Encyclopedia Britannica

  • History & Society
  • Science & Tech
  • Biographies
  • Animals & Nature
  • Geography & Travel
  • Arts & Culture
  • Games & Quizzes
  • On This Day
  • One Good Fact
  • New Articles
  • Lifestyles & Social Issues
  • Philosophy & Religion
  • Politics, Law & Government
  • World History
  • Health & Medicine
  • Browse Biographies
  • Birds, Reptiles & Other Vertebrates
  • Bugs, Mollusks & Other Invertebrates
  • Environment
  • Fossils & Geologic Time
  • Entertainment & Pop Culture
  • Sports & Recreation
  • Visual Arts
  • Demystified
  • Image Galleries
  • Infographics
  • Top Questions
  • Britannica Kids
  • Saving Earth
  • Space Next 50
  • Student Center

flow chart of scientific method

scientific method

Our editors will review what you’ve submitted and determine whether to revise the article.

  • University of Nevada, Reno - College of Agriculture, Biotechnology and Natural Resources Extension - The Scientific Method
  • World History Encyclopedia - Scientific Method
  • LiveScience - What Is Science?
  • Verywell Mind - Scientific Method Steps in Psychology Research
  • WebMD - What is the Scientific Method?
  • Chemistry LibreTexts - The Scientific Method
  • National Center for Biotechnology Information - PubMed Central - Redefining the scientific method: as the use of sophisticated scientific methods that extend our mind
  • Khan Academy - The scientific method
  • Simply Psychology - What are the steps in the Scientific Method?
  • Stanford Encyclopedia of Philosophy - Scientific Method

flow chart of scientific method

scientific method , mathematical and experimental technique employed in the sciences . More specifically, it is the technique used in the construction and testing of a scientific hypothesis .

The process of observing, asking questions, and seeking answers through tests and experiments is not unique to any one field of science. In fact, the scientific method is applied broadly in science, across many different fields. Many empirical sciences, especially the social sciences , use mathematical tools borrowed from probability theory and statistics , together with outgrowths of these, such as decision theory , game theory , utility theory, and operations research . Philosophers of science have addressed general methodological problems, such as the nature of scientific explanation and the justification of induction .

scientific method experiment definition

The scientific method is critical to the development of scientific theories , which explain empirical (experiential) laws in a scientifically rational manner. In a typical application of the scientific method, a researcher develops a hypothesis , tests it through various means, and then modifies the hypothesis on the basis of the outcome of the tests and experiments. The modified hypothesis is then retested, further modified, and tested again, until it becomes consistent with observed phenomena and testing outcomes. In this way, hypotheses serve as tools by which scientists gather data. From that data and the many different scientific investigations undertaken to explore hypotheses, scientists are able to develop broad general explanations, or scientific theories.

See also Mill’s methods ; hypothetico-deductive method .

Scientific Method

Illustration by J.R. Bee. ThoughtCo. 

  • Cell Biology
  • Weather & Climate
  • B.A., Biology, Emory University
  • A.S., Nursing, Chattahoochee Technical College

The scientific method is a series of steps followed by scientific investigators to answer specific questions about the natural world. It involves making observations, formulating a hypothesis , and conducting scientific experiments . Scientific inquiry starts with an observation followed by the formulation of a question about what has been observed. The steps of the scientific method are as follows:

Observation

The first step of the scientific method involves making an observation about something that interests you. This is very important if you are doing a science project because you want your project to be focused on something that will hold your attention. Your observation can be on anything from plant movement to animal behavior, as long as it is something you really want to know more about.​ This is where you come up with the idea for your science project.

Once you've made your observation, you must formulate a question about what you have observed. Your question should tell what it is that you are trying to discover or accomplish in your experiment. When stating your question you should be as specific as possible.​ For example, if you are doing a project on plants , you may want to know how plants interact with microbes. Your question may be: Do plant spices inhibit bacterial growth ?

The hypothesis is a key component of the scientific process. A hypothesis is an idea that is suggested as an explanation for a natural event, a particular experience, or a specific condition that can be tested through definable experimentation. It states the purpose of your experiment, the variables used, and the predicted outcome of your experiment. It is important to note that a hypothesis must be testable. That means that you should be able to test your hypothesis through experimentation .​ Your hypothesis must either be supported or falsified by your experiment. An example of a good hypothesis is: If there is a relation between listening to music and heart rate, then listening to music will cause a person's resting heart rate to either increase or decrease.

Once you've developed a hypothesis, you must design and conduct an experiment that will test it. You should develop a procedure that states very clearly how you plan to conduct your experiment. It is important that you include and identify a controlled variable or dependent variable in your procedure. Controls allow us to test a single variable in an experiment because they are unchanged. We can then make observations and comparisons between our controls and our independent variables (things that change in the experiment) to develop an accurate conclusion.​

The results are where you report what happened in the experiment. That includes detailing all observations and data made during your experiment. Most people find it easier to visualize the data by charting or graphing the information.​

The final step of the scientific method is developing a conclusion. This is where all of the results from the experiment are analyzed and a determination is reached about the hypothesis. Did the experiment support or reject your hypothesis? If your hypothesis was supported, great. If not, repeat the experiment or think of ways to improve your procedure.

  • Biology Prefixes and Suffixes: chrom- or chromo-
  • Biology Prefixes and Suffixes: proto-
  • 6 Things You Should Know About Biological Evolution
  • Biology Prefixes and Suffixes: Aer- or Aero-
  • Taxonomy and Organism Classification
  • Homeostasis
  • Biology Prefixes and Suffixes: diplo-
  • The Biology Suffix -lysis
  • Biology Prefixes and Suffixes Index
  • Biology Prefixes and Suffixes: tel- or telo-
  • Parasitism: Definition and Examples
  • Biology Prefixes and Suffixes: Erythr- or Erythro-
  • Biology Prefixes and Suffixes: ana-
  • Biology Prefixes and Suffixes: phago- or phag-
  • Biology Prefixes and Suffixes: -phyll or -phyl
  • Biology Prefixes and Suffixes: haplo-

What is the Scientific Method: How does it work and why is it important?

The scientific method is a systematic process involving steps like defining questions, forming hypotheses, conducting experiments, and analyzing data. It minimizes biases and enables replicable research, leading to groundbreaking discoveries like Einstein's theory of relativity, penicillin, and the structure of DNA. This ongoing approach promotes reason, evidence, and the pursuit of truth in science.

Updated on November 18, 2023

What is the Scientific Method: How does it work and why is it important?

Beginning in elementary school, we are exposed to the scientific method and taught how to put it into practice. As a tool for learning, it prepares children to think logically and use reasoning when seeking answers to questions.

Rather than jumping to conclusions, the scientific method gives us a recipe for exploring the world through observation and trial and error. We use it regularly, sometimes knowingly in academics or research, and sometimes subconsciously in our daily lives.

In this article we will refresh our memories on the particulars of the scientific method, discussing where it comes from, which elements comprise it, and how it is put into practice. Then, we will consider the importance of the scientific method, who uses it and under what circumstances.

What is the scientific method?

The scientific method is a dynamic process that involves objectively investigating questions through observation and experimentation . Applicable to all scientific disciplines, this systematic approach to answering questions is more accurately described as a flexible set of principles than as a fixed series of steps.

The following representations of the scientific method illustrate how it can be both condensed into broad categories and also expanded to reveal more and more details of the process. These graphics capture the adaptability that makes this concept universally valuable as it is relevant and accessible not only across age groups and educational levels but also within various contexts.

a graph of the scientific method

Steps in the scientific method

While the scientific method is versatile in form and function, it encompasses a collection of principles that create a logical progression to the process of problem solving:

  • Define a question : Constructing a clear and precise problem statement that identifies the main question or goal of the investigation is the first step. The wording must lend itself to experimentation by posing a question that is both testable and measurable.
  • Gather information and resources : Researching the topic in question to find out what is already known and what types of related questions others are asking is the next step in this process. This background information is vital to gaining a full understanding of the subject and in determining the best design for experiments. 
  • Form a hypothesis : Composing a concise statement that identifies specific variables and potential results, which can then be tested, is a crucial step that must be completed before any experimentation. An imperfection in the composition of a hypothesis can result in weaknesses to the entire design of an experiment.
  • Perform the experiments : Testing the hypothesis by performing replicable experiments and collecting resultant data is another fundamental step of the scientific method. By controlling some elements of an experiment while purposely manipulating others, cause and effect relationships are established.
  • Analyze the data : Interpreting the experimental process and results by recognizing trends in the data is a necessary step for comprehending its meaning and supporting the conclusions. Drawing inferences through this systematic process lends substantive evidence for either supporting or rejecting the hypothesis.
  • Report the results : Sharing the outcomes of an experiment, through an essay, presentation, graphic, or journal article, is often regarded as a final step in this process. Detailing the project's design, methods, and results not only promotes transparency and replicability but also adds to the body of knowledge for future research.
  • Retest the hypothesis : Repeating experiments to see if a hypothesis holds up in all cases is a step that is manifested through varying scenarios. Sometimes a researcher immediately checks their own work or replicates it at a future time, or another researcher will repeat the experiments to further test the hypothesis.

a chart of the scientific method

Where did the scientific method come from?

Oftentimes, ancient peoples attempted to answer questions about the unknown by:

  • Making simple observations
  • Discussing the possibilities with others deemed worthy of a debate
  • Drawing conclusions based on dominant opinions and preexisting beliefs

For example, take Greek and Roman mythology. Myths were used to explain everything from the seasons and stars to the sun and death itself.

However, as societies began to grow through advancements in agriculture and language, ancient civilizations like Egypt and Babylonia shifted to a more rational analysis for understanding the natural world. They increasingly employed empirical methods of observation and experimentation that would one day evolve into the scientific method . 

In the 4th century, Aristotle, considered the Father of Science by many, suggested these elements , which closely resemble the contemporary scientific method, as part of his approach for conducting science:

  • Study what others have written about the subject.
  • Look for the general consensus about the subject.
  • Perform a systematic study of everything even partially related to the topic.

a pyramid of the scientific method

By continuing to emphasize systematic observation and controlled experiments, scholars such as Al-Kindi and Ibn al-Haytham helped expand this concept throughout the Islamic Golden Age . 

In his 1620 treatise, Novum Organum , Sir Francis Bacon codified the scientific method, arguing not only that hypotheses must be tested through experiments but also that the results must be replicated to establish a truth. Coming at the height of the Scientific Revolution, this text made the scientific method accessible to European thinkers like Galileo and Isaac Newton who then put the method into practice.

As science modernized in the 19th century, the scientific method became more formalized, leading to significant breakthroughs in fields such as evolution and germ theory. Today, it continues to evolve, underpinning scientific progress in diverse areas like quantum mechanics, genetics, and artificial intelligence.

Why is the scientific method important?

The history of the scientific method illustrates how the concept developed out of a need to find objective answers to scientific questions by overcoming biases based on fear, religion, power, and cultural norms. This still holds true today.

By implementing this standardized approach to conducting experiments, the impacts of researchers’ personal opinions and preconceived notions are minimized. The organized manner of the scientific method prevents these and other mistakes while promoting the replicability and transparency necessary for solid scientific research.

The importance of the scientific method is best observed through its successes, for example: 

  • “ Albert Einstein stands out among modern physicists as the scientist who not only formulated a theory of revolutionary significance but also had the genius to reflect in a conscious and technical way on the scientific method he was using.” Devising a hypothesis based on the prevailing understanding of Newtonian physics eventually led Einstein to devise the theory of general relativity .
  • Howard Florey “Perhaps the most useful lesson which has come out of the work on penicillin has been the demonstration that success in this field depends on the development and coordinated use of technical methods.” After discovering a mold that prevented the growth of Staphylococcus bacteria, Dr. Alexander Flemimg designed experiments to identify and reproduce it in the lab, thus leading to the development of penicillin .
  • James D. Watson “Every time you understand something, religion becomes less likely. Only with the discovery of the double helix and the ensuing genetic revolution have we had grounds for thinking that the powers held traditionally to be the exclusive property of the gods might one day be ours. . . .” By using wire models to conceive a structure for DNA, Watson and Crick crafted a hypothesis for testing combinations of amino acids, X-ray diffraction images, and the current research in atomic physics, resulting in the discovery of DNA’s double helix structure .

Scientific Method

BD Editors

Reviewed by: BD Editors

The scientific method is a series of processes that people can use to gather knowledge about the world around them, improve that knowledge, and attempt to explain why and/or how things occur. This method involves making observations, forming questions, making hypotheses, doing an experiment, analyzing the data, and forming a conclusion. Every scientific experiment performed is an example of the scientific method in action, but it is also used by non-scientists in everyday situations.

Scientific Method Overview

The scientific method is a process of trying to get as close as possible to the  objective truth . However, part of the process is to constantly refine your conclusions, ask new questions, and continue the search for the rules of the universe. Through the scientific method, scientists are trying to uncover how the world works and discover the laws that make it function in that way. You can use the scientific method to find answers for almost any question, though the scientific method can yield conflicting evidence based on the method of experimentation. In other words, the scientific method is a very useful way to figure things out – though it must be used with caution and care!

The scientific method includes making a hypothesis, identifying variables, conducting an experiment, collecting data, and drawing conclusions.

Scientific Method Steps

The exact steps of the scientific method vary from source to source , but the general procedure is the same: acquiring knowledge through observation and testing.

Making an Observation

The first step of the scientific method is to make an observation about the world around you. Before hypotheses can be made or experiments can be done, one must first notice and think about some sort of phenomena occurring. The scientific method is used when one does not know why or how something is occurring and wants to uncover the answer. But, before you can form a question you must notice something puzzling in the first place.

Asking a Question

Next, one must ask a question based on their observations. Here are some examples of good questions:

  • Why is this thing occurring?
  • How is this thing occurring?
  • Why or how does it happen this way?

Sometimes this step is listed first in the scientific method, with making an observation (and researching the phenomena in question) listed as second. In reality, both making observations and asking questions tend to happen around the same time.

One can see a confusing occurrence and immediately think, “why is it occurring?” When observations are being made and questions are being formed, it is important to do research to see if others have already answered the question or uncovered information that may help you shape your question. For example, if you find an answer to why something is occurring, you may want to go a step further and figure out how it occurs.

Forming a Hypothesis

A hypothesis is an educated guess to explain the phenomena occurring based on prior observations. It answers the question posed in the previous step. Hypotheses can be specific or more general depending on the question being asked, but all hypotheses must be testable by gathering evidence that can be measured. If a hypothesis is not testable, then it is impossible to perform an experiment to determine whether the hypothesis is supported by evidence.

Performing an Experiment

After forming a hypothesis, an experiment must be set up and performed to test the hypothesis. An experiment must have an independent variable (something that is manipulated by the person doing the experiment), and a dependent variable (the thing being measured which may be affected by the independent variable). All other variables must be controlled so that they do not affect the outcome. During an experiment, data is collected. Data is a set of values; it may be quantitative (e.g. measured in numbers) or qualitative (a description or generalization of the results).

Two scientists conducting an experiment on farmland soils gather samples to analyze.

For example, if you were to test the effect of sunlight on plant growth, the amount of light would be the independent variable (the thing you manipulate) and the height of the plants would be the dependent variable (the thing affected by the independent variable). Other factors such as air temperature, amount of water in the soil, and species of plant would have to be kept the same between all of the plants used in the experiment so that you could truly collect data on whether sunlight affects plant growth. The data that you would collect would be quantitative – since you would measure the height of the plant in numbers.

Analyzing Data

After performing an experiment and collecting data, one must analyze the data. Research experiments are usually analyzed with statistical software in order to determine relationships among the data. In the case of a simpler experiment, one could simply look at the data and see how they correlate with the change in the independent variable.

