Control Group vs. Experimental Group: Everything You Need To Know About The Difference Between Control Group And Experimental Group

As someone who is deeply interested in the field of research, you may have heard the terms control group and experimental group thrown around a lot. If you’re not very familiar with these terms, it can be daunting to determine the role they play in research and why they are so important. In layman’s terms, a control group is a group that does not receive any experimental treatment and is used as a benchmark for the group that does receive the treatment. Meanwhile, the experimental group is a group that receives the treatment and is compared to the control group that does not receive the treatment. To put it simply, the main difference between a control group and an experimental group is whether or not they receive the experimental treatment.

Table of Contents

What Is Control Group?

A control group is a group in an experiment that does not receive the experimental treatment and is used as a comparison for the group that does receive the treatment. It is a critical aspect of experimental research to determine whether the treatment caused the outcome rather than another factor. The control group ensures that any observed effects can be attributed to the treatment and not a result of other variables. The quality of the control group can affect the validity of the experiment. Therefore, researchers must carefully design and select participants for the control group to ensure that it accurately represents the population and provides meaningful results. Overall, control groups are essential to gain accurate and reliable results in experimental research.

What Is Experimental Group?

Key differences between control group and experimental group, control group vs. experimental group similarities.

The control group and experimental group are two essential components of any research study. The main similarity between these groups is that they are both used to assess the effects of a treatment or intervention. The control group is intended to provide a baseline measurement of the outcomes that are expected in the absence of the intervention. In contrast, the experimental group is exposed to the intervention or treatment and is observed for any changes or improvements in outcomes. In summary, both groups serve as comparisons for one another, and their use increases the credibility and validity of research findings.

Control Group vs. Experimental Group Pros and Cons

Control group pros & cons, control group pros, control group cons, experimental group pros & cons, experimental group pros.

The Experimental Group, in scientific studies and experimentation, is a group that receives the experimental treatment and is compared to a control group that does not receive the treatment. There are several advantages or pros of this group. First, the experimental group allows researchers to determine the effectiveness of a new treatment or procedure. Second, it helps in identifying side effects of the treatment on the subjects. Third, it provides clear evidence regarding the cause and effect relationships between variables. Additionally, the experimental group enables researchers to validate their findings and test the hypothesis. These benefits make the Experimental Group essential in accurately assessing the effectiveness of new treatments or procedures.

Experimental Group Cons

Comparison table: 5 key differences between control group and experimental group.

PurposeUsed as a comparison to the experimental groupReceives the intervention being tested
TreatmentReceives no intervention or a placeboReceives the treatment being tested
RandomizationRandomly selected from the population being studiedRandomly selected from the population being studied
Sample SizeLarge enough to provide statistical powerLarge enough to provide statistical power
AnalysisStatistical analysis is performed to compare outcomesStatistical analysis is performed to compare outcomes

Comparison Chart

Comparison video, conclusion: what is the difference between control group and experimental group.

Control Group vs. Experimental Group: Everything You Need To Know About The Difference Between Control Group And Experimental Group

Federation vs. Confederation: Everything You Need To Know About The Difference Between Federation And Confederation

Control Group vs. Experimental Group: Everything You Need To Know About The Difference Between Control Group And Experimental Group

Farthest vs. Furthest: Everything You Need To Know About The Difference Between Farthest And Furthest

Miralax vs. Colace: Everything You Need To Know About The Difference Between Miralax And Colace

Miralax vs. Colace: Everything You Need To Know About The Difference Between Miralax And Colace

Dulcolax vs. Miralax: Everything You Need To Know About The Difference Between Dulcolax And Miralax

Dulcolax vs. Miralax: Everything You Need To Know About The Difference Between Dulcolax And Miralax

Adh vs. Aldosterone: Everything You Need To Know About The Difference Between Adh And Aldosterone

Adh vs. Aldosterone: Everything You Need To Know About The Difference Between Adh And Aldosterone

Chromebook vs. Laptop: Everything You Need To Know About The Difference Between Chromebook And Laptop

Chromebook vs. Laptop: Everything You Need To Know About The Difference Between Chromebook And Laptop

Leave a reply cancel reply, add difference 101 to your homescreen.

The Psychology Institute

The Importance of Experimental and Control Groups in Research Design

control group and experimental group similarities

Table of Contents

Have you ever wondered how scientists ensure the treatments or interventions they study actually cause the outcomes they observe? The secret lies in their research design, specifically in the use of experimental and control group s. These groups are the backbone of psychological experiments, and they play a critical role in helping researchers determine the effectiveness of new therapies, the impact of social changes, or the potential benefits of education al programs.

Understanding experimental and control groups

At the heart of any psychological experiment, you’ll find two key components: the experimental group and the control group . The experimental group consists of participants who receive the treatment or experience the manipulation that the researchers are testing. In contrast, the control group does not receive the treatment or experience the manipulation. By comparing these two groups, researchers can isolate the effects of the treatment from other factors that might influence the outcomes.

Why control groups matter

Control groups serve as a benchmark for comparison. Imagine a study exploring the effects of a new educational program on student performance. Without a control group, which continues with the standard curriculum, it would be difficult to conclude whether observed improvements in the experimental group were due to the new program or other variables like maturation, the placebo effect, or even seasonal changes.

The power of random assignment

Random assignment is the process of allocating participants to either the experimental or control group by chance. This method is crucial because it helps balance out any pre-existing differences between group members. For instance, if one group inadvertently had more participants with a natural aptitude for the subject matter, it would skew the results. Random assignment minimizes this risk, leading to more reliable and valid findings.

Controlling for extraneous variables

Extraneous variables are factors other than the independent variable that might affect the dependent variable. These can include participant characteristics, environmental conditions, and researchers’ biases. Effective research design, with well-structured experimental and control groups, helps control these extraneous variables, ensuring that the treatment is the only difference between the groups.

Types of extraneous variables

Different types of extraneous variables can threaten the validity of an experiment. Some common examples include:

  • Participant variables: Differences in participants’ age, gender, or background.
  • Situational variables: Variations in the environment where the experiment takes place, such as time of day or room temperature.
  • Researcher variables: The researcher’s behavior or expectations influencing the results.

Strategies to control extraneous variables

Researchers can use several strategies to control for extraneous variables, such as:

  • Standardization: Keeping procedures consistent for all participants.
  • Blinding: Preventing participants or researchers from knowing who is in the experimental or control group.
  • Matching: Pairing participants in the experimental and control groups based on certain characteristics.

Enhancing validity through comparisons

Validity refers to the accuracy of an experiment’s results. By comparing the experimental group to the control group, researchers can strengthen the validity of their findings. This comparison helps to ensure that the changes observed in the experimental group are indeed due to the treatment and not some other factor.

Internal versus external validity

Internal validity is the degree to which an experiment accurately establishes a cause-and-effect relationship between the treatment and the observed outcome. External validity, on the other hand, is the extent to which the results can be generalized to other settings, populations, or times. Both types of validity are crucial for the overall credibility of the research.

