Laforest M, Martin SL, Bisaillon K, Soufiane B, Meloche S, Page E. A chromosome-scale draft sequence of the Canada fleabane genome. Pest Manag Sci. 2020;76(6):2158–69.

Guo L, Qiu J, Ye C, Jin G, Mao L, Zhang H, et al. Echinochloa crus-galli genome analysis provides insight into its adaptation and invasiveness as a weed. Nat Commun. 2017;8(1):1031.

Sato MP, Iwakami S, Fukunishi K, Sugiura K, Yasuda K, Isobe S, et al. Telomere-to-telomere genome assembly of an allotetraploid pernicious weed, Echinochloa phyllopogon . DNA Res. 2023;30(5):dsad023.

Stein JC, Yu Y, Copetti D, Zwickl DJ, Zhang L, Zhang C, et al. Genomes of 13 domesticated and wild rice relatives highlight genetic conservation, turnover and innovation across the genus Oryza . Nat Genet. 2018;50(2):285–96.

Wu D, Xie L, Sun Y, Huang Y, Jia L, Dong C, et al. A syntelog-based pan-genome provides insights into rice domestication and de-domestication. Genome Biol. 2023;24(1):179.

Wang Z, Huang S, Yang Z, Lai J, Gao X, Shi J. A high-quality, phased genome assembly of broomcorn millet reveals the features of its subgenome evolution and 3D chromatin organization. Plant Commun. 2023;4(3):100557.

Mao Q, Huff DR. The evolutionary origin of Poa annua L. Crop Sci. 2012;52(4):1910–22.

Benson CW, Sheltra MR, Maughan JP, Jellen EN, Robbins MD, Bushman BS, et al. Homoeologous evolution of the allotetraploid genome of Poa annua L. Res Sq. 2023. https://doi.org/10.21203/rs.3.rs-2729084/v1 .

Brunharo C, Benson CW, Huff DR, Lasky JR. Chromosome-scale genome assembly of Poa trivialis and population genomics reveal widespread gene flow in a cool-season grass seed production system. Plant Direct. 2024;8(3):e575.

Mo C, Wu Z, Shang X, Shi P, Wei M, Wang H, et al. Chromosome-level and graphic genomes provide insights into metabolism of bioactive metabolites and cold-adaption of Pueraria lobata var. montana . DNA Research. 2022;29(5):dsac030.

Thielen PM, Pendleton AL, Player RA, Bowden KV, Lawton TJ, Wisecaver JH. Reference genome for the highly transformable Setaria viridis ME034V. G3 (Bethesda, Md). 2020;10(10):3467–78.

Yoshida S, Kim S, Wafula EK, Tanskanen J, Kim Y-M, Honaas L, et al. Genome sequence of Striga asiatica provides insight into the evolution of plant parasitism. Curr Biol. 2019;29(18):3041–52.

Qiu S, Bradley JM, Zhang P, Chaudhuri R, Blaxter M, Butlin RK, et al. Genome-enabled discovery of candidate virulence loci in Striga hermonthica , a devastating parasite of African cereal crops. New Phytol. 2022;236(2):622–38.

Nunn A, Rodríguez-Arévalo I, Tandukar Z, Frels K, Contreras-Garrido A, Carbonell-Bejerano P, et al. Chromosome-level Thlaspi arvense genome provides new tools for translational research and for a newly domesticated cash cover crop of the cooler climates. Plant Biotechnol J. 2022;20(5):944–63.

USDA-ARS Germplasm Resources Information Network (GRIN). https://www.ars-grin.gov/ . Accessed 20 June 2023.

Buck M, Hamilton C. The Nagoya Protocol on access to genetic resources and the fair and equitable sharing of benefits arising from their utilization to the convention on biological diversity. RECIEL. 2011;20(1):47–61.

Chauhan BS, Matloob A, Mahajan G, Aslam F, Florentine SK, Jha P. Emerging challenges and opportunities for education and research in weed science. Front Plant Sci. 2017;8:1537.

