• Resources Home 🏠
  • Try SciSpace Copilot
  • Search research papers
  • Add Copilot Extension
  • Try AI Detector
  • Try Paraphraser
  • Try Citation Generator
  • April Papers
  • June Papers
  • July Papers

SciSpace Resources

The Craft of Writing a Strong Hypothesis

Deeptanshu D

Table of Contents

Writing a hypothesis is one of the essential elements of a scientific research paper. It needs to be to the point, clearly communicating what your research is trying to accomplish. A blurry, drawn-out, or complexly-structured hypothesis can confuse your readers. Or worse, the editor and peer reviewers.

A captivating hypothesis is not too intricate. This blog will take you through the process so that, by the end of it, you have a better idea of how to convey your research paper's intent in just one sentence.

What is a Hypothesis?

The first step in your scientific endeavor, a hypothesis, is a strong, concise statement that forms the basis of your research. It is not the same as a thesis statement , which is a brief summary of your research paper .

The sole purpose of a hypothesis is to predict your paper's findings, data, and conclusion. It comes from a place of curiosity and intuition . When you write a hypothesis, you're essentially making an educated guess based on scientific prejudices and evidence, which is further proven or disproven through the scientific method.

The reason for undertaking research is to observe a specific phenomenon. A hypothesis, therefore, lays out what the said phenomenon is. And it does so through two variables, an independent and dependent variable.

The independent variable is the cause behind the observation, while the dependent variable is the effect of the cause. A good example of this is “mixing red and blue forms purple.” In this hypothesis, mixing red and blue is the independent variable as you're combining the two colors at your own will. The formation of purple is the dependent variable as, in this case, it is conditional to the independent variable.

Different Types of Hypotheses‌

Types-of-hypotheses

Types of hypotheses

Some would stand by the notion that there are only two types of hypotheses: a Null hypothesis and an Alternative hypothesis. While that may have some truth to it, it would be better to fully distinguish the most common forms as these terms come up so often, which might leave you out of context.

Apart from Null and Alternative, there are Complex, Simple, Directional, Non-Directional, Statistical, and Associative and casual hypotheses. They don't necessarily have to be exclusive, as one hypothesis can tick many boxes, but knowing the distinctions between them will make it easier for you to construct your own.

1. Null hypothesis

A null hypothesis proposes no relationship between two variables. Denoted by H 0 , it is a negative statement like “Attending physiotherapy sessions does not affect athletes' on-field performance.” Here, the author claims physiotherapy sessions have no effect on on-field performances. Even if there is, it's only a coincidence.

2. Alternative hypothesis

Considered to be the opposite of a null hypothesis, an alternative hypothesis is donated as H1 or Ha. It explicitly states that the dependent variable affects the independent variable. A good  alternative hypothesis example is “Attending physiotherapy sessions improves athletes' on-field performance.” or “Water evaporates at 100 °C. ” The alternative hypothesis further branches into directional and non-directional.

  • Directional hypothesis: A hypothesis that states the result would be either positive or negative is called directional hypothesis. It accompanies H1 with either the ‘<' or ‘>' sign.
  • Non-directional hypothesis: A non-directional hypothesis only claims an effect on the dependent variable. It does not clarify whether the result would be positive or negative. The sign for a non-directional hypothesis is ‘≠.'

3. Simple hypothesis

A simple hypothesis is a statement made to reflect the relation between exactly two variables. One independent and one dependent. Consider the example, “Smoking is a prominent cause of lung cancer." The dependent variable, lung cancer, is dependent on the independent variable, smoking.

4. Complex hypothesis

In contrast to a simple hypothesis, a complex hypothesis implies the relationship between multiple independent and dependent variables. For instance, “Individuals who eat more fruits tend to have higher immunity, lesser cholesterol, and high metabolism.” The independent variable is eating more fruits, while the dependent variables are higher immunity, lesser cholesterol, and high metabolism.

5. Associative and casual hypothesis

Associative and casual hypotheses don't exhibit how many variables there will be. They define the relationship between the variables. In an associative hypothesis, changing any one variable, dependent or independent, affects others. In a casual hypothesis, the independent variable directly affects the dependent.

6. Empirical hypothesis

Also referred to as the working hypothesis, an empirical hypothesis claims a theory's validation via experiments and observation. This way, the statement appears justifiable and different from a wild guess.

Say, the hypothesis is “Women who take iron tablets face a lesser risk of anemia than those who take vitamin B12.” This is an example of an empirical hypothesis where the researcher  the statement after assessing a group of women who take iron tablets and charting the findings.

7. Statistical hypothesis

The point of a statistical hypothesis is to test an already existing hypothesis by studying a population sample. Hypothesis like “44% of the Indian population belong in the age group of 22-27.” leverage evidence to prove or disprove a particular statement.

Characteristics of a Good Hypothesis

Writing a hypothesis is essential as it can make or break your research for you. That includes your chances of getting published in a journal. So when you're designing one, keep an eye out for these pointers:

  • A research hypothesis has to be simple yet clear to look justifiable enough.
  • It has to be testable — your research would be rendered pointless if too far-fetched into reality or limited by technology.
  • It has to be precise about the results —what you are trying to do and achieve through it should come out in your hypothesis.
  • A research hypothesis should be self-explanatory, leaving no doubt in the reader's mind.
  • If you are developing a relational hypothesis, you need to include the variables and establish an appropriate relationship among them.
  • A hypothesis must keep and reflect the scope for further investigations and experiments.

Separating a Hypothesis from a Prediction

Outside of academia, hypothesis and prediction are often used interchangeably. In research writing, this is not only confusing but also incorrect. And although a hypothesis and prediction are guesses at their core, there are many differences between them.

A hypothesis is an educated guess or even a testable prediction validated through research. It aims to analyze the gathered evidence and facts to define a relationship between variables and put forth a logical explanation behind the nature of events.

Predictions are assumptions or expected outcomes made without any backing evidence. They are more fictionally inclined regardless of where they originate from.

For this reason, a hypothesis holds much more weight than a prediction. It sticks to the scientific method rather than pure guesswork. "Planets revolve around the Sun." is an example of a hypothesis as it is previous knowledge and observed trends. Additionally, we can test it through the scientific method.

Whereas "COVID-19 will be eradicated by 2030." is a prediction. Even though it results from past trends, we can't prove or disprove it. So, the only way this gets validated is to wait and watch if COVID-19 cases end by 2030.

Finally, How to Write a Hypothesis

Quick-tips-on-how-to-write-a-hypothesis

Quick tips on writing a hypothesis

1.  Be clear about your research question

A hypothesis should instantly address the research question or the problem statement. To do so, you need to ask a question. Understand the constraints of your undertaken research topic and then formulate a simple and topic-centric problem. Only after that can you develop a hypothesis and further test for evidence.

2. Carry out a recce

Once you have your research's foundation laid out, it would be best to conduct preliminary research. Go through previous theories, academic papers, data, and experiments before you start curating your research hypothesis. It will give you an idea of your hypothesis's viability or originality.

Making use of references from relevant research papers helps draft a good research hypothesis. SciSpace Discover offers a repository of over 270 million research papers to browse through and gain a deeper understanding of related studies on a particular topic. Additionally, you can use SciSpace Copilot , your AI research assistant, for reading any lengthy research paper and getting a more summarized context of it. A hypothesis can be formed after evaluating many such summarized research papers. Copilot also offers explanations for theories and equations, explains paper in simplified version, allows you to highlight any text in the paper or clip math equations and tables and provides a deeper, clear understanding of what is being said. This can improve the hypothesis by helping you identify potential research gaps.

3. Create a 3-dimensional hypothesis

Variables are an essential part of any reasonable hypothesis. So, identify your independent and dependent variable(s) and form a correlation between them. The ideal way to do this is to write the hypothetical assumption in the ‘if-then' form. If you use this form, make sure that you state the predefined relationship between the variables.

In another way, you can choose to present your hypothesis as a comparison between two variables. Here, you must specify the difference you expect to observe in the results.

4. Write the first draft

Now that everything is in place, it's time to write your hypothesis. For starters, create the first draft. In this version, write what you expect to find from your research.

Clearly separate your independent and dependent variables and the link between them. Don't fixate on syntax at this stage. The goal is to ensure your hypothesis addresses the issue.

5. Proof your hypothesis

After preparing the first draft of your hypothesis, you need to inspect it thoroughly. It should tick all the boxes, like being concise, straightforward, relevant, and accurate. Your final hypothesis has to be well-structured as well.

Research projects are an exciting and crucial part of being a scholar. And once you have your research question, you need a great hypothesis to begin conducting research. Thus, knowing how to write a hypothesis is very important.

Now that you have a firmer grasp on what a good hypothesis constitutes, the different kinds there are, and what process to follow, you will find it much easier to write your hypothesis, which ultimately helps your research.

Now it's easier than ever to streamline your research workflow with SciSpace Discover . Its integrated, comprehensive end-to-end platform for research allows scholars to easily discover, write and publish their research and fosters collaboration.

It includes everything you need, including a repository of over 270 million research papers across disciplines, SEO-optimized summaries and public profiles to show your expertise and experience.

If you found these tips on writing a research hypothesis useful, head over to our blog on Statistical Hypothesis Testing to learn about the top researchers, papers, and institutions in this domain.

Frequently Asked Questions (FAQs)

1. what is the definition of hypothesis.

According to the Oxford dictionary, a hypothesis is defined as “An idea or explanation of something that is based on a few known facts, but that has not yet been proved to be true or correct”.

2. What is an example of hypothesis?

The hypothesis is a statement that proposes a relationship between two or more variables. An example: "If we increase the number of new users who join our platform by 25%, then we will see an increase in revenue."

3. What is an example of null hypothesis?

A null hypothesis is a statement that there is no relationship between two variables. The null hypothesis is written as H0. The null hypothesis states that there is no effect. For example, if you're studying whether or not a particular type of exercise increases strength, your null hypothesis will be "there is no difference in strength between people who exercise and people who don't."

4. What are the types of research?

• Fundamental research

• Applied research

• Qualitative research

• Quantitative research

• Mixed research

• Exploratory research

• Longitudinal research

• Cross-sectional research

• Field research

• Laboratory research

• Fixed research

• Flexible research

• Action research

• Policy research

• Classification research

• Comparative research

• Causal research

• Inductive research

• Deductive research

5. How to write a hypothesis?

• Your hypothesis should be able to predict the relationship and outcome.

• Avoid wordiness by keeping it simple and brief.

• Your hypothesis should contain observable and testable outcomes.

• Your hypothesis should be relevant to the research question.

6. What are the 2 types of hypothesis?

• Null hypotheses are used to test the claim that "there is no difference between two groups of data".

• Alternative hypotheses test the claim that "there is a difference between two data groups".

7. Difference between research question and research hypothesis?

A research question is a broad, open-ended question you will try to answer through your research. A hypothesis is a statement based on prior research or theory that you expect to be true due to your study. Example - Research question: What are the factors that influence the adoption of the new technology? Research hypothesis: There is a positive relationship between age, education and income level with the adoption of the new technology.

8. What is plural for hypothesis?

The plural of hypothesis is hypotheses. Here's an example of how it would be used in a statement, "Numerous well-considered hypotheses are presented in this part, and they are supported by tables and figures that are well-illustrated."

9. What is the red queen hypothesis?

The red queen hypothesis in evolutionary biology states that species must constantly evolve to avoid extinction because if they don't, they will be outcompeted by other species that are evolving. Leigh Van Valen first proposed it in 1973; since then, it has been tested and substantiated many times.

10. Who is known as the father of null hypothesis?

The father of the null hypothesis is Sir Ronald Fisher. He published a paper in 1925 that introduced the concept of null hypothesis testing, and he was also the first to use the term itself.

11. When to reject null hypothesis?

You need to find a significant difference between your two populations to reject the null hypothesis. You can determine that by running statistical tests such as an independent sample t-test or a dependent sample t-test. You should reject the null hypothesis if the p-value is less than 0.05.

complex hypothesis in research

You might also like

Consensus GPT vs. SciSpace GPT: Choose the Best GPT for Research

Consensus GPT vs. SciSpace GPT: Choose the Best GPT for Research

Sumalatha G

Literature Review and Theoretical Framework: Understanding the Differences

Nikhil Seethi

Types of Essays in Academic Writing - Quick Guide (2024)

Educational resources and simple solutions for your research journey

Research hypothesis: What it is, how to write it, types, and examples

What is a Research Hypothesis: How to Write it, Types, and Examples

complex hypothesis in research

Any research begins with a research question and a research hypothesis . A research question alone may not suffice to design the experiment(s) needed to answer it. A hypothesis is central to the scientific method. But what is a hypothesis ? A hypothesis is a testable statement that proposes a possible explanation to a phenomenon, and it may include a prediction. Next, you may ask what is a research hypothesis ? Simply put, a research hypothesis is a prediction or educated guess about the relationship between the variables that you want to investigate.  

It is important to be thorough when developing your research hypothesis. Shortcomings in the framing of a hypothesis can affect the study design and the results. A better understanding of the research hypothesis definition and characteristics of a good hypothesis will make it easier for you to develop your own hypothesis for your research. Let’s dive in to know more about the types of research hypothesis , how to write a research hypothesis , and some research hypothesis examples .  

Table of Contents

What is a hypothesis ?  

A hypothesis is based on the existing body of knowledge in a study area. Framed before the data are collected, a hypothesis states the tentative relationship between independent and dependent variables, along with a prediction of the outcome.  

What is a research hypothesis ?  

Young researchers starting out their journey are usually brimming with questions like “ What is a hypothesis ?” “ What is a research hypothesis ?” “How can I write a good research hypothesis ?”   

A research hypothesis is a statement that proposes a possible explanation for an observable phenomenon or pattern. It guides the direction of a study and predicts the outcome of the investigation. A research hypothesis is testable, i.e., it can be supported or disproven through experimentation or observation.     

complex hypothesis in research

Characteristics of a good hypothesis  

Here are the characteristics of a good hypothesis :  

  • Clearly formulated and free of language errors and ambiguity  
  • Concise and not unnecessarily verbose  
  • Has clearly defined variables  
  • Testable and stated in a way that allows for it to be disproven  
  • Can be tested using a research design that is feasible, ethical, and practical   
  • Specific and relevant to the research problem  
  • Rooted in a thorough literature search  
  • Can generate new knowledge or understanding.  

How to create an effective research hypothesis  

A study begins with the formulation of a research question. A researcher then performs background research. This background information forms the basis for building a good research hypothesis . The researcher then performs experiments, collects, and analyzes the data, interprets the findings, and ultimately, determines if the findings support or negate the original hypothesis.  

Let’s look at each step for creating an effective, testable, and good research hypothesis :  

  • Identify a research problem or question: Start by identifying a specific research problem.   
  • Review the literature: Conduct an in-depth review of the existing literature related to the research problem to grasp the current knowledge and gaps in the field.   
  • Formulate a clear and testable hypothesis : Based on the research question, use existing knowledge to form a clear and testable hypothesis . The hypothesis should state a predicted relationship between two or more variables that can be measured and manipulated. Improve the original draft till it is clear and meaningful.  
  • State the null hypothesis: The null hypothesis is a statement that there is no relationship between the variables you are studying.   
  • Define the population and sample: Clearly define the population you are studying and the sample you will be using for your research.  
  • Select appropriate methods for testing the hypothesis: Select appropriate research methods, such as experiments, surveys, or observational studies, which will allow you to test your research hypothesis .  

Remember that creating a research hypothesis is an iterative process, i.e., you might have to revise it based on the data you collect. You may need to test and reject several hypotheses before answering the research problem.  

How to write a research hypothesis  

When you start writing a research hypothesis , you use an “if–then” statement format, which states the predicted relationship between two or more variables. Clearly identify the independent variables (the variables being changed) and the dependent variables (the variables being measured), as well as the population you are studying. Review and revise your hypothesis as needed.  

An example of a research hypothesis in this format is as follows:  

“ If [athletes] follow [cold water showers daily], then their [endurance] increases.”  

Population: athletes  

Independent variable: daily cold water showers  

Dependent variable: endurance  

You may have understood the characteristics of a good hypothesis . But note that a research hypothesis is not always confirmed; a researcher should be prepared to accept or reject the hypothesis based on the study findings.  

complex hypothesis in research

Research hypothesis checklist  

Following from above, here is a 10-point checklist for a good research hypothesis :  

  • Testable: A research hypothesis should be able to be tested via experimentation or observation.  
  • Specific: A research hypothesis should clearly state the relationship between the variables being studied.  
  • Based on prior research: A research hypothesis should be based on existing knowledge and previous research in the field.  
  • Falsifiable: A research hypothesis should be able to be disproven through testing.  
  • Clear and concise: A research hypothesis should be stated in a clear and concise manner.  
  • Logical: A research hypothesis should be logical and consistent with current understanding of the subject.  
  • Relevant: A research hypothesis should be relevant to the research question and objectives.  
  • Feasible: A research hypothesis should be feasible to test within the scope of the study.  
  • Reflects the population: A research hypothesis should consider the population or sample being studied.  
  • Uncomplicated: A good research hypothesis is written in a way that is easy for the target audience to understand.  

By following this research hypothesis checklist , you will be able to create a research hypothesis that is strong, well-constructed, and more likely to yield meaningful results.  

Research hypothesis: What it is, how to write it, types, and examples

Types of research hypothesis  

Different types of research hypothesis are used in scientific research:  

1. Null hypothesis:

A null hypothesis states that there is no change in the dependent variable due to changes to the independent variable. This means that the results are due to chance and are not significant. A null hypothesis is denoted as H0 and is stated as the opposite of what the alternative hypothesis states.   

Example: “ The newly identified virus is not zoonotic .”  

2. Alternative hypothesis:

This states that there is a significant difference or relationship between the variables being studied. It is denoted as H1 or Ha and is usually accepted or rejected in favor of the null hypothesis.  

Example: “ The newly identified virus is zoonotic .”  

3. Directional hypothesis :

This specifies the direction of the relationship or difference between variables; therefore, it tends to use terms like increase, decrease, positive, negative, more, or less.   

Example: “ The inclusion of intervention X decreases infant mortality compared to the original treatment .”   

4. Non-directional hypothesis:

While it does not predict the exact direction or nature of the relationship between the two variables, a non-directional hypothesis states the existence of a relationship or difference between variables but not the direction, nature, or magnitude of the relationship. A non-directional hypothesis may be used when there is no underlying theory or when findings contradict previous research.  

Example, “ Cats and dogs differ in the amount of affection they express .”  

5. Simple hypothesis :

A simple hypothesis only predicts the relationship between one independent and another independent variable.  

Example: “ Applying sunscreen every day slows skin aging .”  

6 . Complex hypothesis :

A complex hypothesis states the relationship or difference between two or more independent and dependent variables.   

Example: “ Applying sunscreen every day slows skin aging, reduces sun burn, and reduces the chances of skin cancer .” (Here, the three dependent variables are slowing skin aging, reducing sun burn, and reducing the chances of skin cancer.)  

7. Associative hypothesis:  

An associative hypothesis states that a change in one variable results in the change of the other variable. The associative hypothesis defines interdependency between variables.  

Example: “ There is a positive association between physical activity levels and overall health .”  

8 . Causal hypothesis:

A causal hypothesis proposes a cause-and-effect interaction between variables.  

Example: “ Long-term alcohol use causes liver damage .”  

Note that some of the types of research hypothesis mentioned above might overlap. The types of hypothesis chosen will depend on the research question and the objective of the study.  

complex hypothesis in research

Research hypothesis examples  

Here are some good research hypothesis examples :  

“The use of a specific type of therapy will lead to a reduction in symptoms of depression in individuals with a history of major depressive disorder.”  

“Providing educational interventions on healthy eating habits will result in weight loss in overweight individuals.”  

“Plants that are exposed to certain types of music will grow taller than those that are not exposed to music.”  

“The use of the plant growth regulator X will lead to an increase in the number of flowers produced by plants.”  

Characteristics that make a research hypothesis weak are unclear variables, unoriginality, being too general or too vague, and being untestable. A weak hypothesis leads to weak research and improper methods.   

Some bad research hypothesis examples (and the reasons why they are “bad”) are as follows:  

“This study will show that treatment X is better than any other treatment . ” (This statement is not testable, too broad, and does not consider other treatments that may be effective.)  

“This study will prove that this type of therapy is effective for all mental disorders . ” (This statement is too broad and not testable as mental disorders are complex and different disorders may respond differently to different types of therapy.)  

“Plants can communicate with each other through telepathy . ” (This statement is not testable and lacks a scientific basis.)  

Importance of testable hypothesis  

If a research hypothesis is not testable, the results will not prove or disprove anything meaningful. The conclusions will be vague at best. A testable hypothesis helps a researcher focus on the study outcome and understand the implication of the question and the different variables involved. A testable hypothesis helps a researcher make precise predictions based on prior research.  

To be considered testable, there must be a way to prove that the hypothesis is true or false; further, the results of the hypothesis must be reproducible.  

Research hypothesis: What it is, how to write it, types, and examples

Frequently Asked Questions (FAQs) on research hypothesis  

1. What is the difference between research question and research hypothesis ?  

A research question defines the problem and helps outline the study objective(s). It is an open-ended statement that is exploratory or probing in nature. Therefore, it does not make predictions or assumptions. It helps a researcher identify what information to collect. A research hypothesis , however, is a specific, testable prediction about the relationship between variables. Accordingly, it guides the study design and data analysis approach.

2. When to reject null hypothesis ?

A null hypothesis should be rejected when the evidence from a statistical test shows that it is unlikely to be true. This happens when the test statistic (e.g., p -value) is less than the defined significance level (e.g., 0.05). Rejecting the null hypothesis does not necessarily mean that the alternative hypothesis is true; it simply means that the evidence found is not compatible with the null hypothesis.  

3. How can I be sure my hypothesis is testable?  

A testable hypothesis should be specific and measurable, and it should state a clear relationship between variables that can be tested with data. To ensure that your hypothesis is testable, consider the following:  

  • Clearly define the key variables in your hypothesis. You should be able to measure and manipulate these variables in a way that allows you to test the hypothesis.  
  • The hypothesis should predict a specific outcome or relationship between variables that can be measured or quantified.   
  • You should be able to collect the necessary data within the constraints of your study.  
  • It should be possible for other researchers to replicate your study, using the same methods and variables.   
  • Your hypothesis should be testable by using appropriate statistical analysis techniques, so you can draw conclusions, and make inferences about the population from the sample data.  
  • The hypothesis should be able to be disproven or rejected through the collection of data.  

4. How do I revise my research hypothesis if my data does not support it?  

If your data does not support your research hypothesis , you will need to revise it or develop a new one. You should examine your data carefully and identify any patterns or anomalies, re-examine your research question, and/or revisit your theory to look for any alternative explanations for your results. Based on your review of the data, literature, and theories, modify your research hypothesis to better align it with the results you obtained. Use your revised hypothesis to guide your research design and data collection. It is important to remain objective throughout the process.  

