Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Methodology

  • Independent vs. Dependent Variables | Definition & Examples

Independent vs. Dependent Variables | Definition & Examples

Published on February 3, 2022 by Pritha Bhandari . Revised on June 22, 2023.

In research, variables are any characteristics that can take on different values, such as height, age, temperature, or test scores.

Researchers often manipulate or measure independent and dependent variables in studies to test cause-and-effect relationships.

  • The independent variable is the cause. Its value is independent of other variables in your study.
  • The dependent variable is the effect. Its value depends on changes in the independent variable.

Your independent variable is the temperature of the room. You vary the room temperature by making it cooler for half the participants, and warmer for the other half.

Table of contents

What is an independent variable, types of independent variables, what is a dependent variable, identifying independent vs. dependent variables, independent and dependent variables in research, visualizing independent and dependent variables, other interesting articles, frequently asked questions about independent and dependent variables.

An independent variable is the variable you manipulate or vary in an experimental study to explore its effects. It’s called “independent” because it’s not influenced by any other variables in the study.

Independent variables are also called:

  • Explanatory variables (they explain an event or outcome)
  • Predictor variables (they can be used to predict the value of a dependent variable)
  • Right-hand-side variables (they appear on the right-hand side of a regression equation).

These terms are especially used in statistics , where you estimate the extent to which an independent variable change can explain or predict changes in the dependent variable.

Receive feedback on language, structure, and formatting

Professional editors proofread and edit your paper by focusing on:

  • Academic style
  • Vague sentences
  • Style consistency

See an example

independent variable experiment name

There are two main types of independent variables.

  • Experimental independent variables can be directly manipulated by researchers.
  • Subject variables cannot be manipulated by researchers, but they can be used to group research subjects categorically.

Experimental variables

In experiments, you manipulate independent variables directly to see how they affect your dependent variable. The independent variable is usually applied at different levels to see how the outcomes differ.

You can apply just two levels in order to find out if an independent variable has an effect at all.

You can also apply multiple levels to find out how the independent variable affects the dependent variable.

You have three independent variable levels, and each group gets a different level of treatment.

You randomly assign your patients to one of the three groups:

  • A low-dose experimental group
  • A high-dose experimental group
  • A placebo group (to research a possible placebo effect )

Independent and dependent variables

A true experiment requires you to randomly assign different levels of an independent variable to your participants.

Random assignment helps you control participant characteristics, so that they don’t affect your experimental results. This helps you to have confidence that your dependent variable results come solely from the independent variable manipulation.

Subject variables

Subject variables are characteristics that vary across participants, and they can’t be manipulated by researchers. For example, gender identity, ethnicity, race, income, and education are all important subject variables that social researchers treat as independent variables.

It’s not possible to randomly assign these to participants, since these are characteristics of already existing groups. Instead, you can create a research design where you compare the outcomes of groups of participants with characteristics. This is a quasi-experimental design because there’s no random assignment. Note that any research methods that use non-random assignment are at risk for research biases like selection bias and sampling bias .

Your independent variable is a subject variable, namely the gender identity of the participants. You have three groups: men, women and other.

Your dependent variable is the brain activity response to hearing infant cries. You record brain activity with fMRI scans when participants hear infant cries without their awareness.

A dependent variable is the variable that changes as a result of the independent variable manipulation. It’s the outcome you’re interested in measuring, and it “depends” on your independent variable.

In statistics , dependent variables are also called:

  • Response variables (they respond to a change in another variable)
  • Outcome variables (they represent the outcome you want to measure)
  • Left-hand-side variables (they appear on the left-hand side of a regression equation)

The dependent variable is what you record after you’ve manipulated the independent variable. You use this measurement data to check whether and to what extent your independent variable influences the dependent variable by conducting statistical analyses.

Based on your findings, you can estimate the degree to which your independent variable variation drives changes in your dependent variable. You can also predict how much your dependent variable will change as a result of variation in the independent variable.

Distinguishing between independent and dependent variables can be tricky when designing a complex study or reading an academic research paper .

A dependent variable from one study can be the independent variable in another study, so it’s important to pay attention to research design .

Here are some tips for identifying each variable type.

Recognizing independent variables

Use this list of questions to check whether you’re dealing with an independent variable:

  • Is the variable manipulated, controlled, or used as a subject grouping method by the researcher?
  • Does this variable come before the other variable in time?
  • Is the researcher trying to understand whether or how this variable affects another variable?

Recognizing dependent variables

Check whether you’re dealing with a dependent variable:

  • Is this variable measured as an outcome of the study?
  • Is this variable dependent on another variable in the study?
  • Does this variable get measured only after other variables are altered?

Here's why students love Scribbr's proofreading services

Discover proofreading & editing

Independent and dependent variables are generally used in experimental and quasi-experimental research.

Here are some examples of research questions and corresponding independent and dependent variables.

Research question Independent variable Dependent variable(s)
Do tomatoes grow fastest under fluorescent, incandescent, or natural light?
What is the effect of intermittent fasting on blood sugar levels?
Is medical marijuana effective for pain reduction in people with chronic pain?
To what extent does remote working increase job satisfaction?

For experimental data, you analyze your results by generating descriptive statistics and visualizing your findings. Then, you select an appropriate statistical test to test your hypothesis .

The type of test is determined by:

  • your variable types
  • level of measurement
  • number of independent variable levels.

You’ll often use t tests or ANOVAs to analyze your data and answer your research questions.

In quantitative research , it’s good practice to use charts or graphs to visualize the results of studies. Generally, the independent variable goes on the x -axis (horizontal) and the dependent variable on the y -axis (vertical).

The type of visualization you use depends on the variable types in your research questions:

  • A bar chart is ideal when you have a categorical independent variable.
  • A scatter plot or line graph is best when your independent and dependent variables are both quantitative.

To inspect your data, you place your independent variable of treatment level on the x -axis and the dependent variable of blood pressure on the y -axis.

You plot bars for each treatment group before and after the treatment to show the difference in blood pressure.

independent and dependent variables

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

  • Normal distribution
  • Degrees of freedom
  • Null hypothesis
  • Discourse analysis
  • Control groups
  • Mixed methods research
  • Non-probability sampling
  • Quantitative research
  • Ecological validity

Research bias

  • Rosenthal effect
  • Implicit bias
  • Cognitive bias
  • Selection bias
  • Negativity bias
  • Status quo bias

An independent variable is the variable you manipulate, control, or vary in an experimental study to explore its effects. It’s called “independent” because it’s not influenced by any other variables in the study.

A dependent variable is what changes as a result of the independent variable manipulation in experiments . It’s what you’re interested in measuring, and it “depends” on your independent variable.

In statistics, dependent variables are also called:

Determining cause and effect is one of the most important parts of scientific research. It’s essential to know which is the cause – the independent variable – and which is the effect – the dependent variable.

You want to find out how blood sugar levels are affected by drinking diet soda and regular soda, so you conduct an experiment .

  • The type of soda – diet or regular – is the independent variable .
  • The level of blood sugar that you measure is the dependent variable – it changes depending on the type of soda.

No. The value of a dependent variable depends on an independent variable, so a variable cannot be both independent and dependent at the same time. It must be either the cause or the effect, not both!

Yes, but including more than one of either type requires multiple research questions .

For example, if you are interested in the effect of a diet on health, you can use multiple measures of health: blood sugar, blood pressure, weight, pulse, and many more. Each of these is its own dependent variable with its own research question.

You could also choose to look at the effect of exercise levels as well as diet, or even the additional effect of the two combined. Each of these is a separate independent variable .

To ensure the internal validity of an experiment , you should only change one independent variable at a time.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

Bhandari, P. (2023, June 22). Independent vs. Dependent Variables | Definition & Examples. Scribbr. Retrieved September 3, 2024, from https://www.scribbr.com/methodology/independent-and-dependent-variables/

Is this article helpful?

Pritha Bhandari

Pritha Bhandari

Other students also liked, guide to experimental design | overview, steps, & examples, explanatory and response variables | definitions & examples, confounding variables | definition, examples & controls, "i thought ai proofreading was useless but..".

I've been using Scribbr for years now and I know it's a service that won't disappoint. It does a good job spotting mistakes”

Independent Variables (Definition + 43 Examples)

practical psychology logo

Have you ever wondered how scientists make discoveries and how researchers come to understand the world around us? A crucial tool in their kit is the concept of the independent variable, which helps them delve into the mysteries of science and everyday life.

An independent variable is a condition or factor that researchers manipulate to observe its effect on another variable, known as the dependent variable. In simpler terms, it’s like adjusting the dials and watching what happens! By changing the independent variable, scientists can see if and how it causes changes in what they are measuring or observing, helping them make connections and draw conclusions.

In this article, we’ll explore the fascinating world of independent variables, journey through their history, examine theories, and look at a variety of examples from different fields.

History of the Independent Variable

pill bottles

Once upon a time, in a world thirsty for understanding, people observed the stars, the seas, and everything in between, seeking to unlock the mysteries of the universe.

The story of the independent variable begins with a quest for knowledge, a journey taken by thinkers and tinkerers who wanted to explain the wonders and strangeness of the world.

Origins of the Concept

The seeds of the idea of independent variables were sown by Sir Francis Galton , an English polymath, in the 19th century. Galton wore many hats—he was a psychologist, anthropologist, meteorologist, and a statistician!

It was his diverse interests that led him to explore the relationships between different factors and their effects. Galton was curious—how did one thing lead to another, and what could be learned from these connections?

As Galton delved into the world of statistical theories , the concept of independent variables started taking shape.

He was interested in understanding how characteristics, like height and intelligence, were passed down through generations.

Galton’s work laid the foundation for later thinkers to refine and expand the concept, turning it into an invaluable tool for scientific research.

Evolution over Time

After Galton’s pioneering work, the concept of the independent variable continued to evolve and grow. Scientists and researchers from various fields adopted and adapted it, finding new ways to use it to make sense of the world.

They discovered that by manipulating one factor (the independent variable), they could observe changes in another (the dependent variable), leading to groundbreaking insights and discoveries.

Through the years, the independent variable became a cornerstone in experimental design . Researchers in fields like physics, biology, psychology, and sociology used it to test hypotheses, develop theories, and uncover the laws that govern our universe.

The idea that originated from Galton’s curiosity had bloomed into a universal key, unlocking doors to knowledge across disciplines.

Importance in Scientific Research

Today, the independent variable stands tall as a pillar of scientific research. It helps scientists and researchers ask critical questions, test their ideas, and find answers. Without independent variables, we wouldn’t have many of the advancements and understandings that we take for granted today.

The independent variable plays a starring role in experiments, helping us learn about everything from the smallest particles to the vastness of space. It helps researchers create vaccines, understand social behaviors, explore ecological systems, and even develop new technologies.

In the upcoming sections, we’ll dive deeper into what independent variables are, how they work, and how they’re used in various fields.

Together, we’ll uncover the magic of this scientific concept and see how it continues to shape our understanding of the world around us.

What is an Independent Variable?

Embarking on the captivating journey of scientific exploration requires us to grasp the essential terms and ideas. It's akin to a treasure hunter mastering the use of a map and compass.

In our adventure through the realm of independent variables, we’ll delve deeper into some fundamental concepts and definitions to help us navigate this exciting world.

Variables in Research

In the grand tapestry of research, variables are the gems that researchers seek. They’re elements, characteristics, or behaviors that can shift or vary in different circumstances.

Picture them as the myriad of ingredients in a chef’s kitchen—each variable can be adjusted or modified to create a myriad of dishes, each with a unique flavor!

Understanding variables is essential as they form the core of every scientific experiment and observational study.

Types of Variables

Independent Variable The star of our story, the independent variable, is the one that researchers change or control to study its effects. It’s like a chef experimenting with different spices to see how each one alters the taste of the soup. The independent variable is the catalyst, the initial spark that sets the wheels of research in motion.

Dependent Variable The dependent variable is the outcome we observe and measure . It’s the altered flavor of the soup that results from the chef’s culinary experiments. This variable depends on the changes made to the independent variable, hence the name!

Observing how the dependent variable reacts to changes helps scientists draw conclusions and make discoveries.

Control Variable Control variables are the unsung heroes of scientific research. They’re the constants, the elements that researchers keep the same to ensure the integrity of the experiment.

Imagine if our chef used a different type of broth each time he experimented with spices—the results would be all over the place! Control variables keep the experiment grounded and help researchers be confident in their findings.

Confounding Variables Imagine a hidden rock in a stream, changing the water’s flow in unexpected ways. Confounding variables are similar—they are external factors that can sneak into experiments and influence the outcome , adding twists to our scientific story.

These variables can blur the relationship between the independent and dependent variables, making the results of the study a bit puzzly. Detecting and controlling these hidden elements helps researchers ensure the accuracy of their findings and reach true conclusions.

There are of course other types of variables, and different ways to manipulate them called " schedules of reinforcement ," but we won't get into that too much here.

Role of the Independent Variable

Manipulation When researchers manipulate the independent variable, they are orchestrating a symphony of cause and effect. They’re adjusting the strings, the brass, the percussion, observing how each change influences the melody—the dependent variable.

This manipulation is at the heart of experimental research. It allows scientists to explore relationships, unravel patterns, and unearth the secrets hidden within the fabric of our universe.

Observation With every tweak and adjustment made to the independent variable, researchers are like seasoned detectives, observing the dependent variable for changes, collecting clues, and piecing together the puzzle.

Observing the effects and changes that occur helps them deduce relationships, formulate theories, and expand our understanding of the world. Every observation is a step towards solving the mysteries of nature and human behavior.

Identifying Independent Variables

Characteristics Identifying an independent variable in the vast landscape of research can seem daunting, but fear not! Independent variables have distinctive characteristics that make them stand out.

They’re the elements that are deliberately changed or controlled in an experiment to study their effects on the dependent variable. Recognizing these characteristics is like learning to spot footprints in the sand—it leads us to the heart of the discovery!

In Different Types of Research The world of research is diverse and varied, and the independent variable dons many guises! In the field of medicine, it might manifest as the dosage of a drug administered to patients.

In psychology, it could take the form of different learning methods applied to study memory retention. In each field, identifying the independent variable correctly is the golden key that unlocks the treasure trove of knowledge and insights.

As we forge ahead on our enlightening journey, equipped with a deeper understanding of independent variables and their roles, we’re ready to delve into the intricate theories and diverse examples that underscore their significance.

Independent Variables in Research

researcher doing research

Now that we’re acquainted with the basic concepts and have the tools to identify independent variables, let’s dive into the fascinating ocean of theories and frameworks.

These theories are like ancient scrolls, providing guidelines and blueprints that help scientists use independent variables to uncover the secrets of the universe.

Scientific Method

What is it and How Does it Work? The scientific method is like a super-helpful treasure map that scientists use to make discoveries. It has steps we follow: asking a question, researching, guessing what will happen (that's a hypothesis!), experimenting, checking the results, figuring out what they mean, and telling everyone about it.

Our hero, the independent variable, is the compass that helps this adventure go the right way!

How Independent Variables Lead the Way In the scientific method, the independent variable is like the captain of a ship, leading everyone through unknown waters.

Scientists change this variable to see what happens and to learn new things. It’s like having a compass that points us towards uncharted lands full of knowledge!

Experimental Design

The Basics of Building Constructing an experiment is like building a castle, and the independent variable is the cornerstone. It’s carefully chosen and manipulated to see how it affects the dependent variable. Researchers also identify control and confounding variables, ensuring the castle stands strong, and the results are reliable.

Keeping Everything in Check In every experiment, maintaining control is key to finding the treasure. Scientists use control variables to keep the conditions consistent, ensuring that any changes observed are truly due to the independent variable. It’s like ensuring the castle’s foundation is solid, supporting the structure as it reaches for the sky.

Hypothesis Testing

Making Educated Guesses Before they start experimenting, scientists make educated guesses called hypotheses . It’s like predicting which X marks the spot of the treasure! It often includes the independent variable and the expected effect on the dependent variable, guiding researchers as they navigate through the experiment.

Independent Variables in the Spotlight When testing these guesses, the independent variable is the star of the show! Scientists change and watch this variable to see if their guesses were right. It helps them figure out new stuff and learn more about the world around us!

Statistical Analysis

Figuring Out Relationships After the experimenting is done, it’s time for scientists to crack the code! They use statistics to understand how the independent and dependent variables are related and to uncover the hidden stories in the data.

Experimenters have to be careful about how they determine the validity of their findings, which is why they use statistics. Something called "experimenter bias" can get in the way of having true (valid) results, because it's basically when the experimenter influences the outcome based on what they believe to be true (or what they want to be true!).

How Important are the Discoveries? Through statistical analysis, scientists determine the significance of their findings. It’s like discovering if the treasure found is made of gold or just shiny rocks. The analysis helps researchers know if the independent variable truly had an effect, contributing to the rich tapestry of scientific knowledge.

As we uncover more about how theories and frameworks use independent variables, we start to see how awesome they are in helping us learn more about the world. But we’re not done yet!

Up next, we’ll look at tons of examples to see how independent variables work their magic in different areas.

Examples of Independent Variables

Independent variables take on many forms, showcasing their versatility in a range of experiments and studies. Let’s uncover how they act as the protagonists in numerous investigations and learning quests!

Science Experiments

1) plant growth.

Consider an experiment aiming to observe the effect of varying water amounts on plant height. In this scenario, the amount of water given to the plants is the independent variable!

2) Freezing Water

Suppose we are curious about the time it takes for water to freeze at different temperatures. The temperature of the freezer becomes the independent variable as we adjust it to observe the results!

3) Light and Shadow

Have you ever observed how shadows change? In an experiment, adjusting the light angle to observe its effect on an object’s shadow makes the angle of light the independent variable!

4) Medicine Dosage

In medical studies, determining how varying medicine dosages influence a patient’s recovery is essential. Here, the dosage of the medicine administered is the independent variable!

5) Exercise and Health

Researchers might examine the impact of different exercise forms on individuals’ health. The various exercise forms constitute the independent variable in this study!

6) Sleep and Wellness

Have you pondered how the sleep duration affects your well-being the following day? In such research, the hours of sleep serve as the independent variable!

calm blue room

7) Learning Methods

Psychologists might investigate how diverse study methods influence test outcomes. Here, the different study methods adopted by students are the independent variable!

8) Mood and Music

Have you experienced varied emotions with different music genres? The genre of music played becomes the independent variable when researching its influence on emotions!

9) Color and Feelings

Suppose researchers are exploring how room colors affect individuals’ emotions. In this case, the room colors act as the independent variable!

Environment

10) rainfall and plant life.

Environmental scientists may study the influence of varying rainfall levels on vegetation. In this instance, the amount of rainfall is the independent variable!

11) Temperature and Animal Behavior

Examining how temperature variations affect animal behavior is fascinating. Here, the varying temperatures serve as the independent variable!

12) Pollution and Air Quality

Investigating the effects of different pollution levels on air quality is crucial. In such studies, the pollution level is the independent variable!