Forming a Conclusion

The last step of the scientific method is to form a conclusion. If the data support the hypothesis, then the hypothesis may be the explanation for the phenomena. However, multiple trials must be done to confirm the results, and it is also important to make sure that the sample size—the number of observations made—is big enough so that the data is not skewed by just a few observations.

If the data do not support the hypothesis, then more observations must be made, a new hypothesis is formed, and the scientific method is used all over again. When a conclusion is drawn, the research can be presented to others to inform them of the findings and receive input about the validity of the conclusion drawn from the research.

The scientific method is seen as a circular diagram that feeds back into itself - due to the nature of conclusions inspire new hypotheses.

Scientific Method Examples

There are very many examples of the use of the scientific method throughout history because it is the basis for all scientific experiments. Scientists have been conducting experiments using the scientific method for hundreds of years.

One such example is Francesco Redi’s experiment on spontaneous generation. In the 17 th Century, when Redi lived, people commonly believed that living things could spontaneously arise from organic material. For example, people believed that maggots were created from meat that was left out to sit. Redi had an alternate hypothesis: that maggots were actually part of the fly life cycle!

In the Redi experiment, Francesco Redi found that food only grew maggots when flies could access the food - proving that maggots were part of the fly life cycle.

He conducted an experiment by leaving four jars of meat out: some uncovered, some covered with muslin, and some sealed completely. Flies got into the uncovered jars and maggots appeared a short time later. The jars that were covered had maggots on the outer surface of the muslin, but not inside the jars. Sealed jars had absolutely no maggots whatsoever.

Redi was able to conclude that maggots did not spontaneously arise in meat. He further confirmed the results by collecting captured maggots and growing them into adult flies. This may seem like common sense today, but back then, people did not know as much about the world, and it is through experiments like these that people uncovered what is now common knowledge.

Scientists use the scientific method in their research, but it is also used by people who aren’t scientists in everyday life. Even if you were not consciously aware of it, you have used the scientific method many times when solving problems around you.

Conclusions typically lead to new hypotheses because new information always creates new questions.

For example, say you are at home and a lightbulb goes out. Noticing that the lightbulb is out is an observation. You would then naturally question, “Why is the lightbulb out?” and come up with possible guesses, or hypotheses. For example, you may hypothesize that the bulb has burned out. Then you would perform a very small experiment in order to test your hypothesis; namely, you would replace the bulb and analyze the data (“Did the light come back on?”).

If the light turned back on, you would conclude that the lightbulb had, in fact, burned out. But if the light still did not work, you would come up with other hypotheses (“The socket doesn’t work”, “Part of the lamp is broken,” “The fuse went out”, etc.) and test those.

1. Which step of the scientific method comes immediately after making observations and asking a question?

2. A scientist is performing an experiment to determine if the amount of light that rodents are exposed to affects their sleep cycle. She places some rodents in a room with 12 hours of light and 12 hours of darkness, some in a room with 24-hour light, and some in 24-hour darkness. What is the independent variable in this experiment?

3. What is the last step of the scientific method?

Enter your email to receive results:

Cite This Article

Subscribe to our newsletter, privacy policy, terms of service, scholarship, latest posts, white blood cell, t cell immunity, satellite cells, embryonic stem cells, popular topics, homeostasis, horticulture, natural selection, endocrine system, acetic acid.

Science and the scientific method: Definitions and examples

Here's a look at the foundation of doing science — the scientific method.

Kids follow the scientific method to carry out an experiment.

The scientific method

Hypothesis, theory and law, a brief history of science, additional resources, bibliography.

Science is a systematic and logical approach to discovering how things in the universe work. It is also the body of knowledge accumulated through the discoveries about all the things in the universe. 

The word "science" is derived from the Latin word "scientia," which means knowledge based on demonstrable and reproducible data, according to the Merriam-Webster dictionary . True to this definition, science aims for measurable results through testing and analysis, a process known as the scientific method. Science is based on fact, not opinion or preferences. The process of science is designed to challenge ideas through research. One important aspect of the scientific process is that it focuses only on the natural world, according to the University of California, Berkeley . Anything that is considered supernatural, or beyond physical reality, does not fit into the definition of science.

When conducting research, scientists use the scientific method to collect measurable, empirical evidence in an experiment related to a hypothesis (often in the form of an if/then statement) that is designed to support or contradict a scientific theory .

"As a field biologist, my favorite part of the scientific method is being in the field collecting the data," Jaime Tanner, a professor of biology at Marlboro College, told Live Science. "But what really makes that fun is knowing that you are trying to answer an interesting question. So the first step in identifying questions and generating possible answers (hypotheses) is also very important and is a creative process. Then once you collect the data you analyze it to see if your hypothesis is supported or not."

Here's an illustration showing the steps in the scientific method.

The steps of the scientific method go something like this, according to Highline College :

  • Make an observation or observations.
  • Form a hypothesis — a tentative description of what's been observed, and make predictions based on that hypothesis.
  • Test the hypothesis and predictions in an experiment that can be reproduced.
  • Analyze the data and draw conclusions; accept or reject the hypothesis or modify the hypothesis if necessary.
  • Reproduce the experiment until there are no discrepancies between observations and theory. "Replication of methods and results is my favorite step in the scientific method," Moshe Pritsker, a former post-doctoral researcher at Harvard Medical School and CEO of JoVE, told Live Science. "The reproducibility of published experiments is the foundation of science. No reproducibility — no science."

Some key underpinnings to the scientific method:

  • The hypothesis must be testable and falsifiable, according to North Carolina State University . Falsifiable means that there must be a possible negative answer to the hypothesis.
  • Research must involve deductive reasoning and inductive reasoning . Deductive reasoning is the process of using true premises to reach a logical true conclusion while inductive reasoning uses observations to infer an explanation for those observations.
  • An experiment should include a dependent variable (which does not change) and an independent variable (which does change), according to the University of California, Santa Barbara .
  • An experiment should include an experimental group and a control group. The control group is what the experimental group is compared against, according to Britannica .

The process of generating and testing a hypothesis forms the backbone of the scientific method. When an idea has been confirmed over many experiments, it can be called a scientific theory. While a theory provides an explanation for a phenomenon, a scientific law provides a description of a phenomenon, according to The University of Waikato . One example would be the law of conservation of energy, which is the first law of thermodynamics that says that energy can neither be created nor destroyed. 

A law describes an observed phenomenon, but it doesn't explain why the phenomenon exists or what causes it. "In science, laws are a starting place," said Peter Coppinger, an associate professor of biology and biomedical engineering at the Rose-Hulman Institute of Technology. "From there, scientists can then ask the questions, 'Why and how?'"

Laws are generally considered to be without exception, though some laws have been modified over time after further testing found discrepancies. For instance, Newton's laws of motion describe everything we've observed in the macroscopic world, but they break down at the subatomic level.

This does not mean theories are not meaningful. For a hypothesis to become a theory, scientists must conduct rigorous testing, typically across multiple disciplines by separate groups of scientists. Saying something is "just a theory" confuses the scientific definition of "theory" with the layperson's definition. To most people a theory is a hunch. In science, a theory is the framework for observations and facts, Tanner told Live Science.

This Copernican heliocentric solar system, from 1708, shows the orbit of the moon around the Earth, and the orbits of the Earth and planets round the sun, including Jupiter and its moons, all surrounded by the 12 signs of the zodiac.

The earliest evidence of science can be found as far back as records exist. Early tablets contain numerals and information about the solar system , which were derived by using careful observation, prediction and testing of those predictions. Science became decidedly more "scientific" over time, however.

1200s: Robert Grosseteste developed the framework for the proper methods of modern scientific experimentation, according to the Stanford Encyclopedia of Philosophy. His works included the principle that an inquiry must be based on measurable evidence that is confirmed through testing.

1400s: Leonardo da Vinci began his notebooks in pursuit of evidence that the human body is microcosmic. The artist, scientist and mathematician also gathered information about optics and hydrodynamics.

1500s: Nicolaus Copernicus advanced the understanding of the solar system with his discovery of heliocentrism. This is a model in which Earth and the other planets revolve around the sun, which is the center of the solar system.

1600s: Johannes Kepler built upon those observations with his laws of planetary motion. Galileo Galilei improved on a new invention, the telescope, and used it to study the sun and planets. The 1600s also saw advancements in the study of physics as Isaac Newton developed his laws of motion.

1700s: Benjamin Franklin discovered that lightning is electrical. He also contributed to the study of oceanography and meteorology. The understanding of chemistry also evolved during this century as Antoine Lavoisier, dubbed the father of modern chemistry , developed the law of conservation of mass.

1800s: Milestones included Alessandro Volta's discoveries regarding electrochemical series, which led to the invention of the battery. John Dalton also introduced atomic theory, which stated that all matter is composed of atoms that combine to form molecules. The basis of modern study of genetics advanced as Gregor Mendel unveiled his laws of inheritance. Later in the century, Wilhelm Conrad Röntgen discovered X-rays , while George Ohm's law provided the basis for understanding how to harness electrical charges.

1900s: The discoveries of Albert Einstein , who is best known for his theory of relativity, dominated the beginning of the 20th century. Einstein's theory of relativity is actually two separate theories. His special theory of relativity, which he outlined in a 1905 paper, " The Electrodynamics of Moving Bodies ," concluded that time must change according to the speed of a moving object relative to the frame of reference of an observer. His second theory of general relativity, which he published as " The Foundation of the General Theory of Relativity ," advanced the idea that matter causes space to curve.

In 1952, Jonas Salk developed the polio vaccine , which reduced the incidence of polio in the United States by nearly 90%, according to Britannica . The following year, James D. Watson and Francis Crick discovered the structure of DNA , which is a double helix formed by base pairs attached to a sugar-phosphate backbone, according to the National Human Genome Research Institute .

2000s: The 21st century saw the first draft of the human genome completed, leading to a greater understanding of DNA. This advanced the study of genetics, its role in human biology and its use as a predictor of diseases and other disorders, according to the National Human Genome Research Institute .

  • This video from City University of New York delves into the basics of what defines science.
  • Learn about what makes science science in this book excerpt from Washington State University .
  • This resource from the University of Michigan — Flint explains how to design your own scientific study.

Merriam-Webster Dictionary, Scientia. 2022. https://www.merriam-webster.com/dictionary/scientia

University of California, Berkeley, "Understanding Science: An Overview." 2022. ​​ https://undsci.berkeley.edu/article/0_0_0/intro_01  

Highline College, "Scientific method." July 12, 2015. https://people.highline.edu/iglozman/classes/astronotes/scimeth.htm  

North Carolina State University, "Science Scripts." https://projects.ncsu.edu/project/bio183de/Black/science/science_scripts.html  

University of California, Santa Barbara. "What is an Independent variable?" October 31,2017. http://scienceline.ucsb.edu/getkey.php?key=6045  

Encyclopedia Britannica, "Control group." May 14, 2020. https://www.britannica.com/science/control-group  

The University of Waikato, "Scientific Hypothesis, Theories and Laws." https://sci.waikato.ac.nz/evolution/Theories.shtml  

Stanford Encyclopedia of Philosophy, Robert Grosseteste. May 3, 2019. https://plato.stanford.edu/entries/grosseteste/  

Encyclopedia Britannica, "Jonas Salk." October 21, 2021. https://www.britannica.com/ biography /Jonas-Salk

National Human Genome Research Institute, "​Phosphate Backbone." https://www.genome.gov/genetics-glossary/Phosphate-Backbone  

National Human Genome Research Institute, "What is the Human Genome Project?" https://www.genome.gov/human-genome-project/What  

‌ Live Science contributor Ashley Hamer updated this article on Jan. 16, 2022.

Sign up for the Live Science daily newsletter now

Get the world’s most fascinating discoveries delivered straight to your inbox.

 alt=

3 remarkable trees: A living fossil, a deadly canopy, and the world's biggest seeds that were once mounted in gold by royals

Giant wildfires can create their own weather. Here's how.

Pacific geoduck: The large, phallic clam that can live longer than 165 years

Most Popular

  • 2 No, NASA hasn't warned of an impending asteroid strike in 2038. Here's what really happened.
  • 3 Milky Way's black hole 'exhaust vent' discovered in eerie X-ray observations
  • 4 NASA offers SpaceX $843 million to destroy the International Space Station
  • 5 Which continent has the most animal species?
  • 2 2,000 years ago, a bridge in Switzerland collapsed on top of Celtic sacrifice victims, new study suggests
  • 3 Self-healing 'living skin' can make robots more humanlike — and it looks just as creepy as you'd expect
  • 4 Tasselled wobbegong: The master of disguise that can eat a shark almost as big as itself
  • 5 This robot could leap higher than the Statue of Liberty — if we ever build it properly

scientific method experiment definition

  • More from M-W
  • To save this word, you'll need to log in. Log In

scientific method

Definition of scientific method

Examples of scientific method in a sentence.

These examples are programmatically compiled from various online sources to illustrate current usage of the word 'scientific method.' Any opinions expressed in the examples do not represent those of Merriam-Webster or its editors. Send us feedback about these examples.

Word History

1672, in the meaning defined above

Articles Related to scientific method

hypothesis

This is the Difference Between a...

This is the Difference Between a Hypothesis and a Theory

In scientific reasoning, they're two completely different things

Dictionary Entries Near scientific method

scientific management

scientific name

Cite this Entry

“Scientific method.” Merriam-Webster.com Dictionary , Merriam-Webster, https://www.merriam-webster.com/dictionary/scientific%20method. Accessed 4 Aug. 2024.

Kids Definition

Kids definition of scientific method, medical definition, medical definition of scientific method, more from merriam-webster on scientific method.

Britannica.com: Encyclopedia article about scientific method

Subscribe to America's largest dictionary and get thousands more definitions and advanced search—ad free!

Play Quordle: Guess all four words in a limited number of tries.  Each of your guesses must be a real 5-letter word.

Can you solve 4 words at once?

Word of the day.

See Definitions and Examples »

Get Word of the Day daily email!

Popular in Grammar & Usage

Plural and possessive names: a guide, your vs. you're: how to use them correctly, every letter is silent, sometimes: a-z list of examples, more commonly mispronounced words, how to use em dashes (—), en dashes (–) , and hyphens (-), popular in wordplay, 8 words for lesser-known musical instruments, it's a scorcher words for the summer heat, 7 shakespearean insults to make life more interesting, birds say the darndest things, 10 words from taylor swift songs (merriam's version), games & quizzes.

Play Blossom: Solve today's spelling word game by finding as many words as you can using just 7 letters. Longer words score more points.

Back Home

  • Science Notes Posts
  • Contact Science Notes
  • Todd Helmenstine Biography
  • Anne Helmenstine Biography
  • Free Printable Periodic Tables (PDF and PNG)
  • Periodic Table Wallpapers
  • Interactive Periodic Table
  • Periodic Table Posters
  • Science Experiments for Kids
  • How to Grow Crystals
  • Chemistry Projects
  • Fire and Flames Projects
  • Holiday Science
  • Chemistry Problems With Answers
  • Physics Problems
  • Unit Conversion Example Problems
  • Chemistry Worksheets
  • Biology Worksheets
  • Periodic Table Worksheets
  • Physical Science Worksheets
  • Science Lab Worksheets
  • My Amazon Books

Experiment Definition in Science – What Is a Science Experiment?

Experiment Definition in Science

In science, an experiment is simply a test of a hypothesis in the scientific method . It is a controlled examination of cause and effect. Here is a look at what a science experiment is (and is not), the key factors in an experiment, examples, and types of experiments.