5. I am performing exploratory research. Do I need to formulate a research hypothesis?  

As opposed to “confirmatory” research, where a researcher has some idea about the relationship between the variables under investigation, exploratory research (or hypothesis-generating research) looks into a completely new topic about which limited information is available. Therefore, the researcher will not have any prior hypotheses. In such cases, a researcher will need to develop a post-hoc hypothesis. A post-hoc research hypothesis is generated after these results are known.  

6. How is a research hypothesis different from a research question?

A research question is an inquiry about a specific topic or phenomenon, typically expressed as a question. It seeks to explore and understand a particular aspect of the research subject. In contrast, a research hypothesis is a specific statement or prediction that suggests an expected relationship between variables. It is formulated based on existing knowledge or theories and guides the research design and data analysis.

7. Can a research hypothesis change during the research process?

Yes, research hypotheses can change during the research process. As researchers collect and analyze data, new insights and information may emerge that require modification or refinement of the initial hypotheses. This can be due to unexpected findings, limitations in the original hypotheses, or the need to explore additional dimensions of the research topic. Flexibility is crucial in research, allowing for adaptation and adjustment of hypotheses to align with the evolving understanding of the subject matter.

8. How many hypotheses should be included in a research study?

The number of research hypotheses in a research study varies depending on the nature and scope of the research. It is not necessary to have multiple hypotheses in every study. Some studies may have only one primary hypothesis, while others may have several related hypotheses. The number of hypotheses should be determined based on the research objectives, research questions, and the complexity of the research topic. It is important to ensure that the hypotheses are focused, testable, and directly related to the research aims.

9. Can research hypotheses be used in qualitative research?

Yes, research hypotheses can be used in qualitative research, although they are more commonly associated with quantitative research. In qualitative research, hypotheses may be formulated as tentative or exploratory statements that guide the investigation. Instead of testing hypotheses through statistical analysis, qualitative researchers may use the hypotheses to guide data collection and analysis, seeking to uncover patterns, themes, or relationships within the qualitative data. The emphasis in qualitative research is often on generating insights and understanding rather than confirming or rejecting specific research hypotheses through statistical testing.

Editage All Access is a subscription-based platform that unifies the best AI tools and services designed to speed up, simplify, and streamline every step of a researcher’s journey. The Editage All Access Pack is a one-of-a-kind subscription that unlocks full access to an AI writing assistant, literature recommender, journal finder, scientific illustration tool, and exclusive discounts on professional publication services from Editage.  

Based on 22+ years of experience in academia, Editage All Access empowers researchers to put their best research forward and move closer to success. Explore our top AI Tools pack, AI Tools + Publication Services pack, or Build Your Own Plan. Find everything a researcher needs to succeed, all in one place –  Get All Access now starting at just $14 a month !    

Related Posts

Editage Plus

Editage Plus: Tools and Pricing

peer review

Understanding the Peer Review Process (Step-by-Step) 

  • Thesis Action Plan New
  • Academic Project Planner

Literature Navigator

Thesis dialogue blueprint, writing wizard's template, research proposal compass.

  • See Success Stories
  • Access Free Resources
  • Why we are different
  • All Products
  • Coming Soon

How to Formulate a Hypothesis: Example and Explanation

Scientist writing hypothesis on transparent board with equations

A hypothesis is a smart guess about how things work. It helps scientists figure out what they think will happen in their experiments. Making a good hypothesis is important because it guides the research and helps find answers to questions. In this article, we will learn how to make a strong hypothesis, look at some examples, and understand why they matter.

Key Takeaways

  • A hypothesis is an educated guess that can be tested through experiments.
  • Good hypotheses are clear, precise, and can be proven wrong.
  • There are different types of hypotheses, like simple, complex, null, and alternative.
  • Variables play a big role in forming a hypothesis, including independent, dependent, and control variables.
  • Testing and refining hypotheses are crucial steps in scientific research.

Understanding the Concept of a Hypothesis

Definition and importance.

A hypothesis is an idea you can test. It's a clear statement predicting the outcome of your study. It's not just a guess ; it should be based on what you already know. A good hypothesis helps you focus your research and guides your experiments.

Role in Scientific Research

In science, a hypothesis is very important. It gives you a starting point for your experiments. You can test it to see if it's true or false. This helps you understand more about the world. A clear, testable hypothesis is key to good research .

Common Misconceptions

Many people think a hypothesis is just a wild guess. This is not true. A hypothesis is based on existing knowledge and theories. Another common mistake is making the hypothesis too broad. A good hypothesis should be specific and testable.

Steps to Formulate a Hypothesis

Formulating a hypothesis is a critical step in the scientific method. It involves several key stages that help ensure your hypothesis is both testable and relevant to your research question. Here are the steps you should follow:

Gathering Observations

Start by collecting as many observations about your topic or problem as possible. These observations will form the foundation of your hypothesis. Good clinical research starts from a plausible hypothesis supported by contemporary scientific knowledge. Look for patterns or trends in the data that might suggest a possible explanation.

Identifying Variables

Next, identify the variables involved in your study. Variables are the elements that you will measure or manipulate in your research. There are typically three types of variables: independent, dependent, and control variables. Understanding these will help you design a more effective experiment.

Developing Possible Explanations

Once you have gathered your observations and identified your variables, the next step is to develop possible explanations for the patterns you have observed. This is where you start to formulate your hypothesis. Think of ways to confirm or disprove each possible explanation through experimentation. This process is known as falsifiability and is crucial for a robust hypothesis.

Characteristics of a Good Hypothesis

Testability and falsifiability.

A good hypothesis must be testable, meaning you can design an experiment to check if it's true or false. Testability is crucial because it allows you to gather evidence to support or refute your hypothesis. Additionally, a hypothesis should be falsifiable, which means there should be a possible outcome that can prove it wrong. This aligns with the falsification principle proposed by Karl Popper, which is fundamental in scientific research.

Clarity and Precision

Your hypothesis should be clear and precise, avoiding any vague language. This clarity helps in demystifying the concept of a thesis statement . A well-defined hypothesis makes it easier to design experiments and interpret results. For example, instead of saying "Plants grow better with more light," you could say, "If plants receive 8 hours of sunlight daily, then they will grow taller than plants that receive 4 hours of sunlight daily."

Relevance to Research Question

A good hypothesis should be directly related to your research question. It should provide a clear direction for your study and help you focus on specific variables. This relevance ensures that your hypothesis is not just a random guess but is grounded in existing knowledge and observations. Hypotheses have strong, arguably foundational, utility as a tool of science . They support the falsification principle, proposed by Karl Popper as fundamental in scientific research.

Types of Hypotheses in Research

When conducting research, it's crucial to understand the different types of hypotheses you might encounter. Each type serves a unique purpose and helps guide your study in specific ways. Knowing these types can enhance the clarity and focus of your research proposal .

Examples of Hypotheses

Simple hypothesis examples.

A simple hypothesis suggests a relationship between two variables: one independent and one dependent. For instance, "If students sleep for at least 8 hours, then their test scores will improve." This type of hypothesis is straightforward and easy to test.

Complex Hypothesis Examples

A complex hypothesis involves more than two variables. An example could be, "If students sleep for at least 8 hours and eat a healthy breakfast, then their test scores and overall well-being will improve." This type of hypothesis examines multiple factors and their combined effects.

Null and Alternative Hypothesis Examples

The null hypothesis states that there is no relationship between the variables. For example, "There is no difference in test scores between students who sleep for 8 hours and those who do not." The alternative hypothesis, on the other hand, suggests a relationship: "Students who sleep for 8 hours will have better test scores than those who do not."

Understanding these examples helps clarify how to structure your own hypotheses. Whether simple or complex, each type plays a crucial role in scientific research.

The Role of Variables in Hypothesis Formulation

When formulating a hypothesis, understanding the role of variables is crucial. Variables are the elements that you measure or manipulate in your research . They help you establish relationships and test your predictions effectively.

Testing Your Hypothesis

Designing experiments.

Designing an experiment is a crucial step in testing your hypothesis. A well-designed experiment ensures that you can accurately test your hypothesis and obtain reliable results. Start by defining your independent and dependent variables clearly. Make sure to control other factors that might influence the outcome. This is essential for maintaining the integrity of your experiment. You should also consider the ethical implications of your experiment to ensure it adheres to accepted standards.

Data Collection Methods

Once your experiment is designed, the next step is to collect data. Choose data collection methods that are appropriate for your research question and hypothesis. Common methods include surveys, observations, and experiments. Ensure that your data collection process is systematic and consistent to avoid any biases. Remember, the goal is to gather data that will either support or refute your hypothesis.

Analyzing Results

After collecting your data, the next step is to analyze the results. Use statistical methods to determine whether your data supports your hypothesis. This involves calculating the likelihood that your results are due to chance. If your data does not support your hypothesis, don't be discouraged. Unexpected findings can lead to new questions and further research. Always be open to conducting further experiments to validate and understand your findings.

Common Pitfalls in Hypothesis Formulation

When formulating a hypothesis, it's crucial to avoid common mistakes that can undermine your research. Here are some pitfalls to watch out for:

Overly Broad Hypotheses

One of the most frequent errors is creating a hypothesis that is too broad. A broad hypothesis can be difficult to test and may not provide meaningful results. Narrowing down your hypothesis to a specific aspect of your research question can make it more manageable and testable.

Lack of Testability

A hypothesis must be testable to be valid. If you can't design an experiment to test your hypothesis, it's not useful. Ensure that your hypothesis includes variables that can be measured and tested. This is essential for revolutionizing research: the secrets of effective experimental design .

Ignoring Alternative Explanations

Another common mistake is failing to consider other possible explanations for your observations. When you ignore alternative explanations, you risk missing out on important insights. Always evaluate assumptions, revise methodology, and consider alternative explanations to strengthen your hypothesis.

By being aware of these pitfalls, you can create a more robust and reliable hypothesis for your research.

Refining and Revising Hypotheses

When you conduct research, it’s common to find that your initial hypothesis may not hold true. This is a normal part of the scientific process. If your results do not support your original hypothesis, consider suggesting alternative options for future studies. This can help guide further research and improve understanding of the topic.

To ensure your hypothesis is strong, you can use a checklist to identify any weaknesses. Here are some questions to consider:

  • Is the hypothesis clear and specific?
  • Can it be tested through experiments?
  • Does it relate to the research question?

By answering these questions, you can refine your hypothesis and make it more robust. Additionally, incorporating feedback from peers can provide new insights and help you adjust your hypothesis based on new data.

In summary, refining and revising your hypothesis is essential for advancing your research. It allows you to adapt to new findings and improve the clarity and focus of your work. Remember, the goal is to develop a hypothesis that can lead to meaningful conclusions and further exploration in your field.

In the context of educational research, a recent meta-analysis highlights the importance of understanding the relationship between psychological needs and student well-being. This shows how refining hypotheses can lead to better insights into complex issues. Similarly, a grounded theory study emphasizes the need for thorough reviews to identify key issues in research, which can also inform hypothesis revision.

Case Studies of Hypothesis Formulation

One of the most famous historical examples of hypothesis formulation is Gregor Mendel's work on pea plants. Mendel's hypothesis about inheritance patterns laid the groundwork for modern genetics. He observed the traits of pea plants and formulated hypotheses about how these traits were passed down through generations. His work is a classic example of how careful observation and hypothesis testing can lead to significant scientific breakthroughs.

In contemporary research, hypothesis formulation continues to play a crucial role. For instance, in the field of psychology, researchers often develop hypotheses to understand human behavior. A recent study on the effects of social media on mental health formulated the hypothesis that increased social media use leads to higher levels of anxiety and depression. This hypothesis was tested through surveys and data analysis, providing valuable insights into the relationship between social media and mental health.

From both historical and contemporary examples, several lessons can be learned about effective hypothesis formulation:

  • Observation is key : Careful observation of phenomena is the first step in formulating a hypothesis.
  • Clarity and precision : A good hypothesis should be clear and precise, making it easier to test.
  • Testability: Ensure that your hypothesis can be tested through experiments or data analysis.
  • Flexibility: Be prepared to revise your hypothesis based on new data or feedback.

By understanding these lessons, you can improve your own hypothesis formulation process and contribute to the advancement of scientific knowledge.

In our "Case Studies of Hypothesis Formulation" section, we dive into real-world examples that show how to create strong hypotheses. These case studies are designed to help you understand the process and apply it to your own work. If you're looking for more detailed guidance, visit our website for step-by-step instructions and special offers. Don't miss out on the chance to improve your research skills!

Formulating a hypothesis is a fundamental step in the scientific method that helps guide research and experimentation. By gathering observations, evaluating potential causes, and developing testable statements, researchers can create hypotheses that are both meaningful and falsifiable. This process not only aids in understanding the problem at hand but also in predicting outcomes and drawing conclusions based on empirical evidence. Remember, a well-crafted hypothesis is clear, concise, and provides a direction for future research. With practice and careful consideration, anyone can learn to formulate effective hypotheses that contribute to scientific knowledge.

Frequently Asked Questions

What is a hypothesis.

A hypothesis is an educated guess about how things work. It's a statement that can be tested to see if it's true or false.

Why is a hypothesis important in scientific research?

A hypothesis helps guide your experiments and research. It gives you a clear focus and helps you understand what you're trying to find out.

What are the steps to formulate a good hypothesis?

To create a good hypothesis, start by gathering observations, look for patterns, and identify variables. Then, come up with possible explanations that you can test.

What makes a hypothesis testable?

A testable hypothesis is one that you can prove or disprove through experiments or observations. It should be clear and specific.

Can a hypothesis be proven true?

A hypothesis can be supported by evidence, but it can't be proven true beyond all doubt. New evidence might change our understanding.

What are independent and dependent variables?

Independent variables are the ones you change in an experiment. Dependent variables are the ones you measure to see if they change because of the independent variable.

What is a null hypothesis?

A null hypothesis states that there is no relationship between the variables being studied. It's often used as a starting point for testing.

How can I avoid common pitfalls in hypothesis formulation?

To avoid problems, make sure your hypothesis is specific, testable, and based on observations. Avoid making it too broad or ignoring other possible explanations.

Student using laptop for dissertation writing tools

Discovering Statistics Using IBM SPSS Statistics: A Fun and Informative Guide

Unlocking the Power of Data: A Review of 'Essentials of Modern Business Statistics with Microsoft Excel'

Unlocking the Power of Data: A Review of 'Essentials of Modern Business Statistics with Microsoft Excel'

Discovering Statistics Using SAS: A Comprehensive Review

Discovering Statistics Using SAS: A Comprehensive Review

The Thesis Survival Kit: Essential Tools and Resources for a Successful Journey

The Thesis Survival Kit: Essential Tools and Resources for a Successful Journey

Student brainstorming thesis proposal ideas.

Looking for a Thesis Proposal Example? Here’s the Best Format to Follow

Student researching at a desk with books and laptop.

How to Research for Your Thesis Paper Without Feeling Overwhelmed

Thesis Action Plan

Thesis Action Plan

Research Proposal Compass

  • Rebels Blog
  • Blog Articles
  • Affiliate Program
  • Terms and Conditions
  • Payment and Shipping Terms
  • Privacy Policy
  • Return Policy

© 2024 Research Rebels, All rights reserved.

Your cart is currently empty.

  • Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Guided Meditations
  • Verywell Mind Insights
  • 2024 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

How to Write a Great Hypothesis

Hypothesis Definition, Format, Examples, and Tips

Verywell / Alex Dos Diaz

  • The Scientific Method

Hypothesis Format

Falsifiability of a hypothesis.

  • Operationalization

Hypothesis Types

Hypotheses examples.

  • Collecting Data

A hypothesis is a tentative statement about the relationship between two or more variables. It is a specific, testable prediction about what you expect to happen in a study. It is a preliminary answer to your question that helps guide the research process.

Consider a study designed to examine the relationship between sleep deprivation and test performance. The hypothesis might be: "This study is designed to assess the hypothesis that sleep-deprived people will perform worse on a test than individuals who are not sleep-deprived."

At a Glance

A hypothesis is crucial to scientific research because it offers a clear direction for what the researchers are looking to find. This allows them to design experiments to test their predictions and add to our scientific knowledge about the world. This article explores how a hypothesis is used in psychology research, how to write a good hypothesis, and the different types of hypotheses you might use.

The Hypothesis in the Scientific Method

In the scientific method , whether it involves research in psychology, biology, or some other area, a hypothesis represents what the researchers think will happen in an experiment. The scientific method involves the following steps:

  • Forming a question
  • Performing background research
  • Creating a hypothesis
  • Designing an experiment
  • Collecting data
  • Analyzing the results
  • Drawing conclusions
  • Communicating the results

The hypothesis is a prediction, but it involves more than a guess. Most of the time, the hypothesis begins with a question which is then explored through background research. At this point, researchers then begin to develop a testable hypothesis.

Unless you are creating an exploratory study, your hypothesis should always explain what you  expect  to happen.

In a study exploring the effects of a particular drug, the hypothesis might be that researchers expect the drug to have some type of effect on the symptoms of a specific illness. In psychology, the hypothesis might focus on how a certain aspect of the environment might influence a particular behavior.

Remember, a hypothesis does not have to be correct. While the hypothesis predicts what the researchers expect to see, the goal of the research is to determine whether this guess is right or wrong. When conducting an experiment, researchers might explore numerous factors to determine which ones might contribute to the ultimate outcome.

In many cases, researchers may find that the results of an experiment  do not  support the original hypothesis. When writing up these results, the researchers might suggest other options that should be explored in future studies.

In many cases, researchers might draw a hypothesis from a specific theory or build on previous research. For example, prior research has shown that stress can impact the immune system. So a researcher might hypothesize: "People with high-stress levels will be more likely to contract a common cold after being exposed to the virus than people who have low-stress levels."

In other instances, researchers might look at commonly held beliefs or folk wisdom. "Birds of a feather flock together" is one example of folk adage that a psychologist might try to investigate. The researcher might pose a specific hypothesis that "People tend to select romantic partners who are similar to them in interests and educational level."

Elements of a Good Hypothesis

So how do you write a good hypothesis? When trying to come up with a hypothesis for your research or experiments, ask yourself the following questions:

  • Is your hypothesis based on your research on a topic?
  • Can your hypothesis be tested?
  • Does your hypothesis include independent and dependent variables?

Before you come up with a specific hypothesis, spend some time doing background research. Once you have completed a literature review, start thinking about potential questions you still have. Pay attention to the discussion section in the  journal articles you read . Many authors will suggest questions that still need to be explored.

How to Formulate a Good Hypothesis

To form a hypothesis, you should take these steps:

  • Collect as many observations about a topic or problem as you can.
  • Evaluate these observations and look for possible causes of the problem.
  • Create a list of possible explanations that you might want to explore.
  • After you have developed some possible hypotheses, think of ways that you could confirm or disprove each hypothesis through experimentation. This is known as falsifiability.

In the scientific method ,  falsifiability is an important part of any valid hypothesis. In order to test a claim scientifically, it must be possible that the claim could be proven false.

Students sometimes confuse the idea of falsifiability with the idea that it means that something is false, which is not the case. What falsifiability means is that  if  something was false, then it is possible to demonstrate that it is false.

One of the hallmarks of pseudoscience is that it makes claims that cannot be refuted or proven false.

The Importance of Operational Definitions

A variable is a factor or element that can be changed and manipulated in ways that are observable and measurable. However, the researcher must also define how the variable will be manipulated and measured in the study.

Operational definitions are specific definitions for all relevant factors in a study. This process helps make vague or ambiguous concepts detailed and measurable.

For example, a researcher might operationally define the variable " test anxiety " as the results of a self-report measure of anxiety experienced during an exam. A "study habits" variable might be defined by the amount of studying that actually occurs as measured by time.

These precise descriptions are important because many things can be measured in various ways. Clearly defining these variables and how they are measured helps ensure that other researchers can replicate your results.

Replicability

One of the basic principles of any type of scientific research is that the results must be replicable.

Replication means repeating an experiment in the same way to produce the same results. By clearly detailing the specifics of how the variables were measured and manipulated, other researchers can better understand the results and repeat the study if needed.

Some variables are more difficult than others to define. For example, how would you operationally define a variable such as aggression ? For obvious ethical reasons, researchers cannot create a situation in which a person behaves aggressively toward others.

To measure this variable, the researcher must devise a measurement that assesses aggressive behavior without harming others. The researcher might utilize a simulated task to measure aggressiveness in this situation.

Hypothesis Checklist

  • Does your hypothesis focus on something that you can actually test?
  • Does your hypothesis include both an independent and dependent variable?
  • Can you manipulate the variables?
  • Can your hypothesis be tested without violating ethical standards?

The hypothesis you use will depend on what you are investigating and hoping to find. Some of the main types of hypotheses that you might use include:

  • Simple hypothesis : This type of hypothesis suggests there is a relationship between one independent variable and one dependent variable.
  • Complex hypothesis : This type suggests a relationship between three or more variables, such as two independent and dependent variables.
  • Null hypothesis : This hypothesis suggests no relationship exists between two or more variables.
  • Alternative hypothesis : This hypothesis states the opposite of the null hypothesis.
  • Statistical hypothesis : This hypothesis uses statistical analysis to evaluate a representative population sample and then generalizes the findings to the larger group.
  • Logical hypothesis : This hypothesis assumes a relationship between variables without collecting data or evidence.

A hypothesis often follows a basic format of "If {this happens} then {this will happen}." One way to structure your hypothesis is to describe what will happen to the  dependent variable  if you change the  independent variable .

The basic format might be: "If {these changes are made to a certain independent variable}, then we will observe {a change in a specific dependent variable}."

A few examples of simple hypotheses:

  • "Students who eat breakfast will perform better on a math exam than students who do not eat breakfast."
  • "Students who experience test anxiety before an English exam will get lower scores than students who do not experience test anxiety."​
  • "Motorists who talk on the phone while driving will be more likely to make errors on a driving course than those who do not talk on the phone."
  • "Children who receive a new reading intervention will have higher reading scores than students who do not receive the intervention."

Examples of a complex hypothesis include:

  • "People with high-sugar diets and sedentary activity levels are more likely to develop depression."
  • "Younger people who are regularly exposed to green, outdoor areas have better subjective well-being than older adults who have limited exposure to green spaces."

Examples of a null hypothesis include:

  • "There is no difference in anxiety levels between people who take St. John's wort supplements and those who do not."
  • "There is no difference in scores on a memory recall task between children and adults."
  • "There is no difference in aggression levels between children who play first-person shooter games and those who do not."

Examples of an alternative hypothesis:

  • "People who take St. John's wort supplements will have less anxiety than those who do not."
  • "Adults will perform better on a memory task than children."
  • "Children who play first-person shooter games will show higher levels of aggression than children who do not." 

Collecting Data on Your Hypothesis

Once a researcher has formed a testable hypothesis, the next step is to select a research design and start collecting data. The research method depends largely on exactly what they are studying. There are two basic types of research methods: descriptive research and experimental research.

Descriptive Research Methods

Descriptive research such as  case studies ,  naturalistic observations , and surveys are often used when  conducting an experiment is difficult or impossible. These methods are best used to describe different aspects of a behavior or psychological phenomenon.

Once a researcher has collected data using descriptive methods, a  correlational study  can examine how the variables are related. This research method might be used to investigate a hypothesis that is difficult to test experimentally.