Shah S, Lonhienne T, Murray CE, Chen Y, Dougan KE, Low YS, et al. Genome-guided analysis of seven weed species reveals conserved sequence and structural features of key gene targets for herbicide development. Front Plant Sci. 2022;13:909073.

International Weed Genomics Consortium Training Resources. https://www.weedgenomics.org/training-resources/ . Accessed 20 June 2023.

Blackford S. Harnessing the power of communities: career networking strategies for bioscience PhD students and postdoctoral researchers. FEMS Microbiol Lett. 2018;365(8):fny033.

Pender M, Marcotte DE, Sto Domingo MR, Maton KI. The STEM pipeline: The role of summer research experience in minority students’ Ph.D. aspirations. Educ Policy Anal Arch. 2010;18(30):1–36.

PubMed   PubMed Central   Google Scholar  

Burke A, Okrent A, Hale K. The state of U.S. science and engineering 2022. Foundation NS. https://ncses.nsf.gov/pubs/nsb20221 . 2022.

Wu J-Y, Liao C-H, Cheng T, Nian M-W. Using data analytics to investigate attendees’ behaviors and psychological states in a virtual academic conference. Educ Technol Soc. 2021;24(1):75–91.

Download references

Peer review information

Wenjing She was the primary editor of this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

The International Weed Genomics Consortium is supported by BASF SE, Bayer AG, Syngenta Ltd, Corteva Agriscience, CropLife International (Global Herbicide Resistance Action Committee), the Foundation for Food and Agriculture Research (Award DSnew-0000000024), and two conference grants from USDA-NIFA (Award numbers 2021–67013-33570 and 2023-67013-38785).

Author information

Authors and affiliations.

Department of Agricultural Biology, Colorado State University, 1177 Campus Delivery, Fort Collins, CO, 80523, USA

Jacob Montgomery, Sarah Morran & Todd A. Gaines

Protecting Crops and the Environment, Rothamsted Research, Harpenden, Hertfordshire, UK

Dana R. MacGregor

Department of Crop, Soil, and Environmental Sciences, Auburn University, Auburn, AL, USA

J. Scott McElroy

Department of Plant and Environmental Sciences, University of Copenhagen, Taastrup, Denmark

Paul Neve & Célia Neto

IFEVA-Conicet-Department of Ecology, University of Buenos Aires, Buenos Aires, Argentina

Martin M. Vila-Aiub & Maria Victoria Sandoval

Department of Ecology, Faculty of Agronomy, University of Buenos Aires, Buenos Aires, Argentina

Analia I. Menéndez

Department of Botany, The University of British Columbia, Vancouver, BC, Canada

Julia M. Kreiner

Institute of Crop Sciences, Zhejiang University, Hangzhou, China

Longjiang Fan

Department of Biology, University of Massachusetts Amherst, Amherst, MA, USA

Ana L. Caicedo

Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT, USA

Peter J. Maughan

Bayer AG, Weed Control Research, Frankfurt, Germany

Bianca Assis Barbosa Martins, Jagoda Mika, Alberto Collavo & Bodo Peters

Department of Crop Sciences, Federal University of Rio Grande Do Sul, Porto Alegre, Rio Grande Do Sul, Brazil

Aldo Merotto Jr.

Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, USA

Nithya K. Subramanian & Muthukumar V. Bagavathiannan

Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA

Luan Cutti & Eric L. Patterson

Department of Agronomy, Kansas State University, Manhattan, KS, USA

Md. Mazharul Islam & Mithila Jugulam

Department of Plant Pathology, Kansas State University, Manhattan, KS, USA

Bikram S. Gill

Crop Protection Discovery and Development, Corteva Agriscience, Indianapolis, IN, USA