Experiment Definition in Science

By definition, an experiment is a procedure that tests a hypothesis. A hypothesis, in turn, is a prediction of cause and effect or the predicted outcome of changing one factor of a situation. Both the hypothesis and experiment are components of the scientific method. The steps of the scientific method are:

  • Make observations.
  • Ask a question or identify a problem.
  • State a hypothesis.
  • Perform an experiment that tests the hypothesis.
  • Based on the results of the experiment, either accept or reject the hypothesis.
  • Draw conclusions and report the outcome of the experiment.

Key Parts of an Experiment

The two key parts of an experiment are the independent and dependent variables. The independent variable is the one factor that you control or change in an experiment. The dependent variable is the factor that you measure that responds to the independent variable. An experiment often includes other types of variables , but at its heart, it’s all about the relationship between the independent and dependent variable.

Examples of Experiments

Fertilizer and plant size.

For example, you think a certain fertilizer helps plants grow better. You’ve watched your plants grow and they seem to do better when they have the fertilizer compared to when they don’t. But, observations are only the beginning of science. So, you state a hypothesis: Adding fertilizer increases plant size. Note, you could have stated the hypothesis in different ways. Maybe you think the fertilizer increases plant mass or fruit production, for example. However you state the hypothesis, it includes both the independent and dependent variables. In this case, the independent variable is the presence or absence of fertilizer. The dependent variable is the response to the independent variable, which is the size of the plants.

Now that you have a hypothesis, the next step is designing an experiment that tests it. Experimental design is very important because the way you conduct an experiment influences its outcome. For example, if you use too small of an amount of fertilizer you may see no effect from the treatment. Or, if you dump an entire container of fertilizer on a plant you could kill it! So, recording the steps of the experiment help you judge the outcome of the experiment and aid others who come after you and examine your work. Other factors that might influence your results might include the species of plant and duration of the treatment. Record any conditions that might affect the outcome. Ideally, you want the only difference between your two groups of plants to be whether or not they receive fertilizer. Then, measure the height of the plants and see if there is a difference between the two groups.

Salt and Cookies

You don’t need a lab for an experiment. For example, consider a baking experiment. Let’s say you like the flavor of salt in your cookies, but you’re pretty sure the batch you made using extra salt fell a bit flat. If you double the amount of salt in a recipe, will it affect their size? Here, the independent variable is the amount of salt in the recipe and the dependent variable is cookie size.

Test this hypothesis with an experiment. Bake cookies using the normal recipe (your control group ) and bake some using twice the salt (the experimental group). Make sure it’s the exact same recipe. Bake the cookies at the same temperature and for the same time. Only change the amount of salt in the recipe. Then measure the height or diameter of the cookies and decide whether to accept or reject the hypothesis.

Examples of Things That Are Not Experiments

Based on the examples of experiments, you should see what is not an experiment:

  • Making observations does not constitute an experiment. Initial observations often lead to an experiment, but are not a substitute for one.
  • Making a model is not an experiment.
  • Neither is making a poster.
  • Just trying something to see what happens is not an experiment. You need a hypothesis or prediction about the outcome.
  • Changing a lot of things at once isn’t an experiment. You only have one independent and one dependent variable. However, in an experiment, you might suspect the independent variable has an effect on a separate. So, you design a new experiment to test this.

Types of Experiments

There are three main types of experiments: controlled experiments, natural experiments, and field experiments,

  • Controlled experiment : A controlled experiment compares two groups of samples that differ only in independent variable. For example, a drug trial compares the effect of a group taking a placebo (control group) against those getting the drug (the treatment group). Experiments in a lab or home generally are controlled experiments
  • Natural experiment : Another name for a natural experiment is a quasi-experiment. In this type of experiment, the researcher does not directly control the independent variable, plus there may be other variables at play. Here, the goal is establishing a correlation between the independent and dependent variable. For example, in the formation of new elements a scientist hypothesizes that a certain collision between particles creates a new atom. But, other outcomes may be possible. Or, perhaps only decay products are observed that indicate the element, and not the new atom itself. Many fields of science rely on natural experiments, since controlled experiments aren’t always possible.
  • Field experiment : While a controlled experiments takes place in a lab or other controlled setting, a field experiment occurs in a natural setting. Some phenomena cannot be readily studied in a lab or else the setting exerts an influence that affects the results. So, a field experiment may have higher validity. However, since the setting is not controlled, it is also subject to external factors and potential contamination. For example, if you study whether a certain plumage color affects bird mate selection, a field experiment in a natural environment eliminates the stressors of an artificial environment. Yet, other factors that could be controlled in a lab may influence results. For example, nutrition and health are controlled in a lab, but not in the field.
  • Bailey, R.A. (2008). Design of Comparative Experiments . Cambridge: Cambridge University Press. ISBN 9780521683579.
  • di Francia, G. Toraldo (1981). The Investigation of the Physical World . Cambridge University Press. ISBN 0-521-29925-X.
  • Hinkelmann, Klaus; Kempthorne, Oscar (2008). Design and Analysis of Experiments. Volume I: Introduction to Experimental Design (2nd ed.). Wiley. ISBN 978-0-471-72756-9.
  • Holland, Paul W. (December 1986). “Statistics and Causal Inference”.  Journal of the American Statistical Association . 81 (396): 945–960. doi: 10.2307/2289064
  • Stohr-Hunt, Patricia (1996). “An Analysis of Frequency of Hands-on Experience and Science Achievement”. Journal of Research in Science Teaching . 33 (1): 101–109. doi: 10.1002/(SICI)1098-2736(199601)33:1<101::AID-TEA6>3.0.CO;2-Z

Related Posts

  • A to Z Guides

What Is the Scientific Method?

scientific method experiment definition

The scientific method is a systematic way of conducting experiments or studies so that you can explore the things you observe in the world and answer questions about them. The scientific method, also known as the hypothetico-deductive method, is a series of steps that can help you accurately describe the things you observe or improve your understanding of them.

Ultimately, your goal when you use the scientific method is to:

  • Find a cause-and-effect relationship by asking a question about something you observed
  • Collect as much evidence as you can about what you observed, as this can help you explore the connection between your evidence and what you observed
  • Determine if all your evidence can be combined to answer your question in a way that makes sense

Francis Bacon and René Descartes are usually credited with formalizing the process in the 16th and 17th centuries. The two philosophers argued that research shouldn’t be guided by preset metaphysical ideas of how reality works. They supported the use of inductive reasoning to come up with hypotheses and understand new things about reality.

Scientific Method Steps

The scientific method is a step-by-step problem-solving process. These steps include:

Observe the world around you. This will help you come up with a topic you are interested in and want to learn more about. In many cases, you already have a topic in mind because you have a related question for which you couldn't find an immediate answer.

Either way, you'll start the process by finding out what people before you already know about the topic, as well as any questions that people are still asking about. You may need to look up and read books and articles from academic journals or talk to other people so that you understand as much as you possibly can about your topic. This will help you with your next step.

Ask questions. Asking questions about what you observed and learned from reading and talking to others can help you figure out what the "problem" is. Scientists try to ask questions that are both interesting and specific and can be answered with the help of a fairly easy experiment or series of experiments. Your question should have one part (called a variable) that you can change in your experiment and another variable that you can measure. Your goal is to design an experiment that is a "fair test," which is when all the conditions in the experiment are kept the same except for the one you change (called the experimental or independent variable).

Form a hypothesis and make predictions based on it.  A hypothesis is an educated guess about the relationship between two or more variables in your question. A good hypothesis lets you predict what will happen when you test it in an experiment. Another important feature of a good hypothesis is that, if the hypothesis is wrong, you should be able to show that it's wrong. This is called falsifiability. If your experiment shows that your prediction is true, then your hypothesis is supported by your data.

Test your prediction by doing an experiment or making more observations.  The way you test your prediction depends on what you are studying. The best support comes from an experiment, but in some cases, it's too hard or impossible to change the variables in an experiment. Sometimes, you may need to do descriptive research where you gather more observations instead of doing an experiment. You will carefully gather notes and measurements during your experiments or studies, and you can share them with other people interested in the same question as you. Ideally, you will also repeat your experiment a couple more times because it's possible to get a result by chance, but it's less possible to get the same result more than once by chance.

Draw a conclusion. You will analyze what you already know about your topic from your literature research and the data gathered during your experiment. This will help you decide if the conclusion you draw from your data supports or contradicts your hypothesis. If your results contradict your hypothesis, you can use this observation to form a new hypothesis and make a new prediction. This is why scientific research is ongoing and scientific knowledge is changing all the time. It's very common for scientists to get results that don't support their hypotheses. In fact, you sometimes learn more about the world when your experiments don't support your hypotheses because it leads you to ask more questions. And this time around, you already know that one possible explanation is likely wrong.

Use your results to guide your next steps (iterate). For instance, if your hypothesis is supported, you may do more experiments to confirm it. Or you could come up with a hypothesis about why it works this way and design an experiment to test that. If your hypothesis is not supported, you can come up with another hypothesis and do experiments to test it. You'll rarely get the right hypothesis in one go. Most of the time, you'll have to go back to the hypothesis stage and try again. Every attempt offers you important information that helps you improve your next round of questions, hypotheses, and predictions.

Share your results. Scientific research isn't something you can do on your own; you must work with other people to do it.   You may be able to do an experiment or a series of experiments on your own, but you can't come up with all the ideas or do all the experiments by yourself .

Scientists and researchers usually share information by publishing it in a scientific journal or by presenting it to their colleagues during meetings and scientific conferences. These journals are read and the conferences are attended by other researchers who are interested in the same questions. If there's anything wrong with your hypothesis, prediction, experiment design, or conclusion, other researchers will likely find it and point it out to you.

It can be scary, but it's a critical part of doing scientific research. You must let your research be examined by other researchers who are as interested and knowledgeable about your question as you. This process helps other researchers by pointing out hypotheses that have been proved wrong and why they are wrong. It helps you by identifying flaws in your thinking or experiment design. And if you don't share what you've learned and let other people ask questions about it, it's not helpful to your or anyone else's understanding of what happens in the world.

Scientific Method Example

Here's an everyday example of how you can apply the scientific method to understand more about your world so you can solve your problems in a helpful way.

Let's say you put slices of bread in your toaster and press the button, but nothing happens. Your toaster isn't working, but you can't afford to buy a new one right now. You might be able to rescue it from the trash can if you can figure out what's wrong with it. So, let's figure out what's wrong with your toaster.

Observation. Your toaster isn't working to toast your bread.

Ask a question. In this case, you're asking, "Why isn't my toaster working?" You could even do a bit of preliminary research by looking in the owner's manual for your toaster. The manufacturer has likely tested your toaster model under many conditions, and they may have some ideas for where to start with your hypothesis.

Form a hypothesis and make predictions based on it. Your hypothesis should be a potential explanation or answer to the question that you can test to see if it's correct. One possible explanation that we could test is that the power outlet is broken. Our prediction is that if the outlet is broken, then plugging it into a different outlet should make the toaster work again.

Test your prediction by doing an experiment or making more observations. You plug the toaster into a different outlet and try to toast your bread.

If that works, then your hypothesis is supported by your experimental data. Results that support your hypothesis don't prove it right; they simply suggest that it's a likely explanation. This uncertainty arises because, in the real world, we can't rule out the possibility of mistakes, wrong assumptions, or weird coincidences affecting the results. If the toaster doesn’t work even after plugging it into a different outlet, then your hypothesis is not supported and it's likely the wrong explanation.

Use your results to guide your next steps (iteration). If your toaster worked, you may decide to do further tests to confirm it or revise it. For example, you could plug something else that you know is working into the first outlet to see if that stops working too. That would be further confirmation that your hypothesis is correct.

If your toaster failed to toast when plugged into the second outlet, you need a new hypothesis. For example, your next hypothesis might be that the toaster has a shorted wire. You could test this hypothesis directly if you have the right equipment and training, or you could take it to a repair shop where they could test that hypothesis for you.

Share your results. For this everyday example, you probably wouldn't want to write a paper, but you could share your problem-solving efforts with your housemates or anyone you hire to repair your outlet or help you test if the toaster has a short circuit.

What the Scientific Method Is Used For

The scientific method is useful whenever you need to reason logically about your questions and gather evidence to support your problem-solving efforts. So, you can use it in everyday life to answer many of your questions; however, when most people think of the scientific method, they likely think of using it to:

Describe how nature works . It can be hard to accurately describe how nature works because it's almost impossible to account for every variable that's involved in a natural process. Researchers may not even know about many of the variables that are involved. In some cases, all you can do is make assumptions. But you can use the scientific method to logically disprove wrong assumptions by identifying flaws in the reasoning.

Do scientific research in a laboratory to develop things such as new medicines.

Develop critical thinking skills.  Using the scientific method may help you develop critical thinking in your daily life because you learn to systematically ask questions and gather evidence to find answers. Without logical reasoning, you might be more likely to have a distorted perspective or bias. Bias is the inclination we all have to favor one perspective (usually our own) over another.

The scientific method doesn't perfectly solve the problem of bias, but it does make it harder for an entire field to be biased in the same direction. That's because it's unlikely that all the people working in a field have the same biases. It also helps make the biases of individuals more obvious because if you repeatedly misinterpret information in the same way in multiple experiments or over a period, the other people working on the same question will notice. If you don't correct your bias when others point it out to you, you'll lose your credibility. Other people might then stop believing what you have to say.

Why Is the Scientific Method Important?

When you use the scientific method, your goal is to do research in a fair, unbiased, and repeatable way. The scientific method helps meet these goals because:

It's a systematic approach to problem-solving. It can help you figure out where you're going wrong in your thinking and research if you're not getting helpful answers to your questions. Helpful answers solve problems and keep you moving forward. So, a systematic approach helps you improve your problem-solving abilities if you get stuck.

It can help you solve your problems.  The scientific method helps you isolate problems by focusing on what's important. In addition, it can help you make your solutions better every time you go through the process.

It helps you eliminate (or become aware of) your personal biases.  It can help you limit the influence of your own personal, preconceived notions . A big part of the process is considering what other people already know and think about your question. It also involves sharing what you've learned and letting other people ask about your methods and conclusions. At the end of the process, even if you still think your answer is best, you have considered what other people know and think about the question.

The scientific method is a systematic way of conducting experiments or studies so that you can explore the world around you and answer questions using reason and evidence. It's a step-by-step problem-solving process that involves: (1) observation, (2) asking questions, (3) forming hypotheses and making predictions, (4) testing your hypotheses through experiments or more observations, (5) using what you learned through experiment or observation to guide further investigation, and (6) sharing your results.

Top doctors in ,

Find more top doctors on, related links.

  • Health A-Z News
  • Health A-Z Reference
  • Health A-Z Slideshows
  • Health A-Z Quizzes
  • Health A-Z Videos
  • WebMDRx Savings Card
  • Coronavirus (COVID-19)
  • Hepatitis C
  • Diabetes Warning Signs
  • Rheumatoid Arthritis
  • Morning-After Pill
  • Breast Cancer Screening
  • Psoriatic Arthritis Symptoms
  • Heart Failure
  • Multiple Myeloma
  • Types of Crohn's Disease

scientific method experiment definition

  • Faculty Resource Center
  • Biochemistry
  • Bioengineering
  • Cancer Research
  • Developmental Biology
  • Engineering
  • Environment
  • Immunology and Infection
  • Neuroscience
  • JoVE Journal
  • JoVE Encyclopedia of Experiments
  • JoVE Chrome Extension
  • Environmental Sciences
  • Pharmacology
  • JoVE Science Education
  • JoVE Lab Manual
  • JoVE Business
  • Videos Mapped to your Course
  • High Schools
  • Videos Mapped to Your Course

Scientific Method

Instructor prep, student protocol.