Improving validity with control groups

Control groups help improve both internal and external validity. For internal validity , they provide a baseline to measure the treatment’s effect. For external validity, if the control group is representative of the wider population, the findings are more likely to hold true in real-world settings.

Real-world implications of experimental and control groups

The use of experimental and control groups extends far beyond the laboratory. In the real world, these research designs inform public policy, healthcare decisions, educational reforms, and more. By rigorously testing new interventions against control conditions, researchers can make evidence-based recommendations that have the potential to improve countless lives.

Examples of experimental research in action

Consider the following scenarios where experimental and control groups have made a significant impact:

  • Medical trials: Testing new medications or treatments to ensure they are both safe and effective before they are approved for public use.
  • Education: Evaluating the effectiveness of new teaching methods or curricula to enhance student learning outcomes.
  • Psychology: Investigating the efficacy of different therapeutic approaches for mental health conditions.

Challenges and ethical considerations

While experimental and control groups are powerful tools, they also come with challenges and ethical considerations. Researchers must navigate issues such as participant consent, the potential for harm, and the equitable distribution of the treatment under study.

Experimental and control groups are the cornerstone of rigorous psychological research. They allow scientists to draw meaningful conclusions about cause and effect, control for extraneous variables, and enhance the validity of their findings. As a result, this research design is not just an academic exercise; it has profound implications for our understanding of human behavior and the improvement of society.

What do you think? How might the principles of experimental and control groups be applied to evaluate the effectiveness of decisions in your own life? Can you think of a situation where a control group might have given you clearer insights into the results of your actions?

How useful was this post?

Click on a star to rate it!

Average rating 0 / 5. Vote count: 0

No votes so far! Be the first to rate this post.

We are sorry that this post was not useful for you!

Let us improve this post!

Tell us how we can improve this post?

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

Submit Comment

Research Methods in Psychology

1 Introduction to Psychological Research – Objectives and Goals, Problems, Hypothesis and Variables

  • Nature of Psychological Research
  • The Context of Discovery
  • Context of Justification
  • Characteristics of Psychological Research
  • Goals and Objectives of Psychological Research

2 Introduction to Psychological Experiments and Tests

  • Independent and Dependent Variables
  • Extraneous Variables
  • Experimental and Control Groups
  • Introduction of Test
  • Types of Psychological Test
  • Uses of Psychological Tests

3 Steps in Research

  • Research Process
  • Identification of the Problem
  • Review of Literature
  • Formulating a Hypothesis
  • Identifying Manipulating and Controlling Variables
  • Formulating a Research Design
  • Constructing Devices for Observation and Measurement
  • Sample Selection and Data Collection
  • Data Analysis and Interpretation
  • Hypothesis Testing
  • Drawing Conclusion

4 Types of Research and Methods of Research

  • Historical Research
  • Descriptive Research
  • Correlational Research
  • Qualitative Research
  • Ex-Post Facto Research
  • True Experimental Research
  • Quasi-Experimental Research

5 Definition and Description Research Design, Quality of Research Design

  • Research Design
  • Purpose of Research Design
  • Design Selection
  • Criteria of Research Design
  • Qualities of Research Design

6 Experimental Design (Control Group Design and Two Factor Design)

  • Experimental Design
  • Control Group Design
  • Two Factor Design

7 Survey Design

  • Survey Research Designs
  • Steps in Survey Design
  • Structuring and Designing the Questionnaire
  • Interviewing Methodology
  • Data Analysis
  • Final Report

8 Single Subject Design

  • Single Subject Design: Definition and Meaning
  • Phases Within Single Subject Design
  • Requirements of Single Subject Design
  • Characteristics of Single Subject Design
  • Types of Single Subject Design
  • Advantages of Single Subject Design
  • Disadvantages of Single Subject Design

9 Observation Method

  • Definition and Meaning of Observation
  • Characteristics of Observation
  • Types of Observation
  • Advantages and Disadvantages of Observation
  • Guides for Observation Method

10 Interview and Interviewing

  • Definition of Interview
  • Types of Interview
  • Aspects of Qualitative Research Interviews
  • Interview Questions
  • Convergent Interviewing as Action Research
  • Research Team

11 Questionnaire Method

  • Definition and Description of Questionnaires
  • Types of Questionnaires
  • Purpose of Questionnaire Studies
  • Designing Research Questionnaires
  • The Methods to Make a Questionnaire Efficient
  • The Types of Questionnaire to be Included in the Questionnaire
  • Advantages and Disadvantages of Questionnaire
  • When to Use a Questionnaire?

12 Case Study

  • Definition and Description of Case Study Method
  • Historical Account of Case Study Method
  • Designing Case Study
  • Requirements for Case Studies
  • Guideline to Follow in Case Study Method
  • Other Important Measures in Case Study Method
  • Case Reports

13 Report Writing

  • Purpose of a Report
  • Writing Style of the Report
  • Report Writing – the Do’s and the Don’ts
  • Format for Report in Psychology Area
  • Major Sections in a Report

14 Review of Literature

  • Purposes of Review of Literature
  • Sources of Review of Literature
  • Types of Literature
  • Writing Process of the Review of Literature
  • Preparation of Index Card for Reviewing and Abstracting

15 Methodology

  • Definition and Purpose of Methodology
  • Participants (Sample)
  • Apparatus and Materials

16 Result, Analysis and Discussion of the Data

  • Definition and Description of Results
  • Statistical Presentation
  • Tables and Figures

17 Summary and Conclusion

  • Summary Definition and Description
  • Guidelines for Writing a Summary
  • Writing the Summary and Choosing Words
  • A Process for Paraphrasing and Summarising
  • Summary of a Report
  • Writing Conclusions

18 References in Research Report

  • Reference List (the Format)
  • References (Process of Writing)
  • Reference List and Print Sources
  • Electronic Sources
  • Book on CD Tape and Movie
  • Reference Specifications
  • General Guidelines to Write References

Share on Mastodon

Experimental Design: Types, Examples & Methods

Saul McLeod, PhD

Editor-in-Chief for Simply Psychology

BSc (Hons) Psychology, MRes, PhD, University of Manchester

Saul McLeod, PhD., is a qualified psychology teacher with over 18 years of experience in further and higher education. He has been published in peer-reviewed journals, including the Journal of Clinical Psychology.

Learn about our Editorial Process

Olivia Guy-Evans, MSc

Associate Editor for Simply Psychology

BSc (Hons) Psychology, MSc Psychology of Education

Olivia Guy-Evans is a writer and associate editor for Simply Psychology. She has previously worked in healthcare and educational sectors.

On This Page:

Experimental design refers to how participants are allocated to different groups in an experiment. Types of design include repeated measures, independent groups, and matched pairs designs.

Probably the most common way to design an experiment in psychology is to divide the participants into two groups, the experimental group and the control group, and then introduce a change to the experimental group, not the control group.

The researcher must decide how he/she will allocate their sample to the different experimental groups.  For example, if there are 10 participants, will all 10 participants participate in both groups (e.g., repeated measures), or will the participants be split in half and take part in only one group each?