Robert Cicchillo, Roger Gast & Neeta Soni

Genome Center of Excellence, Corteva Agriscience, Johnston, IA, USA

Terry R. Wright, Gina Zastrow-Hayes, Gregory May, Kevin Fengler & Victor Llaca

School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, South Australia, Australia

Jenna M. Malone

Jealott’s Hill International Research Centre, Syngenta Ltd, Bracknell, Berkshire, UK

Deepmala Sehgal, Shiv Shankhar Kaundun & Richard P. Dale

Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa

Barend Juan Vorster

BASF SE, Ludwigshafen Am Rhein, Germany

Jens Lerchl

Department of Crop Sciences, University of Illinois, Urbana, IL, USA

Patrick J. Tranel

Senior Scientist Consultant, Herbicide Resistance Action Committee / CropLife International, Liederbach, Germany

Roland Beffa

School of BioSciences, University of Melbourne, Parkville, VIC, Australia

Alexandre Fournier-Level

You can also search for this author in PubMed   Google Scholar

Contributions

JMo and TG conceived and outlined the article. TG, DM, EP, RB, JSM, PJT, MJ wrote grants to obtain funding. MMI, BSG, and MJ performed mitotic chromosome visualization. VL performed sequencing. VL and KF assembled the genomes. LC and ELP annotated the genomes. JMo, SM, DRM, JSM, PN, CN, MV, MVS, AIM, JMK, LF, ALC, PJM, BABM, JMi, AC, MVB, LC, AFL, and ELP wrote the first draft of the article. All authors edited the article and improved the final version.

Corresponding author

Correspondence to Todd A. Gaines .

Ethics declarations

Ethics approval and consent to participate.

Ethical approval is not applicable for this article.

Competing interests

Some authors work for commercial agricultural companies (BASF, Bayer, Corteva Agriscience, or Syngenta) that develop and sell weed control products.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

13059_2024_3274_moesm1_esm.docx.

Additional file 1. List of completed and in-progress genome assemblies of weed species pollinated by insects (Table S1).

13059_2024_3274_MOESM2_ESM.docx

Additional file 2. Methods and results for visualizing and counting the metaphase chromosomes of hexaploid Avena fatua (Fig S1); diploid Lolium rigidum  (Fig S2); tetraploid Phalaris minor (Fig S3); and tetraploid Salsola tragus (Fig S4).

Additional file 3. Review history.

Rights and permissions.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ . The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/ ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

About this article

Cite this article.

Montgomery, J., Morran, S., MacGregor, D.R. et al. Current status of community resources and priorities for weed genomics research. Genome Biol 25 , 139 (2024). https://doi.org/10.1186/s13059-024-03274-y

Download citation

Received : 11 July 2023

Accepted : 13 May 2024

Published : 27 May 2024

DOI : https://doi.org/10.1186/s13059-024-03274-y

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Weed science
  • Reference genomes
  • Rapid adaptation
  • Herbicide resistance
  • Public resources

Genome Biology

ISSN: 1474-760X

basic course in research methodology

COMMENTS

  1. Basic Course in Biomedical Research

    This online course, "Basic Course in Biomedical Research", is offered by ICMR-National Institute of Epidemiology (ICMR-NIE), Chennai ( www.nie.gov.in ). The course will explain the fundamental concepts of research methodology in health. Course materials include video lectures reading/resource materials, example accompaniments, workbooks ...

  2. Research Methodologies Course by Queen Mary University of London

    There are 4 modules in this course. This course focuses on research methodologies. In this vein, the focus will be placed on qualitative and quantitative research methodologies, sampling approaches, and primary and secondary data collection. The course begins with a discussion on qualitative research approaches, looking at focus groups ...

  3. Understanding Research Methods

    There are 4 modules in this course. This MOOC is about demystifying research and research methods. It will outline the fundamentals of doing research, aimed primarily, but not exclusively, at the postgraduate level. It places the student experience at the centre of our endeavours by engaging learners in a range of robust and challenging ...