13) Internet Speed and Productivity

Researchers might explore how varying internet speeds impact work productivity. In this exploration, the internet speed is the independent variable!

14) Device Type and User Experience

Examining how different devices affect user experience is interesting. Here, the type of device used is the independent variable!

15) Software Version and Performance

Suppose a study aims to determine how different software versions influence system performance. The software version becomes the independent variable!

16) Teaching Style and Student Engagement

Educators might investigate the effect of varied teaching styles on student engagement. In such a study, the teaching style is the independent variable!

17) Class Size and Learning Outcome

Researchers could explore how different class sizes influence students’ learning. Here, the class size is the independent variable!

18) Homework Frequency and Academic Achievement

Examining the relationship between the frequency of homework assignments and academic success is essential. The frequency of homework becomes the independent variable!

19) Telescope Type and Celestial Observation

Astronomers might study how different telescopes affect celestial observation. In this scenario, the telescope type is the independent variable!

20) Light Pollution and Star Visibility

Investigating the influence of varying light pollution levels on star visibility is intriguing. Here, the level of light pollution is the independent variable!

21) Observation Time and Astronomical Detail

Suppose a study explores how observation duration affects the detail captured in astronomical images. The duration of observation serves as the independent variable!

22) Community Size and Social Interaction

Sociologists may examine how the size of a community influences social interactions. In this research, the community size is the independent variable!

23) Cultural Exposure and Social Tolerance

Investigating the effect of diverse cultural exposure on social tolerance is vital. Here, the level of cultural exposure is the independent variable!

24) Economic Status and Educational Attainment

Researchers could explore how different economic statuses impact educational achievements. In such studies, economic status is the independent variable!

25) Training Intensity and Athletic Performance

Sports scientists might study how varying training intensities affect athletes’ performance. In this case, the training intensity is the independent variable!

26) Equipment Type and Player Safety

Examining the relationship between different sports equipment and player safety is crucial. Here, the type of equipment used is the independent variable!

27) Team Size and Game Strategy

Suppose researchers are investigating how the size of a sports team influences game strategy. The team size becomes the independent variable!

28) Diet Type and Health Outcome

Nutritionists may explore the impact of various diets on individuals’ health. In this exploration, the type of diet followed is the independent variable!

29) Caloric Intake and Weight Change

Investigating how different caloric intakes influence weight change is essential. In such a study, the caloric intake is the independent variable!

30) Food Variety and Nutrient Absorption

Researchers could examine how consuming a variety of foods affects nutrient absorption. Here, the variety of foods consumed is the independent variable!

Real-World Examples of Independent Variables

wind turbine

Isn't it fantastic how independent variables play such an essential part in so many studies? But the excitement doesn't stop there!

Now, let’s explore how findings from these studies, led by independent variables, make a big splash in the real world and improve our daily lives!

Healthcare Advancements

31) treatment optimization.

By studying different medicine dosages and treatment methods as independent variables, doctors can figure out the best ways to help patients recover quicker and feel better. This leads to more effective medicines and treatment plans!

32) Lifestyle Recommendations

Researching the effects of sleep, exercise, and diet helps health experts give us advice on living healthier lives. By changing these independent variables, scientists uncover the secrets to feeling good and staying well!

Technological Innovations

33) speeding up the internet.

When scientists explore how different internet speeds affect our online activities, they’re able to develop technologies to make the internet faster and more reliable. This means smoother video calls and quicker downloads!

34) Improving User Experience

By examining how we interact with various devices and software, researchers can design technology that’s easier and more enjoyable to use. This leads to cooler gadgets and more user-friendly apps!

Educational Strategies

35) enhancing learning.

Investigating different teaching styles, class sizes, and study methods helps educators discover what makes learning fun and effective. This research shapes classrooms, teaching methods, and even homework!

36) Tailoring Student Support

By studying how students with diverse needs respond to different support strategies, educators can create personalized learning experiences. This means every student gets the help they need to succeed!

Environmental Protection

37) conserving nature.

Researching how rainfall, temperature, and pollution affect the environment helps scientists suggest ways to protect our planet. By studying these independent variables, we learn how to keep nature healthy and thriving!

38) Combating Climate Change

Scientists studying the effects of pollution and human activities on climate change are leading the way in finding solutions. By exploring these independent variables, we can develop strategies to combat climate change and protect the Earth!

Social Development

39) building stronger communities.

Sociologists studying community size, cultural exposure, and economic status help us understand what makes communities happy and united. This knowledge guides the development of policies and programs for stronger societies!

40) Promoting Equality and Tolerance

By exploring how exposure to diverse cultures affects social tolerance, researchers contribute to fostering more inclusive and harmonious societies. This helps build a world where everyone is respected and valued!

Enhancing Sports Performance

41) optimizing athlete training.

Sports scientists studying training intensity, equipment type, and team size help athletes reach their full potential. This research leads to better training programs, safer equipment, and more exciting games!

42) Innovating Sports Strategies

By investigating how different game strategies are influenced by various team compositions, researchers contribute to the evolution of sports. This means more thrilling competitions and matches for us to enjoy!

Nutritional Well-Being

43) guiding healthy eating.

Nutritionists researching diet types, caloric intake, and food variety help us understand what foods are best for our bodies. This knowledge shapes dietary guidelines and helps us make tasty, yet nutritious, meal choices!

44) Promoting Nutritional Awareness

By studying the effects of different nutrients and diets, researchers educate us on maintaining a balanced diet. This fosters a greater awareness of nutritional well-being and encourages healthier eating habits!

As we journey through these real-world applications, we witness the incredible impact of studies featuring independent variables. The exploration doesn’t end here, though!

Let’s continue our adventure and see how we can identify independent variables in our own observations and inquiries! Keep your curiosity alive, and let’s delve deeper into the exciting realm of independent variables!

Identifying Independent Variables in Everyday Scenarios

So, we’ve seen how independent variables star in many studies, but how about spotting them in our everyday life?

Recognizing independent variables can be like a treasure hunt – you never know where you might find one! Let’s uncover some tips and tricks to identify these hidden gems in various situations.

1) Asking Questions

One of the best ways to spot an independent variable is by asking questions! If you’re curious about something, ask yourself, “What am I changing or manipulating in this situation?” The thing you’re changing is likely the independent variable!

For example, if you’re wondering whether the amount of sunlight affects how quickly your laundry dries, the sunlight amount is your independent variable!

2) Making Observations

Keep your eyes peeled and observe the world around you! By watching how changes in one thing (like the amount of rain) affect something else (like the height of grass), you can identify the independent variable.

In this case, the amount of rain is the independent variable because it’s what’s changing!

3) Conducting Experiments

Get hands-on and conduct your own experiments! By changing one thing and observing the results, you’re identifying the independent variable.

If you’re growing plants and decide to water each one differently to see the effects, the amount of water is your independent variable!

4) Everyday Scenarios

In everyday scenarios, independent variables are all around!

When you adjust the temperature of your oven to bake cookies, the oven temperature is the independent variable.

Or if you’re deciding how much time to spend studying for a test, the study time is your independent variable!

5) Being Curious

Keep being curious and asking “What if?” questions! By exploring different possibilities and wondering how changing one thing could affect another, you’re on your way to identifying independent variables.

If you’re curious about how the color of a room affects your mood, the room color is the independent variable!

6) Reviewing Past Studies

Don’t forget about the treasure trove of past studies and experiments! By reviewing what scientists and researchers have done before, you can learn how they identified independent variables in their work.

This can give you ideas and help you recognize independent variables in your own explorations!

Exercises for Identifying Independent Variables

Ready for some practice? Let’s put on our thinking caps and try to identify the independent variables in a few scenarios.

Remember, the independent variable is what’s being changed or manipulated to observe the effect on something else! (You can see the answers below)

Scenario One: Cooking Time

You’re cooking pasta for dinner and want to find out how the cooking time affects its texture. What is the independent variable?

Scenario Two: Exercise Routine

You decide to try different exercise routines each week to see which one makes you feel the most energetic. What is the independent variable?

Scenario Three: Plant Fertilizer

You’re growing tomatoes in your garden and decide to use different types of fertilizer to see which one helps them grow the best. What is the independent variable?

Scenario Four: Study Environment

You’re preparing for an important test and try studying in different environments (quiet room, coffee shop, library) to see where you concentrate best. What is the independent variable?

Scenario Five: Sleep Duration

You’re curious to see how the number of hours you sleep each night affects your mood the next day. What is the independent variable?

By practicing identifying independent variables in different scenarios, you’re becoming a true independent variable detective. Keep practicing, stay curious, and you’ll soon be spotting independent variables everywhere you go.

Independent Variable: The cooking time is the independent variable. You are changing the cooking time to observe its effect on the texture of the pasta.

Independent Variable: The type of exercise routine is the independent variable. You are trying out different exercise routines each week to see which one makes you feel the most energetic.

Independent Variable: The type of fertilizer is the independent variable. You are using different types of fertilizer to observe their effects on the growth of the tomatoes.

Independent Variable: The study environment is the independent variable. You are studying in different environments to see where you concentrate best.

Independent Variable: The number of hours you sleep is the independent variable. You are changing your sleep duration to see how it affects your mood the next day.

Whew, what a journey we’ve had exploring the world of independent variables! From understanding their definition and role to diving into a myriad of examples and real-world impacts, we’ve uncovered the treasures hidden in the realm of independent variables.

The beauty of independent variables lies in their ability to unlock new knowledge and insights, guiding us to discoveries that improve our lives and the world around us.

By identifying and studying these variables, we embark on exciting learning adventures, solving mysteries and answering questions about the universe we live in.

Remember, the joy of discovery doesn’t end here. The world is brimming with questions waiting to be answered and mysteries waiting to be solved.

Keep your curiosity alive, continue exploring, and who knows what incredible discoveries lie ahead.

Related posts:

  • Confounding Variable in Psychology (Examples + Definition)
  • 19+ Experimental Design Examples (Methods + Types)
  • Variable Interval Reinforcement Schedule (Examples)
  • Variable Ratio Reinforcement Schedule (Examples)
  • State Dependent Memory + Learning (Definition and Examples)

Reference this article:

About The Author

Photo of author

Free Personality Test

Free Personality Quiz

Free Memory Test

Free Memory Test

Free IQ Test

Free IQ Test

PracticalPie.com is a participant in the Amazon Associates Program. As an Amazon Associate we earn from qualifying purchases.

Follow Us On:

Youtube Facebook Instagram X/Twitter

Psychology Resources

Developmental

Personality

Relationships

Psychologists

Serial Killers

Psychology Tests

Personality Quiz

Memory Test

Depression test

Type A/B Personality Test

© PracticalPsychology. All rights reserved

Privacy Policy | Terms of Use

helpful professor logo

15 Independent and Dependent Variable Examples

15 Independent and Dependent Variable Examples

Dave Cornell (PhD)

Dr. Cornell has worked in education for more than 20 years. His work has involved designing teacher certification for Trinity College in London and in-service training for state governments in the United States. He has trained kindergarten teachers in 8 countries and helped businessmen and women open baby centers and kindergartens in 3 countries.

Learn about our Editorial Process

15 Independent and Dependent Variable Examples

Chris Drew (PhD)

This article was peer-reviewed and edited by Chris Drew (PhD). The review process on Helpful Professor involves having a PhD level expert fact check, edit, and contribute to articles. Reviewers ensure all content reflects expert academic consensus and is backed up with reference to academic studies. Dr. Drew has published over 20 academic articles in scholarly journals. He is the former editor of the Journal of Learning Development in Higher Education and holds a PhD in Education from ACU.

independent variable experiment name

An independent variable (IV) is what is manipulated in a scientific experiment to determine its effect on the dependent variable (DV).

By varying the level of the independent variable and observing associated changes in the dependent variable, a researcher can conclude whether the independent variable affects the dependent variable or not.

This can provide very valuable information when studying just about any subject.

Because the researcher controls the level of the independent variable, it can be determined if the independent variable has a causal effect on the dependent variable.

The term causation is vitally important. Scientists want to know what causes changes in the dependent variable. The only way to do that is to manipulate the independent variable and observe any changes in the dependent variable.

Definition of Independent and Dependent Variables

The independent variable and dependent variable are used in a very specific type of scientific study called the experiment .

Although there are many variations of the experiment, generally speaking, it involves either the presence or absence of the independent variable and the observation of what happens to the dependent variable.

The research participants are randomly assigned to either receive the independent variable (called the treatment condition), or not receive the independent variable (called the control condition).

Other variations of an experiment might include having multiple levels of the independent variable.

If the independent variable affects the dependent variable, then it should be possible to observe changes in the dependent variable based on the presence or absence of the independent variable.  

Of course, there are a lot of issues to consider when conducting an experiment, but these are the basic principles.

These concepts should not be confused with predictor and outcome variables .

Examples of Independent and Dependent Variables

1. gatorade and improved athletic performance.

A sports medicine researcher has been hired by Gatorade to test the effects of its sports drink on athletic performance. The company wants to claim that when an athlete drinks Gatorade, their performance will improve.

If they can back up that claim with hard scientific data, that would be great for sales.

So, the researcher goes to a nearby university and randomly selects both male and female athletes from several sports: track and field, volleyball, basketball, and football. Each athlete will run on a treadmill for one hour while their heart rate is tracked.

All of the athletes are given the exact same amount of liquid to consume 30-minutes before and during their run. Half are given Gatorade, and the other half are given water, but no one knows what they are given because both liquids have been colored.

In this example, the independent variable is Gatorade, and the dependent variable is heart rate.  

2. Chemotherapy and Cancer

A hospital is investigating the effectiveness of a new type of chemotherapy on cancer. The researchers identified 120 patients with relatively similar types of cancerous tumors in both size and stage of progression.

The patients are randomly assigned to one of three groups: one group receives no chemotherapy, one group receives a low dose of chemotherapy, and one group receives a high dose of chemotherapy.

Each group receives chemotherapy treatment three times a week for two months, except for the no-treatment group. At the end of two months, the doctors measure the size of each patient’s tumor.

In this study, despite the ethical issues (remember this is just a hypothetical example), the independent variable is chemotherapy, and the dependent variable is tumor size.

3. Interior Design Color and Eating Rate

A well-known fast-food corporation wants to know if the color of the interior of their restaurants will affect how fast people eat. Of course, they would prefer that consumers enter and exit quickly to increase sales volume and profit.

So, they rent space in a large shopping mall and create three different simulated restaurant interiors of different colors. One room is painted mostly white with red trim and seats; one room is painted mostly white with blue trim and seats; and one room is painted mostly white with off-white trim and seats.

Next, they randomly select shoppers on Saturdays and Sundays to eat for free in one of the three rooms. Each shopper is given a box of the same food and drink items and sent to one of the rooms. The researchers record how much time elapses from the moment they enter the room to the moment they leave.

The independent variable is the color of the room, and the dependent variable is the amount of time spent in the room eating.

4. Hair Color and Attraction

A large multinational cosmetics company wants to know if the color of a woman’s hair affects the level of perceived attractiveness in males. So, they use Photoshop to manipulate the same image of a female by altering the color of her hair: blonde, brunette, red, and brown.

Next, they randomly select university males to enter their testing facilities. Each participant sits in front of a computer screen and responds to questions on a survey. At the end of the survey, the screen shows one of the photos of the female.

At the same time, software on the computer that utilizes the computer’s camera is measuring each male’s pupil dilation. The researchers believe that larger dilation indicates greater perceived attractiveness.

The independent variable is hair color, and the dependent variable is pupil dilation.

5. Mozart and Math

After many claims that listening to Mozart will make you smarter, a group of education specialists decides to put it to the test. So, first, they go to a nearby school in a middle-class neighborhood.

During the first three months of the academic year, they randomly select some 5th-grade classrooms to listen to Mozart during their lessons and exams. Other 5 th grade classrooms will not listen to any music during their lessons and exams.

The researchers then compare the scores of the exams between the two groups of classrooms.

Although there are a lot of obvious limitations to this hypothetical, it is the first step.

The independent variable is Mozart, and the dependent variable is exam scores.

6. Essential Oils and Sleep

A company that specializes in essential oils wants to examine the effects of lavender on sleep quality. They hire a sleep research lab to conduct the study. The researchers at the lab have their usual test volunteers sleep in individual rooms every night for one week.

The conditions of each room are all exactly the same, except that half of the rooms have lavender released into the rooms and half do not. While the study participants are sleeping, their heart rates and amount of time spent in deep sleep are recorded with high-tech equipment.

At the end of the study, the researchers compare the total amount of time spent in deep sleep of the lavender-room participants with the no lavender-room participants.

The independent variable in this sleep study is lavender, and the dependent variable is the total amount of time spent in deep sleep.

7. Teaching Style and Learning

A group of teachers is interested in which teaching method will work best for developing critical thinking skills.

So, they train a group of teachers in three different teaching styles : teacher-centered, where the teacher tells the students all about critical thinking; student-centered, where the students practice critical thinking and receive teacher feedback; and AI-assisted teaching, where the teacher uses a special software program to teach critical thinking.

At the end of three months, all the students take the same test that assesses critical thinking skills. The teachers then compare the scores of each of the three groups of students.

The independent variable is the teaching method, and the dependent variable is performance on the critical thinking test.

8. Concrete Mix and Bridge Strength

A chemicals company has developed three different versions of their concrete mix. Each version contains a different blend of specially developed chemicals. The company wants to know which version is the strongest.

So, they create three bridge molds that are identical in every way. They fill each mold with one of the different concrete mixtures. Next, they test the strength of each bridge by placing progressively more weight on its center until the bridge collapses.

In this study, the independent variable is the concrete mixture, and the dependent variable is the amount of weight at collapse.

9. Recipe and Consumer Preferences

People in the pizza business know that the crust is key. Many companies, large and small, will keep their recipe a top secret. Before rolling out a new type of crust, the company decides to conduct some research on consumer preferences.

The company has prepared three versions of their crust that vary in crunchiness, they are: a little crunchy, very crunchy, and super crunchy. They already have a pool of consumers that fit their customer profile and they often use them for testing.

Each participant sits in a booth and takes a bite of one version of the crust. They then indicate how much they liked it by pressing one of 5 buttons: didn’t like at all, liked, somewhat liked, liked very much, loved it.

The independent variable is the level of crust crunchiness, and the dependent variable is how much it was liked.

10. Protein Supplements and Muscle Mass

A large food company is considering entering the health and nutrition sector. Their R&D food scientists have developed a protein supplement that is designed to help build muscle mass for people that work out regularly.

The company approaches several gyms near its headquarters. They enlist the cooperation of over 120 gym rats that work out 5 days a week. Their muscle mass is measured, and only those with a lower level are selected for the study, leaving a total of 80 study participants.

They randomly assign half of the participants to take the recommended dosage of their supplement every day for three months after each workout. The other half takes the same amount of something that looks the same but actually does nothing to the body.

At the end of three months, the muscle mass of all participants is measured.

The independent variable is the supplement, and the dependent variable is muscle mass.  