The scientific method is a framework of techniques and questions that scientists use to investigate phenomena with the aim of making scientific discoveries simple and reproducible. It's been loosely observed by experimenters going as far back as the 4th century BC, but the first properly formalized scientific method was coined during the European Renaissance. Here individuals at the forefront of science like Francis Bacon, Galileo, and Isaac Newton started putting into routine practice the rules that we use to carry out experiments today.

Typically, the first step of the scientific method is to formulate a question, usually after observation of a phenomenon. For example, say you have been raising caterpillars and have noticed that some take longer than others to get to pupation. And you wonder, do the caterpillars develop at different rates depending on the temperature?

This is where the second part of the scientific method comes in, the hypothesis. A hypothesis is an uncertain explanation as to why we observe what we observe, and there are two main types. The first is the experimental or alternative hypothesis, and it implies that there will be a relationship between the variables being investigated, the temperature and caterpillar development, in this case. So, our experimental hypothesis could be that the caterpillars will take longer to go from egg to pupation if they're raised at colder temperatures. Crucially, a good hypothesis will be testable. For our caterpillars, we can change the temperature, and record the time it takes for them to go from egg to pupa, and falsifiable. So, if it takes around the same time for the caterpillars to develop no matter what the temperature, then we can accept that the hypothesis was likely false. The second type of hypothesis is the null hypothesis. This typically speculates that there won't be any observed significant change or difference during the experiment. In our caterpillar example, we would state that the caterpillars will develop at the same rate in each temperature condition.

Once we have our hypotheses, the third step of the scientific method covers experimentation and data collection. In a typical experiment, there will be two types of variables. The independent variable is something directly manipulated by the experimenter. So, with our caterpillars, we are altering the independent variable when we change the temperature. The dependent variable, also known as the response variable, should be affected by the state of the independent variable. So, when we expose our caterpillars to different temperatures, then the response, the dependent variable, is the rate at which they develop.

There are also two main types of data that could be collected to support or falsify the hypotheses. The first is qualitative data, which typically refers to descriptive observations made with the senses, seeing, touching, hearing, smelling, or even tasting. In our experiment, we might record that the caterpillars seem to move around and eat a lot in the normal temperature condition, compared to the cooler one. In contrast to qualitative data, quantitative data can be measured and written down as numbers. So, when we count the number of hours it takes the caterpillar from hatching to finally pupating, this gives us a definite figure. Where possible, it's almost important to have a control condition in any experiment where we manipulate the independent variables. In our caterpillar experiment, we can grow the caterpillars at a set standard room temperature of 21 degrees as a control, because this demonstrates what happens when the caterpillars develop under normal conditions in comparison to experimental settings.

In observational experiments, a control may not be needed or even possible. For example, imagine our caterpillars are now grown up butterflies, feeding on nectar in a flower garden. In our experimental hypothesis, we suggest that they prefer to feed from the big pink flowers, while our null hypothesis suggests they have no preference and will visit the flowers at random. In this case, simply observing and recording the number of times the butterflies visit each flower type will provide enough data to confirm or reject our hypotheses without needing manipulation of any variables or the need for a control.

Once the data have been collected, the next step is to figure out what it all means. Scientists will compare the predictions of their two hypotheses to figure out if they can reject the null hypothesis. This can be done by comparing the values of the dependent variable in the control versus the experimental conditions. If they are not equal, the null hypothesis can be rejected. If the data collected supports a hypothesis, like the caterpillars did take significantly more hours to go from egg to pupa when kept at the cooler climate, then this gives the experimental hypothesis more credibility, but critically it does not indicate that the hypothesis is definitely true, because future experiments may reveal new information.

The final part of the scientific method is where we draw conclusions, and discuss what our findings might mean. Here, scientists might refer to other experiments or other literature to put their findings into context, and come up with explanations of why the results showed what they did. For example, the conclusion could be that the caterpillars like to grow at temperatures closest to their natural habitat. This may, in turn, spiral new questions, like do other species pupate at different rates at different temperatures, too? This may inspire new experiments, which we can test using, you guessed it, the scientific method.

The scientific method is used to solve problems and explain phenomena. The development of the scientific method coincided with changes in philosophy underpinning scientific discovery, radically transforming the views of society about nature. During the European Renaissance, individuals such as Francis Bacon, Galileo, and Isaac Newton formalized the concept of the scientific method and put it into practice. Although the scientific method has been revised since its early conceptions, much of the framework and philosophy remains in practice today.

Step 1: The Observation and Question

Prior to investigation, a scientist must define the question to be addressed. This crucial first step in the scientific process involves observing some natural phenomena of interest. This observation should then lead to a number of questions about the phenomena. This stage frequently requires background research necessary to understand the subject matter and past work on similar ideas. Reviewing and evaluating previous research allows scientists to refine their questions to more accurately address gaps in scientific knowledge. Defining a research question and understanding relevant prior research will influence how the scientific method is applied, making it an important first step in the research process.

An everyday example: You are trying to get to school or work and your car won’t start. The thought process that most people go through in that situation clearly mirrors the official scientific method (after you are finished getting upset). First, you make an observation: my car won’t start! The question that follows: why isn’t it working?

Step 2: The Hypothesis

The next step is making a hypothesis, based on prior knowledge. A hypothesis is an “uncertain explanation” or an unproven conjecture that seeks to explain some phenomenon based on knowledge obtained while executing subsequent experiments or observations. Generally, scientists develop multiple hypotheses to address their questions and test them systematically.

All hypotheses must meet certain criteria for the scientific process to work. First, a hypothesis must be testable and falsifiable. This aspect of the hypothesis is critical and of much greater importance than the hypothesis being correct. A testable hypothesis is one that generates testable predictions, addressed through observations or experiments. A falsifiable hypothesis is one that, through observation of conflicting outcomes, can be proven wrong. This allows investigators to gain more confidence over time, not by accumulating evidence showing that a hypothesis is correct, but rather by showing that situations that could establish its falsity do not occur.

Hypotheses come in two forms: null hypotheses and alternative hypotheses. The null hypothesis is tested against the alternative hypothesis and reflects that there will be no observed change in the experiment. The alternative hypothesis is generally the one described in the previous two paragraphs, also referred to as the experimental hypothesis. The alternative hypothesis is the predicted outcome of the experiment. If the null hypothesis is rejected, then this builds evidence for the alternative hypothesis.

An everyday example: Maybe it is freezing outside and therefore it is fairly likely that your car battery is dead. Maybe you know you were low on gas the night before and therefore it is likely that the tank is empty.

Step 3: Experimentation and Data Collection

Either way, the next step is to make more observations or to conduct experiments leading to conclusions. Following the formulation of hypotheses, scientists plan and conduct experiments to test their hypotheses. These experiments provide data that will either support or falsify the hypothesis. Data can be collected from quantitative or qualitative observations. Qualitative information refers to observations that can be made simply using one's senses, be that through sight, sound, taste, smell, or touch. In contrast, quantitative observations are ones in which precise measurements of some type are used to investigate one's hypothesis.

An experiment is a procedure designed to determine whether observations of the real world agree with or refute the derived predictions in the hypothesis. If evidence from an experiment supports a hypothesis, that gives the hypothesis more credibility. This does not indicate that the hypothesis is true, as future experiments may reveal new information about the original hypothesis. Experimental design is another critical step in the scientific method and can have a great effect on the results and conclusions one draws from an experiment. Careful thought and time should be devoted to experimental design and minimizing possible errors. The experiment should be designed so that every variable or factor that could influence the outcome of the experiment be under control of the researcher. Two types of variables are used to describe the conditions in an experiment: the independent and the dependent, or response, variable. The independent variable is directly manipulated or controlled by the scientist and is generally what one predicts will affect the dependent variable. The dependent, or response, variable thus depends on the value of the independent variable. Experiments are generally designed so that one specific factor is manipulated in the experiment in order to illuminate cause and effect relationships.

An everyday example: Does the car still have all of its parts? Is this the right key? What does the gas gauge say? Does a jump start help?

Another important aspect in experimental design is the role of the control treatment, which represents a non-manipulated treatment condition. The control treatment is kept in the same conditions as the experimental treatment, but the experimental manipulation is not applied to the control. For example, if a researcher were testing the effects of soil salinity on plant growth, the soil in the control treatment would have no added salt. The control provides a baseline of “normal” conditions with which to compare the experimental treatments.

Experimental design should also incorporate replicates of each treatment. Repeatability of experimental results is an important part of the scientific method that ensures the validity and accuracy of data. It is quite difficult to control all aspects of an experiment so there is inherent variation in results that cannot be controlled for even under the most carefully designed and controlled experiments. Having replicates enables an investigator to estimate this inherent variation in results. Precise recording and measurement of data is also of great importance for ensuring the accuracy of results and the conclusions one draws from the results.

Step 4: Results and Data Analysis

The next step in the scientific method involves determining what the results from the experiment mean. Scientists compare the predictions of their null hypothesis to that of their alternative hypothesis to determine if they are able to reject the null hypothesis. Rejecting the null hypothesis means that there is a significant probability that values of the dependent variable in the control versus experimental treatments are not equal to each other. If significant differences exist, then one can reject the null hypothesis and accept the alternative hypothesis. Conversely, the investigator may fail to reject the null hypothesis, meaning the treatment has no effect on the results. Before scientists can make any claims about their null hypothesis from their experimental data or observations, statistical tests are required to ensure the validity of the data and further interpretation of the data. Statistical tests allow researchers to determine if there are genuine differences between the control and experimental treatments. From there, they can create figures and tables to illustrate their findings.

Step 5: Conclusions

The last portion of the scientific method involves providing explanations of the results and the conclusions that can be logically drawn from the results. Generally, this step of the scientific process also requires one to revisit scientific literature and compare their results with other experiments or observations on related topics. This allows researchers to put their experiment in a more general context and elaborate on the significance of particular results. Additionally, it allows them to explain how their work fits into a larger context in their discipline.

The scientific process does not stop here! The scientific process works through time as knowledge on topics in science accumulate and drive our understanding of particular mechanisms or processes explaining natural phenomena. If we fail to reject our null hypothesis, then it becomes necessary to revisit the initial stages of the scientific method and try to reformulate our questions and understand why an anticipated result was not attained.

Application of the Scientific Method

The only difference between the use of this method in every-day life and in the laboratory is that scientists carefully document their work, from observation to hypothesis to experiment, and finally conclusions and peer review. In addition, unlike problem solving outside the lab, the scientific method in the lab includes controlled conditions and variables.

Let’s investigate the scientific method using an example from the lab. It is known that plant growth is affected by microbes, such as bacteria and fungi, living in their soil. It is possible to figure out what microbes have which effects by potting plants in completely sterile soil, then adding in microbes one at a time, or in different combinations and measuring the growth of the plant. Now let’s fit this into the terms used to describe the scientific method:

Observation and Question : There are microbes in the soil…do these affect plant growth?

HYPOTHESES:

Experimental: One particular microbe of interest will cause the plants to grow more slowly.

Null: The presence or absence of microbes will have no effect on plant growth

Experiment : set up groups of plants in 1) sterile soil, 2) soil with the microbe added in, and 3) natural soil. Measure the growth of the plants over time, using a ruler.

Conclusion : if the plants in group 2 grow more slowly than the other two, the hypothesis is supported. This needs to be backed up with statistical analysis from many plants to be considered significant. An experiment like this is not legitimate with just one plant per group.

Group 1 is a control which shows the plants can grow in the sterile soil. Group 3 is a control that shows the plants can grow under normal conditions. Group 2 is the experimental group. It would be possible to add different amounts of the microbe, or different microbes, to introduce more variables. The main point is that the researcher has something to which to compare the experimental group- the control group. If the experiment included only group 2 and the researcher determined that the plants “looked sick,” that would be a matter of opinion. The only way to make that observation scientific is to have healthy plants to measure. The type or amount of microbe used is the independent variable , because the researcher has control over it. The size of the plant at the end of the experiment is the dependent or response variable because it is the result.

Ultimately, work like this is published in scientific journals so that other researchers can read about the methods used and conclusions drawn. Publications like this are subject to peer-review, which means that an article won’t be published in a journal until other researchers have checked it out and agree it is well-done. As a community of scientists, general concepts are developed based on observed patterns in the experiments that individual scientists conduct. This results in the development of a scientific theory . This term means that there is a consensus among researchers that a particular concept or process exists. It is important to note that the word theory does not mean the same thing as hypothesis. Once scientists label a concept with this term, it is considered to be true, considering all currently available data. Of course, if a large body of experimentation demonstrates information to the contrary, theories can be modified.

Simple Hit Counter

  • Technical support

scientific method

  • Gavin Wright
  • Tréa Lavery, Editorial Assistant

What is the scientific method?

The scientific method is the process of objectively establishing facts through testing and experimentation. The basic process involves making an observation, forming a hypothesis, making a prediction, conducting an experiment and finally analyzing the results. The principals of the scientific method can be applied in many areas, including scientific research, business and technology.

Steps of the scientific method

The scientific method uses a series of steps to establish facts or create knowledge. The overall process is well established, but the specifics of each step may change depending on what is being examined and who is performing it. The scientific method can only answer questions that can be proven or disproven through testing.

Make an observation or ask a question. The first step is to observe something that you would like to learn about or ask a question that you would like answered. These can be specific or general. Some examples would be "I observe that our total available network bandwidth drops at noon every weekday" or "How can we increase our website registration numbers?" Taking the time to establish a well-defined question will help you in later steps.

Gather background information. This involves doing research into what is already known about the topic. This can also involve finding if anyone has already asked the same question.

Create a hypothesis. A hypothesis is an explanation for the observation or question. If proven later, it can become a fact. Some examples would be "Our employees watching online videos during lunch is using our internet bandwidth" or "Our website visitors don't see our registration form."

Create a prediction and perform a test. Create a testable prediction based on the hypothesis. The test should establish a noticeable change that can be measured or observed using empirical analysis. It is also important to control for other variables during the test. Some examples would be "If we block video-sharing sites, our available bandwidth will not go down significantly during lunch" or "If we make our registration box bigger, a greater percentage of visitors will register for our website than before the change."

Analyze the results and draw a conclusion. Use the metrics established before the test see if the results match the prediction. For example, "After blocking video-sharing sites, our bandwidth utilization only went down by 10% from before; this is not enough of a change to be the primary cause of the network congestion" or "After increasing the size of the registration box, the percent of sign-ups went from 2% of total page views to 5%, showing that making the box larger results in more registrations."

Share the conclusion or decide what question to ask next: Document the results of your experiment. By sharing the results with others, you also increase the total body of knowledge available. Your experiment may have also led to other questions, or if your hypothesis is disproven you may need to create a new one and test that. For example, "Because user activity is not the cause of excessive bandwidth use, we now suspect that an automated process is running at noon every day."

scientific method

Using the scientific method in technology and computers

The scientific method is incredibly valuable in technology and related fields. It is obviously used in research and development, but it is also useful in day-to-day operations. Because almost everything can be quantified, testing hypotheses can be easy.

Most modern computer systems are complicated and difficult to troubleshoot. Using the scientific method of hypothesis and testing can greatly simplify the process of tracking down errors and it can help find areas of improvement. It can also help when you evaluate new technologies before implementation.

Using the scientific method in business

Many business processes benefit when using the scientific method. Shifting business landscapes and complex business relationships can make behaviors hard to predict or act counter to previous history. Instead of using gut feelings or previous experience, a scientific approach can help businesses grow. Big data initiative can make business information more available and easier to test with.