  4. Bcbr

    This online course, "Basic Course in Biomedical Research", will be offered by ICMR-National Institute of Epidemiology (ICMR-NIE), Chennai. The course will explain the fundamental concepts of research methodology in health. It will be delivered through video lectures and reading materials.

  5. Essentials of Research Methodology

    Learn the best methods and principles required to conduct and compile effective research with this free online course. This research methodology course teaches you how to design, conduct and document an effective scientific research project. We explain how to formulate a research problem, design research methods, select samples and write a ...

  6. Basic course in Biomedical Research- Cycle 5

    This online course, "Basic Course in Biomedical Research", is offered by ICMR-National Institute of Epidemiology (ICMR-NIE), Chennai ( www.nie.gov.in ). The course will explain the fundamental concepts of research methodology in health. Course materials include video lectures reading/resource materials, example accompaniments, workbooks ...

  7. Research Methods--Quantitative, Qualitative, and More: Overview

    About Research Methods. This guide provides an overview of research methods, how to choose and use them, and supports and resources at UC Berkeley. As Patten and Newhart note in the book Understanding Research Methods, "Research methods are the building blocks of the scientific enterprise. They are the "how" for building systematic knowledge.

  8. Best Online Research Courses and Programs

    Explore online courses about research methods and more. Develop new skills to advance your career with edX.

  9. PDF Introduction to Research Methods

    After completing a course in research method-ology, you may be left with a feeling that all that was accomplished in the course was a laundry list of different concepts and topics with little connec - tion or relevance to the real world or that this textbook will make an excellent paperweight.

  10. Research Basics: an open academic research skills course

    Don't worry, this course has you covered. This introductory program was created by JSTOR to help you get familiar with basic research concepts needed for success in school. The course contains three modules, each made up of three short lessons and three sets of practice quizzes. The topics covered are subjects that will help you prepare for ...

  11. Basic course in Biomedical Research- Cycle 5

    In order to improve the research skills of Indian medical postgraduate (PG) students and teachers in medical institutions, the National Medical Commission (NMC, erstwhile Medical Council of India) has mandated a uniform research methodology course. This online course, "Basic Course in Biomedical Research", is offered by ICMR-National ...

  12. Fundamentals Of Research Methodology

    Research Methodology is a hands-on training in the basic methodologies and methods of academic research in social sciences and business management. Research scholars will investigate the major components of a research framework and be effectively exposed to them, namely problem definition, research design, data collection, ethical research ...

  13. PowerPoint Slides: SOWK 621.01: Research I: Basic Research Methodology

    The twelve lessons for SOWK 621.01: Research I: Basic Research Methodology as previously taught by Dr. Matthew DeCarlo at Radford University. Dr. DeCarlo and his team developed a complete package of materials that includes a textbook, ancillary materials, and a student workbook as part of a VIVA Open Course Grant.

  14. Research Methods

    Research methods are specific procedures for collecting and analyzing data. Developing your research methods is an integral part of your research design. When planning your methods, there are two key decisions you will make. First, decide how you will collect data. Your methods depend on what type of data you need to answer your research question:

  15. PDF J380 Introduction to Research Methods Course Description and Objectives

    4. Propose a research study and justify the theory as well as the methodological decisions, including sampling and measurement. 5. Understand the importance of research ethics and integrate research ethics into the research process. 6. Be able to assess and critique a published journal article that uses one of the primary research methods in ...

  16. Research Methodology

    Course layout. Week 1: Philosophy of Science (subjective versus objective, materialism versus idealism, causality, etc.) Week 2: Logical Reasoning (inductive logic, deductive logix, syllogistic logic) Week 3: History of development of science and the influence of philosophy. Week 4: What Scientists Actually Do.

  17. A tutorial on methodological studies: the what, when, how and why

    In this tutorial paper, we will use the term methodological study to refer to any study that reports on the design, conduct, analysis or reporting of primary or secondary research-related reports (such as trial registry entries and conference abstracts). In the past 10 years, there has been an increase in the use of terms related to ...