11. Air Bags and Skull Fractures

In the early days of airbags , automobile companies conducted a great deal of testing. At first, many people in the industry didn’t think airbags would be effective at all. Fortunately, there was a way to test this theory objectively.

In a representative example: Several crash cars were outfitted with an airbag, and an equal number were not. All crash cars were of the same make, year, and model. Then the crash experts rammed each car into a crash wall at the same speed. Sensors on the crash dummy skulls allowed for a scientific analysis of how much damage a human skull would incur.

The amount of skull damage of dummies in cars with airbags was then compared with those without airbags.

The independent variable was the airbag and the dependent variable was the amount of skull damage.

12. Vitamins and Health

Some people take vitamins every day. A group of health scientists decides to conduct a study to determine if taking vitamins improves health.

They randomly select 1,000 people that are relatively similar in terms of their physical health. The key word here is “similar.”

Because the scientists have an unlimited budget (and because this is a hypothetical example, all of the participants have the same meals delivered to their homes (breakfast, lunch, and dinner), every day for one year.

In addition, the scientists randomly assign half of the participants to take a set of vitamins, supplied by the researchers every day for 1 year. The other half do not take the vitamins.

At the end of one year, the health of all participants is assessed, using blood pressure and cholesterol level as the key measurements.

In this highly unrealistic study, the independent variable is vitamins, and the dependent variable is health, as measured by blood pressure and cholesterol levels.

13. Meditation and Stress

Does practicing meditation reduce stress? If you have ever wondered if this is true or not, then you are in luck because there is a way to know one way or the other.

All we have to do is find 90 people that are similar in age, stress levels, diet and exercise, and as many other factors as we can think of.

Next, we randomly assign each person to either practice meditation every day, three days a week, or not at all. After three months, we measure the stress levels of each person and compare the groups.

How should we measure stress? Well, there are a lot of ways. We could measure blood pressure, or the amount of the stress hormone cortisol in their blood, or by using a paper and pencil measure such as a questionnaire that asks them how much stress they feel.

In this study, the independent variable is meditation and the dependent variable is the amount of stress (however it is measured).

14. Video Games and Aggression

When video games started to become increasingly graphic, it was a huge concern in many countries in the world. Educators, social scientists, and parents were shocked at how graphic games were becoming.

Since then, there have been hundreds of studies conducted by psychologists and other researchers. A lot of those studies used an experimental design that involved males of various ages randomly assigned to play a graphic or non-graphic video game.

Afterward, their level of aggression was measured via a wide range of methods, including direct observations of their behavior, their actions when given the opportunity to be aggressive, or a variety of other measures.

So many studies have used so many different ways of measuring aggression.

In these experimental studies, the independent variable was graphic video games, and the dependent variable was observed level of aggression.

15. Vehicle Exhaust and Cognitive Performance

Car pollution is a concern for a lot of reasons. In addition to being bad for the environment, car exhaust may cause damage to the brain and impair cognitive performance.

One way to examine this possibility would be to conduct an animal study. The research would look something like this: laboratory rats would be raised in three different rooms that varied in the degree of car exhaust circulating in the room: no exhaust, little exhaust, or a lot of exhaust.

After a certain period of time, perhaps several months, the effects on cognitive performance could be measured.

One common way of assessing cognitive performance in laboratory rats is by measuring the amount of time it takes to run a maze successfully. It would also be possible to examine the physical effects of car exhaust on the brain by conducting an autopsy.

In this animal study, the independent variable would be car exhaust and the dependent variable would be amount of time to run a maze.

Read Next: Extraneous Variables Examples

The experiment is an incredibly valuable way to answer scientific questions regarding the cause and effect of certain variables. By manipulating the level of an independent variable and observing corresponding changes in a dependent variable, scientists can gain an understanding of many phenomena.

For example, scientists can learn if graphic video games make people more aggressive, if mediation reduces stress, if Gatorade improves athletic performance, and even if certain medical treatments can cure cancer.

The determination of causality is the key benefit of manipulating the independent variable and them observing changes in the dependent variable. Other research methodologies can reveal factors that are related to the dependent variable or associated with the dependent variable, but only when the independent variable is controlled by the researcher can causality be determined.

Ferguson, C. J. (2010). Blazing Angels or Resident Evil? Can graphic video games be a force for good? Review of General Psychology, 14 (2), 68-81. https://doi.org/10.1037/a0018941

Flannelly, L. T., Flannelly, K. J., & Jankowski, K. R. (2014). Independent, dependent, and other variables in healthcare and chaplaincy research. Journal of Health Care Chaplaincy , 20 (4), 161–170. https://doi.org/10.1080/08854726.2014.959374

Manocha, R., Black, D., Sarris, J., & Stough, C.(2011). A randomized, controlled trial of meditation for work stress, anxiety and depressed mood in full-time workers. Evidence-Based Complementary and Alternative Medicine , vol. 2011, Article ID 960583. https://doi.org/10.1155/2011/960583

Rumrill, P. D., Jr. (2004). Non-manipulation quantitative designs. Work (Reading, Mass.) , 22 (3), 255–260.

Taylor, J. M., & Rowe, B. J. (2012). The “Mozart Effect” and the mathematical connection, Journal of College Reading and Learning, 42 (2), 51-66.  https://doi.org/10.1080/10790195.2012.10850354

Dave

  • Dave Cornell (PhD) https://helpfulprofessor.com/author/dave-cornell-phd/ 23 Achieved Status Examples
  • Dave Cornell (PhD) https://helpfulprofessor.com/author/dave-cornell-phd/ 25 Defense Mechanisms Examples
  • Dave Cornell (PhD) https://helpfulprofessor.com/author/dave-cornell-phd/ 15 Theory of Planned Behavior Examples
  • Dave Cornell (PhD) https://helpfulprofessor.com/author/dave-cornell-phd/ 18 Adaptive Behavior Examples

Chris

  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd/ 23 Achieved Status Examples
  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd/ 15 Ableism Examples
  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd/ 25 Defense Mechanisms Examples
  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd/ 15 Theory of Planned Behavior Examples

Leave a Comment Cancel Reply

Your email address will not be published. Required fields are marked *

  • Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Sweepstakes
  • Guided Meditations
  • Verywell Mind Insights
  • 2024 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

Independent Variables in Psychology

Adam Berry / Getty Images

  • Identifying

Potential Pitfalls

The independent variable (IV) in psychology is the characteristic of an experiment that is manipulated or changed by researchers, not by other variables in the experiment.

For example, in an experiment looking at the effects of studying on test scores, studying would be the independent variable. Researchers are trying to determine if changes to the independent variable (studying) result in significant changes to the dependent variable (the test results).

In general, experiments have these three types of variables: independent, dependent, and controlled.

Identifying the Independent Variable

If you are having trouble identifying the independent variables of an experiment, there are some questions that may help:

  • Is the variable one that is being manipulated by the experimenters?
  • Are researchers trying to identify how the variable influences another variable?
  • Is the variable something that cannot be changed but that is not dependent on other variables in the experiment?

Researchers are interested in investigating the effects of the independent variable on other variables, which are known as dependent variables (DV). The independent variable is one that the researchers either manipulate (such as the amount of something) or that already exists but is not dependent upon other variables (such as the age of the participants).

Below are the key differences when looking at an independent variable vs. dependent variable.

Expected to influence the dependent variable

Doesn't change as a result of the experiment

Can be manipulated by researchers in order to study the dependent variable

Expected to be affected by the independent variable

Expected to change as a result of the experiment

Not manipulated by researchers; its changes occur as a result of the independent variable

There can be all different types of independent variables. The independent variables in a particular experiment all depend on the hypothesis and what the experimenters are investigating.

Independent variables also have different levels. In some experiments, there may only be one level of an IV. In other cases, multiple levels of the IV may be used to look at the range of effects that the variable may have.

In an experiment on the effects of the type of diet on weight loss, for example, researchers might look at several different types of diet. Each type of diet that the experimenters look at would be a different level of the independent variable while weight loss would always be the dependent variable.

To understand this concept, it's helpful to take a look at the independent variable in research examples.

In Organizations

A researcher wants to determine if the color of an office has any effect on worker productivity. In an experiment, one group of workers performs a task in a yellow room while another performs the same task in a blue room. In this example, the color of the office is the independent variable.

In the Workplace

A business wants to determine if giving employees more control over how to do their work leads to increased job satisfaction. In an experiment, one group of workers is given a great deal of input in how they perform their work, while the other group is not. The amount of input the workers have over their work is the independent variable in this example.

In Educational Research

Educators are interested in whether participating in after-school math tutoring can increase scores on standardized math exams. In an experiment, one group of students attends an after-school tutoring session twice a week while another group of students does not receive this additional assistance. In this case, participation in after-school math tutoring is the independent variable.

In Mental Health Research

Researchers want to determine if a new type of treatment will lead to a reduction in anxiety for patients living with social phobia. In an experiment, some volunteers receive the new treatment, another group receives a different treatment, and a third group receives no treatment. The independent variable in this example is the type of therapy .

Sometimes varying the independent variables will result in changes in the dependent variables. In other cases, researchers might find that changes in the independent variables have no effect on the variables that are being measured.

At the outset of an experiment, it is important for researchers to operationally define the independent variable. An operational definition describes exactly what the independent variable is and how it is measured. Doing this helps ensure that the experiments know exactly what they are looking at or manipulating, allowing them to measure it and determine if it is the IV that is causing changes in the DV.

Choosing an Independent Variable

If you are designing an experiment, here are a few tips for choosing an independent variable (or variables):

  • Select independent variables that you think will cause changes in another variable. Come up with a hypothesis for what you expect to happen.
  • Look at other experiments for examples and identify different types of independent variables.
  • Keep your control group and experimental groups similar in other characteristics, but vary only the treatment they receive in terms of the independent variable.   For example, your control group will receive either no treatment or no changes in the independent variable while your experimental group will receive the treatment or a different level of the independent variable.

It is also important to be aware that there may be other variables that might influence the results of an experiment. Two other kinds of variables that might influence the outcome include:

  • Extraneous variables : These are variables that might affect the relationships between the independent variable and the dependent variable; experimenters usually try to identify and control for these variables. 
  • Confounding variables : When an extraneous variable cannot be controlled for in an experiment, it is known as a confounding variable . 

Extraneous variables can also include demand characteristics (which are clues about how the participants should respond) and experimenter effects (which is when the researchers accidentally provide clues about how a participant will respond).

Kaliyadan F, Kulkarni V. Types of variables, descriptive statistics, and sample size .  Indian Dermatol Online J . 2019;10(1):82-86. doi:10.4103/idoj.IDOJ_468_18

Weiten, W. Psychology: Themes and Variations, 10th ed . Boston, MA: Cengage Learning; 2017.

National Library of Medicine. Dependent and independent variables .

By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

Independent and Dependent Variables

Saul McLeod, PhD

Editor-in-Chief for Simply Psychology

BSc (Hons) Psychology, MRes, PhD, University of Manchester

Saul McLeod, PhD., is a qualified psychology teacher with over 18 years of experience in further and higher education. He has been published in peer-reviewed journals, including the Journal of Clinical Psychology.

Learn about our Editorial Process

Olivia Guy-Evans, MSc

Associate Editor for Simply Psychology

BSc (Hons) Psychology, MSc Psychology of Education

Olivia Guy-Evans is a writer and associate editor for Simply Psychology. She has previously worked in healthcare and educational sectors.

On This Page:

In research, a variable is any characteristic, number, or quantity that can be measured or counted in experimental investigations . One is called the dependent variable, and the other is the independent variable.

In research, the independent variable is manipulated to observe its effect, while the dependent variable is the measured outcome. Essentially, the independent variable is the presumed cause, and the dependent variable is the observed effect.

Variables provide the foundation for examining relationships, drawing conclusions, and making predictions in research studies.

variables2

Independent Variable

In psychology, the independent variable is the variable the experimenter manipulates or changes and is assumed to directly affect the dependent variable.

It’s considered the cause or factor that drives change, allowing psychologists to observe how it influences behavior, emotions, or other dependent variables in an experimental setting. Essentially, it’s the presumed cause in cause-and-effect relationships being studied.

For example, allocating participants to drug or placebo conditions (independent variable) to measure any changes in the intensity of their anxiety (dependent variable).

In a well-designed experimental study , the independent variable is the only important difference between the experimental (e.g., treatment) and control (e.g., placebo) groups.

By changing the independent variable and holding other factors constant, psychologists aim to determine if it causes a change in another variable, called the dependent variable.

For example, in a study investigating the effects of sleep on memory, the amount of sleep (e.g., 4 hours, 8 hours, 12 hours) would be the independent variable, as the researcher might manipulate or categorize it to see its impact on memory recall, which would be the dependent variable.

Dependent Variable

In psychology, the dependent variable is the variable being tested and measured in an experiment and is “dependent” on the independent variable.

In psychology, a dependent variable represents the outcome or results and can change based on the manipulations of the independent variable. Essentially, it’s the presumed effect in a cause-and-effect relationship being studied.

An example of a dependent variable is depression symptoms, which depend on the independent variable (type of therapy).

In an experiment, the researcher looks for the possible effect on the dependent variable that might be caused by changing the independent variable.

For instance, in a study examining the effects of a new study technique on exam performance, the technique would be the independent variable (as it is being introduced or manipulated), while the exam scores would be the dependent variable (as they represent the outcome of interest that’s being measured).

Examples in Research Studies

For example, we might change the type of information (e.g., organized or random) given to participants to see how this might affect the amount of information remembered.

In this example, the type of information is the independent variable (because it changes), and the amount of information remembered is the dependent variable (because this is being measured).

Independent and Dependent Variables Examples

For the following hypotheses, name the IV and the DV.

1. Lack of sleep significantly affects learning in 10-year-old boys.

IV……………………………………………………

DV…………………………………………………..

2. Social class has a significant effect on IQ scores.

DV……………………………………………….…

3. Stressful experiences significantly increase the likelihood of headaches.

4. Time of day has a significant effect on alertness.

Operationalizing Variables

To ensure cause and effect are established, it is important that we identify exactly how the independent and dependent variables will be measured; this is known as operationalizing the variables.

Operational variables (or operationalizing definitions) refer to how you will define and measure a specific variable as it is used in your study. This enables another psychologist to replicate your research and is essential in establishing reliability (achieving consistency in the results).

For example, if we are concerned with the effect of media violence on aggression, then we need to be very clear about what we mean by the different terms. In this case, we must state what we mean by the terms “media violence” and “aggression” as we will study them.

Therefore, you could state that “media violence” is operationally defined (in your experiment) as ‘exposure to a 15-minute film showing scenes of physical assault’; “aggression” is operationally defined as ‘levels of electrical shocks administered to a second ‘participant’ in another room.

In another example, the hypothesis “Young participants will have significantly better memories than older participants” is not operationalized. How do we define “young,” “old,” or “memory”? “Participants aged between 16 – 30 will recall significantly more nouns from a list of twenty than participants aged between 55 – 70” is operationalized.

The key point here is that we have clarified what we mean by the terms as they were studied and measured in our experiment.

If we didn’t do this, it would be very difficult (if not impossible) to compare the findings of different studies to the same behavior.

Operationalization has the advantage of generally providing a clear and objective definition of even complex variables. It also makes it easier for other researchers to replicate a study and check for reliability .

For the following hypotheses, name the IV and the DV and operationalize both variables.

1. Women are more attracted to men without earrings than men with earrings.

I.V._____________________________________________________________

D.V. ____________________________________________________________

Operational definitions:

I.V. ____________________________________________________________

2. People learn more when they study in a quiet versus noisy place.

I.V. _________________________________________________________

D.V. ___________________________________________________________

3. People who exercise regularly sleep better at night.

Can there be more than one independent or dependent variable in a study?

Yes, it is possible to have more than one independent or dependent variable in a study.

In some studies, researchers may want to explore how multiple factors affect the outcome, so they include more than one independent variable.

Similarly, they may measure multiple things to see how they are influenced, resulting in multiple dependent variables. This allows for a more comprehensive understanding of the topic being studied.

What are some ethical considerations related to independent and dependent variables?

Ethical considerations related to independent and dependent variables involve treating participants fairly and protecting their rights.

Researchers must ensure that participants provide informed consent and that their privacy and confidentiality are respected. Additionally, it is important to avoid manipulating independent variables in ways that could cause harm or discomfort to participants.

Researchers should also consider the potential impact of their study on vulnerable populations and ensure that their methods are unbiased and free from discrimination.

Ethical guidelines help ensure that research is conducted responsibly and with respect for the well-being of the participants involved.

Can qualitative data have independent and dependent variables?

Yes, both quantitative and qualitative data can have independent and dependent variables.

In quantitative research, independent variables are usually measured numerically and manipulated to understand their impact on the dependent variable. In qualitative research, independent variables can be qualitative in nature, such as individual experiences, cultural factors, or social contexts, influencing the phenomenon of interest.

The dependent variable, in both cases, is what is being observed or studied to see how it changes in response to the independent variable.

So, regardless of the type of data, researchers analyze the relationship between independent and dependent variables to gain insights into their research questions.

Can the same variable be independent in one study and dependent in another?

Yes, the same variable can be independent in one study and dependent in another.

The classification of a variable as independent or dependent depends on how it is used within a specific study. In one study, a variable might be manipulated or controlled to see its effect on another variable, making it independent.

However, in a different study, that same variable might be the one being measured or observed to understand its relationship with another variable, making it dependent.

The role of a variable as independent or dependent can vary depending on the research question and study design.

Print Friendly, PDF & Email

  • Skip to secondary menu
  • Skip to main content
  • Skip to primary sidebar

Statistics By Jim

Making statistics intuitive

Independent and Dependent Variables: Differences & Examples

By Jim Frost 15 Comments

Scientist at work on an experiment consider independent and dependent variables.

In this post, learn the definitions of independent and dependent variables, how to identify each type, how they differ between different types of studies, and see examples of them in use.

What is an Independent Variable?

Independent variables (IVs) are the ones that you include in the model to explain or predict changes in the dependent variable. The name helps you understand their role in statistical analysis. These variables are independent . In this context, independent indicates that they stand alone and other variables in the model do not influence them. The researchers are not seeking to understand what causes the independent variables to change.

Independent variables are also known as predictors, factors , treatment variables, explanatory variables, input variables, x-variables, and right-hand variables—because they appear on the right side of the equals sign in a regression equation. In notation, statisticians commonly denote them using Xs. On graphs, analysts place independent variables on the horizontal, or X, axis.

In machine learning, independent variables are known as features.

For example, in a plant growth study, the independent variables might be soil moisture (continuous) and type of fertilizer (categorical).

Statistical models will estimate effect sizes for the independent variables.

Relate post : Effect Sizes in Statistics

Including independent variables in studies

The nature of independent variables changes based on the type of experiment or study:

Controlled experiments : Researchers systematically control and set the values of the independent variables. In randomized experiments, relationships between independent and dependent variables tend to be causal. The independent variables cause changes in the dependent variable.

Observational studies : Researchers do not set the values of the explanatory variables but instead observe them in their natural environment. When the independent and dependent variables are correlated, those relationships might not be causal.