The scientific method can be applied in many areas. Customer satisfaction and retention numbers can be analyzed and tested upon. Profitability and finance numbers can be analyzed to form new conclusions. Making predictions on changing business practices and checking the results will help to identify and measure success or failure of the initiatives.

scientific method in business

Common pitfalls in using the scientific method

The scientific method is a powerful tool. Like any tool, though, if it is misused it can cause more damage than good.

The scientific method can only be used for testable phenomenon. This is known as falsifiability . While much in nature can be tested and measured, some areas of human experience are beyond objective observation.

Both proving and disproving the hypothesis are equally valid outcomes of testing. It is possible to ignore the outcome or inject bias to skew the results of a test in a way that will fit the hypothesis. Data in opposition to the hypothesis should not be discounted.

It is important to control for other variables and influences during testing to not skew the results. While difficult, not accounting for these could produce invalid data. For example, testing bandwidth during a holiday or measuring registrations during a sale event may introduce other factors that influence the outcome.

Another common pitfall is mixing correlation with causation. While two data points may seem to be connected, it is not necessarily true that once is directly influenced by the other. For example, an ice cream stand in town sees drops in business on the hottest days. While the data may look like the hotter the weather, the less people want ice cream, the reality is that more people are going to the beach on those days and less are in town.

History of the scientific method

The discovery of the scientific method is not credited to any single person, but there are a few notable figures who contributed to its development.

The Greek philosopher Aristotle is considered to be one of the earliest proponents of logic and cycles of observation and deduction in recorded history. Ibn al-Haytham, a mathematician, established stringent testing methodologies in pursuit of facts and truth, and he recorded his findings.

During the Renaissance, many thinkers and scientists continued developing rational methods of establishing facts. Sir Francis Bacon emphasized the importance of  inductive reasoning . Sir Isaac Newton relied on both inductive and  deductive reasoning  to explain the results of his experiments, and Galileo Galilei emphasized the idea that results should be repeatable.

Other well-known contributors to the scientific method include Karl Popper, who introduced the concept of falsifiability, and Charles Darwin, who is known for using multiple communication channels to share his conclusions.

See also: falsifiability , pseudoscience , empirical analysis , validated learning , OODA loop , black swan event , deep learning .

Continue Reading About scientific method

  • What is data science? The ultimate guide
  • The data science process: 6 key steps on analytics applications
  • Tools to conduct security chaos engineering tests
  • Data scientist vs. business analyst: What's the difference?

Related Terms

Network scanning is a procedure for identifying active devices on a network by employing a feature or features in the network ...

Wavelength is the distance between identical points, or adjacent crests, in the adjacent cycles of a waveform signal propagated ...

A subnet, or subnetwork, is a segmented piece of a larger network. More specifically, subnets are a logical partition of an IP ...

Endpoint security is the protection of endpoint devices against cybersecurity threats.

Cyber attribution is the process of tracking and identifying the perpetrator of a cyberattack or other cyber operation.

SSH (Secure Shell or Secure Socket Shell) is a network protocol that gives users -- particularly systems administrators -- a ...

Corporate social responsibility (CSR) is a strategy undertaken by companies to not just grow profits, but also to take an active ...

Digital labor is work that's performed by robotic process automation (RPA) systems and interactive applications, including ...

Systems of engagement are decentralized IT components that incorporate technologies such as social media and the cloud to ...

Payroll software automates the process of paying salaried, hourly and contingent employees.

Organizational network analysis (ONA) is a quantitative method for modeling and analyzing how communications, information, ...

HireVue is an enterprise video interviewing technology provider of a platform that lets recruiters and hiring managers screen ...

A virtual agent -- sometimes called an intelligent virtual agent (IVA) -- is a software program or cloud service that uses ...

First call resolution (FCR) is when contact center agents properly address a customer's needs the first time they call so there ...

The law of diminishing returns is an economic principle stating that as investment in a particular area increases, the rate of ...

PrepScholar

Choose Your Test

  • Search Blogs By Category
  • College Admissions
  • AP and IB Exams
  • GPA and Coursework

The 6 Scientific Method Steps and How to Use Them

author image

General Education

feature_microscope-1

When you’re faced with a scientific problem, solving it can seem like an impossible prospect. There are so many possible explanations for everything we see and experience—how can you possibly make sense of them all? Science has a simple answer: the scientific method.

The scientific method is a method of asking and answering questions about the world. These guiding principles give scientists a model to work through when trying to understand the world, but where did that model come from, and how does it work?

In this article, we’ll define the scientific method, discuss its long history, and cover each of the scientific method steps in detail.

What Is the Scientific Method?

At its most basic, the scientific method is a procedure for conducting scientific experiments. It’s a set model that scientists in a variety of fields can follow, going from initial observation to conclusion in a loose but concrete format.

The number of steps varies, but the process begins with an observation, progresses through an experiment, and concludes with analysis and sharing data. One of the most important pieces to the scientific method is skepticism —the goal is to find truth, not to confirm a particular thought. That requires reevaluation and repeated experimentation, as well as examining your thinking through rigorous study.

There are in fact multiple scientific methods, as the basic structure can be easily modified.  The one we typically learn about in school is the basic method, based in logic and problem solving, typically used in “hard” science fields like biology, chemistry, and physics. It may vary in other fields, such as psychology, but the basic premise of making observations, testing, and continuing to improve a theory from the results remain the same.

body_history

The History of the Scientific Method

The scientific method as we know it today is based on thousands of years of scientific study. Its development goes all the way back to ancient Mesopotamia, Greece, and India.

The Ancient World

In ancient Greece, Aristotle devised an inductive-deductive process , which weighs broad generalizations from data against conclusions reached by narrowing down possibilities from a general statement. However, he favored deductive reasoning, as it identifies causes, which he saw as more important.

Aristotle wrote a great deal about logic and many of his ideas about reasoning echo those found in the modern scientific method, such as ignoring circular evidence and limiting the number of middle terms between the beginning of an experiment and the end. Though his model isn’t the one that we use today, the reliance on logic and thorough testing are still key parts of science today.

The Middle Ages

The next big step toward the development of the modern scientific method came in the Middle Ages, particularly in the Islamic world. Ibn al-Haytham, a physicist from what we now know as Iraq, developed a method of testing, observing, and deducing for his research on vision. al-Haytham was critical of Aristotle’s lack of inductive reasoning, which played an important role in his own research.

Other scientists, including Abū Rayhān al-Bīrūnī, Ibn Sina, and Robert Grosseteste also developed models of scientific reasoning to test their own theories. Though they frequently disagreed with one another and Aristotle, those disagreements and refinements of their methods led to the scientific method we have today.

Following those major developments, particularly Grosseteste’s work, Roger Bacon developed his own cycle of observation (seeing that something occurs), hypothesis (making a guess about why that thing occurs), experimentation (testing that the thing occurs), and verification (an outside person ensuring that the result of the experiment is consistent).

After joining the Franciscan Order, Bacon was granted a special commission to write about science; typically, Friars were not allowed to write books or pamphlets. With this commission, Bacon outlined important tenets of the scientific method, including causes of error, methods of knowledge, and the differences between speculative and experimental science. He also used his own principles to investigate the causes of a rainbow, demonstrating the method’s effectiveness.

Scientific Revolution

Throughout the Renaissance, more great thinkers became involved in devising a thorough, rigorous method of scientific study. Francis Bacon brought inductive reasoning further into the method, whereas Descartes argued that the laws of the universe meant that deductive reasoning was sufficient. Galileo’s research was also inductive reasoning-heavy, as he believed that researchers could not account for every possible variable; therefore, repetition was necessary to eliminate faulty hypotheses and experiments.

All of this led to the birth of the Scientific Revolution , which took place during the sixteenth and seventeenth centuries. In 1660, a group of philosophers and physicians joined together to work on scientific advancement. After approval from England’s crown , the group became known as the Royal Society, which helped create a thriving scientific community and an early academic journal to help introduce rigorous study and peer review.

Previous generations of scientists had touched on the importance of induction and deduction, but Sir Isaac Newton proposed that both were equally important. This contribution helped establish the importance of multiple kinds of reasoning, leading to more rigorous study.

As science began to splinter into separate areas of study, it became necessary to define different methods for different fields. Karl Popper was a leader in this area—he established that science could be subject to error, sometimes intentionally. This was particularly tricky for “soft” sciences like psychology and social sciences, which require different methods. Popper’s theories furthered the divide between sciences like psychology and “hard” sciences like chemistry or physics.

Paul Feyerabend argued that Popper’s methods were too restrictive for certain fields, and followed a less restrictive method hinged on “anything goes,” as great scientists had made discoveries without the Scientific Method. Feyerabend suggested that throughout history scientists had adapted their methods as necessary, and that sometimes it would be necessary to break the rules. This approach suited social and behavioral scientists particularly well, leading to a more diverse range of models for scientists in multiple fields to use.

body_experiment-3

The Scientific Method Steps

Though different fields may have variations on the model, the basic scientific method is as follows:

#1: Make Observations 

Notice something, such as the air temperature during the winter, what happens when ice cream melts, or how your plants behave when you forget to water them.

#2: Ask a Question

Turn your observation into a question. Why is the temperature lower during the winter? Why does my ice cream melt? Why does my toast always fall butter-side down?

This step can also include doing some research. You may be able to find answers to these questions already, but you can still test them!

#3: Make a Hypothesis

A hypothesis is an educated guess of the answer to your question. Why does your toast always fall butter-side down? Maybe it’s because the butter makes that side of the bread heavier.

A good hypothesis leads to a prediction that you can test, phrased as an if/then statement. In this case, we can pick something like, “If toast is buttered, then it will hit the ground butter-first.”

#4: Experiment

Your experiment is designed to test whether your predication about what will happen is true. A good experiment will test one variable at a time —for example, we’re trying to test whether butter weighs down one side of toast, making it more likely to hit the ground first.

The unbuttered toast is our control variable. If we determine the chance that a slice of unbuttered toast, marked with a dot, will hit the ground on a particular side, we can compare those results to our buttered toast to see if there’s a correlation between the presence of butter and which way the toast falls.

If we decided not to toast the bread, that would be introducing a new question—whether or not toasting the bread has any impact on how it falls. Since that’s not part of our test, we’ll stick with determining whether the presence of butter has any impact on which side hits the ground first.

#5: Analyze Data

After our experiment, we discover that both buttered toast and unbuttered toast have a 50/50 chance of hitting the ground on the buttered or marked side when dropped from a consistent height, straight down. It looks like our hypothesis was incorrect—it’s not the butter that makes the toast hit the ground in a particular way, so it must be something else.

Since we didn’t get the desired result, it’s back to the drawing board. Our hypothesis wasn’t correct, so we’ll need to start fresh. Now that you think about it, your toast seems to hit the ground butter-first when it slides off your plate, not when you drop it from a consistent height. That can be the basis for your new experiment.

#6: Communicate Your Results

Good science needs verification. Your experiment should be replicable by other people, so you can put together a report about how you ran your experiment to see if other peoples’ findings are consistent with yours.

This may be useful for class or a science fair. Professional scientists may publish their findings in scientific journals, where other scientists can read and attempt their own versions of the same experiments. Being part of a scientific community helps your experiments be stronger because other people can see if there are flaws in your approach—such as if you tested with different kinds of bread, or sometimes used peanut butter instead of butter—that can lead you closer to a good answer.

body_toast-1

A Scientific Method Example: Falling Toast

We’ve run through a quick recap of the scientific method steps, but let’s look a little deeper by trying again to figure out why toast so often falls butter side down.

#1: Make Observations

At the end of our last experiment, where we learned that butter doesn’t actually make toast more likely to hit the ground on that side, we remembered that the times when our toast hits the ground butter side first are usually when it’s falling off a plate.

The easiest question we can ask is, “Why is that?”

We can actually search this online and find a pretty detailed answer as to why this is true. But we’re budding scientists—we want to see it in action and verify it for ourselves! After all, good science should be replicable, and we have all the tools we need to test out what’s really going on.

Why do we think that buttered toast hits the ground butter-first? We know it’s not because it’s heavier, so we can strike that out. Maybe it’s because of the shape of our plate?

That’s something we can test. We’ll phrase our hypothesis as, “If my toast slides off my plate, then it will fall butter-side down.”

Just seeing that toast falls off a plate butter-side down isn’t enough for us. We want to know why, so we’re going to take things a step further—we’ll set up a slow-motion camera to capture what happens as the toast slides off the plate.

We’ll run the test ten times, each time tilting the same plate until the toast slides off. We’ll make note of each time the butter side lands first and see what’s happening on the video so we can see what’s going on.

When we review the footage, we’ll likely notice that the bread starts to flip when it slides off the edge, changing how it falls in a way that didn’t happen when we dropped it ourselves.

That answers our question, but it’s not the complete picture —how do other plates affect how often toast hits the ground butter-first? What if the toast is already butter-side down when it falls? These are things we can test in further experiments with new hypotheses!

Now that we have results, we can share them with others who can verify our results. As mentioned above, being part of the scientific community can lead to better results. If your results were wildly different from the established thinking about buttered toast, that might be cause for reevaluation. If they’re the same, they might lead others to make new discoveries about buttered toast. At the very least, you have a cool experiment you can share with your friends!

Key Scientific Method Tips

Though science can be complex, the benefit of the scientific method is that it gives you an easy-to-follow means of thinking about why and how things happen. To use it effectively, keep these things in mind!

Don’t Worry About Proving Your Hypothesis

One of the important things to remember about the scientific method is that it’s not necessarily meant to prove your hypothesis right. It’s great if you do manage to guess the reason for something right the first time, but the ultimate goal of an experiment is to find the true reason for your observation to occur, not to prove your hypothesis right.

Good science sometimes means that you’re wrong. That’s not a bad thing—a well-designed experiment with an unanticipated result can be just as revealing, if not more, than an experiment that confirms your hypothesis.

Be Prepared to Try Again

If the data from your experiment doesn’t match your hypothesis, that’s not a bad thing. You’ve eliminated one possible explanation, which brings you one step closer to discovering the truth.

The scientific method isn’t something you’re meant to do exactly once to prove a point. It’s meant to be repeated and adapted to bring you closer to a solution. Even if you can demonstrate truth in your hypothesis, a good scientist will run an experiment again to be sure that the results are replicable. You can even tweak a successful hypothesis to test another factor, such as if we redid our buttered toast experiment to find out whether different kinds of plates affect whether or not the toast falls butter-first. The more we test our hypothesis, the stronger it becomes!

What’s Next?

Want to learn more about the scientific method? These important high school science classes will no doubt cover it in a variety of different contexts.

Test your ability to follow the scientific method using these at-home science experiments for kids !

Need some proof that science is fun? Try making slime

Trending Now

How to Get Into Harvard and the Ivy League

How to Get a Perfect 4.0 GPA

How to Write an Amazing College Essay

What Exactly Are Colleges Looking For?

ACT vs. SAT: Which Test Should You Take?

When should you take the SAT or ACT?

Get Your Free

PrepScholar

Find Your Target SAT Score

Free Complete Official SAT Practice Tests

How to Get a Perfect SAT Score, by an Expert Full Scorer

Score 800 on SAT Math

Score 800 on SAT Reading and Writing

How to Improve Your Low SAT Score

Score 600 on SAT Math

Score 600 on SAT Reading and Writing

Find Your Target ACT Score

Complete Official Free ACT Practice Tests

How to Get a Perfect ACT Score, by a 36 Full Scorer

Get a 36 on ACT English

Get a 36 on ACT Math

Get a 36 on ACT Reading

Get a 36 on ACT Science

How to Improve Your Low ACT Score

Get a 24 on ACT English

Get a 24 on ACT Math

Get a 24 on ACT Reading

Get a 24 on ACT Science

Stay Informed

Get the latest articles and test prep tips!