Experimental Research Methods

Experimental methods  are used to demonstrate causal relationships between variables. In an experiment, the researcher systematically manipulates a variable of interest (known as the independent variable) and measures the effect on another variable (known as the dependent variable).

Unlike correlational studies, which can only be used to determine if there is a relationship between two variables, experimental methods can be used to determine the actual nature of the relationship—whether changes in one variable actually  cause  another to change.

The hypothesis is a critical part of any scientific exploration. It represents what researchers expect to find in a study or experiment. In situations where the hypothesis is unsupported by the research, the research still has value. Such research helps us better understand how different aspects of the natural world relate to one another. It also helps us develop new hypotheses that can then be tested in the future.

Thompson WH, Skau S. On the scope of scientific hypotheses .  R Soc Open Sci . 2023;10(8):230607. doi:10.1098/rsos.230607

Taran S, Adhikari NKJ, Fan E. Falsifiability in medicine: what clinicians can learn from Karl Popper [published correction appears in Intensive Care Med. 2021 Jun 17;:].  Intensive Care Med . 2021;47(9):1054-1056. doi:10.1007/s00134-021-06432-z

Eyler AA. Research Methods for Public Health . 1st ed. Springer Publishing Company; 2020. doi:10.1891/9780826182067.0004

Nosek BA, Errington TM. What is replication ?  PLoS Biol . 2020;18(3):e3000691. doi:10.1371/journal.pbio.3000691

Aggarwal R, Ranganathan P. Study designs: Part 2 - Descriptive studies .  Perspect Clin Res . 2019;10(1):34-36. doi:10.4103/picr.PICR_154_18

Nevid J. Psychology: Concepts and Applications. Wadworth, 2013.

By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

Instant insights, infinite possibilities

How to write a research hypothesis

Last updated

19 January 2023

Reviewed by

Miroslav Damyanov

Start with a broad subject matter that excites you, so your curiosity will motivate your work. Conduct a literature search to determine the range of questions already addressed and spot any holes in the existing research.

Narrow the topics that interest you and determine your research question. Rather than focusing on a hole in the research, you might choose to challenge an existing assumption, a process called problematization. You may also find yourself with a short list of questions or related topics.

Use the FINER method to determine the single problem you'll address with your research. FINER stands for:

I nteresting

You need a feasible research question, meaning that there is a way to address the question. You should find it interesting, but so should a larger audience. Rather than repeating research that others have already conducted, your research hypothesis should test something novel or unique. 

The research must fall into accepted ethical parameters as defined by the government of your country and your university or college if you're an academic. You'll also need to come up with a relevant question since your research should provide a contribution to the existing research area.

This process typically narrows your shortlist down to a single problem you'd like to study and the variable you want to test. You're ready to write your hypothesis statements.

Make research less tedious

Dovetail streamlines research to help you uncover and share actionable insights

  • Types of research hypotheses

It is important to narrow your topic down to one idea before trying to write your research hypothesis. You'll only test one problem at a time. To do this, you'll write two hypotheses – a null hypothesis (H0) and an alternative hypothesis (Ha).

You'll come across many terms related to developing a research hypothesis or referring to a specific type of hypothesis. Let's take a quick look at these terms.

Null hypothesis

The term null hypothesis refers to a research hypothesis type that assumes no statistically significant relationship exists within a set of observations or data. It represents a claim that assumes that any observed relationship is due to chance. Represented as H0, the null represents the conjecture of the research.

Alternative hypothesis

The alternative hypothesis accompanies the null hypothesis. It states that the situation presented in the null hypothesis is false or untrue, and claims an observed effect in your test. This is typically denoted by Ha or H(n), where “n” stands for the number of alternative hypotheses. You can have more than one alternative hypothesis. 

Simple hypothesis

The term simple hypothesis refers to a hypothesis or theory that predicts the relationship between two variables - the independent (predictor) and the dependent (predicted). 

Complex hypothesis

The term complex hypothesis refers to a model – either quantitative (mathematical) or qualitative . A complex hypothesis states the surmised relationship between two or more potentially related variables.

Directional hypothesis

When creating a statistical hypothesis, the directional hypothesis (the null hypothesis) states an assumption regarding one parameter of a population. Some academics call this the “one-sided” hypothesis. The alternative hypothesis indicates whether the researcher tests for a positive or negative effect by including either the greater than (">") or less than ("<") sign.

Non-directional hypothesis

We refer to the alternative hypothesis in a statistical research question as a non-directional hypothesis. It includes the not equal ("≠") sign to show that the research tests whether or not an effect exists without specifying the effect's direction (positive or negative).

Associative hypothesis

The term associative hypothesis assumes a link between two variables but stops short of stating that one variable impacts the other. Academic statistical literature asserts in this sense that correlation does not imply causation. So, although the hypothesis notes the correlation between two variables – the independent and dependent - it does not predict how the two interact.

Logical hypothesis

Typically used in philosophy rather than science, researchers can't test a logical hypothesis because the technology or data set doesn't yet exist. A logical hypothesis uses logic as the basis of its assumptions. 

In some cases, a logical hypothesis can become an empirical hypothesis once technology provides an opportunity for testing. Until that time, the question remains too expensive or complex to address. Note that a logical hypothesis is not a statistical hypothesis.

Empirical hypothesis

When we consider the opposite of a logical hypothesis, we call this an empirical or working hypothesis. This type of hypothesis considers a scientifically measurable question. A researcher can consider and test an empirical hypothesis through replicable tests, observations, and measurements.

Statistical hypothesis

The term statistical hypothesis refers to a test of a theory that uses representative statistical models to test relationships between variables to draw conclusions regarding a large population. This requires an existing large data set, commonly referred to as big data, or implementing a survey to obtain original statistical information to form a data set for the study. 

Testing this type of hypothesis requires the use of random samples. Note that the null and alternative hypotheses are used in statistical hypothesis testing.

Causal hypothesis

The term causal hypothesis refers to a research hypothesis that tests a cause-and-effect relationship. A causal hypothesis is utilized when conducting experimental or quasi-experimental research.

Descriptive hypothesis

The term descriptive hypothesis refers to a research hypothesis used in non-experimental research, specifying an influence in the relationship between two variables.

  • What makes an effective research hypothesis?

An effective research hypothesis offers a clearly defined, specific statement, using simple wording that contains no assumptions or generalizations, and that you can test. A well-written hypothesis should predict the tested relationship and its outcome. It contains zero ambiguity and offers results you can observe and test. 

The research hypothesis should address a question relevant to a research area. Overall, your research hypothesis needs the following essentials:

Hypothesis Essential #1: Specificity & Clarity

Hypothesis Essential #2: Testability (Provability)

  • How to develop a good research hypothesis

In developing your hypothesis statements, you must pre-plan some of your statistical analysis. Once you decide on your problem to examine, determine three aspects:

the parameter you'll test

the test's direction (left-tailed, right-tailed, or non-directional)

the hypothesized parameter value

Any quantitative research includes a hypothesized parameter value of a mean, a proportion, or the difference between two proportions. Here's how to note each parameter:

Single mean (μ)

Paired means (μd)

Single proportion (p)

Difference between two independent means (μ1−μ2)

Difference between two proportions (p1−p2)

Simple linear regression slope (β)

Correlation (ρ)

Defining these parameters and determining whether you want to test the mean, proportion, or differences helps you determine the statistical tests you'll conduct to analyze your data. When writing your hypothesis, you only need to decide which parameter to test and in what overarching way.

The null research hypothesis must include everyday language, in a single sentence, stating the problem you want to solve. Write it as an if-then statement with defined variables. Write an alternative research hypothesis that states the opposite.

  • What is the correct format for writing a hypothesis?

The following example shows the proper format and textual content of a hypothesis. It follows commonly accepted academic standards.

Null hypothesis (H0): High school students who participate in varsity sports as opposed to those who do not, fail to score higher on leadership tests than students who do not participate.

Alternative hypothesis (H1): High school students who play a varsity sport as opposed to those who do not participate in team athletics will score higher on leadership tests than students who do not participate in athletics.

The research question tests the correlation between varsity sports participation and leadership qualities expressed as a score on leadership tests. It compares the population of athletes to non-athletes.

  • What are the five steps of a hypothesis?

Once you decide on the specific problem or question you want to address, you can write your research hypothesis. Use this five-step system to hone your null hypothesis and generate your alternative hypothesis.

Step 1 : Create your research question. This topic should interest and excite you; answering it provides relevant information to an industry or academic area.

Step 2 : Conduct a literature review to gather essential existing research.

Step 3 : Write a clear, strong, simply worded sentence that explains your test parameter, test direction, and hypothesized parameter.

Step 4 : Read it a few times. Have others read it and ask them what they think it means. Refine your statement accordingly until it becomes understandable to everyone. While not everyone can or will comprehend every research study conducted, any person from the general population should be able to read your hypothesis and alternative hypothesis and understand the essential question you want to answer.

Step 5 : Re-write your null hypothesis until it reads simply and understandably. Write your alternative hypothesis.

What is the Red Queen hypothesis?

Some hypotheses are well-known, such as the Red Queen hypothesis. Choose your wording carefully, since you could become like the famed scientist Dr. Leigh Van Valen. In 1973, Dr. Van Valen proposed the Red Queen hypothesis to describe coevolutionary activity, specifically reciprocal evolutionary effects between species to explain extinction rates in the fossil record. 

Essentially, Van Valen theorized that to survive, each species remains in a constant state of adaptation, evolution, and proliferation, and constantly competes for survival alongside other species doing the same. Only by doing this can a species avoid extinction. Van Valen took the hypothesis title from the Lewis Carroll book, "Through the Looking Glass," which contains a key character named the Red Queen who explains to Alice that for all of her running, she's merely running in place.

  • Getting started with your research

In conclusion, once you write your null hypothesis (H0) and an alternative hypothesis (Ha), you’ve essentially authored the elevator pitch of your research. These two one-sentence statements describe your topic in simple, understandable terms that both professionals and laymen can understand. They provide the starting point of your research project.

Should you be using a customer insights hub?

Do you want to discover previous research faster?

Do you share your research findings with others?

Do you analyze research data?

Start for free today, add your research, and get to key insights faster

Editor’s picks

Last updated: 18 April 2023

Last updated: 27 February 2023

Last updated: 22 August 2024

Last updated: 5 February 2023

Last updated: 16 April 2023

Last updated: 9 March 2023

Last updated: 30 April 2024

Last updated: 12 December 2023

Last updated: 11 March 2024

Last updated: 4 July 2024

Last updated: 6 March 2024

Last updated: 5 March 2024

Last updated: 13 May 2024

Latest articles

Related topics, .css-je19u9{-webkit-align-items:flex-end;-webkit-box-align:flex-end;-ms-flex-align:flex-end;align-items:flex-end;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-flex-direction:row;-ms-flex-direction:row;flex-direction:row;-webkit-box-flex-wrap:wrap;-webkit-flex-wrap:wrap;-ms-flex-wrap:wrap;flex-wrap:wrap;-webkit-box-pack:center;-ms-flex-pack:center;-webkit-justify-content:center;justify-content:center;row-gap:0;text-align:center;max-width:671px;}@media (max-width: 1079px){.css-je19u9{max-width:400px;}.css-je19u9>span{white-space:pre;}}@media (max-width: 799px){.css-je19u9{max-width:400px;}.css-je19u9>span{white-space:pre;}} decide what to .css-1kiodld{max-height:56px;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-align-items:center;-webkit-box-align:center;-ms-flex-align:center;align-items:center;}@media (max-width: 1079px){.css-1kiodld{display:none;}} build next, decide what to build next, log in or sign up.

Get started for free

  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • QuestionPro

survey software icon

  • Solutions Industries Gaming Automotive Sports and events Education Government Travel & Hospitality Financial Services Healthcare Cannabis Technology Use Case AskWhy Communities Audience Contactless surveys Mobile LivePolls Member Experience GDPR Positive People Science 360 Feedback Surveys
  • Resources Blog eBooks Survey Templates Case Studies Training Help center

complex hypothesis in research

Home Market Research

Research Hypothesis: What It Is, Types + How to Develop?

A research hypothesis proposes a link between variables. Uncover its types and the secrets to creating hypotheses for scientific inquiry.

A research study starts with a question. Researchers worldwide ask questions and create research hypotheses. The effectiveness of research relies on developing a good research hypothesis. Examples of research hypotheses can guide researchers in writing effective ones.

In this blog, we’ll learn what a research hypothesis is, why it’s important in research, and the different types used in science. We’ll also guide you through creating your research hypothesis and discussing ways to test and evaluate it.

What is a Research Hypothesis?

A hypothesis is like a guess or idea that you suggest to check if it’s true. A research hypothesis is a statement that brings up a question and predicts what might happen.

It’s really important in the scientific method and is used in experiments to figure things out. Essentially, it’s an educated guess about how things are connected in the research.

A research hypothesis usually includes pointing out the independent variable (the thing they’re changing or studying) and the dependent variable (the result they’re measuring or watching). It helps plan how to gather and analyze data to see if there’s evidence to support or deny the expected connection between these variables.

Importance of Hypothesis in Research

Hypotheses are really important in research. They help design studies, allow for practical testing, and add to our scientific knowledge. Their main role is to organize research projects, making them purposeful, focused, and valuable to the scientific community. Let’s look at some key reasons why they matter:

  • A research hypothesis helps test theories.

A hypothesis plays a pivotal role in the scientific method by providing a basis for testing existing theories. For example, a hypothesis might test the predictive power of a psychological theory on human behavior.

  • It serves as a great platform for investigation activities.

It serves as a launching pad for investigation activities, which offers researchers a clear starting point. A research hypothesis can explore the relationship between exercise and stress reduction.

  • Hypothesis guides the research work or study.

A well-formulated hypothesis guides the entire research process. It ensures that the study remains focused and purposeful. For instance, a hypothesis about the impact of social media on interpersonal relationships provides clear guidance for a study.

  • Hypothesis sometimes suggests theories.

In some cases, a hypothesis can suggest new theories or modifications to existing ones. For example, a hypothesis testing the effectiveness of a new drug might prompt a reconsideration of current medical theories.

  • It helps in knowing the data needs.

A hypothesis clarifies the data requirements for a study, ensuring that researchers collect the necessary information—a hypothesis guiding the collection of demographic data to analyze the influence of age on a particular phenomenon.

  • The hypothesis explains social phenomena.

Hypotheses are instrumental in explaining complex social phenomena. For instance, a hypothesis might explore the relationship between economic factors and crime rates in a given community.

  • Hypothesis provides a relationship between phenomena for empirical Testing.

Hypotheses establish clear relationships between phenomena, paving the way for empirical testing. An example could be a hypothesis exploring the correlation between sleep patterns and academic performance.

  • It helps in knowing the most suitable analysis technique.

A hypothesis guides researchers in selecting the most appropriate analysis techniques for their data. For example, a hypothesis focusing on the effectiveness of a teaching method may lead to the choice of statistical analyses best suited for educational research.

Characteristics of a Good Research Hypothesis

A hypothesis is a specific idea that you can test in a study. It often comes from looking at past research and theories. A good hypothesis usually starts with a research question that you can explore through background research. For it to be effective, consider these key characteristics:

  • Clear and Focused Language: A good hypothesis uses clear and focused language to avoid confusion and ensure everyone understands it.
  • Related to the Research Topic: The hypothesis should directly relate to the research topic, acting as a bridge between the specific question and the broader study.
  • Testable: An effective hypothesis can be tested, meaning its prediction can be checked with real data to support or challenge the proposed relationship.
  • Potential for Exploration: A good hypothesis often comes from a research question that invites further exploration. Doing background research helps find gaps and potential areas to investigate.
  • Includes Variables: The hypothesis should clearly state both the independent and dependent variables, specifying the factors being studied and the expected outcomes.
  • Ethical Considerations: Check if variables can be manipulated without breaking ethical standards. It’s crucial to maintain ethical research practices.
  • Predicts Outcomes: The hypothesis should predict the expected relationship and outcome, acting as a roadmap for the study and guiding data collection and analysis.
  • Simple and Concise: A good hypothesis avoids unnecessary complexity and is simple and concise, expressing the essence of the proposed relationship clearly.
  • Clear and Assumption-Free: The hypothesis should be clear and free from assumptions about the reader’s prior knowledge, ensuring universal understanding.
  • Observable and Testable Results: A strong hypothesis implies research that produces observable and testable results, making sure the study’s outcomes can be effectively measured and analyzed.

When you use these characteristics as a checklist, it can help you create a good research hypothesis. It’ll guide improving and strengthening the hypothesis, identifying any weaknesses, and making necessary changes. Crafting a hypothesis with these features helps you conduct a thorough and insightful research study.

Types of Research Hypotheses

The research hypothesis comes in various types, each serving a specific purpose in guiding the scientific investigation. Knowing the differences will make it easier for you to create your own hypothesis. Here’s an overview of the common types:

01. Null Hypothesis

The null hypothesis states that there is no connection between two considered variables or that two groups are unrelated. As discussed earlier, a hypothesis is an unproven assumption lacking sufficient supporting data. It serves as the statement researchers aim to disprove. It is testable, verifiable, and can be rejected.

For example, if you’re studying the relationship between Project A and Project B, assuming both projects are of equal standard is your null hypothesis. It needs to be specific for your study.

02. Alternative Hypothesis

The alternative hypothesis is basically another option to the null hypothesis. It involves looking for a significant change or alternative that could lead you to reject the null hypothesis. It’s a different idea compared to the null hypothesis.

When you create a null hypothesis, you’re making an educated guess about whether something is true or if there’s a connection between that thing and another variable. If the null view suggests something is correct, the alternative hypothesis says it’s incorrect. 

For instance, if your null hypothesis is “I’m going to be $1000 richer,” the alternative hypothesis would be “I’m not going to get $1000 or be richer.”

03. Directional Hypothesis

The directional hypothesis predicts the direction of the relationship between independent and dependent variables. They specify whether the effect will be positive or negative.

If you increase your study hours, you will experience a positive association with your exam scores. This hypothesis suggests that as you increase the independent variable (study hours), there will also be an increase in the dependent variable (exam scores).

04. Non-directional Hypothesis

The non-directional hypothesis predicts the existence of a relationship between variables but does not specify the direction of the effect. It suggests that there will be a significant difference or relationship, but it does not predict the nature of that difference.

For example, you will find no notable difference in test scores between students who receive the educational intervention and those who do not. However, once you compare the test scores of the two groups, you will notice an important difference.

05. Simple Hypothesis

A simple hypothesis predicts a relationship between one dependent variable and one independent variable without specifying the nature of that relationship. It’s simple and usually used when we don’t know much about how the two things are connected.

For example, if you adopt effective study habits, you will achieve higher exam scores than those with poor study habits.

06. Complex Hypothesis

A complex hypothesis is an idea that specifies a relationship between multiple independent and dependent variables. It is a more detailed idea than a simple hypothesis.

While a simple view suggests a straightforward cause-and-effect relationship between two things, a complex hypothesis involves many factors and how they’re connected to each other.

For example, when you increase your study time, you tend to achieve higher exam scores. The connection between your study time and exam performance is affected by various factors, including the quality of your sleep, your motivation levels, and the effectiveness of your study techniques.

If you sleep well, stay highly motivated, and use effective study strategies, you may observe a more robust positive correlation between the time you spend studying and your exam scores, unlike those who may lack these factors.

07. Associative Hypothesis

An associative hypothesis proposes a connection between two things without saying that one causes the other. Basically, it suggests that when one thing changes, the other changes too, but it doesn’t claim that one thing is causing the change in the other.

For example, you will likely notice higher exam scores when you increase your study time. You can recognize an association between your study time and exam scores in this scenario.

Your hypothesis acknowledges a relationship between the two variables—your study time and exam scores—without asserting that increased study time directly causes higher exam scores. You need to consider that other factors, like motivation or learning style, could affect the observed association.

08. Causal Hypothesis

A causal hypothesis proposes a cause-and-effect relationship between two variables. It suggests that changes in one variable directly cause changes in another variable.

For example, when you increase your study time, you experience higher exam scores. This hypothesis suggests a direct cause-and-effect relationship, indicating that the more time you spend studying, the higher your exam scores. It assumes that changes in your study time directly influence changes in your exam performance.

09. Empirical Hypothesis

An empirical hypothesis is a statement based on things we can see and measure. It comes from direct observation or experiments and can be tested with real-world evidence. If an experiment proves a theory, it supports the idea and shows it’s not just a guess. This makes the statement more reliable than a wild guess.

For example, if you increase the dosage of a certain medication, you might observe a quicker recovery time for patients. Imagine you’re in charge of a clinical trial. In this trial, patients are given varying dosages of the medication, and you measure and compare their recovery times. This allows you to directly see the effects of different dosages on how fast patients recover.

This way, you can create a research hypothesis: “Increasing the dosage of a certain medication will lead to a faster recovery time for patients.”

10. Statistical Hypothesis

A statistical hypothesis is a statement or assumption about a population parameter that is the subject of an investigation. It serves as the basis for statistical analysis and testing. It is often tested using statistical methods to draw inferences about the larger population.

In a hypothesis test, statistical evidence is collected to either reject the null hypothesis in favor of the alternative hypothesis or fail to reject the null hypothesis due to insufficient evidence.

For example, let’s say you’re testing a new medicine. Your hypothesis could be that the medicine doesn’t really help patients get better. So, you collect data and use statistics to see if your guess is right or if the medicine actually makes a difference.

If the data strongly shows that the medicine does help, you say your guess was wrong, and the medicine does make a difference. But if the proof isn’t strong enough, you can stick with your original guess because you didn’t get enough evidence to change your mind.

How to Develop a Research Hypotheses?

Step 1: identify your research problem or topic..

Define the area of interest or the problem you want to investigate. Make sure it’s clear and well-defined.

Start by asking a question about your chosen topic. Consider the limitations of your research and create a straightforward problem related to your topic. Once you’ve done that, you can develop and test a hypothesis with evidence.

Step 2: Conduct a literature review

Review existing literature related to your research problem. This will help you understand the current state of knowledge in the field, identify gaps, and build a foundation for your hypothesis. Consider the following questions:

  • What existing research has been conducted on your chosen topic?
  • Are there any gaps or unanswered questions in the current literature?
  • How will the existing literature contribute to the foundation of your research?

Step 3: Formulate your research question

Based on your literature review, create a specific and concise research question that addresses your identified problem. Your research question should be clear, focused, and relevant to your field of study.

Step 4: Identify variables

Determine the key variables involved in your research question. Variables are the factors or phenomena that you will study and manipulate to test your hypothesis.

  • Independent Variable: The variable you manipulate or control.
  • Dependent Variable: The variable you measure to observe the effect of the independent variable.

Step 5: State the Null hypothesis

The null hypothesis is a statement that there is no significant difference or effect. It serves as a baseline for comparison with the alternative hypothesis.

Step 6: Select appropriate methods for testing the hypothesis

Choose research methods that align with your study objectives, such as experiments, surveys, or observational studies. The selected methods enable you to test your research hypothesis effectively.

Creating a research hypothesis usually takes more than one try. Expect to make changes as you collect data. It’s normal to test and say no to a few hypotheses before you find the right answer to your research question.