When you include one independent variable in a regression model, you are performing simple regression. For more than one independent variable, it is multiple regression. Despite the different names, it’s really the same analysis with the same interpretations and assumptions.

Determining which IVs to include in a statistical model is known as model specification. That process involves in-depth research and many subject-area, theoretical, and statistical considerations. At its most basic level, you’ll want to include the predictors you are specifically assessing in your study and confounding variables that will bias your results if you don’t add them—particularly for observational studies.

For more information about choosing independent variables, read my post about Specifying the Correct Regression Model .

Related posts : Randomized Experiments , Observational Studies , Covariates , and Confounding Variables

What is a Dependent Variable?

The dependent variable (DV) is what you want to use the model to explain or predict. The values of this variable depend on other variables. It is the outcome that you’re studying. It’s also known as the response variable, outcome variable, and left-hand variable. Statisticians commonly denote them using a Y. Traditionally, graphs place dependent variables on the vertical, or Y, axis.

For example, in the plant growth study example, a measure of plant growth is the dependent variable. That is the outcome of the experiment, and we want to determine what affects it.

How to Identify Independent and Dependent Variables

If you’re reading a study’s write-up, how do you distinguish independent variables from dependent variables? Here are some tips!

Identifying IVs

How statisticians discuss independent variables changes depending on the field of study and type of experiment.

In randomized experiments, look for the following descriptions to identify the independent variables:

  • Independent variables cause changes in another variable.
  • The researchers control the values of the independent variables. They are controlled or manipulated variables.
  • Experiments often refer to them as factors or experimental factors. In areas such as medicine, they might be risk factors.
  • Treatment and control groups are always independent variables. In this case, the independent variable is a categorical grouping variable that defines the experimental groups to which participants belong. Each group is a level of that variable.

In observational studies, independent variables are a bit different. While the researchers likely want to establish causation, that’s harder to do with this type of study, so they often won’t use the word “cause.” They also don’t set the values of the predictors. Some independent variables are the experiment’s focus, while others help keep the experimental results valid.

Here’s how to recognize independent variables in observational studies:

  • IVs explain the variability, predict, or correlate with changes in the dependent variable.
  • Researchers in observational studies must include confounding variables (i.e., confounders) to keep the statistical results valid even if they are not the primary interest of the study. For example, these might include the participants’ socio-economic status or other background information that the researchers aren’t focused on but can explain some of the dependent variable’s variability.
  • The results are adjusted or controlled for by a variable.

Regardless of the study type, if you see an estimated effect size, it is an independent variable.

Identifying DVs

Dependent variables are the outcome. The IVs explain the variability or causes changes in the DV. Focus on the “depends” aspect. The value of the dependent variable depends on the IVs. If Y depends on X, then Y is the dependent variable. This aspect applies to both randomized experiments and observational studies.

In an observational study about the effects of smoking, the researchers observe the subjects’ smoking status (smoker/non-smoker) and their lung cancer rates. It’s an observational study because they cannot randomly assign subjects to either the smoking or non-smoking group. In this study, the researchers want to know whether lung cancer rates depend on smoking status. Therefore, the lung cancer rate is the dependent variable.

In a randomized COVID-19 vaccine experiment , the researchers randomly assign subjects to the treatment or control group. They want to determine whether COVID-19 infection rates depend on vaccination status. Hence, the infection rate is the DV.

Note that a variable can be an independent variable in one study but a dependent variable in another. It depends on the context.

For example, one study might assess how the amount of exercise (IV) affects health (DV). However, another study might study the factors (IVs) that influence how much someone exercises (DV). The amount of exercise is an independent variable in one study but a dependent variable in the other!

How Analyses Use IVs and DVs

Regression analysis and ANOVA mathematically describe the relationships between each independent variable and the dependent variable. Typically, you want to determine how changes in one or more predictors associate with changes in the dependent variable. These analyses estimate an effect size for each independent variable.

Suppose researchers study the relationship between wattage, several types of filaments, and the output from a light bulb. In this study, light output is the dependent variable because it depends on the other two variables. Wattage (continuous) and filament type (categorical) are the independent variables.

After performing the regression analysis, the researchers will understand the nature of the relationship between these variables. How much does the light output increase on average for each additional watt? Does the mean light output differ by filament types? They will also learn whether these effects are statistically significant.

Related post : When to Use Regression Analysis

Graphing Independent and Dependent Variables

As I mentioned earlier, graphs traditionally display the independent variables on the horizontal X-axis and the dependent variable on the vertical Y-axis. The type of graph depends on the nature of the variables. Here are a couple of examples.

Suppose you experiment to determine whether various teaching methods affect learning outcomes. Teaching method is a categorical predictor that defines the experimental groups. To display this type of data, you can use a boxplot, as shown below.

Example boxplot that illustrates independent and dependent variables.

The groups are along the horizontal axis, while the dependent variable, learning outcomes, is on the vertical. From the graph, method 4 has the best results. A one-way ANOVA will tell you whether these results are statistically significant. Learn more about interpreting boxplots .

Now, imagine that you are studying people’s height and weight. Specifically, do height increases cause weight to increase? Consequently, height is the independent variable on the horizontal axis, and weight is the dependent variable on the vertical axis. You can use a scatterplot to display this type of data.

Example scatterplot that illustrates independent and dependent variables.

It appears that as height increases, weight tends to increase. Regression analysis will tell you if these results are statistically significant. Learn more about interpreting scatterplots .

Share this:

independent variable experiment name

Reader Interactions

' src=

April 2, 2024 at 2:05 am

Hi again Jim

Thanks so much for taking an interest in New Zealand’s Equity Index.

Rather than me trying to explain what our Ministry of Education has done, here is a link to a fairly short paper. Scroll down to page 4 of this (if you have the inclination) – https://fyi.org.nz/request/21253/response/80708/attach/4/1301098%20Response%20and%20Appendix.pdf

The Equity Index is used to allocate only 4% of total school funding. The most advantaged 5% of schools get no “equity funding” and the other 95% get a share of the equity funding pool based on their index score. We are talking a maximum of around $1,000NZD per child per year for the most disadvantaged schools. The average amount is around $200-$300 per child per year.

My concern is that I thought the dependent variable is the thing you want to explain or predict using one or more independent variables. Choosing the form of dependent variable that gets a good fit seems to be answering the question “what can we predict well?” rather than “how do we best predict the factor of interest?” The factor is educational achievement and I think this should have been decided upon using theory rather than experimentation with the data.

As it turns out, the Ministry has chosen a measure of educational achievement that puts a heavy weight on achieving an “excellence” rating on a qualification and a much lower weight on simply gaining a qualification. My reading is that they have taken what our universities do when looking at which students to admit.

It doesn’t seem likely to me that a heavy weighting on excellent achievement is appropriate for targeting extra funding to schools with a lot of under-achieving students.

However, my stats knowledge isn’t extensive and it’s definitely rusty, so your thoughts are most helpful.

Regards Kathy Spencer

April 1, 2024 at 4:08 pm

Hi Jim, Great website, thank you.

I have been looking at New Zealand’s Equity Index which is used to allocate a small amount of extra funding to schools attended by children from disadvantaged backgrounds. The Index uses 37 socioeconomic measures relating to a child’s and their parents’ backgrounds that are found to be associated with educational achievement.

I was a bit surprised to read how they had decided on the dependent variable to be used as the measure of educational achievement, or dependent variable. Part of the process was as follows- “Each measure was tested to see the degree to which it could be predicted by the socioeconomic factors selected for the Equity Index.”

Any comment?

Many thanks Kathy Spencer

' src=

April 1, 2024 at 9:20 pm

That’s a very complex study and I don’t know much about it. So, that limits what I can say about it. But I’ll give you a few thoughts that come to mind.

This method is common in educational and social research, particularly when the goal is to understand or mitigate the impact of socioeconomic disparities on educational outcomes.

There are the usual concerns about not confusing correlation with causation. However, because this program seems to quantify barriers and then provide extra funding based on the index, I don’t think that’s a problem. They’re not attempting to adjust the socioeconomic measures so no worries about whether they’re directly causal or not.

I might have a small concern about cherry picking the model that happens to maximize the R-squared. Chasing the R-squared rather than having theory drive model selecting is often problematic. Chasing the best fit increases the likelihood that the model fits this specific dataset best by random chance rather than being truly the best. If so, it won’t perform as well outside the dataset used to fit the model. Hopefully, they validated the predicted ability of the model using other data.

However, I’m not sure if the extra funding is determined by the model? I don’t know if the index value is calculated separately outside the candidate models and then fed into the various models. Or does the choice of model affect how the index value is calculated? If it’s the former, then the funding doesn’t depend on a potentially cherry picked model. If the latter, it does.

So, I’m not really clear on the purpose of the model. I’m guessing they just want to validate their Equity Index. And maximizing the R-squared doesn’t really say it’s the best Index but it does at least show that it likely has some merit. I’d be curious how the took the 37 measures and combined them to one index. So, I have more questions than answers. I don’t mean that in a critical sense. Just that I know almost nothing about this program.

I’m curious, what was the outcome they picked? How high was the R-squared? And what were your concerns?

' src=

February 6, 2024 at 6:57 pm

Excellent explanation, thank you.

February 5, 2024 at 5:04 pm

Thank you for this insightful blog. Is it valid to use a dependent variable delivered from the mean of independent variables in multiple regression if you want to evaluate the influence of each unique independent variable on the dependent variables?

February 5, 2024 at 11:11 pm

It’s difficult to answer your question because I’m not sure what you mean that the DV is “delivered from the mean of IVs.” If you mean that multiple IVs explain changes in the DV’s mean, yes, that’s the standard use for multiple regression.

If you mean something else, please explain in further detail. Thanks!

February 6, 2024 at 6:32 am

What I meant is; the DV values used as parameters for multiple regression is basically calculated as the average of the IVs. For instance:

From 3 IVs (X1, X2, X3), Y is delivered as :

Y = (Sum of all IVs) / (3)

Then the resulting Y is used as the DV along with the initial IVs to compute the multiple regression.

February 6, 2024 at 2:17 pm

There are a couple of reasons why you shouldn’t do that.

For starters, Y-hat (the predicted value of the regression equation) is the mean of the DV given specific values of the IV. However, that mean is calculated by using the regression coefficients and constant in the regression equation. You don’t calculate the DV mean as the sum of the IVs divided by the number of IVs. Perhaps given a very specific subject-area context, using this approach might seem to make sense but there are other problems.

A critical problem is that the Y is now calculated using the IVs. Instead, the DVs should be measured outcomes and not calculated from IVs. This violates regression assumptions and produces questionable results.

Additionally, it complicates the interpretation. Because the DV is calculated from the IV, you know the regression analysis will find a relationship between them. But you have no idea if that relationship exists in the real world. This complication occurs because your results are based on forcing the DV to equal a function of the IVs and do not reflect real-world outcomes.

In short, DVs should be real-world outcomes that you measure! And be sure to keep your IVs and DV independent. Let the regression analysis estimate the regression equation from your data that contains measured DVs. Don’t use a function to force the DV to equal some function of the IVs because that’s the opposite direction of how regression works!

I hope that helps!

' src=

September 6, 2022 at 7:43 pm

Thank you for sharing.

' src=

March 3, 2022 at 1:59 am

Excellent explanation.

' src=

February 13, 2022 at 12:31 pm

Thanks a lot for creating this excellent blog. This is my go-to resource for Statistics.

I had been pondering over a question for sometime, it would be great if you could shed some light on this.

In linear and non-linear regression, should the distribution of independent and dependent variables be unskewed? When is there a need to transform the data (say, Box-Cox transformation), and do we transform the independent variables as well?

' src=

October 28, 2021 at 12:55 pm

If I use a independent variable (X) and it displays a low p-value <.05, why is it if I introduce another independent variable to regression the coefficient and p-value of Y that I used in first regression changes to look insignificant? The second variable that I introduced has a low p-value in regression.

October 29, 2021 at 11:22 pm

Keep in mind that the significance of each IV is calculated after accounting for the variance of all the other variables in the model, assuming you’re using the standard adjusted sums of squares rather than sequential sums of squares. The sums of squares (SS) is a measure of how much dependent variable variability that each IV accounts for. In the illustration below, I’ll assume you’re using the standard of adjusted SS.

So, let’s say that originally you have X1 in the model along with some other IVs. Your model estimates the significance of X1 after assessing the variability that the other IVs account for and finds that X1 is significant. Now, you add X2 to the model in addition to X1 and the other IVs. Now, when assessing X1, the model accounts for the variability of the IVs including the newly added X2. And apparently X2 explains a good portion of the variability. X1 is no longer able to account for that variability, which causes it to not be statistically significant.

In other words, X2 explains some of the variability that X1 previously explained. Because X1 no longer explains it, it is no longer significant.

Additionally, the significance of IVs is more likely to change when you add or remove IVs that are correlated. Correlated IVs is known as multicollinearity. Multicollinearity can be a problem when you have too much. Given the change in significance, I’d check your model for multicollinearity just to be safe! Click the link to read a post that wrote about that!

' src=

September 6, 2021 at 8:35 am

nice explanation

' src=

August 25, 2021 at 3:09 am

it is excellent explanation

Comments and Questions Cancel reply

independent variable experiment name

Research Variables 101

Independent variables, dependent variables, control variables and more

By: Derek Jansen (MBA) | Expert Reviewed By: Kerryn Warren (PhD) | January 2023

If you’re new to the world of research, especially scientific research, you’re bound to run into the concept of variables , sooner or later. If you’re feeling a little confused, don’t worry – you’re not the only one! Independent variables, dependent variables, confounding variables – it’s a lot of jargon. In this post, we’ll unpack the terminology surrounding research variables using straightforward language and loads of examples .

Overview: Variables In Research

1. ?
2. variables
3. variables
4. variables

5. variables
6. variables
7. variables
8. variables

What (exactly) is a variable?

The simplest way to understand a variable is as any characteristic or attribute that can experience change or vary over time or context – hence the name “variable”. For example, the dosage of a particular medicine could be classified as a variable, as the amount can vary (i.e., a higher dose or a lower dose). Similarly, gender, age or ethnicity could be considered demographic variables, because each person varies in these respects.

Within research, especially scientific research, variables form the foundation of studies, as researchers are often interested in how one variable impacts another, and the relationships between different variables. For example:

  • How someone’s age impacts their sleep quality
  • How different teaching methods impact learning outcomes
  • How diet impacts weight (gain or loss)

As you can see, variables are often used to explain relationships between different elements and phenomena. In scientific studies, especially experimental studies, the objective is often to understand the causal relationships between variables. In other words, the role of cause and effect between variables. This is achieved by manipulating certain variables while controlling others – and then observing the outcome. But, we’ll get into that a little later…

The “Big 3” Variables

Variables can be a little intimidating for new researchers because there are a wide variety of variables, and oftentimes, there are multiple labels for the same thing. To lay a firm foundation, we’ll first look at the three main types of variables, namely:

  • Independent variables (IV)
  • Dependant variables (DV)
  • Control variables

What is an independent variable?

Simply put, the independent variable is the “ cause ” in the relationship between two (or more) variables. In other words, when the independent variable changes, it has an impact on another variable.

For example:

  • Increasing the dosage of a medication (Variable A) could result in better (or worse) health outcomes for a patient (Variable B)
  • Changing a teaching method (Variable A) could impact the test scores that students earn in a standardised test (Variable B)
  • Varying one’s diet (Variable A) could result in weight loss or gain (Variable B).

It’s useful to know that independent variables can go by a few different names, including, explanatory variables (because they explain an event or outcome) and predictor variables (because they predict the value of another variable). Terminology aside though, the most important takeaway is that independent variables are assumed to be the “cause” in any cause-effect relationship. As you can imagine, these types of variables are of major interest to researchers, as many studies seek to understand the causal factors behind a phenomenon.

Need a helping hand?

independent variable experiment name

What is a dependent variable?

While the independent variable is the “ cause ”, the dependent variable is the “ effect ” – or rather, the affected variable . In other words, the dependent variable is the variable that is assumed to change as a result of a change in the independent variable.

Keeping with the previous example, let’s look at some dependent variables in action:

  • Health outcomes (DV) could be impacted by dosage changes of a medication (IV)
  • Students’ scores (DV) could be impacted by teaching methods (IV)
  • Weight gain or loss (DV) could be impacted by diet (IV)

In scientific studies, researchers will typically pay very close attention to the dependent variable (or variables), carefully measuring any changes in response to hypothesised independent variables. This can be tricky in practice, as it’s not always easy to reliably measure specific phenomena or outcomes – or to be certain that the actual cause of the change is in fact the independent variable.

As the adage goes, correlation is not causation . In other words, just because two variables have a relationship doesn’t mean that it’s a causal relationship – they may just happen to vary together. For example, you could find a correlation between the number of people who own a certain brand of car and the number of people who have a certain type of job. Just because the number of people who own that brand of car and the number of people who have that type of job is correlated, it doesn’t mean that owning that brand of car causes someone to have that type of job or vice versa. The correlation could, for example, be caused by another factor such as income level or age group, which would affect both car ownership and job type.

To confidently establish a causal relationship between an independent variable and a dependent variable (i.e., X causes Y), you’ll typically need an experimental design , where you have complete control over the environmen t and the variables of interest. But even so, this doesn’t always translate into the “real world”. Simply put, what happens in the lab sometimes stays in the lab!

As an alternative to pure experimental research, correlational or “ quasi-experimental ” research (where the researcher cannot manipulate or change variables) can be done on a much larger scale more easily, allowing one to understand specific relationships in the real world. These types of studies also assume some causality between independent and dependent variables, but it’s not always clear. So, if you go this route, you need to be cautious in terms of how you describe the impact and causality between variables and be sure to acknowledge any limitations in your own research.

Free Webinar: Research Methodology 101

What is a control variable?

In an experimental design, a control variable (or controlled variable) is a variable that is intentionally held constant to ensure it doesn’t have an influence on any other variables. As a result, this variable remains unchanged throughout the course of the study. In other words, it’s a variable that’s not allowed to vary – tough life 🙂

As we mentioned earlier, one of the major challenges in identifying and measuring causal relationships is that it’s difficult to isolate the impact of variables other than the independent variable. Simply put, there’s always a risk that there are factors beyond the ones you’re specifically looking at that might be impacting the results of your study. So, to minimise the risk of this, researchers will attempt (as best possible) to hold other variables constant . These factors are then considered control variables.

Some examples of variables that you may need to control include:

  • Temperature
  • Time of day
  • Noise or distractions

Which specific variables need to be controlled for will vary tremendously depending on the research project at hand, so there’s no generic list of control variables to consult. As a researcher, you’ll need to think carefully about all the factors that could vary within your research context and then consider how you’ll go about controlling them. A good starting point is to look at previous studies similar to yours and pay close attention to which variables they controlled for.

Of course, you won’t always be able to control every possible variable, and so, in many cases, you’ll just have to acknowledge their potential impact and account for them in the conclusions you draw. Every study has its limitations , so don’t get fixated or discouraged by troublesome variables. Nevertheless, always think carefully about the factors beyond what you’re focusing on – don’t make assumptions!