Follow us on Facebook (icon)

Melissa Brinks graduated from the University of Washington in 2014 with a Bachelor's in English with a creative writing emphasis. She has spent several years tutoring K-12 students in many subjects, including in SAT prep, to help them prepare for their college education.

Ask a Question Below

Have any questions about this article or other topics? Ask below and we'll reply!

If you're seeing this message, it means we're having trouble loading external resources on our website.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

To log in and use all the features of Khan Academy, please enable JavaScript in your browser.

High school biology (DEPRECATED)

Course: high school biology (deprecated)   >   unit 1.

  • Biology overview
  • Preparing to study biology
  • What is life?
  • The scientific method
  • Data to justify experimental claims examples
  • Scientific method and data analysis
  • Introduction to experimental design
  • Controlled experiments

Biology and the scientific method review

  • Experimental design and bias

scientific method experiment definition

TermMeaning
BiologyThe study of living things
ObservationNoticing and describing events in an orderly way
HypothesisA scientific explanation that can be tested through experimentation or observation
Controlled experimentAn experiment in which only one variable is changed
Independent variableThe variable that is deliberately changed in an experiment
Dependent variableThe variable this is observed and changes in response to the independent variable
Control groupBaseline group that does not have changes in the independent variable
Scientific theoryA well-tested and widely accepted explanation for a phenomenon
Research biasProcess during which the researcher influences the results, either knowingly or unknowingly
PlaceboA substance that has no therapeutic effect, often used as a control in experiments
Double-blind studyStudy in which neither the participants nor the researchers know who is receiving a particular treatment

The nature of biology

Properties of life.

  • Organization: Living things are highly organized (meaning they contain specialized, coordinated parts) and are made up of one or more cells .
  • Metabolism: Living things must use energy and consume nutrients to carry out the chemical reactions that sustain life. The sum total of the biochemical reactions occurring in an organism is called its metabolism .
  • Homeostasis : Living organisms regulate their internal environment to maintain the relatively narrow range of conditions needed for cell function.
  • Growth : Living organisms undergo regulated growth. Individual cells become larger in size, and multicellular organisms accumulate many cells through cell division.
  • Reproduction : Living organisms can reproduce themselves to create new organisms.
  • Response : Living organisms respond to stimuli or changes in their environment.
  • Evolution : Populations of living organisms can undergo evolution , meaning that the genetic makeup of a population may change over time.

Scientific methodology

Scientific method example: failure to toast, experimental design, reducing errors and bias.

  • Having a large sample size in the experiment: This helps to account for any small differences among the test subjects that may provide unexpected results.
  • Repeating experimental trials multiple times: Errors may result from slight differences in test subjects, or mistakes in methodology or data collection. Repeating trials helps reduce those effects.
  • Including all data points: Sometimes it is tempting to throw away data points that are inconsistent with the proposed hypothesis. However, this makes for an inaccurate study! All data points need to be included, whether they support the hypothesis or not.
  • Using placebos , when appropriate: Placebos prevent the test subjects from knowing whether they received a real therapeutic substance. This helps researchers determine whether a substance has a true effect.
  • Implementing double-blind studies , when appropriate: Double-blind studies prevent researchers from knowing the status of a particular participant. This helps eliminate observer bias.

Communicating findings

Things to remember.

  • A hypothesis is not necessarily the right explanation. Instead, it is a possible explanation that can be tested to see if it is likely correct, or if a new hypothesis needs to be made.
  • Not all explanations can be considered a hypothesis. A hypothesis must be testable and falsifiable in order to be valid. For example, “The universe is beautiful" is not a good hypothesis, because there is no experiment that could test this statement and show it to be false.
  • In most cases, the scientific method is an iterative process. In other words, it's a cycle rather than a straight line. The result of one experiment often becomes feedback that raises questions for more experimentation.
  • Scientists use the word "theory" in a very different way than non-scientists. When many people say "I have a theory," they really mean "I have a guess." Scientific theories, on the other hand, are well-tested and highly reliable scientific explanations of natural phenomena. They unify many repeated observations and data collected from lots of experiments.

Want to join the conversation?

  • Upvote Button navigates to signup page
  • Downvote Button navigates to signup page
  • Flag Button navigates to signup page

Great Answer

Study.com

In order to continue enjoying our site, we ask that you confirm your identity as a human. Thank you very much for your cooperation.

Microbe Notes

Microbe Notes

Scientific Method: Definition, Steps, Examples, Uses

Sir Francis Bacon, an English philosopher, developed modern scientific research and scientific methods. He is also known as “the Father of modern science.”

He was influenced by Galileo Galilei and Nicholas Copernicus’ writings throughout his study.

The scientific method is a powerful analytical or problem-solving method of learning more about the natural world.  

The scientific method is a combined method, which consists of theoretical knowledge and practical experimentation by using scientific instruments, analysis and comparisons of results, and then peer reviews.

Scientific Method

  • The scientific method is a procedure that the scientists use to conduct research.
  • Scientific investigators play a crucial role in following a series of steps such as asking questions, setting hypothesis to answer questions, performing multiple experiments to confirm the reliability of data/ results, data collection and interpretation, and developing conclusions based on the hypothesis.

Table of Contents

Interesting Science Videos

Steps of Scientific Method

There are seven steps of the scientific method such as:

  • Make an observation
  • Ask a question
  • Background research/ Research the topic
  • Formulate a hypothesis
  • Conduct an experiment to test the hypothesis
  • Data record and analysis
  • Draw a conclusion

1. Make an observation

  • Before asking a question, you need a proper observation to get information about some topic, which may help to identify the question. 
  • Proper observation in the area of investigation or about something you are interested in is required, whether you recognize it or not. 

2. Ask a question

  • The scientific method follows a step by asking a question. Based on what you observe, Asking questions starts with Wh- such as What, When, Who, Which, Why, How, Does or Where? 
  • A question helps to identify a core problem and form a hypothesis . The question should be relatable and specific as much as possible. 
  • Why is this thing happening?
  • What is the reason behind this?
  • How does this happen?
  • Does it need to happen?

3. Background research/ Research the topic

  • Background research on the experiment/ topic is necessary to analyze and answer the questions. 
  • Many scientists are employing various techniques and equipment, such as libraries and Internet research (research papers, articles, journals, etc.), that push how to investigate, design, and understand the experiment. 
  • In addition, you can learn from other experiences, research, or experiments, which helps you not repeat the same mistakes and be aware of doing things further. 
  • It helps to predict what will happen in the future. It also helps to understand the theory and background history of the experiment.

4. Formulate a hypothesis

  • A Hypothesis is an idea or a guess to explain a specific occurrence, natural event, or particular experience based on prior observation.
  • It is another step in the scientific method. A hypothesis allows you to make a prediction. Scientists predict what will be the outcome. 
  • It outlines the objectives of the experiment, the variables used, and the expected outcome of the experiment. The hypothesis must be either falsifiable or testable. It also answers the previous question. 
  • A hypothesis needs to be testable by gathering evidence. A hypothesis needs to be testable to perform an experiment, whether the evidence supports the hypothesis or not. 

5. Conduct an experiment to test a hypothesis

  • After formulating a hypothesis, you must design and conduct an experiment. Experiments are the process of investigations to prove or disprove the hypothesis.
  • Two variables play a crucial role in conducting experiments to test the hypothesis. 
  • They are Independent variables (Can be manipulated or controlled by the person, or you can change while experimenting) and dependent variables (one you measure, which may be affected by the independent variable).
  • They both are the cause and effect. The dependent variable is dependent on the independent variable. 
  • All the variables must be under control to ensure that they have no impact on the result.
  • You can also set another type of hypothesis, such as a “null hypothesis” or “no difference” hypothesis. 

There is no difference in the intense rain and crop destruction.

6. Data Record and Analysis

  • During the experiment, data needs to be recorded and collected. Data is a set of values. It should be represented quantitatively (measured in numbers) or qualitatively (an explanation of outcomes).
  • After the data collection, you can interpret the data by drawing a chart or constructing a table or graph to show the result. 
  • After the data representation, you can analyze or interpret the data to understand the meaning of the data. 
  • You can compare the results with other experiments visually or in graphics form. 

7. Draw a Conclusion

  • Your Conclusion always showcases whether the experiments support the prediction and hypothesis or contradict.
  • Scientists will analyze the experiment’s results and develop a new hypothesis based on the data they collect if they discover that their experiment did not support their hypothesis or that their prediction is not supported.
  • While we conclude the experiment, all the collected results will be analyzed, which helps to interpret the hypothesis.
  • Did your experiments support or reject your hypothesis? 
  • Does your hypothesis prove or disprove your study? 
  • Did your results show a strong correlation? 
  • Was there any way to change the thing to make a better experiment?
  • Are there things that need to be studied further? 
  • If your hypothesis is supported, then that is fine. You can carry on. 
  • But If not, do not try to manipulate the result or try to change the result. 
  • Keep the result to its original form, or you can further repeat the experiment to get better results.

Scientific Method Steps

Application of Scientific Method

  • It is essential in many sectors, such as social sciences, empirical sciences, statistics, biology, chemistry, and physics. It can be used in the laboratory.
  • Scientific methods lead to discoveries, innovations, and improvements in various disciplines.
  • The scientific method can be used to solve problems, explain the phenomena of the study, and find and test solutions.
  • Scientific methods guarantee that the findings are based on evidence, making the study reliable and replicable and allowing research to occur objectively and systematically.
  • The Editors of Encyclopaedia Britannica. (2024, March 14). Scientific method | Definition, Steps, & Application. Retrieved from https://www.britannica.com/science/scientific-method
  • Biology Dictionary. (2020, November 6). Scientific method. Retrieved from https://biologydictionary.net/scientific-method/
  • Bailey, R. (2019, August 21). Scientific method. Retrieved from https://www.thoughtco.com/scientific-method-p2-373335
  • Buddies, S., & Buddies, S. (2023, August 17). Writing a Science Fair Project research plan. Retrieved from https://www.sciencebuddies.org/science-fair-projects/science-fair/writing-a-science-fair-project-research-plan
  • Buddies, S., & Buddies, S. (2024, January 25). Steps of the scientific method. Retrieved from https://www.sciencebuddies.org/science-fair-projects/science-fair/steps-of-the-scientific-method
  • Helmenstine, A. (2023, January 1). Steps of the scientific method. Retrieved from https://sciencenotes.org/steps-scientific-method/
  • Cartwright, M., & Greer, R. (2023). Scientific method. World History Encyclopedia . Retrieved from https://www.worldhistory.org/Scientific_Method/
  • https://www.extension.purdue.edu/extmedia/ID/ID-507-w.pdf
  • GeeksforGeeks. (2024, April 18). Applications of scientific methods. Retrieved from https://www.geeksforgeeks.org/applications-of-scientific-methods/

About Author

Photo of author

Prativa Shrestha

1 thought on “Scientific Method: Definition, Steps, Examples, Uses”

Leave a comment cancel reply.

Save my name, email, and website in this browser for the next time I comment.

This site uses Akismet to reduce spam. Learn how your comment data is processed .

Science Improved

What is the Scientific Method: Steps, Definition, and Examples

scientific method experiment definition

Table of Contents

What is the Scientific Method?

The scientific method is an empirical process used to acquire scientific knowledge. It is broadly applied to various sciences and enables the testing and validation of a scientific hypothesis. The problem is defined based on various observations. For example, a question can arise from the observation of a natural phenomenon. This question can lead to the formulation of a hypothesis and predictions. These can be tested by collecting data using the appropriate methodology. The final steps of the scientific method include data analysis and validation of the hypothesis. Altogether, the conclusions drawn from the scientific method will lead to new questions. This will ultimately improve our knowledge towards a better comprehension of the world surrounding us.

When was the Scientific Method Invented? Who Invented the Scientific Method?

Even though various scientific methodologies were elaborated in ancient Egypt and Babylonia, the inventor of the scientific method is usually considered to be Aristotle 1 . This antique Greek philosopher introduced empiricism to science in his text Posterior Analytics 2 . In other words, empiricism means that our scientific knowledge must be based on observations and empirical evidence. This is a key concept of the scientific method. The term “scientific method” became popular much later during the 19 th and 20 th centuries when it was broadly introduced into dictionaries and encyclopedias 3 . 

When was the Scientific Method Invented? Who Invented the Scientific Method? Aristotle is considered as the inventor of the scientific method

What are the Steps of the Scientific Method?

What is the first step of the scientific method, step 1- what is a scientific question and how to use the scientific method.

What is the First Step of the Scientific Method? Step 1: what is the question?

First of all, the scientific method begins with a question, something that needs to be answered. This problem can arise from initial observations leading to a specific question, which would ideally be something that you can measure or quantify. This initial question will later lead to the formulation of the working hypothesis.

What is the Second Step of the Scientific Method?

Step 2- literature search.

What is the second step in the scientific method? Step 2: literature search

Before performing scientific experiments in a laboratory, every scientist will begin his research by doing an extensive literature search. This is a crucial step of the scientific method because it will reveal what is already known about the problem. The idea is to see if anything relevant to the question is already known. In addition, the literature search can be used to determine the appropriate methodology to address the question.

What is the Third Step of the Scientific Method?

Step 3- formulation of the hypothesis and predictions.

What is the third step in the scientific method? Step 3: formulation of the hypothesis and predictions

Following extensive background research, the scientist can then formulate the hypothesis. It is a plausible assumption based on the scientific knowledge and the methodology available. The scientist can then predict the possible outcome before performing any experiments. For example, a scientist will formulate the hypothesis that if he changes the parameter or variable X, it could result in different effects (A, B, or C).

What is the Fourth Step of the Scientific Method?

Step 4- experimental design, scientific experiment, and data collection.

What is the fourth step of the scientific method? Step 4: experimental design and data collection

Obviously, experiments are an important part of the scientific method. Every rigorous scientific experiment needs to be performed using the appropriate methodology. For instance, the instrument used to test the hypothesis must be accurate and efficient. In order to be valid, the experiment must be performed along with appropriate control groups and in controlled conditions to assess the effect of a single parameter at a time. Furthermore, the scientist must take into account all the factors that can introduce a bias during data collection. The experiment also needs to be reproduced a few times to make sure that the results are reproducible and are not obtained randomly. Finally, different methodologies can be used to test the same hypothesis, therefore strengthening the validity of the scientific findings.

What is the Fifth Step of the Scientific Method?

Step 5- data analysis.

What is the fifth step of the scientific method? Step 5: data analysis

Once data collection is over, the scientist can proceed to its analysis. The collected data can be presented in different ways such as pictures, schemas, videos, etc. If numerical data was obtained, it can be presented in a chart. The type of chart selected for graphical representations depends on the type of question. For example, proportions are easily represented in a pie chart whereas a bar chart will be better suited to show the evolution of monthly sales of a company through the years. In addition, the scientist can perform various mathematical equations and statistical analyses to further characterize his dataset.

What is the Sixth Step of the Scientific Method?

Step 6- hypothesis validation or invalidation, and formulation of new related questions.

What are the steps of the scientific method? Step 6: hypothesis validation or invalidation

It is now time to draw conclusions about the initial question. The data collected and analyzed can either validate or invalidate the hypothesis. When drawing conclusions, the scientist must be critical regarding the quality of the data obtained and he should also consider the limitations of the methodology used for testing. Often, the conclusions will lead to additional questions and the formulation of new hypotheses.

What is the Seventh Step of the Scientific Method?

Step 7- sharing the scientific discoveries: publication and peer review.