Testing and Evaluating Hypotheses

Testing hypotheses is a really important part of research. It’s like the practical side of things. Here, real-world evidence will help you determine how different things are connected. Let’s explore the main steps in hypothesis testing:

  • State your research hypothesis.

Before testing, clearly articulate your research hypothesis. This involves framing both a null hypothesis, suggesting no significant effect or relationship, and an alternative hypothesis, proposing the expected outcome.

  • Collect data strategically.

Plan how you will gather information in a way that fits your study. Make sure your data collection method matches the things you’re studying.

Whether through surveys, observations, or experiments, this step demands precision and adherence to the established methodology. The quality of data collected directly influences the credibility of study outcomes.

  • Perform an appropriate statistical test.

Choose a statistical test that aligns with the nature of your data and the hypotheses being tested. Whether it’s a t-test, chi-square test, ANOVA, or regression analysis, selecting the right statistical tool is paramount for accurate and reliable results.

  • Decide if your idea was right or wrong.

Following the statistical analysis, evaluate the results in the context of your null hypothesis. You need to decide if you should reject your null hypothesis or not.

  • Share what you found.

When discussing what you found in your research, be clear and organized. Say whether your idea was supported or not, and talk about what your results mean. Also, mention any limits to your study and suggest ideas for future research.

The Role of QuestionPro to Develop a Good Research Hypothesis

QuestionPro is a survey and research platform that provides tools for creating, distributing, and analyzing surveys. It plays a crucial role in the research process, especially when you’re in the initial stages of hypothesis development. Here’s how QuestionPro can help you to develop a good research hypothesis:

  • Survey design and data collection: You can use the platform to create targeted questions that help you gather relevant data.
  • Exploratory research: Through surveys and feedback mechanisms on QuestionPro, you can conduct exploratory research to understand the landscape of a particular subject.
  • Literature review and background research: QuestionPro surveys can collect sample population opinions, experiences, and preferences. This data and a thorough literature evaluation can help you generate a well-grounded hypothesis by improving your research knowledge.
  • Identifying variables: Using targeted survey questions, you can identify relevant variables related to their research topic.
  • Testing assumptions: You can use surveys to informally test certain assumptions or hypotheses before formalizing a research hypothesis.
  • Data analysis tools: QuestionPro provides tools for analyzing survey data. You can use these tools to identify the collected data’s patterns, correlations, or trends.
  • Refining your hypotheses: As you collect data through QuestionPro, you can adjust your hypotheses based on the real-world responses you receive.

A research hypothesis is like a guide for researchers in science. It’s a well-thought-out idea that has been thoroughly tested. This idea is crucial as researchers can explore different fields, such as medicine, social sciences, and natural sciences. The research hypothesis links theories to real-world evidence and gives researchers a clear path to explore and make discoveries.

QuestionPro Research Suite is a helpful tool for researchers. It makes creating surveys, collecting data, and analyzing information easily. It supports all kinds of research, from exploring new ideas to forming hypotheses. With a focus on using data, it helps researchers do their best work.

Are you interested in learning more about QuestionPro Research Suite? Take advantage of QuestionPro’s free trial to get an initial look at its capabilities and realize the full potential of your research efforts.

LEARN MORE         FREE TRIAL

MORE LIKE THIS

User Behavior Analytics

User Behavior Analytics: What it is, Importance, Uses & Tools

Sep 26, 2024

data security

Data Security: What it is, Types, Risk & Strategies to Follow

Sep 25, 2024

user behavior

User Behavior: What it is, How to Understand, Track & Uses

Sep 24, 2024

complex hypothesis in research

Mass Personalization is not Personalization! — Tuesday CX Thoughts

Other categories.

  • Academic Research
  • Artificial Intelligence
  • Assessments
  • Brand Awareness
  • Case Studies
  • Communities
  • Consumer Insights
  • Customer effort score
  • Customer Engagement
  • Customer Experience
  • Customer Loyalty
  • Customer Research
  • Customer Satisfaction
  • Employee Benefits
  • Employee Engagement
  • Employee Retention
  • Friday Five
  • General Data Protection Regulation
  • Insights Hub
  • Life@QuestionPro
  • Market Research
  • Mobile diaries
  • Mobile Surveys
  • New Features
  • Online Communities
  • Question Types
  • Questionnaire
  • QuestionPro Products
  • Release Notes
  • Research Tools and Apps
  • Revenue at Risk
  • Survey Templates
  • Training Tips
  • Tuesday CX Thoughts (TCXT)
  • Uncategorized
  • What’s Coming Up
  • Workforce Intelligence

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Methodology

  • How to Write a Strong Hypothesis | Steps & Examples

How to Write a Strong Hypothesis | Steps & Examples

Published on May 6, 2022 by Shona McCombes . Revised on November 20, 2023.

A hypothesis is a statement that can be tested by scientific research. If you want to test a relationship between two or more variables, you need to write hypotheses before you start your experiment or data collection .

Example: Hypothesis

Daily apple consumption leads to fewer doctor’s visits.

Table of contents

What is a hypothesis, developing a hypothesis (with example), hypothesis examples, other interesting articles, frequently asked questions about writing hypotheses.

A hypothesis states your predictions about what your research will find. It is a tentative answer to your research question that has not yet been tested. For some research projects, you might have to write several hypotheses that address different aspects of your research question.

A hypothesis is not just a guess – it should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations and statistical analysis of data).

Variables in hypotheses

Hypotheses propose a relationship between two or more types of variables .

  • An independent variable is something the researcher changes or controls.
  • A dependent variable is something the researcher observes and measures.

If there are any control variables , extraneous variables , or confounding variables , be sure to jot those down as you go to minimize the chances that research bias  will affect your results.

In this example, the independent variable is exposure to the sun – the assumed cause . The dependent variable is the level of happiness – the assumed effect .

Here's why students love Scribbr's proofreading services

Discover proofreading & editing

Step 1. Ask a question

Writing a hypothesis begins with a research question that you want to answer. The question should be focused, specific, and researchable within the constraints of your project.

Step 2. Do some preliminary research

Your initial answer to the question should be based on what is already known about the topic. Look for theories and previous studies to help you form educated assumptions about what your research will find.

At this stage, you might construct a conceptual framework to ensure that you’re embarking on a relevant topic . This can also help you identify which variables you will study and what you think the relationships are between them. Sometimes, you’ll have to operationalize more complex constructs.

Step 3. Formulate your hypothesis

Now you should have some idea of what you expect to find. Write your initial answer to the question in a clear, concise sentence.

4. Refine your hypothesis

You need to make sure your hypothesis is specific and testable. There are various ways of phrasing a hypothesis, but all the terms you use should have clear definitions, and the hypothesis should contain:

  • The relevant variables
  • The specific group being studied
  • The predicted outcome of the experiment or analysis

5. Phrase your hypothesis in three ways

To identify the variables, you can write a simple prediction in  if…then form. The first part of the sentence states the independent variable and the second part states the dependent variable.

In academic research, hypotheses are more commonly phrased in terms of correlations or effects, where you directly state the predicted relationship between variables.

If you are comparing two groups, the hypothesis can state what difference you expect to find between them.

6. Write a null hypothesis

If your research involves statistical hypothesis testing , you will also have to write a null hypothesis . The null hypothesis is the default position that there is no association between the variables. The null hypothesis is written as H 0 , while the alternative hypothesis is H 1 or H a .

  • H 0 : The number of lectures attended by first-year students has no effect on their final exam scores.
  • H 1 : The number of lectures attended by first-year students has a positive effect on their final exam scores.
Research question Hypothesis Null hypothesis
What are the health benefits of eating an apple a day? Increasing apple consumption in over-60s will result in decreasing frequency of doctor’s visits. Increasing apple consumption in over-60s will have no effect on frequency of doctor’s visits.
Which airlines have the most delays? Low-cost airlines are more likely to have delays than premium airlines. Low-cost and premium airlines are equally likely to have delays.
Can flexible work arrangements improve job satisfaction? Employees who have flexible working hours will report greater job satisfaction than employees who work fixed hours. There is no relationship between working hour flexibility and job satisfaction.
How effective is high school sex education at reducing teen pregnancies? Teenagers who received sex education lessons throughout high school will have lower rates of unplanned pregnancy teenagers who did not receive any sex education. High school sex education has no effect on teen pregnancy rates.
What effect does daily use of social media have on the attention span of under-16s? There is a negative between time spent on social media and attention span in under-16s. There is no relationship between social media use and attention span in under-16s.

If you want to know more about the research process , methodology , research bias , or statistics , make sure to check out some of our other articles with explanations and examples.

  • Sampling methods
  • Simple random sampling
  • Stratified sampling
  • Cluster sampling
  • Likert scales
  • Reproducibility

 Statistics

  • Null hypothesis
  • Statistical power
  • Probability distribution
  • Effect size
  • Poisson distribution

Research bias

  • Optimism bias
  • Cognitive bias
  • Implicit bias
  • Hawthorne effect
  • Anchoring bias
  • Explicit bias

A hypothesis is not just a guess — it should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations and statistical analysis of data).

Null and alternative hypotheses are used in statistical hypothesis testing . The null hypothesis of a test always predicts no effect or no relationship between variables, while the alternative hypothesis states your research prediction of an effect or relationship.

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics. It is used by scientists to test specific predictions, called hypotheses , by calculating how likely it is that a pattern or relationship between variables could have arisen by chance.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

McCombes, S. (2023, November 20). How to Write a Strong Hypothesis | Steps & Examples. Scribbr. Retrieved September 26, 2024, from https://www.scribbr.com/methodology/hypothesis/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, construct validity | definition, types, & examples, what is a conceptual framework | tips & examples, operationalization | a guide with examples, pros & cons, what is your plagiarism score.

  • Privacy Policy

Research Method

Home » What is a Hypothesis – Types, Examples and Writing Guide

What is a Hypothesis – Types, Examples and Writing Guide

Table of Contents

What is a Hypothesis

Definition:

Hypothesis is an educated guess or proposed explanation for a phenomenon, based on some initial observations or data. It is a tentative statement that can be tested and potentially proven or disproven through further investigation and experimentation.

Hypothesis is often used in scientific research to guide the design of experiments and the collection and analysis of data. It is an essential element of the scientific method, as it allows researchers to make predictions about the outcome of their experiments and to test those predictions to determine their accuracy.

Types of Hypothesis

Types of Hypothesis are as follows:

Research Hypothesis

A research hypothesis is a statement that predicts a relationship between variables. It is usually formulated as a specific statement that can be tested through research, and it is often used in scientific research to guide the design of experiments.

Null Hypothesis

The null hypothesis is a statement that assumes there is no significant difference or relationship between variables. It is often used as a starting point for testing the research hypothesis, and if the results of the study reject the null hypothesis, it suggests that there is a significant difference or relationship between variables.

Alternative Hypothesis

An alternative hypothesis is a statement that assumes there is a significant difference or relationship between variables. It is often used as an alternative to the null hypothesis and is tested against the null hypothesis to determine which statement is more accurate.

Directional Hypothesis

A directional hypothesis is a statement that predicts the direction of the relationship between variables. For example, a researcher might predict that increasing the amount of exercise will result in a decrease in body weight.

Non-directional Hypothesis

A non-directional hypothesis is a statement that predicts the relationship between variables but does not specify the direction. For example, a researcher might predict that there is a relationship between the amount of exercise and body weight, but they do not specify whether increasing or decreasing exercise will affect body weight.

Statistical Hypothesis

A statistical hypothesis is a statement that assumes a particular statistical model or distribution for the data. It is often used in statistical analysis to test the significance of a particular result.

Composite Hypothesis

A composite hypothesis is a statement that assumes more than one condition or outcome. It can be divided into several sub-hypotheses, each of which represents a different possible outcome.

Empirical Hypothesis

An empirical hypothesis is a statement that is based on observed phenomena or data. It is often used in scientific research to develop theories or models that explain the observed phenomena.

Simple Hypothesis

A simple hypothesis is a statement that assumes only one outcome or condition. It is often used in scientific research to test a single variable or factor.

Complex Hypothesis

A complex hypothesis is a statement that assumes multiple outcomes or conditions. It is often used in scientific research to test the effects of multiple variables or factors on a particular outcome.

Applications of Hypothesis

Hypotheses are used in various fields to guide research and make predictions about the outcomes of experiments or observations. Here are some examples of how hypotheses are applied in different fields:

  • Science : In scientific research, hypotheses are used to test the validity of theories and models that explain natural phenomena. For example, a hypothesis might be formulated to test the effects of a particular variable on a natural system, such as the effects of climate change on an ecosystem.
  • Medicine : In medical research, hypotheses are used to test the effectiveness of treatments and therapies for specific conditions. For example, a hypothesis might be formulated to test the effects of a new drug on a particular disease.
  • Psychology : In psychology, hypotheses are used to test theories and models of human behavior and cognition. For example, a hypothesis might be formulated to test the effects of a particular stimulus on the brain or behavior.
  • Sociology : In sociology, hypotheses are used to test theories and models of social phenomena, such as the effects of social structures or institutions on human behavior. For example, a hypothesis might be formulated to test the effects of income inequality on crime rates.
  • Business : In business research, hypotheses are used to test the validity of theories and models that explain business phenomena, such as consumer behavior or market trends. For example, a hypothesis might be formulated to test the effects of a new marketing campaign on consumer buying behavior.
  • Engineering : In engineering, hypotheses are used to test the effectiveness of new technologies or designs. For example, a hypothesis might be formulated to test the efficiency of a new solar panel design.

How to write a Hypothesis

Here are the steps to follow when writing a hypothesis:

Identify the Research Question

The first step is to identify the research question that you want to answer through your study. This question should be clear, specific, and focused. It should be something that can be investigated empirically and that has some relevance or significance in the field.

Conduct a Literature Review

Before writing your hypothesis, it’s essential to conduct a thorough literature review to understand what is already known about the topic. This will help you to identify the research gap and formulate a hypothesis that builds on existing knowledge.

Determine the Variables

The next step is to identify the variables involved in the research question. A variable is any characteristic or factor that can vary or change. There are two types of variables: independent and dependent. The independent variable is the one that is manipulated or changed by the researcher, while the dependent variable is the one that is measured or observed as a result of the independent variable.

Formulate the Hypothesis

Based on the research question and the variables involved, you can now formulate your hypothesis. A hypothesis should be a clear and concise statement that predicts the relationship between the variables. It should be testable through empirical research and based on existing theory or evidence.

Write the Null Hypothesis

The null hypothesis is the opposite of the alternative hypothesis, which is the hypothesis that you are testing. The null hypothesis states that there is no significant difference or relationship between the variables. It is important to write the null hypothesis because it allows you to compare your results with what would be expected by chance.

Refine the Hypothesis

After formulating the hypothesis, it’s important to refine it and make it more precise. This may involve clarifying the variables, specifying the direction of the relationship, or making the hypothesis more testable.

Examples of Hypothesis

Here are a few examples of hypotheses in different fields:

  • Psychology : “Increased exposure to violent video games leads to increased aggressive behavior in adolescents.”
  • Biology : “Higher levels of carbon dioxide in the atmosphere will lead to increased plant growth.”
  • Sociology : “Individuals who grow up in households with higher socioeconomic status will have higher levels of education and income as adults.”
  • Education : “Implementing a new teaching method will result in higher student achievement scores.”
  • Marketing : “Customers who receive a personalized email will be more likely to make a purchase than those who receive a generic email.”
  • Physics : “An increase in temperature will cause an increase in the volume of a gas, assuming all other variables remain constant.”
  • Medicine : “Consuming a diet high in saturated fats will increase the risk of developing heart disease.”

Purpose of Hypothesis

The purpose of a hypothesis is to provide a testable explanation for an observed phenomenon or a prediction of a future outcome based on existing knowledge or theories. A hypothesis is an essential part of the scientific method and helps to guide the research process by providing a clear focus for investigation. It enables scientists to design experiments or studies to gather evidence and data that can support or refute the proposed explanation or prediction.

The formulation of a hypothesis is based on existing knowledge, observations, and theories, and it should be specific, testable, and falsifiable. A specific hypothesis helps to define the research question, which is important in the research process as it guides the selection of an appropriate research design and methodology. Testability of the hypothesis means that it can be proven or disproven through empirical data collection and analysis. Falsifiability means that the hypothesis should be formulated in such a way that it can be proven wrong if it is incorrect.

In addition to guiding the research process, the testing of hypotheses can lead to new discoveries and advancements in scientific knowledge. When a hypothesis is supported by the data, it can be used to develop new theories or models to explain the observed phenomenon. When a hypothesis is not supported by the data, it can help to refine existing theories or prompt the development of new hypotheses to explain the phenomenon.

When to use Hypothesis

Here are some common situations in which hypotheses are used:

  • In scientific research , hypotheses are used to guide the design of experiments and to help researchers make predictions about the outcomes of those experiments.
  • In social science research , hypotheses are used to test theories about human behavior, social relationships, and other phenomena.
  • I n business , hypotheses can be used to guide decisions about marketing, product development, and other areas. For example, a hypothesis might be that a new product will sell well in a particular market, and this hypothesis can be tested through market research.

Characteristics of Hypothesis

Here are some common characteristics of a hypothesis:

  • Testable : A hypothesis must be able to be tested through observation or experimentation. This means that it must be possible to collect data that will either support or refute the hypothesis.
  • Falsifiable : A hypothesis must be able to be proven false if it is not supported by the data. If a hypothesis cannot be falsified, then it is not a scientific hypothesis.
  • Clear and concise : A hypothesis should be stated in a clear and concise manner so that it can be easily understood and tested.
  • Based on existing knowledge : A hypothesis should be based on existing knowledge and research in the field. It should not be based on personal beliefs or opinions.
  • Specific : A hypothesis should be specific in terms of the variables being tested and the predicted outcome. This will help to ensure that the research is focused and well-designed.
  • Tentative: A hypothesis is a tentative statement or assumption that requires further testing and evidence to be confirmed or refuted. It is not a final conclusion or assertion.
  • Relevant : A hypothesis should be relevant to the research question or problem being studied. It should address a gap in knowledge or provide a new perspective on the issue.

Advantages of Hypothesis

Hypotheses have several advantages in scientific research and experimentation:

  • Guides research: A hypothesis provides a clear and specific direction for research. It helps to focus the research question, select appropriate methods and variables, and interpret the results.
  • Predictive powe r: A hypothesis makes predictions about the outcome of research, which can be tested through experimentation. This allows researchers to evaluate the validity of the hypothesis and make new discoveries.
  • Facilitates communication: A hypothesis provides a common language and framework for scientists to communicate with one another about their research. This helps to facilitate the exchange of ideas and promotes collaboration.
  • Efficient use of resources: A hypothesis helps researchers to use their time, resources, and funding efficiently by directing them towards specific research questions and methods that are most likely to yield results.
  • Provides a basis for further research: A hypothesis that is supported by data provides a basis for further research and exploration. It can lead to new hypotheses, theories, and discoveries.
  • Increases objectivity: A hypothesis can help to increase objectivity in research by providing a clear and specific framework for testing and interpreting results. This can reduce bias and increase the reliability of research findings.

Limitations of Hypothesis

Some Limitations of the Hypothesis are as follows:

  • Limited to observable phenomena: Hypotheses are limited to observable phenomena and cannot account for unobservable or intangible factors. This means that some research questions may not be amenable to hypothesis testing.
  • May be inaccurate or incomplete: Hypotheses are based on existing knowledge and research, which may be incomplete or inaccurate. This can lead to flawed hypotheses and erroneous conclusions.
  • May be biased: Hypotheses may be biased by the researcher’s own beliefs, values, or assumptions. This can lead to selective interpretation of data and a lack of objectivity in research.
  • Cannot prove causation: A hypothesis can only show a correlation between variables, but it cannot prove causation. This requires further experimentation and analysis.
  • Limited to specific contexts: Hypotheses are limited to specific contexts and may not be generalizable to other situations or populations. This means that results may not be applicable in other contexts or may require further testing.
  • May be affected by chance : Hypotheses may be affected by chance or random variation, which can obscure or distort the true relationship between variables.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Informed Consent in Research

Informed Consent in Research – Types, Templates...

APA Table of Contents

APA Table of Contents – Format and Example

Dissertation Methodology

Dissertation Methodology – Structure, Example...

Limitations in Research

Limitations in Research – Types, Examples and...

Future Research

Future Research – Thesis Guide

Ethical Considerations

Ethical Considerations – Types, Examples and...

helpful professor logo

13 Different Types of Hypothesis

13 Different Types of Hypothesis

Chris Drew (PhD)

Dr. Chris Drew is the founder of the Helpful Professor. He holds a PhD in education and has published over 20 articles in scholarly journals. He is the former editor of the Journal of Learning Development in Higher Education. [Image Descriptor: Photo of Chris]

Learn about our Editorial Process

hypothesis definition and example, explained below

There are 13 different types of hypothesis. These include simple, complex, null, alternative, composite, directional, non-directional, logical, empirical, statistical, associative, exact, and inexact.

A hypothesis can be categorized into one or more of these types. However, some are mutually exclusive and opposites. Simple and complex hypotheses are mutually exclusive, as are direction and non-direction, and null and alternative hypotheses.

Below I explain each hypothesis in simple terms for absolute beginners. These definitions may be too simple for some, but they’re designed to be clear introductions to the terms to help people wrap their heads around the concepts early on in their education about research methods .

Types of Hypothesis

Before you Proceed: Dependent vs Independent Variables

A research study and its hypotheses generally examine the relationships between independent and dependent variables – so you need to know these two concepts:

  • The independent variable is the variable that is causing a change.
  • The dependent variable is the variable the is affected by the change. This is the variable being tested.

Read my full article on dependent vs independent variables for more examples.

Example: Eating carrots (independent variable) improves eyesight (dependent variable).

1. Simple Hypothesis

A simple hypothesis is a hypothesis that predicts a correlation between two test variables: an independent and a dependent variable.

This is the easiest and most straightforward type of hypothesis. You simply need to state an expected correlation between the dependant variable and the independent variable.

You do not need to predict causation (see: directional hypothesis). All you would need to do is prove that the two variables are linked.

Simple Hypothesis Examples

QuestionSimple Hypothesis
Do people over 50 like Coca-Cola more than people under 50?On average, people over 50 like Coca-Cola more than people under 50.
According to national registries of car accident data, are Canadians better drivers than Americans?Canadians are better drivers than Americans.
Are carpenters more liberal than plumbers?Carpenters are more liberal than plumbers.
Do guitarists live longer than pianists?Guitarists do live longer than pianists.
Do dogs eat more in summer than winter?Dogs do eat more in summer than winter.

2. Complex Hypothesis

A complex hypothesis is a hypothesis that contains multiple variables, making the hypothesis more specific but also harder to prove.

You can have multiple independent and dependant variables in this hypothesis.

Complex Hypothesis Example

QuestionComplex Hypothesis
Do (1) age and (2) weight affect chances of getting (3) diabetes and (4) heart disease?(1) Age and (2) weight increase your chances of getting (3) diabetes and (4) heart disease.

In the above example, we have multiple independent and dependent variables:

  • Independent variables: Age and weight.
  • Dependent variables: diabetes and heart disease.