Three types of experimental designs are commonly used:

1. Independent Measures

Independent measures design, also known as between-groups , is an experimental design where different participants are used in each condition of the independent variable.  This means that each condition of the experiment includes a different group of participants.

This should be done by random allocation, ensuring that each participant has an equal chance of being assigned to one group.

Independent measures involve using two separate groups of participants, one in each condition. For example:

Independent Measures Design 2

  • Con : More people are needed than with the repeated measures design (i.e., more time-consuming).
  • Pro : Avoids order effects (such as practice or fatigue) as people participate in one condition only.  If a person is involved in several conditions, they may become bored, tired, and fed up by the time they come to the second condition or become wise to the requirements of the experiment!
  • Con : Differences between participants in the groups may affect results, for example, variations in age, gender, or social background.  These differences are known as participant variables (i.e., a type of extraneous variable ).
  • Control : After the participants have been recruited, they should be randomly assigned to their groups. This should ensure the groups are similar, on average (reducing participant variables).

2. Repeated Measures Design

Repeated Measures design is an experimental design where the same participants participate in each independent variable condition.  This means that each experiment condition includes the same group of participants.

Repeated Measures design is also known as within-groups or within-subjects design .

  • Pro : As the same participants are used in each condition, participant variables (i.e., individual differences) are reduced.
  • Con : There may be order effects. Order effects refer to the order of the conditions affecting the participants’ behavior.  Performance in the second condition may be better because the participants know what to do (i.e., practice effect).  Or their performance might be worse in the second condition because they are tired (i.e., fatigue effect). This limitation can be controlled using counterbalancing.
  • Pro : Fewer people are needed as they participate in all conditions (i.e., saves time).
  • Control : To combat order effects, the researcher counter-balances the order of the conditions for the participants.  Alternating the order in which participants perform in different conditions of an experiment.

Counterbalancing

Suppose we used a repeated measures design in which all of the participants first learned words in “loud noise” and then learned them in “no noise.”

We expect the participants to learn better in “no noise” because of order effects, such as practice. However, a researcher can control for order effects using counterbalancing.

The sample would be split into two groups: experimental (A) and control (B).  For example, group 1 does ‘A’ then ‘B,’ and group 2 does ‘B’ then ‘A.’ This is to eliminate order effects.

Although order effects occur for each participant, they balance each other out in the results because they occur equally in both groups.

counter balancing

3. Matched Pairs Design

A matched pairs design is an experimental design where pairs of participants are matched in terms of key variables, such as age or socioeconomic status. One member of each pair is then placed into the experimental group and the other member into the control group .

One member of each matched pair must be randomly assigned to the experimental group and the other to the control group.

matched pairs design

  • Con : If one participant drops out, you lose 2 PPs’ data.
  • Pro : Reduces participant variables because the researcher has tried to pair up the participants so that each condition has people with similar abilities and characteristics.
  • Con : Very time-consuming trying to find closely matched pairs.
  • Pro : It avoids order effects, so counterbalancing is not necessary.
  • Con : Impossible to match people exactly unless they are identical twins!
  • Control : Members of each pair should be randomly assigned to conditions. However, this does not solve all these problems.

Experimental design refers to how participants are allocated to an experiment’s different conditions (or IV levels). There are three types:

1. Independent measures / between-groups : Different participants are used in each condition of the independent variable.

2. Repeated measures /within groups : The same participants take part in each condition of the independent variable.

3. Matched pairs : Each condition uses different participants, but they are matched in terms of important characteristics, e.g., gender, age, intelligence, etc.

Learning Check

Read about each of the experiments below. For each experiment, identify (1) which experimental design was used; and (2) why the researcher might have used that design.

1 . To compare the effectiveness of two different types of therapy for depression, depressed patients were assigned to receive either cognitive therapy or behavior therapy for a 12-week period.

The researchers attempted to ensure that the patients in the two groups had similar severity of depressed symptoms by administering a standardized test of depression to each participant, then pairing them according to the severity of their symptoms.

2 . To assess the difference in reading comprehension between 7 and 9-year-olds, a researcher recruited each group from a local primary school. They were given the same passage of text to read and then asked a series of questions to assess their understanding.

3 . To assess the effectiveness of two different ways of teaching reading, a group of 5-year-olds was recruited from a primary school. Their level of reading ability was assessed, and then they were taught using scheme one for 20 weeks.

At the end of this period, their reading was reassessed, and a reading improvement score was calculated. They were then taught using scheme two for a further 20 weeks, and another reading improvement score for this period was calculated. The reading improvement scores for each child were then compared.

4 . To assess the effect of the organization on recall, a researcher randomly assigned student volunteers to two conditions.

Condition one attempted to recall a list of words that were organized into meaningful categories; condition two attempted to recall the same words, randomly grouped on the page.

Experiment Terminology

Ecological validity.

The degree to which an investigation represents real-life experiences.

Experimenter effects

These are the ways that the experimenter can accidentally influence the participant through their appearance or behavior.

Demand characteristics

The clues in an experiment lead the participants to think they know what the researcher is looking for (e.g., the experimenter’s body language).

Independent variable (IV)

The variable the experimenter manipulates (i.e., changes) is assumed to have a direct effect on the dependent variable.

Dependent variable (DV)

Variable the experimenter measures. This is the outcome (i.e., the result) of a study.

Extraneous variables (EV)

All variables which are not independent variables but could affect the results (DV) of the experiment. Extraneous variables should be controlled where possible.

Confounding variables

Variable(s) that have affected the results (DV), apart from the IV. A confounding variable could be an extraneous variable that has not been controlled.

Random Allocation

Randomly allocating participants to independent variable conditions means that all participants should have an equal chance of taking part in each condition.

The principle of random allocation is to avoid bias in how the experiment is carried out and limit the effects of participant variables.

Order effects

Changes in participants’ performance due to their repeating the same or similar test more than once. Examples of order effects include:

(i) practice effect: an improvement in performance on a task due to repetition, for example, because of familiarity with the task;

(ii) fatigue effect: a decrease in performance of a task due to repetition, for example, because of boredom or tiredness.

Print Friendly, PDF & Email

If you're seeing this message, it means we're having trouble loading external resources on our website.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

To log in and use all the features of Khan Academy, please enable JavaScript in your browser.

Biology archive

Course: biology archive   >   unit 1.

  • The scientific method

Controlled experiments

  • The scientific method and experimental design

control group and experimental group similarities

Introduction

How are hypotheses tested.

  • One pot of seeds gets watered every afternoon.
  • The other pot of seeds doesn't get any water at all.

Control and experimental groups

Independent and dependent variables, independent variables, dependent variables, variability and repetition, controlled experiment case study: co 2 ‍   and coral bleaching.