 A control variable is intentionally held constant (it doesn't vary) to ensure it doesn’t have an influence on any other variables.

Other types of variables

As we mentioned, independent, dependent and control variables are the most common variables you’ll come across in your research, but they’re certainly not the only ones you need to be aware of. Next, we’ll look at a few “secondary” variables that you need to keep in mind as you design your research.

  • Moderating variables
  • Mediating variables
  • Confounding variables
  • Latent variables

Let’s jump into it…

What is a moderating variable?

A moderating variable is a variable that influences the strength or direction of the relationship between an independent variable and a dependent variable. In other words, moderating variables affect how much (or how little) the IV affects the DV, or whether the IV has a positive or negative relationship with the DV (i.e., moves in the same or opposite direction).

For example, in a study about the effects of sleep deprivation on academic performance, gender could be used as a moderating variable to see if there are any differences in how men and women respond to a lack of sleep. In such a case, one may find that gender has an influence on how much students’ scores suffer when they’re deprived of sleep.

It’s important to note that while moderators can have an influence on outcomes , they don’t necessarily cause them ; rather they modify or “moderate” existing relationships between other variables. This means that it’s possible for two different groups with similar characteristics, but different levels of moderation, to experience very different results from the same experiment or study design.

What is a mediating variable?

Mediating variables are often used to explain the relationship between the independent and dependent variable (s). For example, if you were researching the effects of age on job satisfaction, then education level could be considered a mediating variable, as it may explain why older people have higher job satisfaction than younger people – they may have more experience or better qualifications, which lead to greater job satisfaction.

Mediating variables also help researchers understand how different factors interact with each other to influence outcomes. For instance, if you wanted to study the effect of stress on academic performance, then coping strategies might act as a mediating factor by influencing both stress levels and academic performance simultaneously. For example, students who use effective coping strategies might be less stressed but also perform better academically due to their improved mental state.

In addition, mediating variables can provide insight into causal relationships between two variables by helping researchers determine whether changes in one factor directly cause changes in another – or whether there is an indirect relationship between them mediated by some third factor(s). For instance, if you wanted to investigate the impact of parental involvement on student achievement, you would need to consider family dynamics as a potential mediator, since it could influence both parental involvement and student achievement simultaneously.

Mediating variables can explain the relationship between the independent and dependent variable, including whether it's causal or not.

What is a confounding variable?

A confounding variable (also known as a third variable or lurking variable ) is an extraneous factor that can influence the relationship between two variables being studied. Specifically, for a variable to be considered a confounding variable, it needs to meet two criteria:

  • It must be correlated with the independent variable (this can be causal or not)
  • It must have a causal impact on the dependent variable (i.e., influence the DV)

Some common examples of confounding variables include demographic factors such as gender, ethnicity, socioeconomic status, age, education level, and health status. In addition to these, there are also environmental factors to consider. For example, air pollution could confound the impact of the variables of interest in a study investigating health outcomes.

Naturally, it’s important to identify as many confounding variables as possible when conducting your research, as they can heavily distort the results and lead you to draw incorrect conclusions . So, always think carefully about what factors may have a confounding effect on your variables of interest and try to manage these as best you can.

What is a latent variable?

Latent variables are unobservable factors that can influence the behaviour of individuals and explain certain outcomes within a study. They’re also known as hidden or underlying variables , and what makes them rather tricky is that they can’t be directly observed or measured . Instead, latent variables must be inferred from other observable data points such as responses to surveys or experiments.

For example, in a study of mental health, the variable “resilience” could be considered a latent variable. It can’t be directly measured , but it can be inferred from measures of mental health symptoms, stress, and coping mechanisms. The same applies to a lot of concepts we encounter every day – for example:

  • Emotional intelligence
  • Quality of life
  • Business confidence
  • Ease of use

One way in which we overcome the challenge of measuring the immeasurable is latent variable models (LVMs). An LVM is a type of statistical model that describes a relationship between observed variables and one or more unobserved (latent) variables. These models allow researchers to uncover patterns in their data which may not have been visible before, thanks to their complexity and interrelatedness with other variables. Those patterns can then inform hypotheses about cause-and-effect relationships among those same variables which were previously unknown prior to running the LVM. Powerful stuff, we say!

Latent variables are unobservable factors that can influence the behaviour of individuals and explain certain outcomes within a study.

Let’s recap

In the world of scientific research, there’s no shortage of variable types, some of which have multiple names and some of which overlap with each other. In this post, we’ve covered some of the popular ones, but remember that this is not an exhaustive list .

To recap, we’ve explored:

  • Independent variables (the “cause”)
  • Dependent variables (the “effect”)
  • Control variables (the variable that’s not allowed to vary)

If you’re still feeling a bit lost and need a helping hand with your research project, check out our 1-on-1 coaching service , where we guide you through each step of the research journey. Also, be sure to check out our free dissertation writing course and our collection of free, fully-editable chapter templates .

independent variable experiment name

Psst... there’s more!

This post was based on one of our popular Research Bootcamps . If you're working on a research project, you'll definitely want to check this out ...

Fiona

Very informative, concise and helpful. Thank you

Ige Samuel Babatunde

Helping information.Thanks

Ancel George

practical and well-demonstrated

Michael

Very helpful and insightful

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Print Friendly
  • Privacy Policy

Research Method

Home » Independent Variable – Definition, Types and Examples

Independent Variable – Definition, Types and Examples

Table of Contents

Independent Variable

Independent Variable

Definition:

Independent variable is a variable that is manipulated or changed by the researcher to observe its effect on the dependent variable. It is also known as the predictor variable or explanatory variable

The independent variable is the presumed cause in an experiment or study, while the dependent variable is the presumed effect or outcome. The relationship between the independent variable and the dependent variable is often analyzed using statistical methods to determine the strength and direction of the relationship.

Types of Independent Variables

Types of Independent Variables are as follows:

Categorical Independent Variables

These variables are categorical or nominal in nature and represent a group or category. Examples of categorical independent variables include gender, ethnicity, marital status, and educational level.

Continuous Independent Variables

These variables are continuous in nature and can take any value on a continuous scale. Examples of continuous independent variables include age, height, weight, temperature, and blood pressure.

Discrete Independent Variables

These variables are discrete in nature and can only take on specific values. Examples of discrete independent variables include the number of siblings, the number of children in a family, and the number of pets owned.

Binary Independent Variables

These variables are dichotomous or binary in nature, meaning they can take on only two values. Examples of binary independent variables include yes or no questions, such as whether a participant is a smoker or non-smoker.

Controlled Independent Variables

These variables are manipulated or controlled by the researcher to observe their effect on the dependent variable. Examples of controlled independent variables include the type of treatment or therapy given, the dosage of a medication, or the amount of exposure to a stimulus.

Independent Variable and dependent variable Analysis Methods

Following analysis methods that can be used to examine the relationship between an independent variable and a dependent variable:

Correlation Analysis

This method is used to determine the strength and direction of the relationship between two continuous variables. Correlation coefficients such as Pearson’s r or Spearman’s rho are used to quantify the strength and direction of the relationship.

ANOVA (Analysis of Variance)

This method is used to compare the means of two or more groups for a continuous dependent variable. ANOVA can be used to test the effect of a categorical independent variable on a continuous dependent variable.

Regression Analysis

This method is used to examine the relationship between a dependent variable and one or more independent variables. Linear regression is a common type of regression analysis that can be used to predict the value of the dependent variable based on the value of one or more independent variables.

Chi-square Test

This method is used to test the association between two categorical variables. It can be used to examine the relationship between a categorical independent variable and a categorical dependent variable.

This method is used to compare the means of two groups for a continuous dependent variable. It can be used to test the effect of a binary independent variable on a continuous dependent variable.

Measuring Scales of Independent Variable

There are four commonly used Measuring Scales of Independent Variables:

  • Nominal Scale : This scale is used for variables that can be categorized but have no inherent order or numerical value. Examples of nominal variables include gender, race, and occupation.
  • Ordinal Scale : This scale is used for variables that can be categorized and have a natural order but no specific numerical value. Examples of ordinal variables include levels of education (e.g., high school, bachelor’s degree, master’s degree), socioeconomic status (e.g., low, middle, high), and Likert scales (e.g., strongly disagree, disagree, neutral, agree, strongly agree).
  • I nterval Scale : This scale is used for variables that have a numerical value and a consistent unit of measurement but no true zero point. Examples of interval variables include temperature in Celsius or Fahrenheit, IQ scores, and time of day.
  • Ratio Scale: This scale is used for variables that have a numerical value, a consistent unit of measurement, and a true zero point. Examples of ratio variables include height, weight, and income.

Independent Variable Examples

Here are some examples of independent variables:

  • In a study examining the effects of a new medication on blood pressure, the independent variable would be the medication itself.
  • In a study comparing the academic performance of male and female students, the independent variable would be gender.
  • In a study investigating the effects of different types of exercise on weight loss, the independent variable would be the type of exercise performed.
  • In a study examining the relationship between age and income, the independent variable would be age.
  • In a study investigating the effects of different types of music on mood, the independent variable would be the type of music played.
  • In a study examining the effects of different teaching strategies on student test scores, the independent variable would be the teaching strategy used.
  • In a study investigating the effects of caffeine on reaction time, the independent variable would be the amount of caffeine consumed.
  • In a study comparing the effects of two different fertilizers on plant growth, the independent variable would be the type of fertilizer used.

Independent variable vs Dependent variable

Independent Variable
The variable that is changed or manipulated in an experiment.The variable that is measured or observed and is affected by the independent variable.
The independent variable is the cause and influences the dependent variable.The dependent variable is the effect and is influenced by the independent variable.
Typically plotted on the x-axis of a graph.Typically plotted on the y-axis of a graph.
Age, gender, treatment type, temperature, time.Blood pressure, heart rate, test scores, reaction time, weight.
The researcher can control the independent variable to observe its effects on the dependent variable.The researcher cannot control the dependent variable but can measure and observe its changes in response to the independent variable.
To determine the effect of the independent variable on the dependent variable.To observe changes in the dependent variable and understand how it is affected by the independent variable.

Applications of Independent Variable

Applications of Independent Variable in different fields are as follows:

  • Scientific experiments : Independent variables are commonly used in scientific experiments to study the cause-and-effect relationships between different variables. By controlling and manipulating the independent variable, scientists can observe how changes in that variable affect the dependent variable.
  • Market research: Independent variables are also used in market research to study consumer behavior. For example, researchers may manipulate the price of a product (independent variable) to see how it affects consumer demand (dependent variable).
  • Psychology: In psychology, independent variables are often used to study the effects of different treatments or therapies on mental health conditions. For example, researchers may manipulate the type of therapy (independent variable) to see how it affects a patient’s symptoms (dependent variable).
  • Education: Independent variables are used in educational research to study the effects of different teaching methods or interventions on student learning outcomes. For example, researchers may manipulate the teaching method (independent variable) to see how it affects student performance on a test (dependent variable).

Purpose of Independent Variable

The purpose of an independent variable is to manipulate or control it in order to observe its effect on the dependent variable. In other words, the independent variable is the variable that is being tested or studied to see if it has an effect on the dependent variable.

The independent variable is often manipulated by the researcher in order to create different experimental conditions. By varying the independent variable, the researcher can observe how the dependent variable changes in response. For example, in a study of the effects of caffeine on memory, the independent variable would be the amount of caffeine consumed, while the dependent variable would be memory performance.

The main purpose of the independent variable is to determine causality. By manipulating the independent variable and observing its effect on the dependent variable, researchers can determine whether there is a causal relationship between the two variables. This is important for understanding how different variables affect each other and for making predictions about how changes in one variable will affect other variables.

When to use Independent Variable

Here are some situations when an independent variable may be used:

  • When studying cause-and-effect relationships: Independent variables are often used in studies that aim to establish causal relationships between variables. By manipulating the independent variable and observing the effect on the dependent variable, researchers can determine whether there is a cause-and-effect relationship between the two variables.
  • When comparing groups or conditions: Independent variables can also be used to compare groups or conditions. For example, a researcher might manipulate an independent variable (such as a treatment or intervention) and observe the effect on a dependent variable (such as a symptom or behavior) in two different groups of participants (such as a treatment group and a control group).
  • When testing hypotheses: Independent variables are used to test hypotheses about how different variables are related. By manipulating the independent variable and observing the effect on the dependent variable, researchers can test whether their hypotheses are supported or not.

Characteristics of Independent Variable

Here are some of the characteristics of independent variables:

  • Manipulation: The independent variable is manipulated by the researcher in order to create different experimental conditions. The researcher changes the level or value of the independent variable to observe how it affects the dependent variable.
  • Control : The independent variable is controlled by the researcher to ensure that it is the only variable that is changing in the experiment. By controlling other variables that might affect the dependent variable, the researcher can isolate the effect of the independent variable on the dependent variable.
  • Categorical or continuous: Independent variables can be either categorical or continuous. Categorical independent variables have distinct categories or levels that are not ordered (e.g., gender, ethnicity), while continuous independent variables are measured on a scale (e.g., age, temperature).
  • Treatment : In some experiments, the independent variable represents a treatment or intervention that is being tested. For example, a researcher might manipulate the independent variable by giving participants a new medication or therapy.
  • Random assignment : In order to control for extraneous variables and ensure that the independent variable is the only variable that is changing, participants are often randomly assigned to different levels of the independent variable. This helps to ensure that any differences between the groups are not due to pre-existing differences between the participants.

Advantages of Independent Variable

Independent variables have several advantages, including:

  • Control : Independent variables allow researchers to control the variables being studied, which helps to establish cause-and-effect relationships. By manipulating the independent variable, researchers can see how changes in that variable affect the dependent variable.
  • Replication : Manipulating independent variables allows researchers to replicate studies to confirm or refute previous findings. By controlling the independent variable, researchers can ensure that any differences in the dependent variable are due to the manipulation of the independent variable, rather than other factors.
  • Predictive Powe r: Independent variables can be used to predict future outcomes. By examining how changes in the independent variable affect the dependent variable, researchers can make predictions about how the dependent variable will respond in the future.
  • Precision : Independent variables can help to increase the precision of a study by allowing researchers to control for extraneous variables that might otherwise confound the results. This can lead to more accurate and reliable findings.
  • Generalizability : Independent variables can help to increase the generalizability of a study by allowing researchers to manipulate variables in a way that reflects real-world conditions. This can help to ensure that findings are applicable to a wider range of situations and contexts.

Disadvantages of Independent Variable

Independent variables also have several disadvantages, including:

  • Artificiality : In some cases, manipulating the independent variable in a study may create an artificial environment that does not reflect real-world conditions. This can limit the generalizability of the findings.
  • Ethical concerns: Manipulating independent variables in some studies may raise ethical concerns, such as when human participants are subjected to potentially harmful or uncomfortable conditions.
  • Limitations in measuring variables: Some variables may be difficult or impossible to manipulate in a study. For example, it may be difficult to manipulate someone’s age or gender, which can limit the researcher’s ability to study the effects of these variables.
  • Complexity : Some variables may be very complex, making it difficult to determine which variables are independent and which are dependent. This can make it challenging to design a study that effectively examines the relationship between variables.
  • Extraneous variables : Even when researchers manipulate the independent variable, other variables may still affect the results. These extraneous variables can confound the results, making it difficult to draw clear conclusions about the relationship between the independent and dependent variables.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Moderating Variable

Moderating Variable – Definition, Analysis...

Dichotomous Variable

Dichotomous Variable – Definition Types and...

Control Variable

Control Variable – Definition, Types and Examples

Quantitative Variable

Quantitative Variable – Definition, Types and...

Dependent Variable

Dependent Variable – Definition, Types and...

Variables in Research

Variables in Research – Definition, Types and...

PrepScholar

Choose Your Test

  • Search Blogs By Category
  • College Admissions
  • AP and IB Exams
  • GPA and Coursework

Independent and Dependent Variables: Which Is Which?

author image

General Education

feature_variables.jpg

Independent and dependent variables are important for both math and science. If you don't understand what these two variables are and how they differ, you'll struggle to analyze an experiment or plot equations. Fortunately, we make learning these concepts easy!

In this guide, we break down what independent and dependent variables are , give examples of the variables in actual experiments, explain how to properly graph them, provide a quiz to test your skills, and discuss the one other important variable you need to know.

What Is an Independent Variable? What Is a Dependent Variable?

A variable is something you're trying to measure. It can be practically anything, such as objects, amounts of time, feelings, events, or ideas. If you're studying how people feel about different television shows, the variables in that experiment are television shows and feelings. If you're studying how different types of fertilizer affect how tall plants grow, the variables are type of fertilizer and plant height.

There are two key variables in every experiment: the independent variable and the dependent variable.

Independent variable: What the scientist changes or what changes on its own.

Dependent variable: What is being studied/measured.

The independent variable (sometimes known as the manipulated variable) is the variable whose change isn't affected by any other variable in the experiment. Either the scientist has to change the independent variable herself or it changes on its own; nothing else in the experiment affects or changes it. Two examples of common independent variables are age and time. There's nothing you or anything else can do to speed up or slow down time or increase or decrease age. They're independent of everything else.

The dependent variable (sometimes known as the responding variable) is what is being studied and measured in the experiment. It's what changes as a result of the changes to the independent variable. An example of a dependent variable is how tall you are at different ages. The dependent variable (height) depends on the independent variable (age).

An easy way to think of independent and dependent variables is, when you're conducting an experiment, the independent variable is what you change, and the dependent variable is what changes because of that. You can also think of the independent variable as the cause and the dependent variable as the effect.

It can be a lot easier to understand the differences between these two variables with examples, so let's look at some sample experiments below.

body_change-4.jpg

Examples of Independent and Dependent Variables in Experiments

Below are overviews of three experiments, each with their independent and dependent variables identified.

Experiment 1: You want to figure out which brand of microwave popcorn pops the most kernels so you can get the most value for your money. You test different brands of popcorn to see which bag pops the most popcorn kernels.

  • Independent Variable: Brand of popcorn bag (It's the independent variable because you are actually deciding the popcorn bag brands)
  • Dependent Variable: Number of kernels popped (This is the dependent variable because it's what you measure for each popcorn brand)

Experiment 2 : You want to see which type of fertilizer helps plants grow fastest, so you add a different brand of fertilizer to each plant and see how tall they grow.

  • Independent Variable: Type of fertilizer given to the plant
  • Dependent Variable: Plant height

Experiment 3: You're interested in how rising sea temperatures impact algae life, so you design an experiment that measures the number of algae in a sample of water taken from a specific ocean site under varying temperatures.

  • Independent Variable: Ocean temperature
  • Dependent Variable: The number of algae in the sample

For each of the independent variables above, it's clear that they can't be changed by other variables in the experiment. You have to be the one to change the popcorn and fertilizer brands in Experiments 1 and 2, and the ocean temperature in Experiment 3 cannot be significantly changed by other factors. Changes to each of these independent variables cause the dependent variables to change in the experiments.