What are the steps of the scientific method? Step 7: publication and peer review

Someone could easily become an improvised scientist and apply the scientific method to validate or invalidate his own hypothesis. However, what makes the strength of the scientific method is to share the knowledge gained from a scientific experiment that was performed. This way, the scientific community can benefit from the work of others before establishing their own hypotheses. Every research project published therefore contribute to broader scientific advances, even when the initial hypothesis was proven wrong.  In addition, our comprehension of a specific scientific topic is constantly evolving as it can be either validated or even sometimes challenged by the completion of more advanced research projects.

The scientific method is a cornerstone of science and this is why it is important to teach it to kids. This concept is generally taught to children during the 4 th , 5 th, or 6 th grade. The scientific method can help these kids to develop critical thinking and to give them the tools required to solve complex problems.

How to Use the Scientific Method and How to Design an Experiment Using the Scientific Method? An Example Applied to Drug Discovery

The scientific method can be applied to answer various questions related to biology, psychology, sociology, etc. Here, we have already explained all the steps constituting the scientific method and their respective order. Let’s now see a fictional example to show how the scientific method can be applied to solve complex problems in the pharmaceutical industry.

Step1: What is a Scientific Question?

Let’s say that a chemist is looking for new drugs that could be used in the pharmaceutical industry. The initial question could be something like “Is there a better treatment to control the blood pressure of patients?”. This is a good example showing how the rigorous application of the scientific method can answer a complex question.

Step 2: Literature research

The scientist will then proceed to an extensive literature search and gather all the information available for the active molecules already used as treatments. During his research, the chemist noticed a molecule that could be chemically transformed to alter its structure. In addition, the structure of the original molecule is available, and bio-informatics analysis indicates that the modification would occur in the active site of the molecule.

Step 3: What is an Example of a Hypothesis, How to Write a Hypothesis, and What is a Prediction in Science?

The scientist, therefore, emits the hypothesis that this modification could increase the efficiency of the treatment. He then predicts that the modification of the molecule will increase its binding to receptors located on the surface of blood vessels and that it will reduce blood pressure and side effects.

Step 4: Experiment and data collection

In vitro experiments.

The scientist decides to first test his hypothesis by measuring how the alteration of the active molecule can affect its capacity to bind the receptor. He will use purified molecules from either the original formula or the altered version of the molecule. Then, he will measure the binding capacity of the molecules towards their target receptor in a test tube.

In Vivo Experiments

To assess the biological properties of the newly identified molecule, the scientist will next use animals to analyze how the molecule can affect a complex organism such as rats. This is a complex experiment that needs to be designed properly in order to draw the right conclusions. The scientist decides to use obese rats that are prone to high blood pressure to test the efficiency of his new drug. Three groups will be monitored. The first group will be obese rats receiving no treatment at all. The second will contain animals receiving the original form of the molecule whereas the third will be administered the new molecule.

The experiment must be performed in controlled conditions

In order to be valid, the experiment needs to be performed in controlled conditions. To consider additional factors that might introduce a bias during data analysis, the groups compared must be homogeneous. Many factors can influence data interpretation and to make sure to draw the right conclusions, the scientist decides to use only male rats of approximately the same age. The blood pressure of these animals will then be monitored over the weeks and blood samples will be taken to reveal changes in its content.

Step 5: Data analysis

The results obtained during data collection can be presented in various graphical representations. For instance, the strength of the binding exhibited by these different molecules can be easily compared in a simple bar chart. The blood pressure measurements for each group can be presented as a function of time since the beginning of the treatment in a scatter plot. In addition, a trend line or regression line can be drawn on the graph to emphasize the various trends exhibited by each group of animals.

Step 6: Validation of the hypothesis

Once the different scientific experiments are performed, the scientist will be able to re-examine the initial hypothesis. If the methodology was appropriate and the influence of external factors was reduced to a minimum, the scientist will then be able to use his data and analysis to validate or invalidate his initial hypothesis.

In this example, the scientist will conclude that the modification of an existing molecule used to regulate blood pressure can increase its efficiency in comparison with the original drug. However, a major limitation of this study is that it was performed on an animal model. One could therefore ask if this newly identified molecule would be equally efficient on human patients. As you can see, the application of the scientific method for this research raised another important question, which can then be addressed by other scientists.

Step 7: Publication and peer review

In order to benefit the entire scientific community, a scientist must publish his findings. First, the scientist will first write an article summarizing his research project. He can then submit his article to a scientific journal where it will be reviewed by peers to ensure the quality of the results before their publication. Once the results are published, they can be accessible to the whole scientific community and can be cited in the work of other scientists. Altogether, this process allows the expansion of knowledge in a particular scientific field.

The Scientific Method – A Short Quiz

Question 1: classify these steps of the scientific method in the right order.

  • Literature search
  • Ask a question
  • Publication
  • Data analysis
  • Validation of the hypothesis
  • Formulation of the hypothesis and predictions

A) 2-3-7-1-5-6-4

B) 3-2-7-1-5-6-4

C) 3-2-7-1-5-4-6

D) 2-3-7-1-5-4-6

Question 2: To be able to draw valid conclusions, a scientist must use a methodology that…

  • Generate reproducible data
  • Can appropriately test the hypothesis
  • Is precise enough to distinguish between conditions
  • Is performed in a controlled environment

B) 1, 2 and 3

C) 2, 3 and 4

D) 1, 2, 3 and 4

Question 3: True or false. A scientific study is invalid and cannot be published if the hypothesis was wrong.

B) False   

Now that you know the different steps of the scientific method, what do you think about this reasoning process? Don’t be shy and share your thoughts with us in the comment section below!

Check my previous post to see how to experiment with light refraction through a prism!

1- Wikipedia – The history of the scientific method

2- Aristotle, considered the inventor of the scientific methods – Posterior Analytics

3- Wikipedia – Scientific method

Images created using logomakr.com

  • Scientific method

Be the first to comment

Leave a reply cancel reply.

Your email address will not be published.

Save my name, email, and website in this browser for the next time I comment.

Copyright © 2024 | WordPress Theme by MH Themes

What Are The Steps Of The Scientific Method?

Julia Simkus

Editor at Simply Psychology

BA (Hons) Psychology, Princeton University

Julia Simkus is a graduate of Princeton University with a Bachelor of Arts in Psychology. She is currently studying for a Master's Degree in Counseling for Mental Health and Wellness in September 2023. Julia's research has been published in peer reviewed journals.

Learn about our Editorial Process

Saul Mcleod, PhD

Editor-in-Chief for Simply Psychology

BSc (Hons) Psychology, MRes, PhD, University of Manchester

Saul Mcleod, PhD., is a qualified psychology teacher with over 18 years of experience in further and higher education. He has been published in peer-reviewed journals, including the Journal of Clinical Psychology.

Olivia Guy-Evans, MSc

Associate Editor for Simply Psychology

BSc (Hons) Psychology, MSc Psychology of Education

Olivia Guy-Evans is a writer and associate editor for Simply Psychology. She has previously worked in healthcare and educational sectors.

On This Page:

Science is not just knowledge. It is also a method for obtaining knowledge. Scientific understanding is organized into theories.

The scientific method is a step-by-step process used by researchers and scientists to determine if there is a relationship between two or more variables. Psychologists use this method to conduct psychological research, gather data, process information, and describe behaviors.

It involves careful observation, asking questions, formulating hypotheses, experimental testing, and refining hypotheses based on experimental findings.

How it is Used

The scientific method can be applied broadly in science across many different fields, such as chemistry, physics, geology, and psychology. In a typical application of this process, a researcher will develop a hypothesis, test this hypothesis, and then modify the hypothesis based on the outcomes of the experiment.

The process is then repeated with the modified hypothesis until the results align with the observed phenomena. Detailed steps of the scientific method are described below.

Keep in mind that the scientific method does not have to follow this fixed sequence of steps; rather, these steps represent a set of general principles or guidelines.

7 Steps of the Scientific Method

Psychology uses an empirical approach.

Empiricism (founded by John Locke) states that the only source of knowledge comes through our senses – e.g., sight, hearing, touch, etc.

Empirical evidence does not rely on argument or belief. Thus, empiricism is the view that all knowledge is based on or may come from direct observation and experience.

The empiricist approach of gaining knowledge through experience quickly became the scientific approach and greatly influenced the development of physics and chemistry in the 17th and 18th centuries.

Steps of the Scientific Method

Step 1: Make an Observation (Theory Construction)

Every researcher starts at the very beginning. Before diving in and exploring something, one must first determine what they will study – it seems simple enough!

By making observations, researchers can establish an area of interest. Once this topic of study has been chosen, a researcher should review existing literature to gain insight into what has already been tested and determine what questions remain unanswered.

This assessment will provide helpful information about what has already been comprehended about the specific topic and what questions remain, and if one can go and answer them.

Specifically, a literature review might implicate examining a substantial amount of documented material from academic journals to books dating back decades. The most appropriate information gathered by the researcher will be shown in the introduction section or abstract of the published study results.

The background material and knowledge will help the researcher with the first significant step in conducting a psychology study, which is formulating a research question.

This is the inductive phase of the scientific process. Observations yield information that is used to formulate theories as explanations. A theory is a well-developed set of ideas that propose an explanation for observed phenomena.

Inductive reasoning moves from specific premises to a general conclusion. It starts with observations of phenomena in the natural world and derives a general law.

Step 2: Ask a Question

Once a researcher has made observations and conducted background research, the next step is to ask a scientific question. A scientific question must be defined, testable, and measurable.

A useful approach to develop a scientific question is: “What is the effect of…?” or “How does X affect Y?”

To answer an experimental question, a researcher must identify two variables: the independent and dependent variables.

The independent variable is the variable manipulated (the cause), and the dependent variable is the variable being measured (the effect).

An example of a research question could be, “Is handwriting or typing more effective for retaining information?” Answering the research question and proposing a relationship between the two variables is discussed in the next step.

Step 3: Form a Hypothesis (Make Predictions)

A hypothesis is an educated guess about the relationship between two or more variables. A hypothesis is an attempt to answer your research question based on prior observation and background research. Theories tend to be too complex to be tested all at once; instead, researchers create hypotheses to test specific aspects of a theory.

For example, a researcher might ask about the connection between sleep and educational performance. Do students who get less sleep perform worse on tests at school?

It is crucial to think about different questions one might have about a particular topic to formulate a reasonable hypothesis. It would help if one also considered how one could investigate the causalities.

It is important that the hypothesis is both testable against reality and falsifiable. This means that it can be tested through an experiment and can be proven wrong.

The falsification principle, proposed by Karl Popper , is a way of demarcating science from non-science. It suggests that for a theory to be considered scientific, it must be able to be tested and conceivably proven false.

To test a hypothesis, we first assume that there is no difference between the populations from which the samples were taken. This is known as the null hypothesis and predicts that the independent variable will not influence the dependent variable.

Examples of “if…then…” Hypotheses:

  • If one gets less than 6 hours of sleep, then one will do worse on tests than if one obtains more rest.
  • If one drinks lots of water before going to bed, one will have to use the bathroom often at night.
  • If one practices exercising and lighting weights, then one’s body will begin to build muscle.

The research hypothesis is often called the alternative hypothesis and predicts what change(s) will occur in the dependent variable when the independent variable is manipulated.

It states that the results are not due to chance and that they are significant in terms of supporting the theory being investigated.

Although one could state and write a scientific hypothesis in many ways, hypotheses are usually built like “if…then…” statements.

Step 4: Run an Experiment (Gather Data)

The next step in the scientific method is to test your hypothesis and collect data. A researcher will design an experiment to test the hypothesis and gather data that will either support or refute the hypothesis.

The exact research methods used to examine a hypothesis depend on what is being studied. A psychologist might utilize two primary forms of research, experimental research, and descriptive research.

The scientific method is objective in that researchers do not let preconceived ideas or biases influence the collection of data and is systematic in that experiments are conducted in a logical way.

Experimental Research

Experimental research is used to investigate cause-and-effect associations between two or more variables. This type of research systematically controls an independent variable and measures its effect on a specified dependent variable.

Experimental research involves manipulating an independent variable and measuring the effect(s) on the dependent variable. Repeating the experiment multiple times is important to confirm that your results are accurate and consistent.

One of the significant advantages of this method is that it permits researchers to determine if changes in one variable cause shifts in each other.

While experiments in psychology typically have many moving parts (and can be relatively complex), an easy investigation is rather fundamental. Still, it does allow researchers to specify cause-and-effect associations between variables.

Most simple experiments use a control group, which involves those who do not receive the treatment, and an experimental group, which involves those who do receive the treatment.

An example of experimental research would be when a pharmaceutical company wants to test a new drug. They give one group a placebo (control group) and the other the actual pill (experimental group).

Descriptive Research

Descriptive research is generally used when it is challenging or even impossible to control the variables in question. Examples of descriptive analysis include naturalistic observation, case studies , and correlation studies .

One example of descriptive research includes phone surveys that marketers often use. While they typically do not allow researchers to identify cause and effect, correlational studies are quite common in psychology research. They make it possible to spot associations between distinct variables and measure the solidity of those relationships.

Step 5: Analyze the Data and Draw Conclusions

Once a researcher has designed and done the investigation and collected sufficient data, it is time to inspect this gathered information and judge what has been found. Researchers can summarize the data, interpret the results, and draw conclusions based on this evidence using analyses and statistics.

Upon completion of the experiment, you can collect your measurements and analyze the data using statistics. Based on the outcomes, you will either reject or confirm your hypothesis.

Analyze the Data

So, how does a researcher determine what the results of their study mean? Statistical analysis can either support or refute a researcher’s hypothesis and can also be used to determine if the conclusions are statistically significant.

When outcomes are said to be “statistically significant,” it is improbable that these results are due to luck or chance. Based on these observations, investigators must then determine what the results mean.

An experiment will support a hypothesis in some circumstances, but sometimes it fails to be truthful in other cases.

What occurs if the developments of a psychology investigation do not endorse the researcher’s hypothesis? It does mean that the study was worthless. Simply because the findings fail to defend the researcher’s hypothesis does not mean that the examination is not helpful or instructive.

This kind of research plays a vital role in supporting scientists in developing unexplored questions and hypotheses to investigate in the future. After decisions have been made, the next step is to communicate the results with the rest of the scientific community.

This is an integral part of the process because it contributes to the general knowledge base and can assist other scientists in finding new research routes to explore.

If the hypothesis is not supported, a researcher should acknowledge the experiment’s results, formulate a new hypothesis, and develop a new experiment.

We must avoid any reference to results proving a theory as this implies 100% certainty, and there is always a chance that evidence may exist that could refute a theory.

Draw Conclusions and Interpret the Data

When the empirical observations disagree with the hypothesis, a number of possibilities must be considered. It might be that the theory is incorrect, in which case it needs altering, so it fully explains the data.

Alternatively, it might be that the hypothesis was poorly derived from the original theory, in which case the scientists were expecting the wrong thing to happen.

It might also be that the research was poorly conducted, or used an inappropriate method, or there were factors in play that the researchers did not consider. This will begin the process of the scientific method again.

If the hypothesis is supported, the researcher can find more evidence to support their hypothesis or look for counter-evidence to strengthen their hypothesis further.

In either scenario, the researcher should share their results with the greater scientific community.

Step 6: Share Your Results

One of the final stages of the research cycle involves the publication of the research. Once the report is written, the researcher(s) may submit the work for publication in an appropriate journal.

Usually, this is done by writing up a study description and publishing the article in a professional or academic journal. The studies and conclusions of psychological work can be seen in peer-reviewed journals such as  Developmental Psychology , Psychological Bulletin, the  Journal of Social Psychology, and numerous others.