  • What your control and experimental groups would be
  • What your independent and dependent variables would be
  • What results you would predict in each group

Experimental setup

  • Some corals were grown in tanks of normal seawater, which is not very acidic ( pH ‍   around 8.2 ‍   ). The corals in these tanks served as the control group .
  • Other corals were grown in tanks of seawater that were more acidic than usual due to addition of CO 2 ‍   . One set of tanks was medium-acidity ( pH ‍   about 7.9 ‍   ), while another set was high-acidity ( pH ‍   about 7.65 ‍   ). Both the medium-acidity and high-acidity groups were experimental groups .
  • In this experiment, the independent variable was the acidity ( pH ‍   ) of the seawater. The dependent variable was the degree of bleaching of the corals.
  • The researchers used a large sample size and repeated their experiment. Each tank held 5 ‍   fragments of coral, and there were 5 ‍   identical tanks for each group (control, medium-acidity, and high-acidity). Note: None of these tanks was "acidic" on an absolute scale. That is, the pH ‍   values were all above the neutral pH ‍   of 7.0 ‍   . However, the two groups of experimental tanks were moderately and highly acidic to the corals , that is, relative to their natural habitat of plain seawater.

Analyzing the results

Non-experimental hypothesis tests, case study: coral bleaching and temperature, attribution:, works cited:.

  • Hoegh-Guldberg, O. (1999). Climate change, coral bleaching, and the future of the world's coral reefs. Mar. Freshwater Res. , 50 , 839-866. Retrieved from www.reef.edu.au/climate/Hoegh-Guldberg%201999.pdf.
  • Anthony, K. R. N., Kline, D. I., Diaz-Pulido, G., Dove, S., and Hoegh-Guldberg, O. (2008). Ocean acidification causes bleaching and productivity loss in coral reef builders. PNAS , 105 (45), 17442-17446. http://dx.doi.org/10.1073/pnas.0804478105 .
  • University of California Museum of Paleontology. (2016). Misconceptions about science. In Understanding science . Retrieved from http://undsci.berkeley.edu/teaching/misconceptions.php .
  • Hoegh-Guldberg, O. and Smith, G. J. (1989). The effect of sudden changes in temperature, light and salinity on the density and export of zooxanthellae from the reef corals Stylophora pistillata (Esper, 1797) and Seriatopora hystrix (Dana, 1846). J. Exp. Mar. Biol. Ecol. , 129 , 279-303. Retrieved from http://www.reef.edu.au/ohg/res-pic/HG%20papers/HG%20and%20Smith%201989%20BLEACH.pdf .

Additional references:

Want to join the conversation.

  • Upvote Button navigates to signup page
  • Downvote Button navigates to signup page
  • Flag Button navigates to signup page

Great Answer

Control Group

  • Reference work entry
  • First Online: 01 January 2020
  • Cite this reference work entry

control group and experimental group similarities

  • Sven Hilbert 3 , 4 , 5  

25 Accesses

A control group is one of multiple groups in an experimental treatment study, used as a baseline for the estimation of the effect of interest in the other groups.

Introduction

Experimental treatment studies are designed to estimate the effect of a particular treatment on one or more variables. Typically, the variables of interest are observed before and after treatment to detect changes that occurred in between. The two observations of the variables are called pretest and posttest to indicate their temporal position before and after the treatment. However, any differences between pre- and posttest need not be caused by the treatment. Therefore, experimental treatment studies use at least two groups: the experimental group receives the treatment while the control group does not. The effect of the treatment can be estimated by comparing the change observed in the treatment group with the change observed in the control group.

Treatment Groups as Independent Variables in an...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save.

  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Available as EPUB and PDF
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Author information

Authors and affiliations.

Department of Psychology, Psychological Methods and Assessment, Münich, Germany

Sven Hilbert

Faculty of Psychology, Educational Science, and Sport Science, University of Regensburg, Regensburg, Germany

Psychological Methods and Assessment, LMU Munich, Munich, Germany

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Sven Hilbert .

Editor information

Editors and affiliations.

Oakland University, Rochester, MI, USA

Virgil Zeigler-Hill

Todd K. Shackelford

Section Editor information

Humboldt University, Germany, Berlin, Germany

Matthias Ziegler

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Cite this entry.

Hilbert, S. (2020). Control Group. In: Zeigler-Hill, V., Shackelford, T.K. (eds) Encyclopedia of Personality and Individual Differences. Springer, Cham. https://doi.org/10.1007/978-3-319-24612-3_1290

Download citation

DOI : https://doi.org/10.1007/978-3-319-24612-3_1290

Published : 22 April 2020

Publisher Name : Springer, Cham

Print ISBN : 978-3-319-24610-9

Online ISBN : 978-3-319-24612-3

eBook Packages : Behavioral Science and Psychology Reference Module Humanities and Social Sciences Reference Module Business, Economics and Social Sciences

Share this entry

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

Encyclopedia Britannica

  • History & Society
  • Science & Tech
  • Biographies
  • Animals & Nature
  • Geography & Travel
  • Arts & Culture
  • Games & Quizzes
  • On This Day
  • One Good Fact
  • New Articles
  • Lifestyles & Social Issues
  • Philosophy & Religion
  • Politics, Law & Government
  • World History
  • Health & Medicine
  • Browse Biographies
  • Birds, Reptiles & Other Vertebrates
  • Bugs, Mollusks & Other Invertebrates
  • Environment
  • Fossils & Geologic Time
  • Entertainment & Pop Culture
  • Sports & Recreation
  • Visual Arts
  • Demystified
  • Image Galleries
  • Infographics
  • Top Questions
  • Britannica Kids
  • Saving Earth
  • Space Next 50
  • Student Center
  • When did science begin?
  • Where was science invented?

Blackboard inscribed with scientific formulas and calculations in physics and mathematics

control group

Our editors will review what you’ve submitted and determine whether to revise the article.

  • Verywell Mind - What Is a Control Group?
  • National Center for Biotechnology Information - PubMed Central - Control Group Design: Enhancing Rigor in Research of Mind-Body Therapies for Depression

control group , the standard to which comparisons are made in an experiment. Many experiments are designed to include a control group and one or more experimental groups; in fact, some scholars reserve the term experiment for study designs that include a control group. Ideally, the control group and the experimental groups are identical in every way except that the experimental groups are subjected to treatments or interventions believed to have an effect on the outcome of interest while the control group is not. Inclusion of a control group greatly strengthens researchers’ ability to draw conclusions from a study. Indeed, only in the presence of a control group can a researcher determine whether a treatment under investigation truly has a significant effect on an experimental group, and the possibility of making an erroneous conclusion is reduced. See also scientific method .

A typical use of a control group is in an experiment in which the effect of a treatment is unknown and comparisons between the control group and the experimental group are used to measure the effect of the treatment. For instance, in a pharmaceutical study to determine the effectiveness of a new drug on the treatment of migraines , the experimental group will be administered the new drug and the control group will be administered a placebo (a drug that is inert, or assumed to have no effect). Each group is then given the same questionnaire and asked to rate the effectiveness of the drug in relieving symptoms . If the new drug is effective, the experimental group is expected to have a significantly better response to it than the control group. Another possible design is to include several experimental groups, each of which is given a different dosage of the new drug, plus one control group. In this design, the analyst will compare results from each of the experimental groups to the control group. This type of experiment allows the researcher to determine not only if the drug is effective but also the effectiveness of different dosages. In the absence of a control group, the researcher’s ability to draw conclusions about the new drug is greatly weakened, due to the placebo effect and other threats to validity. Comparisons between the experimental groups with different dosages can be made without including a control group, but there is no way to know if any of the dosages of the new drug are more or less effective than the placebo.