Because there are multiple variables, this study is a lot more complex than a simple hypothesis. It quickly gets much more difficult to prove these hypotheses. This is why undergraduate and first-time researchers are usually encouraged to use simple hypotheses.

3. Null Hypothesis

A null hypothesis will predict that there will be no significant relationship between the two test variables.

For example, you can say that “The study will show that there is no correlation between marriage and happiness.”

A good way to think about a null hypothesis is to think of it in the same way as “innocent until proven guilty”[1]. Unless you can come up with evidence otherwise, your null hypothesis will stand.

A null hypothesis may also highlight that a correlation will be inconclusive . This means that you can predict that the study will not be able to confirm your results one way or the other. For example, you can say “It is predicted that the study will be unable to confirm a correlation between the two variables due to foreseeable interference by a third variable .”

Beware that an inconclusive null hypothesis may be questioned by your teacher. Why would you conduct a test that you predict will not provide a clear result? Perhaps you should take a closer look at your methodology and re-examine it. Nevertheless, inconclusive null hypotheses can sometimes have merit.

Null Hypothesis Examples

QuestionNull Hypothesis (H )
Do people over 50 like Coca-Cola more than people under 50?Age has no effect on preference for Coca-Cola.
Are Canadians better drivers than Americans?Nationality has no effect on driving ability.
Are carpenters more liberal than plumbers?There is no statistically significant difference in political views between carpenters and plumbers.
Do guitarists live longer than pianists?There is no statistically significant difference in life expectancy between guitarists and pianists.
Do dogs eat more in summer than winter?Time of year has no effect on dogs’ appetites.

4. Alternative Hypothesis

An alternative hypothesis is a hypothesis that is anything other than the null hypothesis. It will disprove the null hypothesis.

We use the symbol H A or H 1 to denote an alternative hypothesis.

The null and alternative hypotheses are usually used together. We will say the null hypothesis is the case where a relationship between two variables is non-existent. The alternative hypothesis is the case where there is a relationship between those two variables.

The following statement is always true: H 0 ≠ H A .

Let’s take the example of the hypothesis: “Does eating oatmeal before an exam impact test scores?”

We can have two hypotheses here:

  • Null hypothesis (H 0 ): “Eating oatmeal before an exam does not impact test scores.”
  • Alternative hypothesis (H A ): “Eating oatmeal before an exam does impact test scores.”

For the alternative hypothesis to be true, all we have to do is disprove the null hypothesis for the alternative hypothesis to be true. We do not need an exact prediction of how much oatmeal will impact the test scores or even if the impact is positive or negative. So long as the null hypothesis is proven to be false, then the alternative hypothesis is proven to be true.

5. Composite Hypothesis

A composite hypothesis is a hypothesis that does not predict the exact parameters, distribution, or range of the dependent variable.

Often, we would predict an exact outcome. For example: “23 year old men are on average 189cm tall.” Here, we are giving an exact parameter. So, the hypothesis is not composite.

But, often, we cannot exactly hypothesize something. We assume that something will happen, but we’re not exactly sure what. In these cases, we might say: “23 year old men are not on average 189cm tall.”

We haven’t set a distribution range or exact parameters of the average height of 23 year old men. So, we’ve introduced a composite hypothesis as opposed to an exact hypothesis.

Generally, an alternative hypothesis (discussed above) is composite because it is defined as anything except the null hypothesis. This ‘anything except’ does not define parameters or distribution, and therefore it’s an example of a composite hypothesis.

6. Directional Hypothesis

A directional hypothesis makes a prediction about the positivity or negativity of the effect of an intervention prior to the test being conducted.

Instead of being agnostic about whether the effect will be positive or negative, it nominates the effect’s directionality.

We often call this a one-tailed hypothesis (in contrast to a two-tailed or non-directional hypothesis) because, looking at a distribution graph, we’re hypothesizing that the results will lean toward one particular tail on the graph – either the positive or negative.

Directional Hypothesis Examples

QuestionDirectional Hypothesis
Does adding a 10c charge to plastic bags at grocery stores lead to changes in uptake of reusable bags?Adding a 10c charge to plastic bags in grocery stores will lead to an in uptake of reusable bags.
Does a Universal Basic Income influence retail worker wages?Universal Basic Income retail worker wages.
Does rainy weather impact the amount of moderate to high intensity exercise people do per week in the city of Vancouver?Rainy weather the amount of moderate to high intensity exercise people do per week in the city of Vancouver.
Does introducing fluoride to the water system in the city of Austin impact number of dental visits per capita per year?Introducing fluoride to the water system in the city of Austin the number of dental visits per capita per year?
Does giving children chocolate rewards during study time for positive answers impact standardized test scores?Giving children chocolate rewards during study time for positive answers standardized test scores.

7. Non-Directional Hypothesis

A non-directional hypothesis does not specify the predicted direction (e.g. positivity or negativity) of the effect of the independent variable on the dependent variable.

These hypotheses predict an effect, but stop short of saying what that effect will be.

A non-directional hypothesis is similar to composite and alternative hypotheses. All three types of hypothesis tend to make predictions without defining a direction. In a composite hypothesis, a specific prediction is not made (although a general direction may be indicated, so the overlap is not complete). For an alternative hypothesis, you often predict that the even will be anything but the null hypothesis, which means it could be more or less than H 0 (or in other words, non-directional).

Let’s turn the above directional hypotheses into non-directional hypotheses.

Non-Directional Hypothesis Examples

QuestionNon-Directional Hypothesis
Does adding a 10c charge to plastic bags at grocery stores lead to changes in uptake of reusable bags?Adding a 10c charge to plastic bags in grocery stores will lead to a in uptake of reusable bags.
Does a Universal Basic Income influence retail worker wages?Universal Basic Income retail worker wages.
Does rainy weather impact the amount of moderate to high intensity exercise people do per week in the city of Vancouver?Rainy weather the amount of moderate to high intensity exercise people do per week in the city of Vancouver.
Does introducing fluoride to the water system in the city of Austin impact number of dental visits per capita per year?Introducing fluoride to the water system in the city of Austin the number of dental visits per capita per year?
Does giving children chocolate rewards during study time for positive answers impact standardized test scores?Giving children chocolate rewards during study time for positive answers standardized test scores.

8. Logical Hypothesis

A logical hypothesis is a hypothesis that cannot be tested, but has some logical basis underpinning our assumptions.

These are most commonly used in philosophy because philosophical questions are often untestable and therefore we must rely on our logic to formulate logical theories.

Usually, we would want to turn a logical hypothesis into an empirical one through testing if we got the chance. Unfortunately, we don’t always have this opportunity because the test is too complex, expensive, or simply unrealistic.

Here are some examples:

  • Before the 1980s, it was hypothesized that the Titanic came to its resting place at 41° N and 49° W, based on the time the ship sank and the ship’s presumed path across the Atlantic Ocean. However, due to the depth of the ocean, it was impossible to test. Thus, the hypothesis was simply a logical hypothesis.
  • Dinosaurs closely related to Aligators probably had green scales because Aligators have green scales. However, as they are all extinct, we can only rely on logic and not empirical data.

9. Empirical Hypothesis

An empirical hypothesis is the opposite of a logical hypothesis. It is a hypothesis that is currently being tested using scientific analysis. We can also call this a ‘working hypothesis’.

We can to separate research into two types: theoretical and empirical. Theoretical research relies on logic and thought experiments. Empirical research relies on tests that can be verified by observation and measurement.

So, an empirical hypothesis is a hypothesis that can and will be tested.

  • Raising the wage of restaurant servers increases staff retention.
  • Adding 1 lb of corn per day to cows’ diets decreases their lifespan.
  • Mushrooms grow faster at 22 degrees Celsius than 27 degrees Celsius.

Each of the above hypotheses can be tested, making them empirical rather than just logical (aka theoretical).

10. Statistical Hypothesis

A statistical hypothesis utilizes representative statistical models to draw conclusions about broader populations.

It requires the use of datasets or carefully selected representative samples so that statistical inference can be drawn across a larger dataset.

This type of research is necessary when it is impossible to assess every single possible case. Imagine, for example, if you wanted to determine if men are taller than women. You would be unable to measure the height of every man and woman on the planet. But, by conducting sufficient random samples, you would be able to predict with high probability that the results of your study would remain stable across the whole population.

You would be right in guessing that almost all quantitative research studies conducted in academic settings today involve statistical hypotheses.

Statistical Hypothesis Examples

  • Human Sex Ratio. The most famous statistical hypothesis example is that of John Arbuthnot’s sex at birth case study in 1710. Arbuthnot used birth data to determine with high statistical probability that there are more male births than female births. He called this divine providence, and to this day, his findings remain true: more men are born than women.
  • Lady Testing Tea. A 1935 study by Ronald Fisher involved testing a woman who believed she could tell whether milk was added before or after water to a cup of tea. Fisher gave her 4 cups in which one randomly had milk placed before the tea. He repeated the test 8 times. The lady was correct each time. Fisher found that she had a 1 in 70 chance of getting all 8 test correct, which is a statistically significant result.

11. Associative Hypothesis

An associative hypothesis predicts that two variables are linked but does not explore whether one variable directly impacts upon the other variable.

We commonly refer to this as “ correlation does not mean causation ”. Just because there are a lot of sick people in a hospital, it doesn’t mean that the hospital made the people sick. There is something going on there that’s causing the issue (sick people are flocking to the hospital).

So, in an associative hypothesis, you note correlation between an independent and dependent variable but do not make a prediction about how the two interact. You stop short of saying one thing causes another thing.

Associative Hypothesis Examples

  • Sick people in hospital. You could conduct a study hypothesizing that hospitals have more sick people in them than other institutions in society. However, you don’t hypothesize that the hospitals caused the sickness.
  • Lice make you healthy. In the Middle Ages, it was observed that sick people didn’t tend to have lice in their hair. The inaccurate conclusion was that lice was not only a sign of health, but that they made people healthy. In reality, there was an association here, but not causation. The fact was that lice were sensitive to body temperature and fled bodies that had fevers.

12. Causal Hypothesis

A causal hypothesis predicts that two variables are not only associated, but that changes in one variable will cause changes in another.

A causal hypothesis is harder to prove than an associative hypothesis because the cause needs to be definitively proven. This will often require repeating tests in controlled environments with the researchers making manipulations to the independent variable, or the use of control groups and placebo effects .

If we were to take the above example of lice in the hair of sick people, researchers would have to put lice in sick people’s hair and see if it made those people healthier. Researchers would likely observe that the lice would flee the hair, but the sickness would remain, leading to a finding of association but not causation.

Causal Hypothesis Examples

QuestionCausation HypothesisCorrelation Hypothesis
Does marriage cause baldness among men?Marriage causes stress which leads to hair loss.Marriage occurs at an age when men naturally start balding.
What is the relationship between recreational drugs and psychosis?Recreational drugs cause psychosis.People with psychosis take drugs to self-medicate.
Do ice cream sales lead to increase drownings?Ice cream sales cause increased drownings.Ice cream sales peak during summer, when more people are swimming and therefore more drownings are occurring.

13. Exact vs. Inexact Hypothesis

For brevity’s sake, I have paired these two hypotheses into the one point. The reality is that we’ve already seen both of these types of hypotheses at play already.

An exact hypothesis (also known as a point hypothesis) specifies a specific prediction whereas an inexact hypothesis assumes a range of possible values without giving an exact outcome. As Helwig [2] argues:

“An “exact” hypothesis specifies the exact value(s) of the parameter(s) of interest, whereas an “inexact” hypothesis specifies a range of possible values for the parameter(s) of interest.”

Generally, a null hypothesis is an exact hypothesis whereas alternative, composite, directional, and non-directional hypotheses are all inexact.

See Next: 15 Hypothesis Examples

This is introductory information that is basic and indeed quite simplified for absolute beginners. It’s worth doing further independent research to get deeper knowledge of research methods and how to conduct an effective research study. And if you’re in education studies, don’t miss out on my list of the best education studies dissertation ideas .

[1] https://jnnp.bmj.com/content/91/6/571.abstract

[2] http://users.stat.umn.edu/~helwig/notes/SignificanceTesting.pdf

Chris

  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd-2/ 10 Reasons you’re Perpetually Single
  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd-2/ 20 Montessori Toddler Bedrooms (Design Inspiration)
  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd-2/ 21 Montessori Homeschool Setups
  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd-2/ 101 Hidden Talents Examples

2 thoughts on “13 Different Types of Hypothesis”

' src=

Wow! This introductionary materials are very helpful. I teach the begginers in research for the first time in my career. The given tips and materials are very helpful. Chris, thank you so much! Excellent materials!

' src=

You’re more than welcome! If you want a pdf version of this article to provide for your students to use as a weekly reading on in-class discussion prompt for seminars, just drop me an email in the Contact form and I’ll get one sent out to you.

When I’ve taught this seminar, I’ve put my students into groups, cut these definitions into strips, and handed them out to the groups. Then I get them to try to come up with hypotheses that fit into each ‘type’. You can either just rotate hypothesis types so they get a chance at creating a hypothesis of each type, or get them to “teach” their hypothesis type and examples to the class at the end of the seminar.

Cheers, Chris

Leave a Comment Cancel Reply

Your email address will not be published. Required fields are marked *

Enago Academy

How to Develop a Good Research Hypothesis

' src=

The story of a research study begins by asking a question. Researchers all around the globe are asking curious questions and formulating research hypothesis. However, whether the research study provides an effective conclusion depends on how well one develops a good research hypothesis. Research hypothesis examples could help researchers get an idea as to how to write a good research hypothesis.

This blog will help you understand what is a research hypothesis, its characteristics and, how to formulate a research hypothesis

Table of Contents

What is Hypothesis?

Hypothesis is an assumption or an idea proposed for the sake of argument so that it can be tested. It is a precise, testable statement of what the researchers predict will be outcome of the study.  Hypothesis usually involves proposing a relationship between two variables: the independent variable (what the researchers change) and the dependent variable (what the research measures).

What is a Research Hypothesis?

Research hypothesis is a statement that introduces a research question and proposes an expected result. It is an integral part of the scientific method that forms the basis of scientific experiments. Therefore, you need to be careful and thorough when building your research hypothesis. A minor flaw in the construction of your hypothesis could have an adverse effect on your experiment. In research, there is a convention that the hypothesis is written in two forms, the null hypothesis, and the alternative hypothesis (called the experimental hypothesis when the method of investigation is an experiment).

Characteristics of a Good Research Hypothesis

As the hypothesis is specific, there is a testable prediction about what you expect to happen in a study. You may consider drawing hypothesis from previously published research based on the theory.

A good research hypothesis involves more effort than just a guess. In particular, your hypothesis may begin with a question that could be further explored through background research.

To help you formulate a promising research hypothesis, you should ask yourself the following questions:

  • Is the language clear and focused?
  • What is the relationship between your hypothesis and your research topic?
  • Is your hypothesis testable? If yes, then how?
  • What are the possible explanations that you might want to explore?
  • Does your hypothesis include both an independent and dependent variable?
  • Can you manipulate your variables without hampering the ethical standards?
  • Does your research predict the relationship and outcome?
  • Is your research simple and concise (avoids wordiness)?
  • Is it clear with no ambiguity or assumptions about the readers’ knowledge
  • Is your research observable and testable results?
  • Is it relevant and specific to the research question or problem?

research hypothesis example

The questions listed above can be used as a checklist to make sure your hypothesis is based on a solid foundation. Furthermore, it can help you identify weaknesses in your hypothesis and revise it if necessary.

Source: Educational Hub

How to formulate a research hypothesis.

A testable hypothesis is not a simple statement. It is rather an intricate statement that needs to offer a clear introduction to a scientific experiment, its intentions, and the possible outcomes. However, there are some important things to consider when building a compelling hypothesis.

1. State the problem that you are trying to solve.

Make sure that the hypothesis clearly defines the topic and the focus of the experiment.

2. Try to write the hypothesis as an if-then statement.

Follow this template: If a specific action is taken, then a certain outcome is expected.

3. Define the variables

Independent variables are the ones that are manipulated, controlled, or changed. Independent variables are isolated from other factors of the study.

Dependent variables , as the name suggests are dependent on other factors of the study. They are influenced by the change in independent variable.

4. Scrutinize the hypothesis

Evaluate assumptions, predictions, and evidence rigorously to refine your understanding.

Types of Research Hypothesis

The types of research hypothesis are stated below:

1. Simple Hypothesis

It predicts the relationship between a single dependent variable and a single independent variable.

2. Complex Hypothesis

It predicts the relationship between two or more independent and dependent variables.

3. Directional Hypothesis

It specifies the expected direction to be followed to determine the relationship between variables and is derived from theory. Furthermore, it implies the researcher’s intellectual commitment to a particular outcome.

4. Non-directional Hypothesis

It does not predict the exact direction or nature of the relationship between the two variables. The non-directional hypothesis is used when there is no theory involved or when findings contradict previous research.

5. Associative and Causal Hypothesis

The associative hypothesis defines interdependency between variables. A change in one variable results in the change of the other variable. On the other hand, the causal hypothesis proposes an effect on the dependent due to manipulation of the independent variable.

6. Null Hypothesis

Null hypothesis states a negative statement to support the researcher’s findings that there is no relationship between two variables. There will be no changes in the dependent variable due the manipulation of the independent variable. Furthermore, it states results are due to chance and are not significant in terms of supporting the idea being investigated.

7. Alternative Hypothesis

It states that there is a relationship between the two variables of the study and that the results are significant to the research topic. An experimental hypothesis predicts what changes will take place in the dependent variable when the independent variable is manipulated. Also, it states that the results are not due to chance and that they are significant in terms of supporting the theory being investigated.

Research Hypothesis Examples of Independent and Dependent Variables

Research Hypothesis Example 1 The greater number of coal plants in a region (independent variable) increases water pollution (dependent variable). If you change the independent variable (building more coal factories), it will change the dependent variable (amount of water pollution).
Research Hypothesis Example 2 What is the effect of diet or regular soda (independent variable) on blood sugar levels (dependent variable)? If you change the independent variable (the type of soda you consume), it will change the dependent variable (blood sugar levels)

You should not ignore the importance of the above steps. The validity of your experiment and its results rely on a robust testable hypothesis. Developing a strong testable hypothesis has few advantages, it compels us to think intensely and specifically about the outcomes of a study. Consequently, it enables us to understand the implication of the question and the different variables involved in the study. Furthermore, it helps us to make precise predictions based on prior research. Hence, forming a hypothesis would be of great value to the research. Here are some good examples of testable hypotheses.

More importantly, you need to build a robust testable research hypothesis for your scientific experiments. A testable hypothesis is a hypothesis that can be proved or disproved as a result of experimentation.

Importance of a Testable Hypothesis

To devise and perform an experiment using scientific method, you need to make sure that your hypothesis is testable. To be considered testable, some essential criteria must be met:

  • There must be a possibility to prove that the hypothesis is true.
  • There must be a possibility to prove that the hypothesis is false.
  • The results of the hypothesis must be reproducible.

Without these criteria, the hypothesis and the results will be vague. As a result, the experiment will not prove or disprove anything significant.

What are your experiences with building hypotheses for scientific experiments? What challenges did you face? How did you overcome these challenges? Please share your thoughts with us in the comments section.

Frequently Asked Questions

The steps to write a research hypothesis are: 1. Stating the problem: Ensure that the hypothesis defines the research problem 2. Writing a hypothesis as an 'if-then' statement: Include the action and the expected outcome of your study by following a ‘if-then’ structure. 3. Defining the variables: Define the variables as Dependent or Independent based on their dependency to other factors. 4. Scrutinizing the hypothesis: Identify the type of your hypothesis

Hypothesis testing is a statistical tool which is used to make inferences about a population data to draw conclusions for a particular hypothesis.

Hypothesis in statistics is a formal statement about the nature of a population within a structured framework of a statistical model. It is used to test an existing hypothesis by studying a population.

Research hypothesis is a statement that introduces a research question and proposes an expected result. It forms the basis of scientific experiments.

The different types of hypothesis in research are: • Null hypothesis: Null hypothesis is a negative statement to support the researcher’s findings that there is no relationship between two variables. • Alternate hypothesis: Alternate hypothesis predicts the relationship between the two variables of the study. • Directional hypothesis: Directional hypothesis specifies the expected direction to be followed to determine the relationship between variables. • Non-directional hypothesis: Non-directional hypothesis does not predict the exact direction or nature of the relationship between the two variables. • Simple hypothesis: Simple hypothesis predicts the relationship between a single dependent variable and a single independent variable. • Complex hypothesis: Complex hypothesis predicts the relationship between two or more independent and dependent variables. • Associative and casual hypothesis: Associative and casual hypothesis predicts the relationship between two or more independent and dependent variables. • Empirical hypothesis: Empirical hypothesis can be tested via experiments and observation. • Statistical hypothesis: A statistical hypothesis utilizes statistical models to draw conclusions about broader populations.

' src=

Wow! You really simplified your explanation that even dummies would find it easy to comprehend. Thank you so much.

Thanks a lot for your valuable guidance.

I enjoy reading the post. Hypotheses are actually an intrinsic part in a study. It bridges the research question and the methodology of the study.

Useful piece!

This is awesome.Wow.

It very interesting to read the topic, can you guide me any specific example of hypothesis process establish throw the Demand and supply of the specific product in market

Nicely explained

It is really a useful for me Kindly give some examples of hypothesis

It was a well explained content ,can you please give me an example with the null and alternative hypothesis illustrated

clear and concise. thanks.

So Good so Amazing

Good to learn

Thanks a lot for explaining to my level of understanding

Explained well and in simple terms. Quick read! Thank you

It awesome. It has really positioned me in my research project

Brief and easily digested

Rate this article Cancel Reply

Your email address will not be published.

complex hypothesis in research

Enago Academy's Most Popular Articles

Content Analysis vs Thematic Analysis: What's the difference?

  • Reporting Research

Choosing the Right Analytical Approach: Thematic analysis vs. content analysis for data interpretation

In research, choosing the right approach to understand data is crucial for deriving meaningful insights.…

Cross-sectional and Longitudinal Study Design

Comparing Cross Sectional and Longitudinal Studies: 5 steps for choosing the right approach

The process of choosing the right research design can put ourselves at the crossroads of…

complex hypothesis in research

  • Industry News

COPE Forum Discussion Highlights Challenges and Urges Clarity in Institutional Authorship Standards

The COPE forum discussion held in December 2023 initiated with a fundamental question — is…

Networking in Academic Conferences

  • Career Corner

Unlocking the Power of Networking in Academic Conferences

Embarking on your first academic conference experience? Fear not, we got you covered! Academic conferences…

Research recommendation

Research Recommendations – Guiding policy-makers for evidence-based decision making

Research recommendations play a crucial role in guiding scholars and researchers toward fruitful avenues of…

Choosing the Right Analytical Approach: Thematic analysis vs. content analysis for…

Comparing Cross Sectional and Longitudinal Studies: 5 steps for choosing the right…

How to Design Effective Research Questionnaires for Robust Findings

complex hypothesis in research

Sign-up to read more

Subscribe for free to get unrestricted access to all our resources on research writing and academic publishing including:

  • 2000+ blog articles
  • 50+ Webinars
  • 10+ Expert podcasts
  • 50+ Infographics
  • 10+ Checklists
  • Research Guides

We hate spam too. We promise to protect your privacy and never spam you.