Where Do You Put Independent and Dependent Variables on Graphs?

Independent and dependent variables always go on the same places in a graph. This makes it easy for you to quickly see which variable is independent and which is dependent when looking at a graph or chart. The independent variable always goes on the x-axis, or the horizontal axis. The dependent variable goes on the y-axis, or vertical axis.

Here's an example:

body_graph-3.jpg

As you can see, this is a graph showing how the number of hours a student studies affects the score she got on an exam. From the graph, it looks like studying up to six hours helped her raise her score, but as she studied more than that her score dropped slightly.

The amount of time studied is the independent variable, because it's what she changed, so it's on the x-axis. The score she got on the exam is the dependent variable, because it's what changed as a result of the independent variable, and it's on the y-axis. It's common to put the units in parentheses next to the axis titles, which this graph does.

There are different ways to title a graph, but a common way is "[Independent Variable] vs. [Dependent Variable]" like this graph. Using a standard title like that also makes it easy for others to see what your independent and dependent variables are.

Are There Other Important Variables to Know?

Independent and dependent variables are the two most important variables to know and understand when conducting or studying an experiment, but there is one other type of variable that you should be aware of: constant variables.

Constant variables (also known as "constants") are simple to understand: they're what stay the same during the experiment. Most experiments usually only have one independent variable and one dependent variable, but they will all have multiple constant variables.

For example, in Experiment 2 above, some of the constant variables would be the type of plant being grown, the amount of fertilizer each plant is given, the amount of water each plant is given, when each plant is given fertilizer and water, the amount of sunlight the plants receive, the size of the container each plant is grown in, and more. The scientist is changing the type of fertilizer each plant gets which in turn changes how much each plant grows, but every other part of the experiment stays the same.

In experiments, you have to test one independent variable at a time in order to accurately understand how it impacts the dependent variable. Constant variables are important because they ensure that the dependent variable is changing because, and only because, of the independent variable so you can accurately measure the relationship between the dependent and independent variables.

If you didn't have any constant variables, you wouldn't be able to tell if the independent variable was what was really affecting the dependent variable. For example, in the example above, if there were no constants and you used different amounts of water, different types of plants, different amounts of fertilizer and put the plants in windows that got different amounts of sun, you wouldn't be able to say how fertilizer type affected plant growth because there would be so many other factors potentially affecting how the plants grew.

body_plants.jpg

3 Experiments to Help You Understand Independent and Dependent Variables

If you're still having a hard time understanding the relationship between independent and dependent variable, it might help to see them in action. Here are three experiments you can try at home.

Experiment 1: Plant Growth Rates

One simple way to explore independent and dependent variables is to construct a biology experiment with seeds. Try growing some sunflowers and see how different factors affect their growth. For example, say you have ten sunflower seedlings, and you decide to give each a different amount of water each day to see if that affects their growth. The independent variable here would be the amount of water you give the plants, and the dependent variable is how tall the sunflowers grow.

Experiment 2: Chemical Reactions

Explore a wide range of chemical reactions with this chemistry kit . It includes 100+ ideas for experiments—pick one that interests you and analyze what the different variables are in the experiment!

Experiment 3: Simple Machines

Build and test a range of simple and complex machines with this K'nex kit . How does increasing a vehicle's mass affect its velocity? Can you lift more with a fixed or movable pulley? Remember, the independent variable is what you control/change, and the dependent variable is what changes because of that.

Quiz: Test Your Variable Knowledge

Can you identify the independent and dependent variables for each of the four scenarios below? The answers are at the bottom of the guide for you to check your work.

Scenario 1: You buy your dog multiple brands of food to see which one is her favorite.

Scenario 2: Your friends invite you to a party, and you decide to attend, but you're worried that staying out too long will affect how well you do on your geometry test tomorrow morning.

Scenario 3: Your dentist appointment will take 30 minutes from start to finish, but that doesn't include waiting in the lounge before you're called in. The total amount of time you spend in the dentist's office is the amount of time you wait before your appointment, plus the 30 minutes of the actual appointment

Scenario 4: You regularly babysit your little cousin who always throws a tantrum when he's asked to eat his vegetables. Over the course of the week, you ask him to eat vegetables four times.

Summary: Independent vs Dependent Variable

Knowing the independent variable definition and dependent variable definition is key to understanding how experiments work. The independent variable is what you change, and the dependent variable is what changes as a result of that. You can also think of the independent variable as the cause and the dependent variable as the effect.

When graphing these variables, the independent variable should go on the x-axis (the horizontal axis), and the dependent variable goes on the y-axis (vertical axis).

Constant variables are also important to understand. They are what stay the same throughout the experiment so you can accurately measure the impact of the independent variable on the dependent variable.

What's Next?

Independent and dependent variables are commonly taught in high school science classes. Read our guide to learn which science classes high school students should be taking.

Scoring well on standardized tests is an important part of having a strong college application. Check out our guides on the best study tips for the SAT and ACT.

Interested in science? Science Olympiad is a great extracurricular to include on your college applications, and it can help you win big scholarships. Check out our complete guide to winning Science Olympiad competitions.

Quiz Answers

1: Independent: dog food brands; Dependent: how much you dog eats

2: Independent: how long you spend at the party; Dependent: your exam score

3: Independent: Amount of time you spend waiting; Dependent: Total time you're at the dentist (the 30 minutes of appointment time is the constant)

4: Independent: Number of times your cousin is asked to eat vegetables; Dependent: number of tantrums

Want to improve your SAT score by 160 points or your ACT score by 4 points?   We've written a guide for each test about the top 5 strategies you must be using to have a shot at improving your score. Download them for free now:

These recommendations are based solely on our knowledge and experience. If you purchase an item through one of our links, PrepScholar may receive a commission.

Trending Now

How to Get Into Harvard and the Ivy League

How to Get a Perfect 4.0 GPA

How to Write an Amazing College Essay

What Exactly Are Colleges Looking For?

ACT vs. SAT: Which Test Should You Take?

When should you take the SAT or ACT?

Get Your Free

PrepScholar

Find Your Target SAT Score

Free Complete Official SAT Practice Tests

How to Get a Perfect SAT Score, by an Expert Full Scorer

Score 800 on SAT Math

Score 800 on SAT Reading and Writing

How to Improve Your Low SAT Score

Score 600 on SAT Math

Score 600 on SAT Reading and Writing

Find Your Target ACT Score

Complete Official Free ACT Practice Tests

How to Get a Perfect ACT Score, by a 36 Full Scorer

Get a 36 on ACT English

Get a 36 on ACT Math

Get a 36 on ACT Reading

Get a 36 on ACT Science

How to Improve Your Low ACT Score

Get a 24 on ACT English

Get a 24 on ACT Math

Get a 24 on ACT Reading

Get a 24 on ACT Science

Stay Informed

Get the latest articles and test prep tips!

Follow us on Facebook (icon)

Christine graduated from Michigan State University with degrees in Environmental Biology and Geography and received her Master's from Duke University. In high school she scored in the 99th percentile on the SAT and was named a National Merit Finalist. She has taught English and biology in several countries.

Ask a Question Below

Have any questions about this article or other topics? Ask below and we'll reply!

What Is An Independent Variable?

The history of variables, independent variables, a final word.

An independent variable is one of the two types of variables used in a scientific experiment. The independent variable is the variable that can be controlled and changed; the dependent variable is directly affected by the change in the independent variable. 

If you think back to the last science class you took, you probably remember a lot of discussion surrounding variables. In fact, this concept is widespread and applied to many different areas of life, but it has the same fundamental meaning. The weather can be “variable”, meaning that it changes quite often, and the same can be said of personalities and moods. By introducing a new “variable” into a situation, such as inviting your new in-laws over for Christmas, you are expecting the outcome to be different than if they were not in attendance.

Although you might not think of these small, daily occurrences as “experiments”, every decision in life can be compared to a scientific study! However, what you may not remember from your science class is the difference between certain variable types. This article will dive into these specifics a bit deeper, particularly in terms of independent variables .

Recommended Video for you:

In the human history of logic and reasoning, there have been many critical turning points, but one of the most fundamental concepts—the variable—has its origins in 7th century India, specifically with a mathematician named Brahmagupta. Not only was he the first mathematician to outline rules for the use of “zero”, but also developed the first rudimentary system to analyze unknowns. When designing and expressing algebraic equations, he used different colored patches to label different known and unknown quantities.

Nearly 1,000 years later, in the west, a similar concept of labeling unknown and known quantities with letters was introduced. In his equations, he utilized consonants for known quantities, and vowels for unknown quantities. Less than a century later, Rene Descartes instead chose to use a, b and c for known quantities, and x, y and z for unknown quantities. To this day, this is the standard system that remains in use across most of the sciences, including mathematics.

counting cards... meme

Two hundred years later, the idea of infinitesimal calculus was developed, which led to the development of a “function”, in which an infinitesimal variation of a variable quantity causes a corresponding variation in another quantity, making the latter of a function of the former. Without going beyond the scope of this article, this deeper definition of a variable has led to incredible modern advancements in engineering, economics and mathematics, among many others.

Variables have proven to be invaluable for the calculation and theorization of complex ideas and computations across a multitude of fields. but in the realm of scientific experiments, variables take on a slightly different (and simpler) role.

Also Read: What Is Endogeneity? What Is An Exogenous Variable?

As mentioned above, independent and dependent variables are the two key components of an experiment. Quite simply, the independent variable is the state, condition or experimental element that is controlled and manipulated by the experimenter. The dependent variable is what an experimenter is attempting to test, learn about or measure, and will be “dependent” on the independent variable.

Two girls in the classroom(adriaticfoto)s

This is similar to the mathematical concept of variables, in that an independent variable is a known quantity, and a dependent variable is an unknown quantity. In most scientific experiments, there should only be a single independent variable, as you are attempting to measure the change of other variables in relation to the controlled manipulation of the independent variable. If you change two variables, for example, then it becomes difficult, if not impossible, to determine the exact cause of the variation in the dependent variable.

Understanding Independent Variable With Example

To make this even easier to understand, let’s take a look at an example. Imagine that you’re conducting an experiment in which you want to see what is the best watering pattern for a particular type of plant. You line up three identical styrofoam cups full of the same quantity, quality and density of soil. You then plant three seeds of the same plant variety in each cup. The first cup receives 2 ounces of water once a day, the second cup receives 2 ounces of water every other day, and the third cup receives 2 ounces of water every third day.

In this example, there is only one independent variable—the watering regularity. All of the other potential variables are kept consistent and unchanged, such as the type of plant, the quality of the soil and even the amount of water administered each day. These represent the third type of variable present in any experiment—the controlled variables. If any additional controlled variables were changing, it would be impossible to definitively determine the connection between the independent and dependent variables.

TFW someone changes more than one variable in enexperiment meme

After 4-6 weeks of the experiment, one could measure the amount of growth in each newly sprouted plant; these measurements are the dependent variables, as they are dependent on the amount of water each plant receives (the independent variable).

Also Read: What Is A Controlled Experiment? Aren’t All Experiments Controlled?

This may seem like a simple concept, but it underpins all scientific inquiry, so it’s very important to understand. It is also applicable in your own life every single day. For example, if you’re a scientifically minded person and are unhappy with the direction your life is going, try to change one thing in a concentrated way (i.e., getting a new job, finding/leaving a partner, changing a daily habit etc.). This is your independent variable. After a set amount of time (days, weeks, months), take stock of what has changed since making the change. What you identify as having changed (either good or bad) is your dependent variable!

Changing everything at the exact same time, such as simultaneously leaving a job, ending a relationship and moving to a new city, will make it difficult (if not impossible) to identify which of those changes had the most notable and measurable effect. Obviously, life is unpredictable and some variables cannot be controlled, but thinking about variables and causation in your daily decisions can help you take a more logical and informed path!

  • What are Variables? - Science Buddies.
  • Rosenthal, A. (1951, February). The History of Calculus. The American Mathematical Monthly. Informa UK Limited.
  • Tang, X., Coffey, J. E., Elby, A., & Levin, D. M. (2009, October 7). The scientific method and scientific inquiry: Tensions in teaching and learning. Science Education. Wiley.

John Staughton is a traveling writer, editor, publisher and photographer who earned his English and Integrative Biology degrees from the University of Illinois. He is the co-founder of a literary journal, Sheriff Nottingham, and the Content Director for Stain’d Arts, an arts nonprofit based in Denver. On a perpetual journey towards the idea of home, he uses words to educate, inspire, uplift and evolve.

Finance,Report,Accounting,Statistics,Business,Concept

What Is The Aim Of Finding Correlation? Why Is It Used If Correlation Doesn’t Imply Causation?

Microeconomics,Vs,Macroeconomics,-,Traffic,Sign,With,Two,Options,-

Is Economics A Science?

Nature or Nurture as a Versus Choice of Different Belief - Illustration(kentoh)s

Are We Born With A Fixed Personality Or Can It Be Manipulated By Our Environment?

calcus

What Exactly Is Calculus And How Do We Use It In Everyday Life?

Happy,Beautiful,Twins,Girls,Point,Up,Isolated,On,Blue,Background,

Are We Genetically Predetermined To Like What We Like?

decimal place value chart on white background

How Did Decimals Evolve And Why Do We Need Them?

independent variable experiment name

What Exactly is Spacetime? Explained in Ridiculously Simple Words

independent variable experiment name

Global Warming and Climate Change: Explained in Simple Words for Beginners

independent variable experiment name

Why Don't Lakes Just Evaporate or Seep Into the Ground?

independent variable experiment name

What is Calculus in Math? Simple Explanation with Examples

independent variable experiment name

Quantum Physics: Here’s Why Movies Always Get It Wrong

independent variable experiment name

Is Mathematics INVENTED or DISCOVERED?

Difference Between Independent and Dependent Variables

Independent vs. Dependent Variables

  • Chemical Laws
  • Periodic Table
  • Projects & Experiments
  • Scientific Method
  • Biochemistry
  • Physical Chemistry
  • Medical Chemistry
  • Chemistry In Everyday Life
  • Famous Chemists
  • Activities for Kids
  • Abbreviations & Acronyms
  • Weather & Climate

The two main variables in a scientific experiment are the independent and dependent variables. An independent variable is changed or controlled in a scientific experiment to test the effects on another variable. This variable being tested and measured is called the dependent variable.

As its name suggests, the dependent variable is "dependent" on the independent variable. As the experimenter changes the independent variable, the effect on the dependent variable is observed and recorded.

Key Takeaways

  • There can be many variables in an experiment, but the two key variables that are always present are the independent and dependent variables.
  • The independent variable is the one the researcher intentionally changes or controls.
  • The dependent variable is the factor that the research measures. It changes in response to the independent variable; in other words, it depends on it.
  • Examples of Independent and Dependent Variables

Let's say a scientist wants to see if the brightness of light has any effect on a moth's attraction to the light. The brightness of the light is controlled by the scientist. This would be the independent variable . How the moth reacts to the different light levels (such as its distance to the light source) would be the dependent variable .

As another example, say you want to know whether eating breakfast affects student test scores. The factor under the experimenter's control is the presence or absence of breakfast, so you know it is the independent variable. The experiment measures test scores of students who ate breakfast versus those who did not. Theoretically, the test results depend on breakfast, so the test results are the dependent variable. Note that test scores are the dependent variable even if it turns out there is no relationship between scores and breakfast.

For another experiment, a scientist wants to determine whether one drug is more effective than another at controlling high blood pressure. The independent variable is the drug, while the patient's blood pressure is the dependent variable. In some ways, this experiment resembles the one with breakfast and test scores. However, when comparing two different treatments, such as drug A and drug B, it's usual to add another variable, called the control variable. The control variable , which in this case is a placebo that contains the same inactive ingredients as the drugs, makes it possible to tell whether either drug actually affects blood pressure.

How to Tell Independent and Dependent Variables Apart

The independent and dependent variables in an experiment may be viewed in terms of cause and effect. If the independent variable is changed, then an effect is seen, or measured, in the dependent variable. Remember, the values of both variables may change in an experiment and are recorded. The difference is that the value of the independent variable is controlled by the experimenter, while the value of the dependent variable only changes in response to the independent variable.

Remembering Variables and How to Plot Them

When results are plotted in graphs, the convention is to use the independent variable as the x-axis and the dependent variable as the y-axis. The DRY MIX acronym can help keep the variables straight:

D is the dependent variable R is the responding variable Y is the axis on which the dependent or responding variable is graphed (the vertical axis)

M is the manipulated variable or the one that is changed in an experiment I is the independent variable X is the axis on which the independent or manipulated variable is graphed (the horizontal axis)

  • The Difference Between Control Group and Experimental Group
  • Boiling Points of Ethanol, Methanol, and Isopropyl Alcohol
  • How To Design a Science Fair Experiment
  • Commensalism Definition, Examples, and Relationships
  • How to Write a Lab Report
  • The Difference Between Alcohol and Ethanol
  • Difference Between Celsius and Centigrade
  • The Difference Between a Cation and an Anion
  • What is the Difference Between Molarity and Molality?
  • What Is the Difference Between Weight and Mass?
  • What Is a Dependent Variable?
  • What Is Glacial Acetic Acid?
  • What Is the Difference Between Oxidation and Reduction?
  • The Difference Between Homogeneous and Heterogeneous Mixtures
  • The Difference Between Intensive and Extensive Properties

Back Home

  • Science Notes Posts
  • Contact Science Notes
  • Todd Helmenstine Biography
  • Anne Helmenstine Biography
  • Free Printable Periodic Tables (PDF and PNG)
  • Periodic Table Wallpapers
  • Interactive Periodic Table
  • Periodic Table Posters
  • Science Experiments for Kids
  • How to Grow Crystals
  • Chemistry Projects
  • Fire and Flames Projects
  • Holiday Science
  • Chemistry Problems With Answers
  • Physics Problems
  • Unit Conversion Example Problems
  • Chemistry Worksheets
  • Biology Worksheets
  • Periodic Table Worksheets
  • Physical Science Worksheets
  • Science Lab Worksheets
  • My Amazon Books

Difference Between Independent and Dependent Variables

Independent vs Dependent Variable

The independent and dependent variables are the two main types of variables in a science experiment. A variable is anything you can observe, measure, and record. This includes measurements, colors, sounds, presence or absence of an event, etc.

The independent variable is the one factor you change to test its effects on the dependent variable . In other words, the dependent variable “depends” on the independent variable. The independent variable is sometimes called the controlled variable, while the dependent variable may be called the experimental or responding variable.

  • The independent variable is the one you control or manipulate. The dependent variable is the one that responds and that you measure.
  • The independent variable is the cause, while the dependent variable is the effect.
  • Graph the independent variable on the x-axis. Graph the dependent variable on the y-axis.