It is important that every aspect of the experimental environment be as alike as possible for all subjects in the experiment. If conditions are different for the experimental and control groups, it is impossible to know whether differences between groups are actually due to the difference in treatments or to the difference in environment. For example, in the new migraine drug study, it would be a poor study design to administer the questionnaire to the experimental group in a hospital setting while asking the control group to complete it at home. Such a study could lead to a misleading conclusion, because differences in responses between the experimental and control groups could have been due to the effect of the drug or could have been due to the conditions under which the data were collected. For instance, perhaps the experimental group received better instructions or was more motivated by being in the hospital setting to give accurate responses than the control group.

In non-laboratory and nonclinical experiments, such as field experiments in ecology or economics , even well-designed experiments are subject to numerous and complex variables that cannot always be managed across the control group and experimental groups. Randomization, in which individuals or groups of individuals are randomly assigned to the treatment and control groups, is an important tool to eliminate selection bias and can aid in disentangling the effects of the experimental treatment from other confounding factors. Appropriate sample sizes are also important.

A control group study can be managed in two different ways. In a single-blind study, the researcher will know whether a particular subject is in the control group, but the subject will not know. In a double-blind study , neither the subject nor the researcher will know which treatment the subject is receiving. In many cases, a double-blind study is preferable to a single-blind study, since the researcher cannot inadvertently affect the results or their interpretation by treating a control subject differently from an experimental subject.

Back Home

  • Science Notes Posts
  • Contact Science Notes
  • Todd Helmenstine Biography
  • Anne Helmenstine Biography
  • Free Printable Periodic Tables (PDF and PNG)
  • Periodic Table Wallpapers
  • Interactive Periodic Table
  • Periodic Table Posters
  • Science Experiments for Kids
  • How to Grow Crystals
  • Chemistry Projects
  • Fire and Flames Projects
  • Holiday Science
  • Chemistry Problems With Answers
  • Physics Problems
  • Unit Conversion Example Problems
  • Chemistry Worksheets
  • Biology Worksheets
  • Periodic Table Worksheets
  • Physical Science Worksheets
  • Science Lab Worksheets
  • My Amazon Books

Control Group Definition and Examples

Control Group in an Experiment

The control group is the set of subjects that does not receive the treatment in a study. In other words, it is the group where the independent variable is held constant. This is important because the control group is a baseline for measuring the effects of a treatment in an experiment or study. A controlled experiment is one which includes one or more control groups.

  • The experimental group experiences a treatment or change in the independent variable. In contrast, the independent variable is constant in the control group.
  • A control group is important because it allows meaningful comparison. The researcher compares the experimental group to it to assess whether or not there is a relationship between the independent and dependent variable and the magnitude of the effect.
  • There are different types of control groups. A controlled experiment has one more control group.

Control Group vs Experimental Group

The only difference between the control group and experimental group is that subjects in the experimental group receive the treatment being studied, while participants in the control group do not. Otherwise, all other variables between the two groups are the same.

Control Group vs Control Variable

A control group is not the same thing as a control variable. A control variable or controlled variable is any factor that is held constant during an experiment. Examples of common control variables include temperature, duration, and sample size. The control variables are the same for both the control and experimental groups.

Types of Control Groups

There are different types of control groups:

  • Placebo group : A placebo group receives a placebo , which is a fake treatment that resembles the treatment in every respect except for the active ingredient. Both the placebo and treatment may contain inactive ingredients that produce side effects. Without a placebo group, these effects might be attributed to the treatment.
  • Positive control group : A positive control group has conditions that guarantee a positive test result. The positive control group demonstrates an experiment is capable of producing a positive result. Positive controls help researchers identify problems with an experiment.
  • Negative control group : A negative control group consists of subjects that are not exposed to a treatment. For example, in an experiment looking at the effect of fertilizer on plant growth, the negative control group receives no fertilizer.
  • Natural control group : A natural control group usually is a set of subjects who naturally differ from the experimental group. For example, if you compare the effects of a treatment on women who have had children, the natural control group includes women who have not had children. Non-smokers are a natural control group in comparison to smokers.
  • Randomized control group : The subjects in a randomized control group are randomly selected from a larger pool of subjects. Often, subjects are randomly assigned to either the control or experimental group. Randomization reduces bias in an experiment. There are different methods of randomly assigning test subjects.

Control Group Examples

Here are some examples of different control groups in action:

Negative Control and Placebo Group

For example, consider a study of a new cancer drug. The experimental group receives the drug. The placebo group receives a placebo, which contains the same ingredients as the drug formulation, minus the active ingredient. The negative control group receives no treatment. The reason for including the negative group is because the placebo group experiences some level of placebo effect, which is a response to experiencing some form of false treatment.

Positive and Negative Controls

For example, consider an experiment looking at whether a new drug kills bacteria. The experimental group exposes bacterial cultures to the drug. If the group survives, the drug is ineffective. If the group dies, the drug is effective.

The positive control group has a culture of bacteria that carry a drug resistance gene. If the bacteria survive drug exposure (as intended), then it shows the growth medium and conditions allow bacterial growth. If the positive control group dies, it indicates a problem with the experimental conditions. A negative control group of bacteria lacking drug resistance should die. If the negative control group survives, something is wrong with the experimental conditions.

  • Bailey, R. A. (2008).  Design of Comparative Experiments . Cambridge University Press. ISBN 978-0-521-68357-9.
  • Chaplin, S. (2006). “The placebo response: an important part of treatment”.  Prescriber . 17 (5): 16–22. doi: 10.1002/psb.344
  • Hinkelmann, Klaus; Kempthorne, Oscar (2008).  Design and Analysis of Experiments, Volume I: Introduction to Experimental Design  (2nd ed.). Wiley. ISBN 978-0-471-72756-9.
  • Pithon, M.M. (2013). “Importance of the control group in scientific research.” Dental Press J Orthod . 18 (6):13-14. doi: 10.1590/s2176-94512013000600003
  • Stigler, Stephen M. (1992). “A Historical View of Statistical Concepts in Psychology and Educational Research”. American Journal of Education . 101 (1): 60–70. doi: 10.1086/444032

Related Posts

  • Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Sweepstakes
  • Guided Meditations
  • Verywell Mind Insights
  • 2024 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

Experimental Group in Psychology Experiments

In a randomized and controlled psychology experiment , the researchers are examining the impact of an experimental condition on a group of participants (does the independent variable 'X' cause a change in the dependent variable 'Y'?). To determine cause and effect, there must be at least two groups to compare, the experimental group and the control group.