  • Publishing Research
  • AI in Academia
  • Promoting Research
  • Diversity and Inclusion
  • Infographics
  • Expert Video Library
  • Other Resources
  • Enago Learn
  • Upcoming & On-Demand Webinars
  • Peer Review Week 2024
  • Open Access Week 2023
  • Conference Videos
  • Enago Report
  • Journal Finder
  • Enago Plagiarism & AI Grammar Check
  • Editing Services
  • Publication Support Services
  • Research Impact
  • Translation Services
  • Publication solutions
  • AI-Based Solutions
  • Thought Leadership
  • Call for Articles
  • Call for Speakers
  • Author Training
  • Edit Profile

I am looking for Editing/ Proofreading services for my manuscript Tentative date of next journal submission:

complex hypothesis in research

Which among these features would you prefer the most in a peer review assistant?

complex hypothesis in research

How to Write a Hypothesis: A Step-by-Step Guide

complex hypothesis in research

Introduction

An overview of the research hypothesis, different types of hypotheses, variables in a hypothesis, how to formulate an effective research hypothesis, designing a study around your hypothesis.

The scientific method can derive and test predictions as hypotheses. Empirical research can then provide support (or lack thereof) for the hypotheses. Even failure to find support for a hypothesis still represents a valuable contribution to scientific knowledge. Let's look more closely at the idea of the hypothesis and the role it plays in research.

complex hypothesis in research

As much as the term exists in everyday language, there is a detailed development that informs the word "hypothesis" when applied to research. A good research hypothesis is informed by prior research and guides research design and data analysis , so it is important to understand how a hypothesis is defined and understood by researchers.

What is the simple definition of a hypothesis?

A hypothesis is a testable prediction about an outcome between two or more variables . It functions as a navigational tool in the research process, directing what you aim to predict and how.

What is the hypothesis for in research?

In research, a hypothesis serves as the cornerstone for your empirical study. It not only lays out what you aim to investigate but also provides a structured approach for your data collection and analysis.

Essentially, it bridges the gap between the theoretical and the empirical, guiding your investigation throughout its course.

complex hypothesis in research

What is an example of a hypothesis?

If you are studying the relationship between physical exercise and mental health, a suitable hypothesis could be: "Regular physical exercise leads to improved mental well-being among adults."

This statement constitutes a specific and testable hypothesis that directly relates to the variables you are investigating.

What makes a good hypothesis?

A good hypothesis possesses several key characteristics. Firstly, it must be testable, allowing you to analyze data through empirical means, such as observation or experimentation, to assess if there is significant support for the hypothesis. Secondly, a hypothesis should be specific and unambiguous, giving a clear understanding of the expected relationship between variables. Lastly, it should be grounded in existing research or theoretical frameworks , ensuring its relevance and applicability.

Understanding the types of hypotheses can greatly enhance how you construct and work with hypotheses. While all hypotheses serve the essential function of guiding your study, there are varying purposes among the types of hypotheses. In addition, all hypotheses stand in contrast to the null hypothesis, or the assumption that there is no significant relationship between the variables .

Here, we explore various kinds of hypotheses to provide you with the tools needed to craft effective hypotheses for your specific research needs. Bear in mind that many of these hypothesis types may overlap with one another, and the specific type that is typically used will likely depend on the area of research and methodology you are following.

Null hypothesis

The null hypothesis is a statement that there is no effect or relationship between the variables being studied. In statistical terms, it serves as the default assumption that any observed differences are due to random chance.

For example, if you're studying the effect of a drug on blood pressure, the null hypothesis might state that the drug has no effect.

Alternative hypothesis

Contrary to the null hypothesis, the alternative hypothesis suggests that there is a significant relationship or effect between variables.

Using the drug example, the alternative hypothesis would posit that the drug does indeed affect blood pressure. This is what researchers aim to prove.

complex hypothesis in research

Simple hypothesis

A simple hypothesis makes a prediction about the relationship between two variables, and only two variables.

For example, "Increased study time results in better exam scores." Here, "study time" and "exam scores" are the only variables involved.

Complex hypothesis

A complex hypothesis, as the name suggests, involves more than two variables. For instance, "Increased study time and access to resources result in better exam scores." Here, "study time," "access to resources," and "exam scores" are all variables.

This hypothesis refers to multiple potential mediating variables. Other hypotheses could also include predictions about variables that moderate the relationship between the independent variable and dependent variable .

Directional hypothesis

A directional hypothesis specifies the direction of the expected relationship between variables. For example, "Eating more fruits and vegetables leads to a decrease in heart disease."

Here, the direction of heart disease is explicitly predicted to decrease, due to effects from eating more fruits and vegetables. All hypotheses typically specify the expected direction of the relationship between the independent and dependent variable, such that researchers can test if this prediction holds in their data analysis .

complex hypothesis in research

Statistical hypothesis

A statistical hypothesis is one that is testable through statistical methods, providing a numerical value that can be analyzed. This is commonly seen in quantitative research .

For example, "There is a statistically significant difference in test scores between students who study for one hour and those who study for two."

Empirical hypothesis

An empirical hypothesis is derived from observations and is tested through empirical methods, often through experimentation or survey data . Empirical hypotheses may also be assessed with statistical analyses.

For example, "Regular exercise is correlated with a lower incidence of depression," could be tested through surveys that measure exercise frequency and depression levels.

Causal hypothesis

A causal hypothesis proposes that one variable causes a change in another. This type of hypothesis is often tested through controlled experiments.

For example, "Smoking causes lung cancer," assumes a direct causal relationship.

Associative hypothesis

Unlike causal hypotheses, associative hypotheses suggest a relationship between variables but do not imply causation.

For instance, "People who smoke are more likely to get lung cancer," notes an association but doesn't claim that smoking causes lung cancer directly.

Relational hypothesis

A relational hypothesis explores the relationship between two or more variables but doesn't specify the nature of the relationship.

For example, "There is a relationship between diet and heart health," leaves the nature of the relationship (causal, associative, etc.) open to interpretation.

Logical hypothesis

A logical hypothesis is based on sound reasoning and logical principles. It's often used in theoretical research to explore abstract concepts, rather than being based on empirical data.

For example, "If all men are mortal and Socrates is a man, then Socrates is mortal," employs logical reasoning to make its point.

complex hypothesis in research

Let ATLAS.ti take you from research question to key insights

Get started with a free trial and see how ATLAS.ti can make the most of your data.

In any research hypothesis, variables play a critical role. These are the elements or factors that the researcher manipulates, controls, or measures. Understanding variables is essential for crafting a clear, testable hypothesis and for the stages of research that follow, such as data collection and analysis.

In the realm of hypotheses, there are generally two types of variables to consider: independent and dependent. Independent variables are what you, as the researcher, manipulate or change in your study. It's considered the cause in the relationship you're investigating. For instance, in a study examining the impact of sleep duration on academic performance, the independent variable would be the amount of sleep participants get.

Conversely, the dependent variable is the outcome you measure to gauge the effect of your manipulation. It's the effect in the cause-and-effect relationship. The dependent variable thus refers to the main outcome of interest in your study. In the same sleep study example, the academic performance, perhaps measured by exam scores or GPA, would be the dependent variable.

Beyond these two primary types, you might also encounter control variables. These are variables that could potentially influence the outcome and are therefore kept constant to isolate the relationship between the independent and dependent variables . For example, in the sleep and academic performance study, control variables could include age, diet, or even the subject of study.

By clearly identifying and understanding the roles of these variables in your hypothesis, you set the stage for a methodologically sound research project. It helps you develop focused research questions, design appropriate experiments or observations, and carry out meaningful data analysis . It's a step that lays the groundwork for the success of your entire study.

complex hypothesis in research

Crafting a strong, testable hypothesis is crucial for the success of any research project. It sets the stage for everything from your study design to data collection and analysis . Below are some key considerations to keep in mind when formulating your hypothesis:

  • Be specific : A vague hypothesis can lead to ambiguous results and interpretations . Clearly define your variables and the expected relationship between them.
  • Ensure testability : A good hypothesis should be testable through empirical means, whether by observation , experimentation, or other forms of data analysis.
  • Ground in literature : Before creating your hypothesis, consult existing research and theories. This not only helps you identify gaps in current knowledge but also gives you valuable context and credibility for crafting your hypothesis.
  • Use simple language : While your hypothesis should be conceptually sound, it doesn't have to be complicated. Aim for clarity and simplicity in your wording.
  • State direction, if applicable : If your hypothesis involves a directional outcome (e.g., "increase" or "decrease"), make sure to specify this. You also need to think about how you will measure whether or not the outcome moved in the direction you predicted.
  • Keep it focused : One of the common pitfalls in hypothesis formulation is trying to answer too many questions at once. Keep your hypothesis focused on a specific issue or relationship.
  • Account for control variables : Identify any variables that could potentially impact the outcome and consider how you will control for them in your study.
  • Be ethical : Make sure your hypothesis and the methods for testing it comply with ethical standards , particularly if your research involves human or animal subjects.

complex hypothesis in research

Designing your study involves multiple key phases that help ensure the rigor and validity of your research. Here we discuss these crucial components in more detail.

Literature review

Starting with a comprehensive literature review is essential. This step allows you to understand the existing body of knowledge related to your hypothesis and helps you identify gaps that your research could fill. Your research should aim to contribute some novel understanding to existing literature, and your hypotheses can reflect this. A literature review also provides valuable insights into how similar research projects were executed, thereby helping you fine-tune your own approach.

complex hypothesis in research

Research methods

Choosing the right research methods is critical. Whether it's a survey, an experiment, or observational study, the methodology should be the most appropriate for testing your hypothesis. Your choice of methods will also depend on whether your research is quantitative, qualitative, or mixed-methods. Make sure the chosen methods align well with the variables you are studying and the type of data you need.

Preliminary research

Before diving into a full-scale study, it’s often beneficial to conduct preliminary research or a pilot study . This allows you to test your research methods on a smaller scale, refine your tools, and identify any potential issues. For instance, a pilot survey can help you determine if your questions are clear and if the survey effectively captures the data you need. This step can save you both time and resources in the long run.

Data analysis

Finally, planning your data analysis in advance is crucial for a successful study. Decide which statistical or analytical tools are most suited for your data type and research questions . For quantitative research, you might opt for t-tests, ANOVA, or regression analyses. For qualitative research , thematic analysis or grounded theory may be more appropriate. This phase is integral for interpreting your results and drawing meaningful conclusions in relation to your research question.

complex hypothesis in research

Turn data into evidence for insights with ATLAS.ti

Powerful analysis for your research paper or presentation is at your fingertips starting with a free trial.

complex hypothesis in research

Research Hypothesis In Psychology: Types, & Examples

Saul McLeod, PhD

Editor-in-Chief for Simply Psychology

BSc (Hons) Psychology, MRes, PhD, University of Manchester

Saul McLeod, PhD., is a qualified psychology teacher with over 18 years of experience in further and higher education. He has been published in peer-reviewed journals, including the Journal of Clinical Psychology.

Learn about our Editorial Process

Olivia Guy-Evans, MSc

Associate Editor for Simply Psychology

BSc (Hons) Psychology, MSc Psychology of Education

Olivia Guy-Evans is a writer and associate editor for Simply Psychology. She has previously worked in healthcare and educational sectors.

On This Page:

A research hypothesis, in its plural form “hypotheses,” is a specific, testable prediction about the anticipated results of a study, established at its outset. It is a key component of the scientific method .

Hypotheses connect theory to data and guide the research process towards expanding scientific understanding

Some key points about hypotheses:

  • A hypothesis expresses an expected pattern or relationship. It connects the variables under investigation.
  • It is stated in clear, precise terms before any data collection or analysis occurs. This makes the hypothesis testable.
  • A hypothesis must be falsifiable. It should be possible, even if unlikely in practice, to collect data that disconfirms rather than supports the hypothesis.
  • Hypotheses guide research. Scientists design studies to explicitly evaluate hypotheses about how nature works.
  • For a hypothesis to be valid, it must be testable against empirical evidence. The evidence can then confirm or disprove the testable predictions.
  • Hypotheses are informed by background knowledge and observation, but go beyond what is already known to propose an explanation of how or why something occurs.
Predictions typically arise from a thorough knowledge of the research literature, curiosity about real-world problems or implications, and integrating this to advance theory. They build on existing literature while providing new insight.

Types of Research Hypotheses

Alternative hypothesis.

The research hypothesis is often called the alternative or experimental hypothesis in experimental research.

It typically suggests a potential relationship between two key variables: the independent variable, which the researcher manipulates, and the dependent variable, which is measured based on those changes.

The alternative hypothesis states a relationship exists between the two variables being studied (one variable affects the other).

A hypothesis is a testable statement or prediction about the relationship between two or more variables. It is a key component of the scientific method. Some key points about hypotheses:

  • Important hypotheses lead to predictions that can be tested empirically. The evidence can then confirm or disprove the testable predictions.

In summary, a hypothesis is a precise, testable statement of what researchers expect to happen in a study and why. Hypotheses connect theory to data and guide the research process towards expanding scientific understanding.

An experimental hypothesis predicts what change(s) will occur in the dependent variable when the independent variable is manipulated.

It states that the results are not due to chance and are significant in supporting the theory being investigated.

The alternative hypothesis can be directional, indicating a specific direction of the effect, or non-directional, suggesting a difference without specifying its nature. It’s what researchers aim to support or demonstrate through their study.

Null Hypothesis

The null hypothesis states no relationship exists between the two variables being studied (one variable does not affect the other). There will be no changes in the dependent variable due to manipulating the independent variable.

It states results are due to chance and are not significant in supporting the idea being investigated.

The null hypothesis, positing no effect or relationship, is a foundational contrast to the research hypothesis in scientific inquiry. It establishes a baseline for statistical testing, promoting objectivity by initiating research from a neutral stance.

Many statistical methods are tailored to test the null hypothesis, determining the likelihood of observed results if no true effect exists.

This dual-hypothesis approach provides clarity, ensuring that research intentions are explicit, and fosters consistency across scientific studies, enhancing the standardization and interpretability of research outcomes.

Nondirectional Hypothesis

A non-directional hypothesis, also known as a two-tailed hypothesis, predicts that there is a difference or relationship between two variables but does not specify the direction of this relationship.

It merely indicates that a change or effect will occur without predicting which group will have higher or lower values.

For example, “There is a difference in performance between Group A and Group B” is a non-directional hypothesis.

Directional Hypothesis

A directional (one-tailed) hypothesis predicts the nature of the effect of the independent variable on the dependent variable. It predicts in which direction the change will take place. (i.e., greater, smaller, less, more)

It specifies whether one variable is greater, lesser, or different from another, rather than just indicating that there’s a difference without specifying its nature.

For example, “Exercise increases weight loss” is a directional hypothesis.

hypothesis

Falsifiability

The Falsification Principle, proposed by Karl Popper , is a way of demarcating science from non-science. It suggests that for a theory or hypothesis to be considered scientific, it must be testable and irrefutable.

Falsifiability emphasizes that scientific claims shouldn’t just be confirmable but should also have the potential to be proven wrong.

It means that there should exist some potential evidence or experiment that could prove the proposition false.

However many confirming instances exist for a theory, it only takes one counter observation to falsify it. For example, the hypothesis that “all swans are white,” can be falsified by observing a black swan.

For Popper, science should attempt to disprove a theory rather than attempt to continually provide evidence to support a research hypothesis.

Can a Hypothesis be Proven?

Hypotheses make probabilistic predictions. They state the expected outcome if a particular relationship exists. However, a study result supporting a hypothesis does not definitively prove it is true.

All studies have limitations. There may be unknown confounding factors or issues that limit the certainty of conclusions. Additional studies may yield different results.

In science, hypotheses can realistically only be supported with some degree of confidence, not proven. The process of science is to incrementally accumulate evidence for and against hypothesized relationships in an ongoing pursuit of better models and explanations that best fit the empirical data. But hypotheses remain open to revision and rejection if that is where the evidence leads.
  • Disproving a hypothesis is definitive. Solid disconfirmatory evidence will falsify a hypothesis and require altering or discarding it based on the evidence.
  • However, confirming evidence is always open to revision. Other explanations may account for the same results, and additional or contradictory evidence may emerge over time.

We can never 100% prove the alternative hypothesis. Instead, we see if we can disprove, or reject the null hypothesis.

If we reject the null hypothesis, this doesn’t mean that our alternative hypothesis is correct but does support the alternative/experimental hypothesis.

Upon analysis of the results, an alternative hypothesis can be rejected or supported, but it can never be proven to be correct. We must avoid any reference to results proving a theory as this implies 100% certainty, and there is always a chance that evidence may exist which could refute a theory.

How to Write a Hypothesis

  • Identify variables . The researcher manipulates the independent variable and the dependent variable is the measured outcome.
  • Operationalized the variables being investigated . Operationalization of a hypothesis refers to the process of making the variables physically measurable or testable, e.g. if you are about to study aggression, you might count the number of punches given by participants.
  • Decide on a direction for your prediction . If there is evidence in the literature to support a specific effect of the independent variable on the dependent variable, write a directional (one-tailed) hypothesis. If there are limited or ambiguous findings in the literature regarding the effect of the independent variable on the dependent variable, write a non-directional (two-tailed) hypothesis.
  • Make it Testable : Ensure your hypothesis can be tested through experimentation or observation. It should be possible to prove it false (principle of falsifiability).
  • Clear & concise language . A strong hypothesis is concise (typically one to two sentences long), and formulated using clear and straightforward language, ensuring it’s easily understood and testable.

Consider a hypothesis many teachers might subscribe to: students work better on Monday morning than on Friday afternoon (IV=Day, DV= Standard of work).

Now, if we decide to study this by giving the same group of students a lesson on a Monday morning and a Friday afternoon and then measuring their immediate recall of the material covered in each session, we would end up with the following:

  • The alternative hypothesis states that students will recall significantly more information on a Monday morning than on a Friday afternoon.
  • The null hypothesis states that there will be no significant difference in the amount recalled on a Monday morning compared to a Friday afternoon. Any difference will be due to chance or confounding factors.

More Examples

  • Memory : Participants exposed to classical music during study sessions will recall more items from a list than those who studied in silence.
  • Social Psychology : Individuals who frequently engage in social media use will report higher levels of perceived social isolation compared to those who use it infrequently.
  • Developmental Psychology : Children who engage in regular imaginative play have better problem-solving skills than those who don’t.
  • Clinical Psychology : Cognitive-behavioral therapy will be more effective in reducing symptoms of anxiety over a 6-month period compared to traditional talk therapy.
  • Cognitive Psychology : Individuals who multitask between various electronic devices will have shorter attention spans on focused tasks than those who single-task.
  • Health Psychology : Patients who practice mindfulness meditation will experience lower levels of chronic pain compared to those who don’t meditate.
  • Organizational Psychology : Employees in open-plan offices will report higher levels of stress than those in private offices.
  • Behavioral Psychology : Rats rewarded with food after pressing a lever will press it more frequently than rats who receive no reward.

Print Friendly, PDF & Email

Doc’s Things and Stuff

Hypothesis | Definition

complex hypothesis in research

Hypothesis refers to a testable statement or prediction about the relationship between two or more variables in scientific research.

Understanding Hypothesis

In social science research, a hypothesis plays a crucial role in guiding the research process. It is essentially an educated guess or a prediction that researchers formulate based on existing theories, observations, or knowledge. A hypothesis helps define the direction of the study and provides a framework for data collection and analysis.

The Importance of a Hypothesis

A hypothesis is central to the research process for several reasons:

  • Focuses the Study : By making a specific prediction, the hypothesis narrows the focus of the research. Instead of exploring a broad question, researchers can zero in on testing the specific prediction made by the hypothesis.
  • Guides Research Design : Once a hypothesis is formulated, researchers can design their study in a way that either supports or refutes the hypothesis. This includes choosing appropriate research methods, collecting relevant data, and conducting analyses.
  • Provides Direction : A clear hypothesis helps ensure that the research is purposeful and organized. It gives researchers a goal to work toward and a means to measure their findings against their predictions.
  • Enables Testing of Theories : Many hypotheses are derived from existing theories. By testing a hypothesis, researchers can assess whether the theory holds up in different contexts or under different conditions.

Components of a Hypothesis

A well-formulated hypothesis usually contains several key components:

  • Variables : These are the elements that the researcher is studying. Typically, a hypothesis involves an independent variable (the cause or predictor) and a dependent variable (the effect or outcome). For example, a researcher might hypothesize that “increased study time (independent variable) leads to higher test scores (dependent variable).”
  • Relationship : The hypothesis also specifies the expected relationship between the variables. In the example above, the hypothesis predicts a positive relationship between study time and test scores.
  • Testability : A hypothesis must be testable through empirical observation or experimentation. If a hypothesis cannot be tested, it remains a speculation or an idea rather than a scientific hypothesis.
  • Falsifiability : For a hypothesis to be scientific, it must be falsifiable, meaning that it can be proven wrong. If a hypothesis cannot be disproven, it is not considered scientifically valid.

Types of Hypotheses

There are several types of hypotheses used in social science research, each serving a unique purpose. The most common types are:

1. Null Hypothesis (H0)

The null hypothesis asserts that there is no relationship between the variables being studied. It acts as a default assumption that the researcher tries to disprove or reject. For example, the null hypothesis might state, “There is no relationship between study time and test scores.”

Researchers typically use statistical tests to determine whether they can reject the null hypothesis. If the evidence suggests a significant relationship between the variables, the null hypothesis is rejected.

2. Alternative Hypothesis (H1)

The alternative hypothesis suggests that there is a relationship between the variables. It is the opposite of the null hypothesis. For example, the alternative hypothesis might state, “Increased study time is associated with higher test scores.”

The goal of the research is usually to provide enough evidence to support the alternative hypothesis.

3. Directional Hypothesis

A directional hypothesis makes a specific prediction about the direction of the relationship between variables. In other words, it predicts whether the relationship is positive or negative. For example, “Students who spend more time studying will score higher on tests.”

Directional hypotheses are often used when previous research or theory suggests a specific outcome.

4. Non-Directional Hypothesis

A non-directional hypothesis predicts that there will be a relationship between the variables but does not specify the direction of the relationship. For instance, “There is a relationship between study time and test scores.” Non-directional hypotheses are useful when the researcher is unsure whether the variables are positively or negatively correlated.

5. Complex Hypothesis

A complex hypothesis involves more than two variables and predicts the relationships among them. For example, “Increased study time and use of study aids will result in higher test scores.” Complex hypotheses are common in social science research, where multiple factors often interact to influence outcomes.

How to Formulate a Hypothesis

Formulating a strong hypothesis requires careful thought and consideration of existing knowledge and research. Here are some steps to guide you through the process:

1. Identify the Research Question

The first step in formulating a hypothesis is to identify a research question. This is the broader question you are trying to answer through your study. For example, “What factors influence student test scores?”

2. Conduct a Literature Review

A thorough review of the existing literature helps you understand what is already known about the topic. This step allows you to build on previous research and avoid duplicating studies. It also helps you identify gaps in the literature that your research could fill.