How to Tell the Independent and Dependent Variable Apart

Both the independent and dependent variables may change during an experiment, but the independent variable is the one you control, while the dependent variable is one you measure in response to this change. The easiest way to tell the two variables apart is to phrase the experiment in terms of an “if-then” or “cause and effect” statement. If you change the independent variable, then you measure its effect on the dependent variable. The cause is the independent variable, while the effect is the dependent variable. If you state “time spent studying affect grades” (independent variables determines dependent variable), the statement makes sense. If your cause and effect statement is in the wrong order (grades determine time spent studying), it doesn’t make sense.

Sometimes the independent variable is easy to identify. Time and age are almost always the independent variable in an experiment. You can measure them, but you can’t control any factor to change them.

Ask yourself these questions to help tell the two variables apart:

Independent Variable

  • Can you control or manipulate this variable?
  • Does this variable come first in time?
  • Are you trying to tell whether this variable affects an outcome or answers a question?

Dependent Variable

  • Does this variable depend on another variable in the experiment?
  • Do you measure this variable after controlling another factor?

Examples of Independent and Dependent Variables

For example, if you want to see whether changing dog food affects your pet’s weight, you can phrase the experiment as, “If I change dog food, then my dog’s weight may change.” The independent variable is the type of dog food, while the dog’s weight is the dependent variable.

In an experiment to test whether a drug is an effective pain reliever, the presence, absence, or dose of the drug is the variable you control (the independent variable), while the pain level of the patient is the dependent variable.

In an experiment to determine whether ice cube shapes determine how quickly ice cubes melt, the independent variable is the shape of the ice cube, while the time it takes to melt is the dependent variable.

If you want to see if the temperature of a classroom affects test score, the temperature is the independent variable. Test scores are the dependent variable.

The independent variable (time) is on the x-axis, while the dependent variable (speed) is on the y-axis of this graph.

Graphing Independent and Dependent Variables With DRYMIX

By convention, the independent variable is plotted on the x-axis of a graph, while the dependent variable is plotted on the y-axis. Use the DRY MIX acronym to remember the variables:

D is the dependent variable R is the variable that responds Y is the y-axis or vertical axis

M is the manipulated or controlled variable I is the independent variable X is the x-axis or horizontal axis

  • Carlson, Robert (2006).  A Concrete Introduction to Real Analysis . CRC Press.
  • Edwards, Joseph (1892).  An Elementary Treatise on the Differential Calculus  (2nd ed.). London: MacMillan and Co.
  • Everitt, B. S. (2002).  The Cambridge Dictionary of Statistics  (2nd ed.). Cambridge UP. ISBN 0-521-81099-X.
  • Hinkelmann, Klaus; Kempthorne, Oscar (2008). Design and Analysis of Experiments. Volume I: Introduction to Experimental Design (2nd ed.). Wiley. ISBN 978-0-471-72756-9.
  • Quine, Willard V. (1960). “ Variables Explained Away “.  Proceedings of the American Philosophical Society . American Philosophical Society. 104 (3): 343–347. 

Related Posts

science education resource

  • Activities, Experiments, Online Games, Visual Aids
  • Activities, Experiments, and Investigations
  • Experimental Design and the Scientific Method

Experimental Design - Independent, Dependent, and Controlled Variables

To view these resources with no ads, please login or subscribe to help support our content development. school subscriptions can access more than 175 downloadable unit bundles in our store for free (a value of $1,500). district subscriptions provide huge group discounts for their schools. email for a quote: [email protected] ..

Scientific experiments are meant to show cause and effect of a phenomena (relationships in nature).  The “ variables ” are any factor, trait, or condition that can be changed in the experiment and that can have an effect on the outcome of the experiment.

An experiment can have three kinds of variables: i ndependent, dependent, and controlled .

  • The independent variable is one single factor that is changed by the scientist followed by observation to watch for changes. It is important that there is just one independent variable, so that results are not confusing.
  • The dependent variable is the factor that changes as a result of the change to the independent variable.
  • The controlled variables (or constant variables) are factors that the scientist wants to remain constant if the experiment is to show accurate results. To be able to measure results, each of the variables must be able to be measured.

For example, let’s design an experiment with two plants sitting in the sun side by side. The controlled variables (or constants) are that at the beginning of the experiment, the plants are the same size, get the same amount of sunlight, experience the same ambient temperature and are in the same amount and consistency of soil (the weight of the soil and container should be measured before the plants are added). The independent variable is that one plant is getting watered (1 cup of water) every day and one plant is getting watered (1 cup of water) once a week. The dependent variables are the changes in the two plants that the scientist observes over time.

Experimental Design - Independent, Dependent, and Controlled Variables

Can you describe the dependent variable that may result from this experiment? After four weeks, the dependent variable may be that one plant is taller, heavier and more developed than the other. These results can be recorded and graphed by measuring and comparing both plants’ height, weight (removing the weight of the soil and container recorded beforehand) and a comparison of observable foliage.

Using What You Learned: Design another experiment using the two plants, but change the independent variable. Can you describe the dependent variable that may result from this new experiment?

Think of another simple experiment and name the independent, dependent, and controlled variables. Use the graphic organizer included in the PDF below to organize your experiment's variables.

Please Login or Subscribe to access downloadable content.

Citing Research References

When you research information you must cite the reference. Citing for websites is different from citing from books, magazines and periodicals. The style of citing shown here is from the MLA Style Citations (Modern Language Association).

When citing a WEBSITE the general format is as follows. Author Last Name, First Name(s). "Title: Subtitle of Part of Web Page, if appropriate." Title: Subtitle: Section of Page if appropriate. Sponsoring/Publishing Agency, If Given. Additional significant descriptive information. Date of Electronic Publication or other Date, such as Last Updated. Day Month Year of access < URL >.

Here is an example of citing this page:

Amsel, Sheri. "Experimental Design - Independent, Dependent, and Controlled Variables" Exploring Nature Educational Resource ©2005-2024. March 25, 2024 < http://www.exploringnature.org/db/view/Experimental-Design-Independent-Dependent-and-Controlled-Variables >

Exploringnature.org has more than 2,000 illustrated animals. Read about them, color them, label them, learn to draw them.

Exploringnature.org has more than 2,000 illustrated animals. Read about them, color them, label them, learn to draw them.

Sciencing_Icons_Science SCIENCE

Sciencing_icons_biology biology, sciencing_icons_cells cells, sciencing_icons_molecular molecular, sciencing_icons_microorganisms microorganisms, sciencing_icons_genetics genetics, sciencing_icons_human body human body, sciencing_icons_ecology ecology, sciencing_icons_chemistry chemistry, sciencing_icons_atomic &amp; molecular structure atomic & molecular structure, sciencing_icons_bonds bonds, sciencing_icons_reactions reactions, sciencing_icons_stoichiometry stoichiometry, sciencing_icons_solutions solutions, sciencing_icons_acids &amp; bases acids & bases, sciencing_icons_thermodynamics thermodynamics, sciencing_icons_organic chemistry organic chemistry, sciencing_icons_physics physics, sciencing_icons_fundamentals-physics fundamentals, sciencing_icons_electronics electronics, sciencing_icons_waves waves, sciencing_icons_energy energy, sciencing_icons_fluid fluid, sciencing_icons_astronomy astronomy, sciencing_icons_geology geology, sciencing_icons_fundamentals-geology fundamentals, sciencing_icons_minerals &amp; rocks minerals & rocks, sciencing_icons_earth scructure earth structure, sciencing_icons_fossils fossils, sciencing_icons_natural disasters natural disasters, sciencing_icons_nature nature, sciencing_icons_ecosystems ecosystems, sciencing_icons_environment environment, sciencing_icons_insects insects, sciencing_icons_plants &amp; mushrooms plants & mushrooms, sciencing_icons_animals animals, sciencing_icons_math math, sciencing_icons_arithmetic arithmetic, sciencing_icons_addition &amp; subtraction addition & subtraction, sciencing_icons_multiplication &amp; division multiplication & division, sciencing_icons_decimals decimals, sciencing_icons_fractions fractions, sciencing_icons_conversions conversions, sciencing_icons_algebra algebra, sciencing_icons_working with units working with units, sciencing_icons_equations &amp; expressions equations & expressions, sciencing_icons_ratios &amp; proportions ratios & proportions, sciencing_icons_inequalities inequalities, sciencing_icons_exponents &amp; logarithms exponents & logarithms, sciencing_icons_factorization factorization, sciencing_icons_functions functions, sciencing_icons_linear equations linear equations, sciencing_icons_graphs graphs, sciencing_icons_quadratics quadratics, sciencing_icons_polynomials polynomials, sciencing_icons_geometry geometry, sciencing_icons_fundamentals-geometry fundamentals, sciencing_icons_cartesian cartesian, sciencing_icons_circles circles, sciencing_icons_solids solids, sciencing_icons_trigonometry trigonometry, sciencing_icons_probability-statistics probability & statistics, sciencing_icons_mean-median-mode mean/median/mode, sciencing_icons_independent-dependent variables independent/dependent variables, sciencing_icons_deviation deviation, sciencing_icons_correlation correlation, sciencing_icons_sampling sampling, sciencing_icons_distributions distributions, sciencing_icons_probability probability, sciencing_icons_calculus calculus, sciencing_icons_differentiation-integration differentiation/integration, sciencing_icons_application application, sciencing_icons_projects projects, sciencing_icons_news news.

  • Share Tweet Email Print
  • Home ⋅
  • Science ⋅
  • Physics ⋅
  • Fundamentals

What Are Dependent, Independent & Controlled Variables?

What are the types of variables?

What Is a Responding Variable in Science Projects?

Say you're in lab, and your teacher asks you to design an experiment. The experiment must test how plants grow in response to different colored light. How would you begin? What are you changing? What are you keeping the same? What are you measuring?

These parameters of what you would change and what you would keep the same are called variables. Take a look at how all of these parameters in an experiment are defined, as independent, dependent and controlled variables.

What Is a Variable?

A variable is any quantity that you are able to measure in some way. This could be temperature, height, age, etc. Basically, a variable is anything that contributes to the outcome or result of your experiment in any way.

In an experiment there are multiple kinds of variables: independent, dependent and controlled variables.

What Is an Independent Variable?

An independent variable is the variable the experimenter controls. Basically, it is the component you choose to change in an experiment. This variable is not dependent on any other variables.

For example, in the plant growth experiment, the independent variable is the light color. The light color is not affected by anything. You will choose different light colors like green, red, yellow, etc. You are not measuring the light.

What Is a Dependent Variable?

A dependent variable is the measurement that changes in response to what you changed in the experiment. This variable is dependent on other variables; hence the name! For example, in the plant growth experiment, the dependent variable would be plant growth.

You could measure this by measuring how much the plant grows every two days. You could also measure it by measuring the rate of photosynthesis. Either of these measurements are dependent upon the kind of light you give the plant.

What Are Controlled Variables?

A control variable in science is any other parameter affecting your experiment that you try to keep the same across all conditions.

For example, one control variable in the plant growth experiment could be temperature. You would not want to have one plant growing in green light with a temperature of 20°C while another plant grows in red light with a temperature of 27°C.

You want to measure only the effect of light, not temperature. For this reason you would want to keep the temperature the same across all of your plants. In other words, you would want to control the temperature.

Another example is the amount of water you give the plant. If one plant receives twice the amount of water as another plant, there would be no way for you to know that the reason those plants grew the way they did is due only to the light color their received.

The observed effect could also be due in part to the amount of water they got. A control variable in science experiments is what allows you to compare other things that may be contributing to a result because you have kept other important things the same across all of your subjects.

Graphing Your Experiment

When graphing the results of your experiment, it is important to remember which variable goes on which axis.

The independent variable is graphed on the x-axis . The dependent variable , which changes in response to the independent variable, is graphed on the y-axis . Controlled variables are usually not graphed because they should not change. They could, however, be graphed as a verification that other conditions are not changing.

For example, after graphing the growth as compared to light, you could also look at how the temperature varied across different conditions. If you notice that it did vary quite a bit, you may need to go back and look at your experimental setup: How could you improve the experiment so that all plants are exposed to as similar an environment as possible (aside from the light color)?

How to Remember Which is Which

In order to try and remember which is the dependent variable and which is the independent variable, try putting them into a sentence which uses "causes a change in."

Here's an example. Saying, "light color causes a change in plant growth," is possible. This shows us that the independent variable affects the dependent variable. The inverse, however, is not true. "Plant growth causes a change in light color," is not possible. This way you know which is the independent variable and which is the dependent variable!

Related Articles

What are constants & controls of a science project..., what are independent & dependent variables in science..., difference between manipulative & responding variable, how to collect data from a science project, science fair projects on plants: do they grow faster..., how to write a testable hypothesis, how to grow a plant from a bean as a science project, what is the role of carotenoids in photosynthesis, proper way to label a graph, two week science projects, why should you only test for one variable at a time..., definitions of control, constant, independent and dependent..., what is a constant in a science fair project, science projects on which fertilizer makes a plant..., venus flytrap science projects, the effect of temperature on the rate of photosynthesis, phototropism experiments, cool science project ideas for k-4th grade, measuring wet bulb temperature.

  • NCES Kids: What are Independent and Dependent Variables?
  • Khan Academy: Dependent and independent variables review (article)

About the Author

Riti Gupta holds a Honors Bachelors degree in Biochemistry from the University of Oregon and a PhD in biology from Johns Hopkins University. She has an interest in astrobiology and manned spaceflight. She has over 10 years of biology research experience in academia. She currently teaches classes in biochemistry, biology, biophysics, astrobiology, as well as high school AP Biology and Chemistry test prep.

Find Your Next Great Science Fair Project! GO

  • Foundations
  • Write Paper

Search form

  • Experiments
  • Anthropology
  • Self-Esteem
  • Social Anxiety

independent variable experiment name

Independent Variable

The independent variable, also known as the manipulated variable,  is the factor manipulated by the researcher, and it produces one or more results, known as   dependent variables .

This article is a part of the guide:

  • Experimental Research
  • Pretest-Posttest
  • Third Variable
  • Research Bias
  • Between Subjects

Browse Full Outline

  • 1 Experimental Research
  • 2.1 Independent Variable
  • 2.2 Dependent Variable
  • 2.3 Controlled Variables
  • 2.4 Third Variable
  • 3.1 Control Group
  • 3.2 Research Bias
  • 3.3.1 Placebo Effect
  • 3.3.2 Double Blind Method
  • 4.1 Randomized Controlled Trials
  • 4.2 Pretest-Posttest
  • 4.3 Solomon Four Group
  • 4.4 Between Subjects
  • 4.5 Within Subject
  • 4.6 Repeated Measures
  • 4.7 Counterbalanced Measures
  • 4.8 Matched Subjects

independent variable experiment name

What is a Variable?

Any factor that can take on different values in an experiment is a scientific variable.

For example, in an experiment investigating the effectiveness of a new training program, the variables might be:

  • Final test scores
  • Student age
  • Time spent on the training program
  • Time to complete final test
  • Student gender
  • Student ratings of the training program 

Depending on how the researcher operationalizes all the variables in an experiment, the above could be either  dependent or independent variables.

It’s the research design that decides which variables are manipulated and which are measured as a result of that manipulation.

independent variable experiment name

What is the Independent Variable?

The independent variable is "independent" because its variation does not depend on the variation of another variable in the experiment/research project. The independent variable is  controlled or changed only by the researcher. This factor is often the research question/hypothesis  behind the outcome of the experiment.

Independent And Dependent Variable

In the above example, the researcher may have wanted to see if participating in the training program raised students' scores on a final test.

Mini-quiz 1

Can you identify the independent variable in this experiment?

  • Score on the test
  • Participation on the training program

What do you think is correct? The answer is at the bottom of the article.

How Many Independent Variables Do You Test?

There are often not more than one or two independent variables tested in an experiment, otherwise it is difficult to determine the influence of each upon the final results. There may be several dependent variables , because manipulating the independent variable can influence many different things.

Independent Variable and Dependent Variable

For example, an experiment to test the effects of a certain fertilizer on plant growth could measure height, number of fruits and the average weight of the fruit produced. All of these are valid analyzable factors arising from the manipulation of one independent variable, the amount of fertilizer.

Graph -
Correlation Between Independent Variable and Dependent Variable

Potential Complexities of the Independent Variable

The term independent variable is often a source of confusion; many people assume that the name means that the variable is independent of any manipulation. The name arises because the variable is isolated from any other factor, allowing experimental manipulation to establish analyzable results .

A useful acronym is DRY-MIX.  This helps you remember which axis to plot your data should you need to draw a graph:

  • D - Dependent
  • R - Responding
  • M  - Manipulated
  • I  - Independent
  • X  - X-axis

Some research papers appear to give results manipulating more than one experimental variable, but this is usually a false impression.

Each manipulated variable is likely to be an experiment in itself, one area where the words 'experiment' and 'research' differ. It is simply more convenient for the researcher to bundle them into one paper, and discuss the overall results.

The researcher above might also study the effects of temperature, or the amount of water on growth, but these must be performed as discrete experiments, with only the conclusion and discussion amalgamated at the end.

Examples of the Independent Variable

Jane elliott's anti-racism experiment.

Third grade teacher Jane Elliott’s famous experiment involved dividing her class into two groups: blue-eyed and brown-eyed children. She gave the blue-eyed children extra privileges and emphasized how superior they were to the brown-eyed, who were now a “minority group.”

As a result, the brown-eyed children saw a drop in confidence, academic performance and an increase in bullying. However, when she later labelled the blue-eyed group as the inferior, these effects were reversed.

Here, the independent variable was group status, i.e. whether the children where in the privileged group or not. This had various observable effects on the children. Importantly, the eye color of the children was not the independent variable here. Eye color was an arbitrary choice made by the teacher to draw parallels to racism and prejudice.

Mini-quiz 2

Can you identify a possible dependent variable in this experiment? 

  • Level of bullying
  • Academic performance 
  • Confidence level
  • All of the above

Bandura Bobo Doll Experiment

In the Bandura Bobo Doll experiment , whether the children were exposed to an aggressive adult, or to a passive adult, was the independent variable.

This experiment is a prime example of how the concept of experimental variables can become a little complex. Bandura also studied the differences between boys and girls, with gender as an independent variable. Surely, this is breaking the rules of only having one manipulated variable!

In fact, this is a prime example of performing multiple experiments at the same time. If you study the structure of the research design , you will see that the Bobo Doll Experiment should have been called the Bobo Doll Experiments.

It was actually four experiments, each with their own hypothesis and variables, running concurrently. It would have been expensive, and possibly unethical , to test the children four times and, if the same children were used each time, their behavior may have changed with repetition.

Careful design allowed Bandura to test different hypotheses as part of the same research.

Mini-quiz 3

Can you identify the separate independent variables in this experiment? Pick two.

  • Presence or absence of Bobo doll
  • Gender of the role models
  • Aggressiveness of the role models
  • Number of children

The answer is at the bottom of the article.

Mini-quiz Answers:

Option 3. Participation on the training program .

The researcher could manipulate the variable of whether students participated on the program or not, then measure the results, for example their score on a final test.

Can you identify a possible dependent variable in this experiment?

Option 4. All of the above.

The experiment measured the children's overall behavior. But this could have been broken into separate dependent variables, for example academic performance, level of bullying, or confidence levels. 