The participants who are in the experimental condition are those who receive the treatment or intervention of interest. The data from their outcomes are collected and compared to the data from a group that did not receive the experimental treatment. The control group may have received no treatment at all, or they may have received a placebo treatment or the standard treatment in current practice.

Comparing the experimental group to the control group allows researchers to see how much of an impact the intervention had on the participants.

A Closer Look at Experimental Groups

Imagine that you want to do an experiment to determine if listening to music while working out can lead to greater weight loss. After getting together a group of participants, you randomly assign them to one of three groups. One group listens to upbeat music while working out, one group listens to relaxing music, and the third group listens to no music at all. All of the participants work out for the same amount of time and the same number of days each week.

In this experiment, the group of participants listening to no music while working out is the control group. They serve as a baseline with which to compare the performance of the other two groups. The other two groups in the experiment are the experimental groups.   They each receive some level of the independent variable, which in this case is listening to music while working out.

In this experiment, you find that the participants who listened to upbeat music experienced the greatest weight loss result, largely because those who listened to this type of music exercised with greater intensity than those in the other two groups. By comparing the results from your experimental groups with the results of the control group, you can more clearly see the impact of the independent variable.  

Some Things to Know

When it comes to using experimental groups in a psychology experiment, there are a few important things to know:

  • In order to determine the impact of an independent variable, it is important to have at least two different treatment conditions. This usually involves using a control group that receives no treatment against an experimental group that receives the treatment. However, there can also be a number of different experimental groups in the same experiment.
  • Care must be taken when assigning participants to groups. So how do researchers determine who is in the control group and who is in the experimental group? In an ideal situation, the researchers would use random assignment to place participants in groups. In random assignment, each individual stands an equal shot at being assigned to either group. Participants might be randomly assigned using methods such as a coin flip or a number draw. By using random assignment, researchers can help ensure that the groups are not unfairly stacked with people who share characteristics that might unfairly skew the results.
  • Variables must be well-defined. Before you begin manipulating things in an experiment, you need to have very clear operational definitions in place. These definitions clearly explain what your variables are, including exactly how you are manipulating the independent variable and exactly how you are measuring the outcomes.

A Word From Verywell

Experiments play an important role in the research process and allow psychologists to investigate cause-and-effect relationships between different variables. Having one or more experimental groups allows researchers to vary different levels or types of the experimental variable and then compare the effects of these changes against a control group. The goal of this experimental manipulation is to gain a better understanding of the different factors that may have an impact on how people think, feel, and act.

Byrd-Bredbenner C, Wu F, Spaccarotella K, Quick V, Martin-Biggers J, Zhang Y. Systematic review of control groups in nutrition education intervention research . Int J Behav Nutr Phys Act. 2017;14(1):91. doi:10.1186/s12966-017-0546-3

Steingrimsdottir HS, Arntzen E. On the utility of within-participant research design when working with patients with neurocognitive disorders . Clin Interv Aging. 2015;10:1189-1200. doi:10.2147/CIA.S81868

Oberste M, Hartig P, Bloch W, et al. Control group paradigms in studies investigating acute effects of exercise on cognitive performance—An experiment on expectation-driven placebo effects . Front Hum Neurosci. 2017;11:600. doi:10.3389/fnhum.2017.00600

Kim H. Statistical notes for clinical researchers: Analysis of covariance (ANCOVA) . Restor Dent Endod . 2018;43(4):e43. doi:10.5395/rde.2018.43.e43

Bate S, Karp NA. A common control group — Optimising the experiment design to maximise sensitivity . PLoS ONE. 2014;9(12):e114872. doi:10.1371/journal.pone.0114872

Myers A, Hansen C. Experimental Psychology . 7th Ed. Cengage Learning; 2012.

By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

Frequently asked questions

What’s the difference between a control group and an experimental group.

An experimental group, also known as a treatment group, receives the treatment whose effect researchers wish to study, whereas a control group does not. They should be identical in all other ways.

Frequently asked questions: Methodology

Quantitative observations involve measuring or counting something and expressing the result in numerical form, while qualitative observations involve describing something in non-numerical terms, such as its appearance, texture, or color.

To make quantitative observations , you need to use instruments that are capable of measuring the quantity you want to observe. For example, you might use a ruler to measure the length of an object or a thermometer to measure its temperature.

Scope of research is determined at the beginning of your research process , prior to the data collection stage. Sometimes called “scope of study,” your scope delineates what will and will not be covered in your project. It helps you focus your work and your time, ensuring that you’ll be able to achieve your goals and outcomes.

Defining a scope can be very useful in any research project, from a research proposal to a thesis or dissertation . A scope is needed for all types of research: quantitative , qualitative , and mixed methods .

To define your scope of research, consider the following:

  • Budget constraints or any specifics of grant funding
  • Your proposed timeline and duration
  • Specifics about your population of study, your proposed sample size , and the research methodology you’ll pursue
  • Any inclusion and exclusion criteria
  • Any anticipated control , extraneous , or confounding variables that could bias your research if not accounted for properly.

Inclusion and exclusion criteria are predominantly used in non-probability sampling . In purposive sampling and snowball sampling , restrictions apply as to who can be included in the sample .

Inclusion and exclusion criteria are typically presented and discussed in the methodology section of your thesis or dissertation .

The purpose of theory-testing mode is to find evidence in order to disprove, refine, or support a theory. As such, generalisability is not the aim of theory-testing mode.

Due to this, the priority of researchers in theory-testing mode is to eliminate alternative causes for relationships between variables . In other words, they prioritise internal validity over external validity , including ecological validity .

Convergent validity shows how much a measure of one construct aligns with other measures of the same or related constructs .

On the other hand, concurrent validity is about how a measure matches up to some known criterion or gold standard, which can be another measure.

Although both types of validity are established by calculating the association or correlation between a test score and another variable , they represent distinct validation methods.

Validity tells you how accurately a method measures what it was designed to measure. There are 4 main types of validity :

  • Construct validity : Does the test measure the construct it was designed to measure?
  • Face validity : Does the test appear to be suitable for its objectives ?
  • Content validity : Does the test cover all relevant parts of the construct it aims to measure.
  • Criterion validity : Do the results accurately measure the concrete outcome they are designed to measure?

Criterion validity evaluates how well a test measures the outcome it was designed to measure. An outcome can be, for example, the onset of a disease.

Criterion validity consists of two subtypes depending on the time at which the two measures (the criterion and your test) are obtained:

  • Concurrent validity is a validation strategy where the the scores of a test and the criterion are obtained at the same time
  • Predictive validity is a validation strategy where the criterion variables are measured after the scores of the test

Attrition refers to participants leaving a study. It always happens to some extent – for example, in randomised control trials for medical research.

Differential attrition occurs when attrition or dropout rates differ systematically between the intervention and the control group . As a result, the characteristics of the participants who drop out differ from the characteristics of those who stay in the study. Because of this, study results may be biased .

Criterion validity and construct validity are both types of measurement validity . In other words, they both show you how accurately a method measures something.