Scientists should report their findings by writing up a description of their study and any subsequent findings. This enables other researchers to build upon the present research or replicate the results.

As outlined by the American Psychological Association (APA), there is a typical structure of a journal article that follows a specified format. In these articles, researchers:

  • Supply a brief narrative and background on previous research
  • Give their hypothesis
  • Specify who participated in the study and how they were chosen
  • Provide operational definitions for each variable
  • Explain the measures and methods used to collect data
  • Describe how the data collected was interpreted
  • Discuss what the outcomes mean

A detailed record of psychological studies and all scientific studies is vital to clearly explain the steps and procedures used throughout the study. So that other researchers can try this experiment too and replicate the results.

The editorial process utilized by academic and professional journals guarantees that each submitted article undergoes a thorough peer review to help assure that the study is scientifically sound. Once published, the investigation becomes another piece of the current puzzle of our knowledge “base” on that subject.

This last step is important because all results, whether they supported or did not support the hypothesis, can contribute to the scientific community. Publication of empirical observations leads to more ideas that are tested against the real world, and so on. In this sense, the scientific process is circular.

The editorial process utilized by academic and professional journals guarantees that each submitted article undergoes a thorough peer review to help assure that the study is scientifically sound.

Once published, the investigation becomes another piece of the current puzzle of our knowledge “base” on that subject.

By replicating studies, psychologists can reduce errors, validate theories, and gain a stronger understanding of a particular topic.

Step 7: Repeat the Scientific Method (Iteration)

Now, if one’s hypothesis turns out to be accurate, find more evidence or find counter-evidence. If one’s hypothesis is false, create a new hypothesis or try again.

One may wish to revise their first hypothesis to make a more niche experiment to design or a different specific question to test.

The amazingness of the scientific method is that it is a comprehensive and straightforward process that scientists, and everyone, can utilize over and over again.

So, draw conclusions and repeat because the scientific method is never-ending, and no result is ever considered perfect.

The scientific method is a process of:

  • Making an observation.
  • Forming a hypothesis.
  • Making a prediction.
  • Experimenting to test the hypothesis.

The procedure of repeating the scientific method is crucial to science and all fields of human knowledge.

Further Information

  • Karl Popper – Falsification
  • Thomas – Kuhn Paradigm Shift
  • Positivism in Sociology: Definition, Theory & Examples
  • Is Psychology a Science?
  • Psychology as a Science (PDF)

List the 6 steps of the scientific methods in order

  • Make an observation (theory construction)
  • Ask a question. A scientific question must be defined, testable, and measurable.
  • Form a hypothesis (make predictions)
  • Run an experiment to test the hypothesis (gather data)
  • Analyze the data and draw conclusions
  • Share your results so that other researchers can make new hypotheses

What is the first step of the scientific method?

The first step of the scientific method is making an observation. This involves noticing and describing a phenomenon or group of phenomena that one finds interesting and wishes to explain.

Observations can occur in a natural setting or within the confines of a laboratory. The key point is that the observation provides the initial question or problem that the rest of the scientific method seeks to answer or solve.

What is the scientific method?

The scientific method is a step-by-step process that investigators can follow to determine if there is a causal connection between two or more variables.

Psychologists and other scientists regularly suggest motivations for human behavior. On a more casual level, people judge other people’s intentions, incentives, and actions daily.

While our standard assessments of human behavior are subjective and anecdotal, researchers use the scientific method to study psychology objectively and systematically.

All utilize a scientific method to study distinct aspects of people’s thinking and behavior. This process allows scientists to analyze and understand various psychological phenomena, but it also provides investigators and others a way to disseminate and debate the results of their studies.

The outcomes of these studies are often noted in popular media, which leads numerous to think about how or why researchers came to the findings they did.

Why Use the Six Steps of the Scientific Method

The goal of scientists is to understand better the world that surrounds us. Scientific research is the most critical tool for navigating and learning about our complex world.

Without it, we would be compelled to rely solely on intuition, other people’s power, and luck. We can eliminate our preconceived concepts and superstitions through methodical scientific research and gain an objective sense of ourselves and our world.

All psychological studies aim to explain, predict, and even control or impact mental behaviors or processes. So, psychologists use and repeat the scientific method (and its six steps) to perform and record essential psychological research.

So, psychologists focus on understanding behavior and the cognitive (mental) and physiological (body) processes underlying behavior.

In the real world, people use to understand the behavior of others, such as intuition and personal experience. The hallmark of scientific research is evidence to support a claim.

Scientific knowledge is empirical, meaning it is grounded in objective, tangible evidence that can be observed repeatedly, regardless of who is watching.

The scientific method is crucial because it minimizes the impact of bias or prejudice on the experimenter. Regardless of how hard one tries, even the best-intentioned scientists can’t escape discrimination. can’t

It stems from personal opinions and cultural beliefs, meaning any mortal filters data based on one’s experience. Sadly, this “filtering” process can cause a scientist to favor one outcome over another.

For an everyday person trying to solve a minor issue at home or work, succumbing to these biases is not such a big deal; in fact, most times, it is important.

But in the scientific community, where results must be inspected and reproduced, bias or discrimination must be avoided.

When to Use the Six Steps of the Scientific Method ?

One can use the scientific method anytime, anywhere! From the smallest conundrum to solving global problems, it is a process that can be applied to any science and any investigation.

Even if you are not considered a “scientist,” you will be surprised to know that people of all disciplines use it for all kinds of dilemmas.

Try to catch yourself next time you come by a question and see how you subconsciously or consciously use the scientific method.

Print Friendly, PDF & Email

Scientific Methods

What is scientific method.

The Scientific method is a process with the help of which scientists try to investigate, verify, or construct an accurate and reliable version of any natural phenomena. They are done by creating an objective framework for the purpose of scientific inquiry and analysing the results scientifically to come to a conclusion that either supports or contradicts the observation made at the beginning.

Scientific Method Steps

The aim of all scientific methods is the same, that is, to analyse the observation made at the beginning. Still, various steps are adopted per the requirement of any given observation. However, there is a generally accepted sequence of steps in scientific methods.

Scientific Method

  • Observation and formulation of a question:  This is the first step of a scientific method. To start one, an observation has to be made into any observable aspect or phenomena of the universe, and a question needs to be asked about that aspect. For example, you can ask, “Why is the sky black at night? or “Why is air invisible?”
  • Data Collection and Hypothesis:  The next step involved in the scientific method is to collect all related data and formulate a hypothesis based on the observation. The hypothesis could be the cause of the phenomena, its effect, or its relation to any other phenomena.
  • Testing the hypothesis:  After the hypothesis is made, it needs to be tested scientifically. Scientists do this by conducting experiments. The aim of these experiments is to determine whether the hypothesis agrees with or contradicts the observations made in the real world. The confidence in the hypothesis increases or decreases based on the result of the experiments.
  • Analysis and Conclusion:  This step involves the use of proper mathematical and other scientific procedures to determine the results of the experiment. Based on the analysis, the future course of action can be determined. If the data found in the analysis is consistent with the hypothesis, it is accepted. If not, then it is rejected or modified and analysed again.

It must be remembered that a hypothesis cannot be proved or disproved by doing one experiment. It needs to be done repeatedly until there are no discrepancies in the data and the result. When there are no discrepancies and the hypothesis is proved, it is accepted as a ‘theory’.

Scientific Method Examples

Following is an example of the scientific method:

Growing bean plants:

  • What is the purpose: The main purpose of this experiment is to know where the bean plant should be kept inside or outside to check the growth rate and also set the time frame as four weeks.
  • Construction of hypothesis: The hypothesis used is that the bean plant can grow anywhere if the scientific methods are used.
  • Executing the hypothesis and collecting the data: Four bean plants are planted in identical pots using the same soil. Two are placed inside, and the other two are placed outside. Parameters like the amount of exposure to sunlight, and amount of water all are the same. After the completion of four weeks, all four plant sizes are measured.
  • Analyse the data:  While analysing the data, the average height of plants should be taken into account from both places to determine which environment is more suitable for growing the bean plants.
  • Conclusion:  The conclusion is drawn after analyzing the data.
  • Results:  Results can be reported in the form of a tabular form.

Frequently Asked Questions – FAQs

What is scientific method, what is hypothesis, give an example of a simple hypothesis., define complex hypothesis., what are the steps of the scientific method, what is the aim of scientific methods, state true or false: observation and formulation of a question is the third step of scientific method, explain the step: analysis and conclusion..

PHYSICS Related Links

Leave a Comment Cancel reply

Your Mobile number and Email id will not be published. Required fields are marked *

Request OTP on Voice Call

Post My Comment

scientific method experiment definition

Register with BYJU'S & Download Free PDFs

Register with byju's & watch live videos.

IMAGES

  1. Scientific Method: Definition and Examples

    scientific method experiment definition

  2. The scientific method is a process for experimentation

    scientific method experiment definition

  3. Formula for Using the Scientific Method

    scientific method experiment definition

  4. Scientific Method

    scientific method experiment definition

  5. Scientific Method

    scientific method experiment definition

  6. Experiment Definition in Science

    scientific method experiment definition

VIDEO

  1. Scientific Method for Research​​ #reseach #study

  2. Scientific Method| Research and Scientific Methods| Steps of Scientific Method| Definitions

  3. How can we help students better learn science? What I’ve learned from my mistakes…

  4. Scientific Method for Research #design #reseach #study

  5. Cece Loves Science

  6. scientific method

COMMENTS

  1. Scientific method

    scientific method, mathematical and experimental technique employed in the sciences. More specifically, it is the technique used in the construction and testing of a scientific hypothesis. The process of observing, asking questions, and seeking answers through tests and experiments is not unique to any one field of science.

  2. Scientific Method: Definition and Examples

    The scientific method is a series of steps followed by scientific investigators to answer specific questions about the natural world. It involves making observations, formulating a hypothesis, and conducting scientific experiments. Scientific inquiry starts with an observation followed by the formulation of a question about what has been ...

  3. What is the Scientific Method: How does it work and why is it important

    The scientific method is a systematic process involving steps like defining questions, forming hypotheses, conducting experiments, and analyzing data. It minimizes biases and enables replicable research, leading to groundbreaking discoveries like Einstein's theory of relativity, penicillin, and the structure of DNA.

  4. The scientific method (article)

    The scientific method. At the core of biology and other sciences lies a problem-solving approach called the scientific method. The scientific method has five basic steps, plus one feedback step: Make an observation. Ask a question. Form a hypothesis, or testable explanation. Make a prediction based on the hypothesis.

  5. Steps of the Scientific Method

    The scientific method was not invented by any one person, but is the outcome of centuries of debate about how best to find out how the natural world works. ... But scientists always strive to keep to the core principles of the scientific method by using observations, experiments, and data to support or reject explanations of how a phenomenon ...

  6. Scientific method

    The scientific method is an empirical method for acquiring knowledge that has characterized the development of science since at least the 17th century. The scientific method involves careful observation coupled with rigorous scepticism, because cognitive assumptions can distort the interpretation of the observation.Scientific inquiry includes creating a hypothesis through inductive reasoning ...

  7. Scientific Method

    Definition. The scientific method is a series of processes that people can use to gather knowledge about the world around them, improve that knowledge, and attempt to explain why and/or how things occur. This method involves making observations, forming questions, making hypotheses, doing an experiment, analyzing the data, and forming a conclusion.

  8. The scientific method (article)

    The scientific method is a systematic approach to problem-solving, and it's the backbone of scientific inquiry in physics, just as it is in the rest of science. In this article, we'll discuss the steps of the scientific method and how they are used, from forming hypotheses to conducting controlled experiments. Let's embark on this journey to ...

  9. Science and the scientific method: Definitions and examples

    True to this definition, science aims for measurable results through testing and analysis, a process known as the scientific method. Science is based on fact, not opinion or preferences. The ...

  10. The scientific method (video)

    The scientific method. The scientific method is a logical approach to understanding the world. It starts with an observation, followed by a question. A testable explanation or hypothesis is then created. An experiment is designed to test the hypothesis, and based on the results, the hypothesis is refined.

  11. Scientific method Definition & Meaning

    The meaning of SCIENTIFIC METHOD is principles and procedures for the systematic pursuit of knowledge involving the recognition and formulation of a problem, the collection of data through observation and experiment, and the formulation and testing of hypotheses.

  12. Experiment Definition in Science

    Experiment Definition in Science. By definition, an experiment is a procedure that tests a hypothesis. A hypothesis, in turn, is a prediction of cause and effect or the predicted outcome of changing one factor of a situation. Both the hypothesis and experiment are components of the scientific method. The steps of the scientific method are:

  13. The Scientific Method: What Is It?

    The scientific method is a systematic way of conducting experiments or studies so that you can explore the world around you and answer questions using reason and evidence. It's a step-by-step ...

  14. Scientific Method

    The scientific method, developed during the Scientific Revolution (1500-1700), changed theoretical philosophy into practical science when experiments to demonstrate observable results were used to confirm, adjust, or deny specific hypotheses. Experimental results were then shared and critically reviewed by peers until universal laws could be made.

  15. Scientific Method: Steps and Applications

    The scientific method is a framework of techniques and questions that scientists use to investigate phenomena with the aim of making scientific discoveries simple and reproducible. It's been loosely observed by experimenters going as far back as the 4th century BC, but the first properly formalized scientific method was coined during the ...

  16. What Is The Scientific Method and How Does It Work?

    The scientific method is the process of objectively establishing facts through testing and experimentation. The basic process involves making an observation, forming a hypothesis, making a prediction, conducting an experiment and finally analyzing the results. The principals of the scientific method can be applied in many areas, including ...

  17. The 6 Scientific Method Steps and How to Use Them

    The number of steps varies, but the process begins with an observation, progresses through an experiment, and concludes with analysis and sharing data. One of the most important pieces to the scientific method is skepticism —the goal is to find truth, not to confirm a particular thought. That requires reevaluation and repeated experimentation ...

  18. Biology and the scientific method review

    Meaning. Biology. The study of living things. Observation. Noticing and describing events in an orderly way. Hypothesis. A scientific explanation that can be tested through experimentation or observation. Controlled experiment. An experiment in which only one variable is changed.

  19. Scientific Method

    The six steps of the scientific method are as follows: 1. Come Up with a Question, 2. Gather Background Research, 3. Make a Hypothesis, 4. Design an Experiment, 5. Analyze the Data, and 6. Form a ...

  20. Scientific Method: Definition, Steps, Examples, Uses

    There are seven steps of the scientific method such as: Make an observation. Ask a question. Background research/ Research the topic. Formulate a hypothesis. Conduct an experiment to test the hypothesis. Data record and analysis. Draw a conclusion. 1.

  21. What is the Scientific Method: Steps, Definition, and Examples

    Step 2- Literature search. Step 3- Formulation of the hypothesis and predictions. Step 4- Experimental design, scientific experiment, and data collection. Step 5- Data analysis. Step 6- Hypothesis validation or invalidation, and formulation of new related questions. Step 7- Sharing the scientific discoveries: publication and peer review.

  22. What Are The Steps Of The Scientific Method?

    The scientific method is a process that includes several steps: First, an observation or question arises about a phenomenon. Then a hypothesis is formulated to explain the phenomenon, which is used to make predictions about other related occurrences or to predict the results of new observations quantitatively. Finally, these predictions are put to the test through experiments or further ...

  23. Scientific Method

    Scientific Method Examples. Following is an example of the scientific method: Growing bean plants: What is the purpose: The main purpose of this experiment is to know where the bean plant should be kept inside or outside to check the growth rate and also set the time frame as four weeks. Construction of hypothesis: The hypothesis used is that ...