Can you identify the separate independent variables in this experiment? Pick two.

Option 2 and 3. The gender of the role models and the aggressiveness of the role models.

Bandura was interested to see if a child would imitate their role model, but he also wanted to see if a child was more likely to imitate them if they were of the same gender.

  • Psychology 101
  • Flags and Countries
  • Capitals and Countries

Martyn Shuttleworth , Lyndsay T Wilson (Feb 24, 2008). Independent Variable. Retrieved Sep 03, 2024 from Explorable.com: https://explorable.com/independent-variable

You Are Allowed To Copy The Text

The text in this article is licensed under the Creative Commons-License Attribution 4.0 International (CC BY 4.0) .

This means you're free to copy, share and adapt any parts (or all) of the text in the article, as long as you give appropriate credit and provide a link/reference to this page.

That is it. You don't need our permission to copy the article; just include a link/reference back to this page. You can use it freely (with some kind of link), and we're also okay with people reprinting in publications like books, blogs, newsletters, course-material, papers, wikipedia and presentations (with clear attribution).

Want to stay up to date? Follow us!

Get all these articles in 1 guide.

Want the full version to study at home, take to school or just scribble on?

Whether you are an academic novice, or you simply want to brush up your skills, this book will take your academic writing skills to the next level.

independent variable experiment name

Download electronic versions: - Epub for mobiles and tablets - For Kindle here - For iBooks here - PDF version here

Save this course for later

Don't have time for it all now? No problem, save it as a course and come back to it later.

Footer bottom

  • Privacy Policy

independent variable experiment name

  • Subscribe to our RSS Feed
  • Like us on Facebook
  • Follow us on Twitter
  • USC Libraries
  • Research Guides

Organizing Your Social Sciences Research Paper

  • Independent and Dependent Variables
  • Purpose of Guide
  • Design Flaws to Avoid
  • Glossary of Research Terms
  • Reading Research Effectively
  • Narrowing a Topic Idea
  • Broadening a Topic Idea
  • Extending the Timeliness of a Topic Idea
  • Academic Writing Style
  • Applying Critical Thinking
  • Choosing a Title
  • Making an Outline
  • Paragraph Development
  • Research Process Video Series
  • Executive Summary
  • The C.A.R.S. Model
  • Background Information
  • The Research Problem/Question
  • Theoretical Framework
  • Citation Tracking
  • Content Alert Services
  • Evaluating Sources
  • Primary Sources
  • Secondary Sources
  • Tiertiary Sources
  • Scholarly vs. Popular Publications
  • Qualitative Methods
  • Quantitative Methods
  • Insiderness
  • Using Non-Textual Elements
  • Limitations of the Study
  • Common Grammar Mistakes
  • Writing Concisely
  • Avoiding Plagiarism
  • Footnotes or Endnotes?
  • Further Readings
  • Generative AI and Writing
  • USC Libraries Tutorials and Other Guides
  • Bibliography

Definitions

Dependent Variable The variable that depends on other factors that are measured. These variables are expected to change as a result of an experimental manipulation of the independent variable or variables. It is the presumed effect.

Independent Variable The variable that is stable and unaffected by the other variables you are trying to measure. It refers to the condition of an experiment that is systematically manipulated by the investigator. It is the presumed cause.

Cramer, Duncan and Dennis Howitt. The SAGE Dictionary of Statistics . London: SAGE, 2004; Penslar, Robin Levin and Joan P. Porter. Institutional Review Board Guidebook: Introduction . Washington, DC: United States Department of Health and Human Services, 2010; "What are Dependent and Independent Variables?" Graphic Tutorial.

Identifying Dependent and Independent Variables

Don't feel bad if you are confused about what is the dependent variable and what is the independent variable in social and behavioral sciences research . However, it's important that you learn the difference because framing a study using these variables is a common approach to organizing the elements of a social sciences research study in order to discover relevant and meaningful results. Specifically, it is important for these two reasons:

  • You need to understand and be able to evaluate their application in other people's research.
  • You need to apply them correctly in your own research.

A variable in research simply refers to a person, place, thing, or phenomenon that you are trying to measure in some way. The best way to understand the difference between a dependent and independent variable is that the meaning of each is implied by what the words tell us about the variable you are using. You can do this with a simple exercise from the website, Graphic Tutorial. Take the sentence, "The [independent variable] causes a change in [dependent variable] and it is not possible that [dependent variable] could cause a change in [independent variable]." Insert the names of variables you are using in the sentence in the way that makes the most sense. This will help you identify each type of variable. If you're still not sure, consult with your professor before you begin to write.

Fan, Shihe. "Independent Variable." In Encyclopedia of Research Design. Neil J. Salkind, editor. (Thousand Oaks, CA: SAGE, 2010), pp. 592-594; "What are Dependent and Independent Variables?" Graphic Tutorial; Salkind, Neil J. "Dependent Variable." In Encyclopedia of Research Design , Neil J. Salkind, editor. (Thousand Oaks, CA: SAGE, 2010), pp. 348-349;

Structure and Writing Style

The process of examining a research problem in the social and behavioral sciences is often framed around methods of analysis that compare, contrast, correlate, average, or integrate relationships between or among variables . Techniques include associations, sampling, random selection, and blind selection. Designation of the dependent and independent variable involves unpacking the research problem in a way that identifies a general cause and effect and classifying these variables as either independent or dependent.

The variables should be outlined in the introduction of your paper and explained in more detail in the methods section . There are no rules about the structure and style for writing about independent or dependent variables but, as with any academic writing, clarity and being succinct is most important.

After you have described the research problem and its significance in relation to prior research, explain why you have chosen to examine the problem using a method of analysis that investigates the relationships between or among independent and dependent variables . State what it is about the research problem that lends itself to this type of analysis. For example, if you are investigating the relationship between corporate environmental sustainability efforts [the independent variable] and dependent variables associated with measuring employee satisfaction at work using a survey instrument, you would first identify each variable and then provide background information about the variables. What is meant by "environmental sustainability"? Are you looking at a particular company [e.g., General Motors] or are you investigating an industry [e.g., the meat packing industry]? Why is employee satisfaction in the workplace important? How does a company make their employees aware of sustainability efforts and why would a company even care that its employees know about these efforts?

Identify each variable for the reader and define each . In the introduction, this information can be presented in a paragraph or two when you describe how you are going to study the research problem. In the methods section, you build on the literature review of prior studies about the research problem to describe in detail background about each variable, breaking each down for measurement and analysis. For example, what activities do you examine that reflect a company's commitment to environmental sustainability? Levels of employee satisfaction can be measured by a survey that asks about things like volunteerism or a desire to stay at the company for a long time.

The structure and writing style of describing the variables and their application to analyzing the research problem should be stated and unpacked in such a way that the reader obtains a clear understanding of the relationships between the variables and why they are important. This is also important so that the study can be replicated in the future using the same variables but applied in a different way.

Fan, Shihe. "Independent Variable." In Encyclopedia of Research Design. Neil J. Salkind, editor. (Thousand Oaks, CA: SAGE, 2010), pp. 592-594; "What are Dependent and Independent Variables?" Graphic Tutorial; “Case Example for Independent and Dependent Variables.” ORI Curriculum Examples. U.S. Department of Health and Human Services, Office of Research Integrity; Salkind, Neil J. "Dependent Variable." In Encyclopedia of Research Design , Neil J. Salkind, editor. (Thousand Oaks, CA: SAGE, 2010), pp. 348-349; “Independent Variables and Dependent Variables.” Karl L. Wuensch, Department of Psychology, East Carolina University [posted email exchange]; “Variables.” Elements of Research. Dr. Camille Nebeker, San Diego State University.

  • << Previous: Design Flaws to Avoid
  • Next: Glossary of Research Terms >>
  • Last Updated: Sep 3, 2024 1:54 PM
  • URL: https://libguides.usc.edu/writingguide

Stay up to date with notifications from The Independent

Notifications can be managed in browser preferences.

UK Edition Change

  • UK Politics
  • News Videos
  • Paris 2024 Olympics
  • Rugby Union
  • Sport Videos
  • John Rentoul
  • Mary Dejevsky
  • Andrew Grice
  • Sean O’Grady
  • Photography
  • Theatre & Dance
  • Culture Videos
  • Fitness & Wellbeing
  • Food & Drink
  • Health & Families
  • Royal Family
  • Electric Vehicles
  • Car Insurance Deals
  • Lifestyle Videos
  • UK Hotel Reviews
  • News & Advice
  • Simon Calder
  • Australia & New Zealand
  • South America
  • C. America & Caribbean
  • Middle East
  • Politics Explained
  • News Analysis
  • Today’s Edition
  • Home & Garden
  • Broadband deals
  • Fashion & Beauty
  • Travel & Outdoors
  • Sports & Fitness
  • Climate 100
  • Sustainable Living
  • Climate Videos
  • Solar Panels
  • Behind The Headlines
  • On The Ground
  • Decomplicated
  • You Ask The Questions
  • Binge Watch
  • Travel Smart
  • Watch on your TV
  • Crosswords & Puzzles
  • Most Commented
  • Newsletters
  • Ask Me Anything
  • Virtual Events
  • Wine Offers
  • Betting Sites

Thank you for registering

Please refresh the page or navigate to another page on the site to be automatically logged in Please refresh your browser to be logged in

New study shows how long dogs can remember names for

Dogs could help scientists understand more about how animals other than humans retain their memories, article bookmarked.

Find your bookmarks in your Independent Premium section, under my profile

A new study suggests they can remember the names of some of these toys for an extended period of time.

The best of Voices delivered to your inbox every week - from controversial columns to expert analysis

Sign up for our free weekly voices newsletter for expert opinion and columns, sign up to our free weekly voices newsletter, thanks for signing up to the independent voices email.

Certain dogs can remember the names of their toys for at least two years, scientists have found.

Previous research has shown these rare pooches, known as gifted word learners (GWL), have a unique ability to learn the names of hundreds of different objects.

A new study, published in the journal Biology Letters, now suggests they can remember the names of some of these toys for an extended period of time.

The hope is that the talented dogs could help scientists understand more about how animals other than humans retain their memories.

Dr Claudia Fugazza, the head of the research group at Eotvos Lorand University in Hungary, said: “We know that dogs can remember events for at least 24 hours and odours for up to one year but this is the first study showing that some talented dogs can remember words for at least two years.

“The findings of our current study cannot be generalised to other dogs because we only tested GWL dogs, individuals that show a special talent for acquiring object words.”

For the study, the researchers analysed the behaviour of five border collies: Gaia, Max, Whiskey, Squall and Rico.

These GWL dogs had learnt and remembered the names of multiple toys and were tested again two years on.

Whiskey with a Gifted Word Learner certificate

The researchers said that “remarkably” four out of five dogs remembered the names of between 60-75% of the toys after two years, with Gaia performing the best.

As a group, the dogs’ performance averaged at 44% correct choices, which is significantly above chance level, the team added.

Dr Shany Dror, lead researcher on the study at Eotvos Lorand University, said: “We waited two years and then decided to test the dogs again, to see if they still remembered the toy names.

“Because such a long time has passed some of the owners lost a few of the toys.

“Thus, three dogs were tested on 12 toys, one dog on 11 and one dog on five.

“After two years, we all had a hard time remembering the names of toys.

“But not the dogs! They did not seem to struggle.”

The research is part of a project known as the Genius Dog Challenge and the scientists are urging owners who believe their dogs know multiple toy names to contact them via the project’s website.

Join our commenting forum

Join thought-provoking conversations, follow other Independent readers and see their replies

Subscribe to Independent Premium to bookmark this article

Want to bookmark your favourite articles and stories to read or reference later? Start your Independent Premium subscription today.

New to The Independent?

Or if you would prefer:

Hi {{indy.fullName}}

  • My Independent Premium
  • Account details
  • Help centre

IMAGES

  1. Independent Variable 6th Grade Science

    independent variable experiment name

  2. PPT

    independent variable experiment name

  3. PPT

    independent variable experiment name

  4. What Is an Independent Variable?

    independent variable experiment name

  5. Science Experiment: Independent, Dependent, and Controlled Variables by

    independent variable experiment name

  6. What Are The Three Variables In Science Bbc Bitesize

    independent variable experiment name

VIDEO

  1. B.Sc 2nd Semester Chemistry Experiment Name (Synthesis Of Barbituric Acid) #shortvideo #vairalvideo

  2. The independent variable is an influencer #stem #science #education #scienceeducation #data

  3. Independent vs. Dependent Variables in Experiments

  4. Dependent and Independent Variables in Statistics.. meaning and examples

  5. EEE-104

  6. Definition of Variable in Research? What is Independent and Dependent Variables?

COMMENTS

  1. Independent vs. Dependent Variables

    The independent variable is the cause. Its value is independent of other variables in your study. The dependent variable is the effect. Its value depends on changes in the independent variable. Example: Independent and dependent variables. You design a study to test whether changes in room temperature have an effect on math test scores.

  2. Independent and Dependent Variables Examples

    Here are several examples of independent and dependent variables in experiments: In a study to determine whether how long a student sleeps affects test scores, the independent variable is the length of time spent sleeping while the dependent variable is the test score. You want to know which brand of fertilizer is best for your plants.

  3. Independent Variables (Definition + 43 Examples)

    The independent variable is the catalyst, the initial spark that sets the wheels of research in motion. Dependent Variable. The dependent variable is the outcome we observe and measure. It's the altered flavor of the soup that results from the chef's culinary experiments.

  4. 15 Independent and Dependent Variable Examples

    Examples of Independent and Dependent Variables. 1. Gatorade and Improved Athletic Performance. A sports medicine researcher has been hired by Gatorade to test the effects of its sports drink on athletic performance. The company wants to claim that when an athlete drinks Gatorade, their performance will improve.

  5. What Is an Independent Variable? Definition and Examples

    The independent variable is the variable that is controlled or changed in a scientific experiment to test its effect on the dependent variable. It doesn't depend on another variable and isn't changed by any factors an experimenter is trying to measure. The independent variable is denoted by the letter x in an experiment or graph.

  6. Independent Variable in Psychology: Examples and Importance

    The independent variable (IV) in psychology is the characteristic of an experiment that is manipulated or changed by researchers, not by other variables in the experiment. For example, in an experiment looking at the effects of studying on test scores, studying would be the independent variable. Researchers are trying to determine if changes to ...

  7. Independent and Dependent Variables

    In research, the independent variable is manipulated to observe its effect, while the dependent variable is the measured outcome. Essentially, the independent variable is the presumed cause, and the dependent variable is the observed effect. Variables provide the foundation for examining relationships, drawing conclusions, and making ...

  8. Independent and Dependent Variable Examples

    The independent variable in your experiment would be the brand of paper towels. The dependent variable would be the amount of liquid absorbed by the paper towel. In an experiment to determine how far people can see into the infrared part of the spectrum, the wavelength of light is the independent variable and whether the light is observed (the ...

  9. Independent and Dependent Variables: Differences & Examples

    Independent variables cause changes in another variable. The researchers control the values of the independent variables. They are controlled or manipulated variables. Experiments often refer to them as factors or experimental factors. In areas such as medicine, they might be risk factors. Treatment and control groups are always independent ...

  10. Independent & Dependent Variables (With Examples)

    While the independent variable is the " cause ", the dependent variable is the " effect " - or rather, the affected variable. In other words, the dependent variable is the variable that is assumed to change as a result of a change in the independent variable. Keeping with the previous example, let's look at some dependent variables ...

  11. Independent Variable Definition and Examples

    Here are some examples of an independent variable. A scientist is testing the effect of light and dark on the behavior of moths by turning a light on and off. The independent variable is the amount of light (cause) and the moth's reaction is the dependent variable (the effect). In a study to determine the effect of temperature on plant ...

  12. Independent Variable

    Definition: Independent variable is a variable that is manipulated or changed by the researcher to observe its effect on the dependent variable. It is also known as the predictor variable or explanatory variable. The independent variable is the presumed cause in an experiment or study, while the dependent variable is the presumed effect or outcome.

  13. Independent and Dependent Variables, Explained With Examples

    Independent and Dependent Variables, Explained With Examples. Written by MasterClass. Last updated: Mar 21, 2022 • 4 min read. In experiments that test cause and effect, two types of variables come into play. One is an independent variable and the other is a dependent variable, and together they play an integral role in research design.

  14. Independent and Dependent Variables: Which Is Which?

    The dependent variable (sometimes known as the responding variable) is what is being studied and measured in the experiment. It's what changes as a result of the changes to the independent variable. An example of a dependent variable is how tall you are at different ages. The dependent variable (height) depends on the independent variable (age).

  15. What Is An Independent Variable?

    As mentioned above, independent and dependent variables are the two key components of an experiment. Quite simply, the independent variable is the state, condition or experimental element that is controlled and manipulated by the experimenter. The dependent variable is what an experimenter is attempting to test, learn about or measure, and will ...

  16. Difference Between Independent and Dependent Variables

    The independent variable is the drug, while the patient's blood pressure is the dependent variable. In some ways, this experiment resembles the one with breakfast and test scores. However, when comparing two different treatments, such as drug A and drug B, it's usual to add another variable, called the control variable.

  17. Difference Between Independent and Dependent Variables

    The independent variable is the one you control, while the dependent variable depends on the independent variable and is the one you measure. The independent and dependent variables are the two main types of variables in a science experiment. A variable is anything you can observe, measure, and record. This includes measurements, colors, sounds ...

  18. Experimental Design

    The " variables " are any factor, trait, or condition that can be changed in the experiment and that can have an effect on the outcome of the experiment. An experiment can have three kinds of variables: i ndependent, dependent, and controlled. The independent variable is one single factor that is changed by the scientist followed by ...

  19. What Are Dependent, Independent & Controlled Variables?

    References. About the Author. In an experiment, there are multiple kinds of variables: independent, dependent and controlled variables. The independent variable is the one the experimenter changes. The dependent variable is what changes in response to the independent variable. Controlled variables are conditions kept the same.

  20. Dependent and independent variables

    A variable is considered dependent if it depends on an independent variable.Dependent variables are studied under the supposition or demand that they depend, by some law or rule (e.g., by a mathematical function), on the values of other variables.Independent variables, in turn, are not seen as depending on any other variable in the scope of the experiment in question.

  21. Independent Variable

    The independent variable is "independent" because its variation does not depend on the variation of another variable in the experiment/research project. The independent variable is controlled or changed only by the researcher. This factor is often the research question/hypothesis behind the outcome of the experiment.

  22. Independent and Dependent Variables

    It refers to the condition of an experiment that is systematically manipulated by the investigator. It is the presumed cause. Cramer, Duncan and Dennis Howitt. ... [dependent variable] could cause a change in [independent variable]." Insert the names of variables you are using in the sentence in the way that makes the most sense. This will help ...

  23. New study shows how long dogs can remember names for

    Our mission is to deliver unbiased, fact-based reporting that holds power to account and exposes the truth. Whether $5 or $50, every contribution counts. Certain dogs can remember the names of ...