While construct validity is the degree to which a test or other measurement method measures what it claims to measure, criterion validity is the degree to which a test can predictively (in the future) or concurrently (in the present) measure something.

Construct validity is often considered the overarching type of measurement validity . You need to have face validity , content validity , and criterion validity in order to achieve construct validity.

Convergent validity and discriminant validity are both subtypes of construct validity . Together, they help you evaluate whether a test measures the concept it was designed to measure.

  • Convergent validity indicates whether a test that is designed to measure a particular construct correlates with other tests that assess the same or similar construct.
  • Discriminant validity indicates whether two tests that should not be highly related to each other are indeed not related. This type of validity is also called divergent validity .

You need to assess both in order to demonstrate construct validity. Neither one alone is sufficient for establishing construct validity.

Face validity and content validity are similar in that they both evaluate how suitable the content of a test is. The difference is that face validity is subjective, and assesses content at surface level.

When a test has strong face validity, anyone would agree that the test’s questions appear to measure what they are intended to measure.

For example, looking at a 4th grade math test consisting of problems in which students have to add and multiply, most people would agree that it has strong face validity (i.e., it looks like a math test).

On the other hand, content validity evaluates how well a test represents all the aspects of a topic. Assessing content validity is more systematic and relies on expert evaluation. of each question, analysing whether each one covers the aspects that the test was designed to cover.

A 4th grade math test would have high content validity if it covered all the skills taught in that grade. Experts(in this case, math teachers), would have to evaluate the content validity by comparing the test to the learning objectives.

Content validity shows you how accurately a test or other measurement method taps  into the various aspects of the specific construct you are researching.

In other words, it helps you answer the question: “does the test measure all aspects of the construct I want to measure?” If it does, then the test has high content validity.

The higher the content validity, the more accurate the measurement of the construct.

If the test fails to include parts of the construct, or irrelevant parts are included, the validity of the instrument is threatened, which brings your results into question.

Construct validity refers to how well a test measures the concept (or construct) it was designed to measure. Assessing construct validity is especially important when you’re researching concepts that can’t be quantified and/or are intangible, like introversion. To ensure construct validity your test should be based on known indicators of introversion ( operationalisation ).

On the other hand, content validity assesses how well the test represents all aspects of the construct. If some aspects are missing or irrelevant parts are included, the test has low content validity.

  • Discriminant validity indicates whether two tests that should not be highly related to each other are indeed not related

Construct validity has convergent and discriminant subtypes. They assist determine if a test measures the intended notion.

The reproducibility and replicability of a study can be ensured by writing a transparent, detailed method section and using clear, unambiguous language.

Reproducibility and replicability are related terms.

  • A successful reproduction shows that the data analyses were conducted in a fair and honest manner.
  • A successful replication shows that the reliability of the results is high.
  • Reproducing research entails reanalysing the existing data in the same manner.
  • Replicating (or repeating ) the research entails reconducting the entire analysis, including the collection of new data . 

Snowball sampling is a non-probability sampling method . Unlike probability sampling (which involves some form of random selection ), the initial individuals selected to be studied are the ones who recruit new participants.

Because not every member of the target population has an equal chance of being recruited into the sample, selection in snowball sampling is non-random.

Snowball sampling is a non-probability sampling method , where there is not an equal chance for every member of the population to be included in the sample .

This means that you cannot use inferential statistics and make generalisations – often the goal of quantitative research . As such, a snowball sample is not representative of the target population, and is usually a better fit for qualitative research .

Snowball sampling relies on the use of referrals. Here, the researcher recruits one or more initial participants, who then recruit the next ones. 

Participants share similar characteristics and/or know each other. Because of this, not every member of the population has an equal chance of being included in the sample, giving rise to sampling bias .

Snowball sampling is best used in the following cases:

  • If there is no sampling frame available (e.g., people with a rare disease)
  • If the population of interest is hard to access or locate (e.g., people experiencing homelessness)
  • If the research focuses on a sensitive topic (e.g., extra-marital affairs)

Stratified sampling and quota sampling both involve dividing the population into subgroups and selecting units from each subgroup. The purpose in both cases is to select a representative sample and/or to allow comparisons between subgroups.

The main difference is that in stratified sampling, you draw a random sample from each subgroup ( probability sampling ). In quota sampling you select a predetermined number or proportion of units, in a non-random manner ( non-probability sampling ).

Random sampling or probability sampling is based on random selection. This means that each unit has an equal chance (i.e., equal probability) of being included in the sample.

On the other hand, convenience sampling involves stopping people at random, which means that not everyone has an equal chance of being selected depending on the place, time, or day you are collecting your data.

Convenience sampling and quota sampling are both non-probability sampling methods. They both use non-random criteria like availability, geographical proximity, or expert knowledge to recruit study participants.

However, in convenience sampling, you continue to sample units or cases until you reach the required sample size.

In quota sampling, you first need to divide your population of interest into subgroups (strata) and estimate their proportions (quota) in the population. Then you can start your data collection , using convenience sampling to recruit participants, until the proportions in each subgroup coincide with the estimated proportions in the population.

A sampling frame is a list of every member in the entire population . It is important that the sampling frame is as complete as possible, so that your sample accurately reflects your population.

Stratified and cluster sampling may look similar, but bear in mind that groups created in cluster sampling are heterogeneous , so the individual characteristics in the cluster vary. In contrast, groups created in stratified sampling are homogeneous , as units share characteristics.

Relatedly, in cluster sampling you randomly select entire groups and include all units of each group in your sample. However, in stratified sampling, you select some units of all groups and include them in your sample. In this way, both methods can ensure that your sample is representative of the target population .

When your population is large in size, geographically dispersed, or difficult to contact, it’s necessary to use a sampling method .

This allows you to gather information from a smaller part of the population, i.e. the sample, and make accurate statements by using statistical analysis. A few sampling methods include simple random sampling , convenience sampling , and snowball sampling .

The two main types of social desirability bias are:

  • Self-deceptive enhancement (self-deception): The tendency to see oneself in a favorable light without realizing it.
  • Impression managemen t (other-deception): The tendency to inflate one’s abilities or achievement in order to make a good impression on other people.

Response bias refers to conditions or factors that take place during the process of responding to surveys, affecting the responses. One type of response bias is social desirability bias .

Demand characteristics are aspects of experiments that may give away the research objective to participants. Social desirability bias occurs when participants automatically try to respond in ways that make them seem likeable in a study, even if it means misrepresenting how they truly feel.

Participants may use demand characteristics to infer social norms or experimenter expectancies and act in socially desirable ways, so you should try to control for demand characteristics wherever possible.

A systematic review is secondary research because it uses existing research. You don’t collect new data yourself.

Ethical considerations in research are a set of principles that guide your research designs and practices. These principles include voluntary participation, informed consent, anonymity, confidentiality, potential for harm, and results communication.

Scientists and researchers must always adhere to a certain code of conduct when collecting data from others .

These considerations protect the rights of research participants, enhance research validity , and maintain scientific integrity.

Research ethics matter for scientific integrity, human rights and dignity, and collaboration between science and society. These principles make sure that participation in studies is voluntary, informed, and safe.