3. Identify the Variables

Next, determine which variables you want to study. In our example, the variables are “study time” and “test scores.” Make sure your variables are measurable and observable.

4. Make an Educated Guess

Based on the literature review and your understanding of the topic, make a prediction about how the variables are related. This prediction forms the basis of your hypothesis. For instance, you might predict that “students who study more will perform better on tests.”

5. Ensure Testability

Finally, ensure that your hypothesis is testable. This means you need to be able to collect data and analyze it to either support or reject your hypothesis.

Testing a Hypothesis

Once a hypothesis is formulated, the next step is to test it. This typically involves collecting data and analyzing it to determine whether the hypothesis is supported. Researchers use various methods to test hypotheses, including experiments, surveys, and observational studies.

1. Data Collection

The method of data collection will depend on the nature of the hypothesis and the research design. For example, if the hypothesis predicts that increased study time leads to better test scores, the researcher could collect data through surveys, test scores, and time logs.

2. Statistical Testing

Statistical tests are used to determine whether the data support the hypothesis. For instance, a common method is to conduct a correlation analysis to examine the relationship between study time and test scores.

3. Interpretation of Results

Once the data have been analyzed, researchers interpret the results to determine whether they support or refute the hypothesis. If the data show a significant relationship between the variables, the hypothesis is supported. If no relationship is found, the hypothesis is rejected.

Hypothesis in the Context of Social Science

In social science, hypotheses are essential for developing new theories, testing existing theories, and exploring relationships between social phenomena. Because social science often deals with complex and multifaceted human behaviors, hypotheses in this field must account for a wide range of variables and external factors.

For instance, a social scientist studying education may hypothesize that smaller class sizes improve student performance. However, they must also consider other variables, such as teacher quality, socioeconomic status, and access to resources. In this way, social science hypotheses often involve multiple variables and interactions.

Hypothesis and Research Ethics

It is important to consider ethics when formulating and testing hypotheses. Ethical considerations ensure that research does not harm participants and that the research process is transparent and unbiased. Researchers should avoid forming hypotheses that could lead to biased or misleading conclusions. Additionally, they must ensure that their testing methods respect participants’ rights and privacy.

A hypothesis is a vital element in the research process. It provides a focused and testable prediction about the relationship between variables, guiding researchers through data collection and analysis. By formulating a clear and testable hypothesis, social scientists can explore complex social phenomena, test theories, and contribute to the advancement of knowledge in their field.

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed .

share this!

September 24, 2024

This article has been reviewed according to Science X's editorial process and policies . Editors have highlighted the following attributes while ensuring the content's credibility:

fact-checked

trusted source

Researchers refute the validity of 'assembly theory of everything' hypothesis

by King's College London

molecular

Three new papers refute claims for the assembly theory of molecular complexity being claimed as a new "theory of everything."

First publicly posited in 2017, assembly theory is a hypothesis concerning the measurability of molecular complexity that claims to characterize life, explain natural selection and evolution, and even to redefine our understanding of time, matter, life and the universe.

However, researchers led by Dr. Hector Zenil from the School of Biomedical Engineering & Imaging Sciences (BMEIS), in collaboration with colleagues from King Abdullah University for Science and Technology (KAUST) and the Karolinska Institute in Sweden, have successfully demonstrated in a paper published in npj Systems Biology , that the same results can be achieved by using traditional statistical algorithms and compression algorithms.

In a second paper just published by PLoS Complex Systems , they have also mathematically proven that assembly theory is an equivalent to Shannon Entropy and therefore not a novel approach to any of those applications and is an implementation of a well-known and popular compression algorithm used behind ZIP compression and image encoding formats such as PNG.

The third paper, "Assembly Theory Reduced to Shannon Entropy and Rendered Redundant by Naive Statistical Algorithms," is available on the arXiv preprint server.

"Our research demonstrated that the Assembly Index, the core component of assembly theory which determines the 'aliveness' of an object by the number of exact copies it possesses, as an original method, is not, and its conclusions are flawed," says Dr. Hector Zenil.

"When we applied traditional compression algorithms to molecular or chemical data, the same verified results were obtained as under assembly theory. This means that, rather than being a new framework, assembly theory is indistinguishable from other pre-existing measures of complexity. Yet, the original authors did not test for any other algorithms."

"Despite some vegetables and plants such as onions and ferns having up to 50 times longer genomes with their many numerous gene copies, it is difficult to argue that onions or ferns are more complex or alive than humans, like assembly theory would suggest based on such unidimensional index," says Prof Jesper Tegner.

"What truly defines life is not merely genetic length or number of components but the intricate relationship with their environment, the agency life exhibits, and its resilience in preserving its essential properties."

"Our analysis sheds light on the limitations of assembly theory's numerical indices, attempting to define 'aliveness' and life characteristics. What truly surprises me is the neglect of the crucial role of dynamic interactions in understanding life complexity. Even more alarming is the decision to propose a fixed life-detection threshold with no basis," says Dr. Narsis A. Kiani.

"The real breakthrough lies in building upon established knowledge, integrating seemingly diverse theories to unravel the complex multidimensional dynamics that shapes life rather than rehashing what we already knew with tools we had already developed."

While characterizing life is hard and still an open problem, it has been studied from many angles, from modular units by Gregor Mendel to thermodynamics by Erwin Schrödinger to Statistical Entropy by Claude Shannon to Algorithmic Information by Gregory Chaitin.

Equipped with all this knowledge and much more from complexity sciences and systems' biology, it is known today that one key aspect of life is that of open-endedness, the fact that life's agency seems not bounded to regular behavior or repetition in its adaptation and relationship to its environment.

Areas such as Algorithmic Information Dynamics (AID) led by Dr. Hector Zenil and his collaborators, are shedding light on how to find causal models for natural phenomena and mechanistic explanations for processes of living systems.

AID is fully based on the current combined knowledge of information theory and causal inference to this date and builds upon and bridges these fundamental areas used today to understand the world.

The methods behind AID already count for exact copies of modules but that is the most obvious first step and something Dr. Zenil reported before assembly theory as capable of separating organic compounds from non-organic as a function of molecular length.

Felipe S. Abrahão et al, Assembly Theory is an approximation to algorithmic complexity based on LZ compression that does not explain selection or evolution, PLOS Complex Systems (2024). DOI: 10.1371/journal.pcsy.0000014

Luan Ozelim et al, Assembly Theory Reduced to Shannon Entropy and Rendered Redundant by Naive Statistical Algorithms, arXiv (2024). DOI: 10.48550/arxiv.2408.15108

Journal information: arXiv

Provided by King's College London

Explore further

Feedback to editors

complex hypothesis in research

Study offers new explanation for Siberia's permafrost craters

4 hours ago

complex hypothesis in research

Climate change will lead to wetter US winters, modeling study finds

complex hypothesis in research

Shedding light on a decades-old protein sorting mystery

complex hypothesis in research

Presence of bacteria in soil makes flowers more attractive to pollinators, study shows

complex hypothesis in research

Turbulent solar wind originates in the sun's corona, study shows

5 hours ago

complex hypothesis in research

New research could extend the lifetime of key carbon-capture materials

complex hypothesis in research

Simultaneous detection of uranium isotopes and fluorine advances nuclear nonproliferation monitoring

complex hypothesis in research

The unexpected role of magnetic microbes in deep-sea mining

complex hypothesis in research

Hubble finds that a black hole beam promotes stellar eruptions

6 hours ago

complex hypothesis in research

A new AI model can predict substrate movement into and out of cells

Relevant physicsforums posts, here comes covid-19 version ba.2, ba.4, ba.5,....

10 hours ago

Aging Effects for Hearts in Microgravity

Sep 25, 2024

Using Destructive Interference to Treat Tinnitus

Are you concerned about toxic chemicals in plastic food packaging.

Sep 24, 2024

Why does a series of pulses generate a pitch?

Sep 19, 2024

Therapeutic Interfering Particle

Sep 18, 2024

More from Biology and Medical

Related Stories

complex hypothesis in research

New 'assembly theory' unifies physics and biology to explain evolution and complexity

Oct 4, 2023

complex hypothesis in research

A new theory linking evolution and physics has scientists baffled—but is it solving a problem that doesn't exist?

Nov 11, 2023

complex hypothesis in research

Complex molecules could hold the secret to identifying alien life

May 24, 2021

complex hypothesis in research

Physics has long failed to explain life—but researchers are testing a groundbreaking new theory in the lab

Oct 25, 2023

complex hypothesis in research

Life: Modern physics can't explain it—but our new theory, which says time is fundamental, might

Apr 5, 2023

complex hypothesis in research

Causal disentanglement is the next frontier in AI

Feb 20, 2019

Recommended for you

complex hypothesis in research

Scientists uncover a critical component that helps killifish regenerate their fins

8 hours ago

complex hypothesis in research

Study unveils a novel protective mechanism in bacterial cell walls

9 hours ago

complex hypothesis in research

Scientists discover 'pause button' in human development

complex hypothesis in research

Light-controlled bioassays could diagnose diseases more easily and cost effectively

Let us know if there is a problem with our content.

Use this form if you have come across a typo, inaccuracy or would like to send an edit request for the content on this page. For general inquiries, please use our contact form . For general feedback, use the public comments section below (please adhere to guidelines ).

Please select the most appropriate category to facilitate processing of your request

Thank you for taking time to provide your feedback to the editors.

Your feedback is important to us. However, we do not guarantee individual replies due to the high volume of messages.

E-mail the story

Your email address is used only to let the recipient know who sent the email. Neither your address nor the recipient's address will be used for any other purpose. The information you enter will appear in your e-mail message and is not retained by Phys.org in any form.

Newsletter sign up

Get weekly and/or daily updates delivered to your inbox. You can unsubscribe at any time and we'll never share your details to third parties.

More information Privacy policy

Donate and enjoy an ad-free experience

We keep our content available to everyone. Consider supporting Science X's mission by getting a premium account.

E-mail newsletter

The evolution of tax strategies in multinational companies: a historical perspective

  • Original Article
  • Published: 25 September 2024

Cite this article

complex hypothesis in research

  • Nita Andriyani Budiman 1 ,
  • Bandi Bandi 2 ,
  • Ari Kuncara Widagdo 2 &
  • Eko Arief Sudaryono 2  

Increasing globalization and complexity of the tax environment demands in-depth research into tax coverage, tax risks and tax avoidance in multinational companies. This research explains the complex dynamics between these variables with a focus on multinational companies listed on the Indonesia Stock Exchange during 2009–2022. A sample of 714 observations was used to explore the relationship between tax disclosure, tax risk and tax avoidance. Statistical analysis shows that tax disclosure has a negative effect on tax avoidance. This shows that the more transparent a company is in disclosing its tax information, the less the company is involved in tax avoidance. On the other hand, tax risk has a positive effect on tax avoidance, meaning that when a company faces higher tax risk, the company tends to increase its tax avoidance efforts. In particular, this study reveals that tax disclosure also plays a moderating role, weakening the positive influence of tax risk on tax avoidance. Although tax risks can encourage companies to avoid taxes, the level of tax dispersion can reduce this positive impact. The practical relevance of this research provides valuable guidance for tax practitioners, regulators and decision makers in developing more effective tax policies. The results of this research highlight the importance of transparency in reducing tax avoidance practices, while providing insight into how tax risk and tax spread can be managed more efficiently. The academic contribution of this research lies in the development of multinational company taxation literature. By providing a deeper understanding of the relationships between variables, this research provides a foundation for further research in understanding the dynamics of global taxation. In conclusion, this research not only reflects its practical urgency, but also enriches the understanding of multinational corporate taxation in a global context.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save.

  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime

Price includes VAT (Russian Federation)

Instant access to the full article PDF.

Rent this article via DeepDyve

Institutional subscriptions

complex hypothesis in research

Availability of data and material

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Code availability

Not applicable.

Adams, J. R., Demers, E., and Klassen, K. 2022. Tax aggressive behavior and voluntary tax disclosure: Evidence from corporate sustainability reporting. SSRN Electronic Journal.

Afida, C.N. 2022. Should CbCR go public? A developing country’s perspective of public CbCR. Jurnal Pajak Indonesia 6 (2S): 626–640.

Google Scholar  

Aliprandi, G. and Bordes, K. 2023. Tax transparency by multinationals: Trends in country-by-country reports public disclosure. https://shs.hal.science/halshs-04103949 .

Amni, S., R. Fitrios, and A. Silfi. 2023. The influence of thin capitalization, capital intensity, and earnings management on tax avoidance with tax havens country as moderator. International Journal of Science and Business 20 (1): 109–122.

Article   Google Scholar  

Andersen, T.J. 2020. Managing in dynamic, complex and unpredictable business contexts. Emerald Group Publishing.

Artemenko, D.A., L.A. Aguzarova, F.S. Aguzarova, and E.V. Porollo. 2017. Causes of tax risks and ways to reduce them. European Research Studies Journal 20 (3B): 453–459.

Aslam, A. and Coelho, M. 2021. A firm lower bound: Characteristics and impact of corporate minimum taxation. IMF Working Paper: WP/21/161.

Beer, S., R. De Mooij, and L. Liu. 2018. International corporate tax avoidance: A review of the channels, magnitudes, and blind spots. Journal of Economic Surveys 34 (3): 660–688.

Beuselinck, C., and J. Pierk. 2024. On the dynamics between local and international tax planning in multinational corporations. Review of Accounting Studies 29: 852–888.

Boubaker, S., I. Derouiche, and H. Nguyen. 2022. Voluntary disclosure, tax avoidance and family firms. Journal of Management and Governance 26 (1): 129–158.

Bougie, R. and Sekaran, U. 2020. Research methods for business : A skill building approach, (8th edition - Asia Edition). Hoboken: Wiley.

Bradbury, D., T. Hanappi, and A. Moore. 2018. Estimating the fiscal effects of base erosion and profit shifting: Data availability and analytical issues. Transnational Corporations Journal 25 (2): 91–106.

Bradbury, D., and P. O’Reilly. 2018. Inclusive fiscal reform: Ensuring fairness and transparency in the international tax system. International Tax and Public Finance 25: 1434–1448.

Brown, R.J., B.N. Jorgensen, and P.F. Pope. 2019. The interplay between mandatory country-by-country reporting, geographic segment reporting, and tax havens: Evidence from the European Union. Journal of Accounting and Public Policy 38 (2): 106–129.

Brown, K.B. 2011. Comparative regulation of corporate tax avoidance: An Overview. En a comparative look at regulation of corporate tax avoidance , vol. 12. Dordrecht: Springer.

Bruhne, A.I., and D. Schanz. 2022. Defining and managing corporate tax risk: Perceptions of tax risk experts. Contemporary Accounting Research 39 (4): 2861–2902.

Budiman, N.A., and B. Bandi. 2022. Tax avoidance in Jakarta Islamic index companies. International Journal of Islamic Business Ethics 7 (1): 30–39.

Budiman, N.A., and B. Bandi. 2023. Tax avoidance: How board of directors diversity strategies are applied in facing tax audits? Journal of Corporate Finance, Management, and Banking System 3 (6): 26–37.

Chan, K.H., P.L.L. Mo, and A.Y. Zhou. 2013. Government ownership, corporate governance and tax aggressiveness: Evidence from China. Accounting and Finance 53: 1029–1051.

Chen, S., Y. Huang, N. Li, and T. Shevlin. 2019. How does quasi-indexer ownership affect corporate tax planning? Journal of Accounting and Economics 67: 278–296.

Chen, W. 2021a. Tax risks control and sustainable development: Evidence from China. Meditari Accountancy Research 29 (6): 1381–1400.

Chen, W. 2021b. Too far east is west: Tax risk, tax reform and investment timing. International Journal of Managerial Finance 17 (2): 303–326.

Choi, J., and H. Park. 2022. Tax avoidance, tax risk, and corporate governance: Evidence from Korea. Sustainability 14 (1): 469.

Cuervo-Cazurra, A., M. Dieleman, P. Hirsch, S.B. Rodrigues, and S. Zyglidopoulos. 2021. Multinationals’ misbehavior. Journal of World Business 56 (5): 101244.

Darussalam, D., Septriadi, D., and Kristiaji, B. B. (2022). Transfer Pricing: Ide, Strategi, and Panduan Praktis dalam Perspektif Pajak Internasional (Edisi Kedua). Jakarta: DDTC.

Dewi, A.P.S., and M.D. Ardiyanto. 2020. Pengaruh Penghindaran Pajak and Risiko Pajak terhadap Biaya Utang. Diponegoro Journal of Accounting 9 (3): 1–9.

Di Nino, V., M.M. Habib, and M. Schmitz. 2020. Multinational enterprises, financial centres and their implications for external imbalances: A Euro area perspective. ECB Economic Bulletin 2: 60–83.

Dillon, S. 2017. Tax avoidance, revenue starvation and the age of the multinational corporation. The International Lawyer 50 (2): 275–328.

Drake, K.D., S.J. Lusch, and J. Stekelberg. 2019. Does tax risk affect investor valuation of tax avoidance? Journal of Accounting, Auditing and Finance 34 (1): 151–176.

Dyreng, S. and Hanlon, M. 2021. Tax avoidance and multinational firm behavior. International Tax Policy.

Eisenberg, P. 2018. Does tax transparency tackle tax avoidance?: A stakeholder perspective. International Journal of Advances in Management and Economics 8 (1): 46–59.

Financial Services Authority Circular Letter Number: SE-17/BL/2012 concerning financial report disclosure checklist for all industries in the capital market in Indonesia.

Flagmeier, V. and Müller, J. (2016). Tax loss carryforward disclosure and uncertainty. Arqus-Arbeitskreis Quantitative Steuerlehre.

Fung, S. 2017. The questionable legitimacy of the OECD/G20 BEPS project. Erasmus Law Review 2: 76–88.

Gaaya, S., N. Lakhal, and F. Lakhal. 2017. Does family ownership reduce corporate tax avoidance? The moderating effect of audit quality. Managerial Auditing Journal 32: 731–744.

Gaertner, F. 2014. CEO after-tax compensation incentives and corporate tax avoidance. Contemporary Accounting Research 31: 1077–1102.

Government Regulation Number 55 of 2022 concerning Adjustments to Regulations in the Income Tax Sector.

Guedrib, M., and G. Marouani. 2023. The interactive impact of tax avoidance and tax risk on the firm value: New evidence in the tunisian context. Asian Review of Accounting 31 (2): 203–226.

Guenther, D.A., S.R. Matsunaga, and B.M. Williams. 2017. Is tax avoidance related to firm risk? The Accounting Review 92 (1): 115–136.

Handayani, Y.D., and E.Y. Ibrani. 2023. Reciprocal: Financial reporting aggressiveness-tax reporting aggressiveness and corporate governance. Management Science Research Journal 2 (1): 1–12.

Hanggariksa, M.D., and A.K. Paksi. 2023. Kontribusi Perusahaan Multinasional dalam Menghadapi Pandemi Covid-19 di Indonesia. SOSIOLOGI: Jurnal Ilmiah Kajian Ilmu Sosial and Budaya 25 (1): 1–20.

Hanlon, M., and S. Heitzman. 2010. A review of tax research. Journal of Accounting and Economics 50 (2–3): 127–178.

Hardeck, I., Inger, K.K., Moore, R.D., and Schneider, J. 2023. The impact of tax avoidance and environmental performance on tax disclosure in CSR reports. Journal of the American Taxation Association.

Hardeck, I., K.K. Inger, R.D. Moore, and J. Schneider. 2024. The impact of tax avoidance and environmental performance on tax disclosure in CSR reports. Journal of the American Taxation Association 46 (1): 83–111.

Hariani, A. 2023. Banyak WP Baand Laporkan Rugi, Tapi Bisnis Berkembang. https://www.pajak.com/pajak/banyak-wp-baand-laporkan-rugi-tapi-bisnis-berkembang/ (Accessed 20 September 2023).

Hasseldine, J., and G. Morris. 2013. Corporate social responsibility and tax avoidance: A comment and reflection. Accounting Forum 37 (1): 1–14.

Iqbal, M., D. Savitri, L. Nur, R.D. Andini, and P.R. Silalahi. 2023. Peran Perusahaan Multinasional dalam Meningkatkan Sektor Perekonomian di Indonesia. CEMERLANG: Jurnal Manajemen and Ekonomi Bisnis 3 (1): 64–76.

Jati, A.W., I. Ulum, and C. Utomo. 2019. ax avoidance, corporate governance and Kinerja Keuangan Perusahaan yang Terdaftar dalam Jakarta Islamic Index. Jurnal Reviu Akuntansi and Keuangan 9 (2): 214–225.

Jiang, C. 2023. Tax avoidance of multinational enterprises and its countermeasures. Advances in Economics, Management and Political Sciences 4: 253–259.

Joshi, P. 2020. Does private country-by-country reporting deter tax avoidance and income shifting? Evidence from BEPS action item 13. Journal of Accounting Research 58 (2): 333–381.

Kaal, W. A. (2014). Dynamic regulation of the financial services industry. Legal Studies Research Paper, 13–24.

Kerr, J.N. 2019. Transparency, information shocks, and tax avoidance. Contemporary Accounting Research 36 (2): 1146–1183.

Kessler, J. 2004. Tax avoidance purpose and section 741 of taxes act 1988. British Tax Review 4: 375–409.

Kurniasih, L., Y. Yusri, F. Kamarudin, and A.F.S. Hassan. 2023. The role of country by country reporting on corporate tax avoidance: Does it effective for the tax haven? Cogent Business and Management 10 (1): 1–25.

Law Number 36 of 2008 concerning Income Tax.

Lenz, H. 2020. Aggressive tax avoidance by managers of multinational companies as a violation of their moral duty to obey the law: A Kantian Rationale. Journal of Business Ethics 165: 681–697.

Lin, X., M. Liu, S. So, and D. Yuen. 2019. Corporate social responsibility, firm performance and tax risk. Managerial Auditing Journal 34 (9): 1101–1130.

Lozada, D.C.P. 2023. The effect of tax transparency on consumer and firm behavior: Experimental evidence. Journal of Behavioral and Experimental Economics 104: 101990.

Mangoting, Y., O.Y. Yuliana, J. Effendy, L. Hariono, and V.M. Lians. 2021. The effect of tax risk on tax avoidance. Jurnal Keuangan and Perbankan 25 (3): 570–584.

Martinez, A.L. 2023. Anti-BEPS tax reforms and the WTO: Addressing global tax challenges. SSRN Electronic Journal.

Mason, R. 2020. The transformation of international tax. American Journal of International Law 114 (3): 353–402.

Masri, I., A. Syakhroza, and R. Wardhani. 2019. The role of tax risk management in international tax avoidance practices: Evidence from Indonesia and Malaysia. International Journal of Trade and Global Markets 12 (3–4): 311–322.

Matthews, L.C. and Thakkar, B. 2012. The impact of globalization on cross-cultural communication. InTech.

Mgammal, M.H., and K.N.I.K. Ismail. 2015. Corporate tax disclosure: A review of concepts, theories, constraints, and benefits. Asian Social Science 11 (28): 1–14.

Mgammal, M.H. 2019. The effect of components of tax saving on tax disclosure: A panel data approach in malaysian listed companies. Pacific Accounting Review 31 (4): 574–601.