  18. PDF HEALTH RESEARCH METHODOLOGY

    Health research methodology: A guide for training in research methods INTRODUCTION This is a revised version of an earlier manual on Health Research Methodology and deals with the basic concepts and principles of scientific research methods with particular attention to research in the health field. The research process is the cornerstone for ...

  19. Best Research Courses Online with Certificates [2024]

    In summary, here are 10 of our most popular research courses. Understanding Research Methods: University of London. Understanding Clinical Research: Behind the Statistics: University of Cape Town. Market Research: University of California, Davis.

  20. Introduction to Research Methods and Statistics

    Course content. During this basic introductory course in research methodology and statistical analyses you'll cover a variety of topics.. This is a theory-led course, but you'll be given plenty of opportunities to apply the concepts via practical and interactive activities integrated throughout.. The topics covered include: Introduction to quantitative research

  21. RSMT 3501: Introduction to Research Methods

    RSMT 3501: Introduction to Research Methods. This course will provide an opportunity for participants to establish or advance their understanding of research through critical exploration of research language, ethics, and approaches. The course introduces the language of research, ethical principles and challenges, and the elements of the ...

  22. (Pdf) Handbook of Research Methodology

    A Handbook of Research Methodology is recommended for use in undergraduate and postgraduate courses focusing on research methodologies in various disciplines Discover the world's research 25 ...

  23. Basic Research

    This course develop the learners a conceptual understanding of research, its need and ethical research practices. It explain the methods and techniques of qualitative research to the learner. Facilitate them to apply statistical techniques for analysis of data. And it also helps to know about presenting the data in various forms.

  24. PDF Course Name: Qualitative Research Methods Course Number

    As we advance the course, each week you will be given assignments to understand the process of qualitative research, which is geared to help you develop and conduct your own research project. At the end of the course, you will be able to write a qualitative research proposal using the work you have done throughout the course. Learning Resources

  25. Implementing a research methods curriculum for first year hematology

    9034 Background: The Hematology/Oncology Fellowship Program at the University of Alabama at Birmingham is an ACGME accredited, three-year academic training program. Fellows are expected to participate in at least one mentored research project during their second and third years of training. The program, however, did not provide formal training in research methods. Here, we provide the results ...

  26. PDF Course Syllabus for HRD 6343: Foundations of Qualitative Research Long

    Course Description: This course examines foundational qualitative methods and tools for HRD research including designs/methods, data collection, data analysis and reporting of findings. Learning includes a combination of lecture, field assignments, writing, and reporting. Required Textbook/Materials: 1.

  27. MRes Social Research in Education 2024

    Introducing Mixed Methods in Social Research. In this module you will be introduced to the selection and use of qualitative and quantitative methods for data collection and analysis in social research contexts. This will be done in both empirical and theoretical research contexts and will explore the merits of employing a mixed methods approach ...

  28. COS pre-med students get hands-on clinical medicine training

    The UTA College of Science, a Carnegie R1 research institution, is preparing the next generation of leaders in science through innovative education and hands-on research and offers programs in Biology, Chemistry & Biochemistry, Data Science, Earth & Environmental Sciences, Health Professions, Mathematics, Physics and Psychology.

  29. The race to deploy generative AI and raise skills

    We used methodology consistent with other McKinsey Global Institute reports on the future of work to model trends of job changes at the level of occupations, activities, and skills. ... demand for work in which basic cognitive skills predominate is expected to decline by 14 percent. Basic cognitive skills are required primarily in office ...

  30. Current status of community resources and priorities for weed genomics

    Weeds are attractive models for basic and applied research due to their impacts on agricultural systems and capacity to swiftly adapt in response to anthropogenic selection pressures. Currently, a lack of genomic information precludes research to elucidate the genetic basis of rapid adaptation for important traits like herbicide resistance and stress tolerance and the effect of evolutionary ...