Mgammal, M.H. 2020. Corporate tax planning and corporate tax disclosure. Meditari Accountancy Research 28 (2): 327–364.

Minister of Finance Regulation Number 213/PMK.03/2016 concerning Types of Documents and/or Additional Information that Must be Kept by Taxpayers Carrying Out Transactions with Parties Who Have Special Relationships, and Procedures for Managing Them.

Moraes, G.S.C., E.M. Nascimento, S.V.N. Soares, and B.F.L. Primola. 2021. Tax avoidance and tax disclosure: A study of Brazilian listed companies. Contextus: Contemporary Journal of Economics and Management 19 (13): 197–216.

Neuman, S.S., T.C. Omer, and A.P. Schmidt. 2020. Assessing tax risk: Practitioner perspectives. Contemporary Accounting Research 37 (3): 1788–1827.

Noonan, C., and V. Plekhanova. 2023. Mandatory binding dispute resolution in the base erosion and profit shifting (BEPS) two pillar solution. International and Comparative Law Quarterly 72 (2): 437–476.

OECD. 2023a. International Collaboration to End Tax Avoidance. https://www.oecd.org/tax/beps/ (Accessed 20 November 2023).

OECD. 2023b. OECD guidelines for multinational enterprises on responsible business conduct. https://doi.org/10.1787/81f92357-en .

Oguttu, A. 2020. Curtailing BEPS through enforcing corporate transparency: The challenges of implementing country-by-country reporting in developing countries and the case for making public country-by-country reporting mandatory. World Tax Journal 12 (4): 799–828.

Parada, L. and Bondi, M. (2023). Response to the UN resolution A/RES/77/244 on promotion of inclusive and effective tax cooperation at the united nations. SSRN Electronic Journal.

Payne, D.M., and C.A. Raiborn. 2018. Aggressive tax avoidance: A conundrum for stakeholder. Journal of Business Ethics 147: 469–487.

Pratama, A., and A.P. Pratiwi. 2022. Tax disclosure in financial statements: The case of Indonesia. International Journal of Applied Economics, Finance and Accounting 14 (1): 50–59.

Purba, A.R. and Siahaan, C. 2021. The effects of globalization on international communication in the world business. https://doi.org/10.2139/ssrn.3962731 .

Purbolakseto, H., B. Tjahjadi, and H. Tjaraka. 2022. Peran ukuran perusahaan memoderasi pengaruh risiko pajak perusahaan terhadap penghindaran pajak. Jurnal Ekonomi Akuntansi and Manajemen 21 (2): 169–186.

Puspitasari, M., and D. Septriadi. 2023. Analysis of the implementation of base erosion and profit shifting (BEPS) inclusive framework on Indonesian tax regulation. Contemporary Accounting Case Studies 2 (2): 364–384.

Qatawneh, A.M., A. Bader, and K.T. Amayreh. 2023. The Impact of tax legislation on public shareholding companies tax disclosure: A comparative study between the Jorandian tax system and the US tax system (State of Illinois). International Journal of Professional Business Review 8 (6): 1–19.

Raiborn, C.A., M.F. Massoud, and D.M. Payne. 2015. Tax avoidance: The GOOD, THE BAD, AND THE FUTUre. Journal of Business and Management 21 (1): 77–94.

Rajput, S.K.O. and Marwat, J. 2019. Tax Avoidance and earning management in Pakistan. Corporate Governance: Disclosure.

Rakhmayani, A., C.Y.D. Ekaristi, and M. Aresteria. 2022. Consequences of tax avoidance. Tax Accounting Applied Journal 1 (1): 18–28.

Ria, R. 2023. Profitability moderation on the effect of tax avoidance on company value. Jurnal Multidisiplin Maandi 3 (5): 1099–1104.

Richardson, G., G. Taylor, and R. Lanis. 2013. Determinants of transfer pricing aggressiveness: Empirical evidence from australian firms. Journal of Contemporary Accounting and Economics 9 (2): 136–150.

Richardson, G., B. Wang, and X. Zhang. 2016. Ownership structure and corporate tax avoidance: Evidence from publicly listed private firms in China. Journal of Contemporary Accounting and Economics 12: 141–158.

Robinson, L.A., and A.P. Schmidt. 2013. Firm and investor responses to uncertain tax benefit disclosure requirements. Journal of the American Taxation Association 35 (2): 85–120.

Rudyanto, A. (2024). Does tax disclosure in global reporting initiative (GRI)-based sustainability reporting mitigate aggressive tax avoidance? Evidence from a developing country. Journal of Global Responsibility.

Salihu, I.A., H.A. Annuar, and S.N.S. Obid. 2015. Foreign investors’ interests and corporate tax avoidance: Evidence from an emerging economy. Journal of Contemporary Accounting and Economics 11: 138–147.

Seegert, N. 2017. Optimal tax policy under uncertainty over tax revenues.

Shen, Y. 2023. Contingency information disclosure and corporate tax avoidance. Frontiers in Business, Economics and Management 7 (2): 112–119.

Spence, M. 1973. Job market signaling. The Quarterly Journal of Economics 87 (3): 355–374.

Sreesing, P. 2018. Taxes and risk-taking behavior: evidence from mergers and acquisitions in the G7 nations. The Journal of Risk Finance 19 (3): 277–294.

Stiglingh, M., A.R. Smit, and A. Smit. 2022. The relationship between tax transparency and tax avoidance. South African Journal of Accounting Research 36 (1): 1–21.

Submitter, G.J., N.D. Mohanadas, A.S.A. Salim, and S. Ramasamy. 2019. A theoretical review on corporate tax avoidance: shareholder approach versus stakeholder approach. Journal of Finance and Banking Review 4 (3): 82–88.

Tang, T.Y. 2020. A review of tax avoidance in China. China Journal of Accounting Research 13 (4): 327–338.

Tanto, V. 2016. The international company and tax avoidance. European Journal of Economics and Business Studies 2 (2): 42–50.

Tax Justice Network. 2023. CORRECTION: Countries are losing 1.7% more to tax havens than we reported. https://taxjustice.net/press/correction-countries-are-losing-1-7-more-to-tax-havens-than-we-reported/ (accessed 25 September 2023).

Taylor, G., and G. Richardson. 2012. International corporate tax avoidance practices: Evidence from australian firms. The International Journal of Accounting 47 (4): 469–496.

Tulus, C. and Yasmine, N. (2020). Dynamic capability as connection of the triangle company, environment and strategy. Social Science Research Network.

Wang, N., and Y. Guan. 2023. Calculus logic function in tax risk avoidance in different stages of enterprises. Applied Mathematics and Nonlinear Sciences 8 (1): 1889–1900.

Wencel, A. 2022. The disclosure of tax risk in the financial reports of public companies. The Theoretical Journal of Accounting 46 (3): 197–215.

Yahya, A., N. Asiah, and R. Nurjanah. 2023. Tax avoidance in relationship on capital intensity, growth opportunities, financial distress and accounting conservatism. Journal of Business Management and Economic Development 1 (2): 154–165.

Download references

The authors are grateful to the Directorate of Research, Technology, and Community Service of the Ministry of Education, Culture, Research, and Technology for funding this research activity.

Author information

Authors and affiliations.

Department Accounting, Faculty Economy and Business, Muria Kudus University, Kudus, Indonesia

Nita Andriyani Budiman

Department Accounting, Faculty Economy and Business, Sebelas Maret University, Surakarta, Indonesia

Bandi Bandi, Ari Kuncara Widagdo & Eko Arief Sudaryono

You can also search for this author in PubMed   Google Scholar

Contributions

NAB, BB, AKW and EAS authors agreed on the content of the study. NAB, BB, AKW and EAS collected all the data for analysis. NAB agreed on the methodology. NAB, BB, AKW and EAS completed the analysis based on agreed steps. Results and conclusions are discussed and written together. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Nita Andriyani Budiman .

Ethics declarations

Conflict of interest.

The authors have no conflicts of interest to declare.

Human and animal rights

This article does not contain any studies with human or animal subjects performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Consent to participate

Consent for publication, additional information, publisher's note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1: Tax disclosure indicators

Indicator

No.

Disclosure items

Permanent difference

1

Non deductible expenses

2

Impairment of receivables

3

Selling fixed assets

4

Income tax payable

5

Adjustment for changes in tax rates

6

Income subject to final taxation

7

Withholding tax

8

Amortization expense of intangible assets

Temporary difference

9

Impairment of investments

10

Previously unrecognized deferred tax assets

11

Exchange rate difference

12

Non-taxable income

13

Deferred tax expense

14

Adjustment for investments accounted for using the equity method

15

Deferred tax on pension benefit obligations

16

Post-employment benefits

17

Adjustment for errors in prior periods

18

Deferred tax on undistributed earnings of foreign subsidiaries

19

Recognition of deferred tax assets

Differences in foreign tax rates

20

Parent or subsidiary company operating in different jurisdictions

Fiscal losses

21

Expected tax benefits or tax loss carryforwards

22

Tax loss carryforward

23

Unrecognized tax losses

24

tax loss reserve

Other

25

Incentive tax

26

Tax assessment notice or tax bill

27

Tax provision

28

Derivative financial instruments

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Budiman, N.A., Bandi, B., Widagdo, A.K. et al. The evolution of tax strategies in multinational companies: a historical perspective. Int J Discl Gov (2024). https://doi.org/10.1057/s41310-024-00265-0

Download citation

Received : 09 August 2024

Accepted : 09 September 2024

Published : 25 September 2024

DOI : https://doi.org/10.1057/s41310-024-00265-0

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Globalization
  • Tax disclosure
  • Tax avoidance
  • Multinational companies
  • Find a journal
  • Publish with us
  • Track your research

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

The PMC website is updating on October 15, 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Indian J Anaesth
  • v.67(4); 2023 Apr
  • PMC10248897

A well-formulated research question: The foundation stone of good research

S parathasarathy.

Department of Anesthesiology, Mahatma Gandhi Medical College and Research Institute, Sri Balaji Vidyapeeth (Deemed to be University), Pondicherry, India

Aloka Samantaray

1 Department of Anaesthesiology and Critical Care, Sri Venkateswara Institute of Medical Science, Tirupati, Andhra Pradesh, India

2 Department of Anesthesia and Intensive Care, Postgraduate Institute of Medical Education and Research, Chandigarh, India

Research, simply, can be defined as a systematic evaluation of a ‘clinical problem’. The success of any research process depends upon the ability of the researcher to translate this clinical problem into a ‘research question’.[ 1 ] A well-formulated research question is the foundation stone of any research. It guides the researcher in determining the study’s objectives, planning the right methodology, collecting and analysing data, and drawing inferences. A research question determines the scope and direction of the investigation, ensuring that the study stays focused and avoiding needless diversions. Secondly, a research question plays a pivotal role in defining the study’s methodology. It directs the choice of methods for gathering and analysing data, ensuring that the study is designed to produce valid results.

A well-formulated research question ought to be pertinent to the area of study and address a knowledge gap. This makes sure that the study advances knowledge while also providing useful information to policymakers or practitioners. The research question guides the population to be studied and the sample size needed for statistical power. This guarantees that the study’s findings are broadly applicable to the target population and may be utilised to arrive at informed clinical decisions. The research question also directs the researcher to recognise possible hazards and benefits to participants while also ensuring that the study is carried out in an ethical and accountable manner.[ 2 ] Formulating a research question is an art. It should be framed in simple, clear language and should be comprehensible to anyone reading the article. The PICOT approach is an extensively used approach for framing a research question, which emphasises defining population, intervention, comparator, outcomes, and time frame (PICOT) in a research question.

There is a subtle difference between a hypothesis and a research question. The research question presents an idea to be studied, whereas the hypothesis aims to answer the research question. By converting it into a statement, a research question can be converted into a hypothesis.

For example, ‘Does a pre-emptive nerve block[ 3 ] decrease opioid consumption in nasal surgeries?’ is a research question while the hypothesis converts the same to the following: ‘a pre-emptive nerve block decreases opioid consumption in nasal surgeries’.

There are different types of classifications of hypotheses: Simple versus complex. Simple means that there is one predictor and one outcome variable. ‘In patients with diabetic neuropathy, the need for the local anaesthetic drug is decreased in nerve blocks’ is simple, whereas the statement ‘In patients with diabetic neuropathy, the drug deposition with combined ultrasound and nerve stimulation will decrease local anaesthetic need in blocks’ has more predictor variables and is a complex hypothesis.

There is another type of classification: specific versus vague. Consider the statement, ‘How much is the reduction of sevoflurane requirements in entropy-controlled general anaesthesia by co-administering epidural analgesia?’[ 4 ] The hypothesis is clear and precise for a study plan. Now consider the following statement: ‘How much is the reduction of sevoflurane requirements in fixed-dose narcotic general anaesthesia by co-administering epidural analgesia at different sites?’ Here, the question is imprecise and a study plan is difficult to achieve.

There is a very basic classification of hypothesis for the purpose of statistical analyses: null and alternate hypotheses. A general assertion that there is no correlation between two variables or two phenomena is known as a null hypothesis. Often, it is indicated by H0. A statement that asserts some statistical significance between two facts is known as an alternative hypothesis. H1 or HA are frequently used to indicate it.[ 5 ]

Prior to the study, the research hypothesis should be stated explicitly. The reporting guidelines from the EQUATOR Network website also emphasise the inclusion of the study hypothesis to be stated for any submitted manuscript.[ 6 ]

In some cases, researchers will propose a new theory after analysing the evidence, which has not been stated earlier. It is known as a post hoc hypothesis. For e.g., a study reveals that older individuals require more vasopressor use for the specified level of spinal anaesthesia. The above statement was the initial research question. Although this was previously stated clearly, the researchers added two post hoc hypotheses, including improved cognitive performance and decreased vomiting, after the analysis. Testing many hypotheses has the potential to exaggerate the significance of the results, and any type of hypotheses distortion is considered to be unethical in science.

A strong research question is undoubtedly crucial for the creation of a high-calibre research paper. A precise and a well-defined research question ensures that the study tackles a particular problem or gap in the literature, by influencing the design, data collecting, and analysis of the study. The FINER acronym for a good research question stands for the following: feasible, interesting, novel, ethical, and relevant.

The success of a submitted manuscript to be published in a medical journal is guided by various factors like appropriate study design, robust methodology, and good writing style meeting the specified norms for a scientific publication.[ 7 , 8 ] It is crucial to remember that a strong research question does not, by itself, ensure publication, but it definitely lays a foundation stone for well-conducted research.

IMAGES

  1. How to Write a Hypothesis: The Ultimate Guide with Examples

    complex hypothesis in research

  2. 13 Different Types of Hypothesis (2024)

    complex hypothesis in research

  3. What is Hypothesis? Types of Hypothesis-Simple/Complex/Null/Alternate/Directional/Non-Directional

    complex hypothesis in research

  4. Three types of hypotheses

    complex hypothesis in research

  5. Research hypothesis....ppt

    complex hypothesis in research

  6. PPT

    complex hypothesis in research

VIDEO

  1. NEGATIVE RESEARCH HYPOTHESIS STATEMENTS l 3 EXAMPLES l RESEARCH PAPER WRITING GUIDE l THESIS TIPS

  2. COMPLEX HYPOTHESIS

  3. Hypothesis,characteristics,Types & functions

  4. Development of Hypothesis: 3 Stages (Research Methodology)

  5. Types of Research Hypothesis

  6. Hypothesis || Part 16 || By Sunil Tailor Sir ||

COMMENTS

  1. Types of Research Hypotheses

    There are seven different types of research hypotheses. Simple Hypothesis. A simple hypothesis predicts the relationship between a single dependent variable and a single independent variable. Complex Hypothesis. A complex hypothesis predicts the relationship between two or more independent and dependent variables. Directional Hypothesis.

  2. Research Hypothesis: Definition, Types, Examples and Quick Tips

    A research hypothesis is an assumption or a tentative explanation for a specific process observed during research. Unlike a guess, research hypothesis is a calculated, educated guess proven or disproven through research methods. ... Complex hypothesis. In contrast to a simple hypothesis, a complex hypothesis implies the relationship between ...

  3. What is a Research Hypothesis: How to Write it, Types, and Examples

    It seeks to explore and understand a particular aspect of the research subject. In contrast, a research hypothesis is a specific statement or prediction that suggests an expected relationship between variables. It is formulated based on existing knowledge or theories and guides the research design and data analysis. 7.

  4. How to Formulate a Hypothesis: Example and Explanation

    Complex Hypothesis Examples. A complex hypothesis involves more than two variables. An example could be, "If students sleep for at least 8 hours and eat a healthy breakfast, then their test scores and overall well-being will improve." This type of hypothesis examines multiple factors and their combined effects.

  5. A Practical Guide to Writing Quantitative and Qualitative Research

    INTRODUCTION. Scientific research is usually initiated by posing evidenced-based research questions which are then explicitly restated as hypotheses.1,2 The hypotheses provide directions to guide the study, solutions, explanations, and expected results.3,4 Both research questions and hypotheses are essentially formulated based on conventional theories and real-world processes, which allow the ...

  6. Hypothesis: Definition, Examples, and Types

    A hypothesis is a tentative statement about the relationship between two or more variables. It is a specific, testable prediction about what you expect to happen in a study. It is a preliminary answer to your question that helps guide the research process. Consider a study designed to examine the relationship between sleep deprivation and test ...

  7. Scientific Hypotheses: Writing, Promoting, and Predicting Implications

    INTRODUCTION. We live in times of digitization that radically changes scientific research, reporting, and publishing strategies. Researchers all over the world are overwhelmed with processing large volumes of information and searching through numerous online platforms, all of which make the whole process of scholarly analysis and synthesis complex and sophisticated.

  8. Formulating Hypotheses for Different Study Designs

    Formulating Hypotheses for Different Study Designs. Generating a testable working hypothesis is the first step towards conducting original research. Such research may prove or disprove the proposed hypothesis. Case reports, case series, online surveys and other observational studies, clinical trials, and narrative reviews help to generate ...

  9. How to write a research hypothesis

    A research hypothesis defines the theory or problem your research intends to test. It is the "educated guess" of what the final results of your research or experiment will be. ... Complex hypothesis. The term complex hypothesis refers to a model - either quantitative (mathematical) or qualitative. A complex hypothesis states the surmised ...

  10. Research Hypothesis: What It Is, Types + How to Develop?

    Complex Hypothesis. A complex hypothesis is an idea that specifies a relationship between multiple independent and dependent variables. It is a more detailed idea than a simple hypothesis. While a simple view suggests a straightforward cause-and-effect relationship between two things, a complex hypothesis involves many factors and how they're ...

  11. How to Write a Strong Hypothesis

    5. Phrase your hypothesis in three ways. To identify the variables, you can write a simple prediction in if…then form. The first part of the sentence states the independent variable and the second part states the dependent variable. If a first-year student starts attending more lectures, then their exam scores will improve.

  12. What is a Hypothesis

    A research hypothesis is a statement that predicts a relationship between variables. It is usually formulated as a specific statement that can be tested through research, and it is often used in scientific research to guide the design of experiments. ... Complex Hypothesis. A complex hypothesis is a statement that assumes multiple outcomes or ...

  13. Science and Hypothesis

    Importance of a hypothesis for a research study. ... It is of two types, simple hypothesis and complex hypothesis. A simple hypothesis predicts a relationship between a dependent variable (DV) and an independent variable (IV). For example, those who learn logic lessons would earn good grades in a logic course. In this hypothesis, learning logic ...

  14. How to Write a Hypothesis in 6 Steps, With Examples

    A hypothesis is a statement that explains the predictions and reasoning of your research—an "educated guess" about how your scientific experiments will end. ... 2 Complex hypothesis. A complex hypothesis suggests the relationship between more than two variables, for example, two independents and one dependent, or vice versa. ...

  15. 13 Different Types of Hypothesis (2024)

    13 Different Types of Hypothesis. There are 13 different types of hypothesis. These include simple, complex, null, alternative, composite, directional, non-directional, logical, empirical, statistical, associative, exact, and inexact. A hypothesis can be categorized into one or more of these types. However, some are mutually exclusive and ...

  16. Research: Articulating Questions, Generating Hypotheses, and Choosing

    A research question has been described as "the uncertainty that the investigator wants to resolve by performing her study ... The hypothesis is a tentative prediction of the nature and direction of relationships between sets of data, phrased as a declarative statement. Therefore, hypotheses are really only required for studies that address ...

  17. What is a Research Hypothesis and How to Write a Hypothesis

    The steps to write a research hypothesis are: 1. Stating the problem: Ensure that the hypothesis defines the research problem. 2. Writing a hypothesis as an 'if-then' statement: Include the action and the expected outcome of your study by following a 'if-then' structure.

  18. How to Write a Hypothesis

    An overview of the research hypothesis. As much as the term exists in everyday language, there is a detailed development that informs the word "hypothesis" when applied to research. ... Complex hypothesis. A complex hypothesis, as the name suggests, involves more than two variables. For instance, "Increased study time and access to resources ...

  19. Research Hypothesis In Psychology: Types, & Examples

    A research hypothesis, in its plural form "hypotheses," is a specific, testable prediction about the anticipated results of a study, established at its outset. It is a key component of the scientific method. Hypotheses connect theory to data and guide the research process towards expanding scientific understanding.

  20. Hypothesis Examples: Different Types in Science and Research

    To form a solid theory, the vital first step is creating a hypothesis. See the various types of hypotheses and how they can lead you on the path to discovery.

  21. Hypothesis

    5. Complex Hypothesis. A complex hypothesis involves more than two variables and predicts the relationships among them. For example, "Increased study time and use of study aids will result in higher test scores." Complex hypotheses are common in social science research, where multiple factors often interact to influence outcomes.

  22. The Impact of Complexity on Methods and Findings in Psychological

    Research studies that fail to support the test hypothesis are frequently dismissed because of the shortcomings in the methods. As we will discuss later, studies in the social and behavioral sciences are commonly saddled with imprecise measures, weak manipulations, and a general lack of rigor because of the complexity of the study phenomena.

  23. Researchers refute the validity of 'assembly theory of everything

    First publicly posited in 2017, assembly theory is a hypothesis concerning the measurability of molecular complexity that claims to characterize life, explain natural selection and evolution, and ...

  24. Research questions, hypotheses and objectives

    The concept of statistical hypothesis testing is complex, and the details are beyond the scope of this article. ... The research hypothesis should be stated at the beginning of the study to guide the objectives for research. Whereas the investigators may state the hypothesis as being 1-sided (there is an improvement with treatment), the study ...

  25. The evolution of tax strategies in multinational companies: a

    Increasing globalization and complexity of the tax environment demands in-depth research into tax coverage, tax risks and tax avoidance in multinational companies. This research explains the complex dynamics between these variables with a focus on multinational companies listed on the Indonesia Stock Exchange during 2009-2022. A sample of 714 observations was used to explore the relationship ...

  26. A well-formulated research question: The foundation stone of good

    There is a subtle difference between a hypothesis and a research question. The research question presents an idea to be studied, whereas the hypothesis aims to answer the research question. ... and nerve stimulation will decrease local anaesthetic need in blocks' has more predictor variables and is a complex hypothesis. ...