Research misconduct means making up or falsifying data, manipulating data analyses, or misrepresenting results in research reports. It’s a form of academic fraud.

These actions are committed intentionally and can have serious consequences; research misconduct is not a simple mistake or a point of disagreement but a serious ethical failure.

Anonymity means you don’t know who the participants are, while confidentiality means you know who they are but remove identifying information from your research report. Both are important ethical considerations .

You can only guarantee anonymity by not collecting any personally identifying information – for example, names, phone numbers, email addresses, IP addresses, physical characteristics, photos, or videos.

You can keep data confidential by using aggregate information in your research report, so that you only refer to groups of participants rather than individuals.

Peer review is a process of evaluating submissions to an academic journal. Utilising rigorous criteria, a panel of reviewers in the same subject area decide whether to accept each submission for publication.

For this reason, academic journals are often considered among the most credible sources you can use in a research project – provided that the journal itself is trustworthy and well regarded.

In general, the peer review process follows the following steps:

  • First, the author submits the manuscript to the editor.
  • Reject the manuscript and send it back to author, or
  • Send it onward to the selected peer reviewer(s)
  • Next, the peer review process occurs. The reviewer provides feedback, addressing any major or minor issues with the manuscript, and gives their advice regarding what edits should be made.
  • Lastly, the edited manuscript is sent back to the author. They input the edits, and resubmit it to the editor for publication.

Peer review can stop obviously problematic, falsified, or otherwise untrustworthy research from being published. It also represents an excellent opportunity to get feedback from renowned experts in your field.

It acts as a first defence, helping you ensure your argument is clear and that there are no gaps, vague terms, or unanswered questions for readers who weren’t involved in the research process.

Peer-reviewed articles are considered a highly credible source due to this stringent process they go through before publication.

Many academic fields use peer review , largely to determine whether a manuscript is suitable for publication. Peer review enhances the credibility of the published manuscript.

However, peer review is also common in non-academic settings. The United Nations, the European Union, and many individual nations use peer review to evaluate grant applications. It is also widely used in medical and health-related fields as a teaching or quality-of-care measure.

Peer assessment is often used in the classroom as a pedagogical tool. Both receiving feedback and providing it are thought to enhance the learning process, helping students think critically and collaboratively.

  • In a single-blind study , only the participants are blinded.
  • In a double-blind study , both participants and experimenters are blinded.
  • In a triple-blind study , the assignment is hidden not only from participants and experimenters, but also from the researchers analysing the data.

Blinding is important to reduce bias (e.g., observer bias , demand characteristics ) and ensure a study’s internal validity .

If participants know whether they are in a control or treatment group , they may adjust their behaviour in ways that affect the outcome that researchers are trying to measure. If the people administering the treatment are aware of group assignment, they may treat participants differently and thus directly or indirectly influence the final results.

Blinding means hiding who is assigned to the treatment group and who is assigned to the control group in an experiment .

Explanatory research is a research method used to investigate how or why something occurs when only a small amount of information is available pertaining to that topic. It can help you increase your understanding of a given topic.

Explanatory research is used to investigate how or why a phenomenon occurs. Therefore, this type of research is often one of the first stages in the research process , serving as a jumping-off point for future research.

Exploratory research is a methodology approach that explores research questions that have not previously been studied in depth. It is often used when the issue you’re studying is new, or the data collection process is challenging in some way.

Exploratory research is often used when the issue you’re studying is new or when the data collection process is challenging for some reason.

You can use exploratory research if you have a general idea or a specific question that you want to study but there is no preexisting knowledge or paradigm with which to study it.

To implement random assignment , assign a unique number to every member of your study’s sample .

Then, you can use a random number generator or a lottery method to randomly assign each number to a control or experimental group. You can also do so manually, by flipping a coin or rolling a die to randomly assign participants to groups.

Random selection, or random sampling , is a way of selecting members of a population for your study’s sample.

In contrast, random assignment is a way of sorting the sample into control and experimental groups.

Random sampling enhances the external validity or generalisability of your results, while random assignment improves the internal validity of your study.

Random assignment is used in experiments with a between-groups or independent measures design. In this research design, there’s usually a control group and one or more experimental groups. Random assignment helps ensure that the groups are comparable.

In general, you should always use random assignment in this type of experimental design when it is ethically possible and makes sense for your study topic.

Clean data are valid, accurate, complete, consistent, unique, and uniform. Dirty data include inconsistencies and errors.

Dirty data can come from any part of the research process, including poor research design , inappropriate measurement materials, or flawed data entry.

Data cleaning takes place between data collection and data analyses. But you can use some methods even before collecting data.

For clean data, you should start by designing measures that collect valid data. Data validation at the time of data entry or collection helps you minimize the amount of data cleaning you’ll need to do.

After data collection, you can use data standardisation and data transformation to clean your data. You’ll also deal with any missing values, outliers, and duplicate values.

Data cleaning involves spotting and resolving potential data inconsistencies or errors to improve your data quality. An error is any value (e.g., recorded weight) that doesn’t reflect the true value (e.g., actual weight) of something that’s being measured.

In this process, you review, analyse, detect, modify, or remove ‘dirty’ data to make your dataset ‘clean’. Data cleaning is also called data cleansing or data scrubbing.

Data cleaning is necessary for valid and appropriate analyses. Dirty data contain inconsistencies or errors , but cleaning your data helps you minimise or resolve these.

Without data cleaning, you could end up with a Type I or II error in your conclusion. These types of erroneous conclusions can be practically significant with important consequences, because they lead to misplaced investments or missed opportunities.

Observer bias occurs when a researcher’s expectations, opinions, or prejudices influence what they perceive or record in a study. It usually affects studies when observers are aware of the research aims or hypotheses. This type of research bias is also called detection bias or ascertainment bias .

The observer-expectancy effect occurs when researchers influence the results of their own study through interactions with participants.

Researchers’ own beliefs and expectations about the study results may unintentionally influence participants through demand characteristics .

You can use several tactics to minimise observer bias .

  • Use masking (blinding) to hide the purpose of your study from all observers.
  • Triangulate your data with different data collection methods or sources.
  • Use multiple observers and ensure inter-rater reliability.
  • Train your observers to make sure data is consistently recorded between them.
  • Standardise your observation procedures to make sure they are structured and clear.

Naturalistic observation is a valuable tool because of its flexibility, external validity , and suitability for topics that can’t be studied in a lab setting.

The downsides of naturalistic observation include its lack of scientific control , ethical considerations , and potential for bias from observers and subjects.

Naturalistic observation is a qualitative research method where you record the behaviours of your research subjects in real-world settings. You avoid interfering or influencing anything in a naturalistic observation.

You can think of naturalistic observation as ‘people watching’ with a purpose.

Closed-ended, or restricted-choice, questions offer respondents a fixed set of choices to select from. These questions are easier to answer quickly.

Open-ended or long-form questions allow respondents to answer in their own words. Because there are no restrictions on their choices, respondents can answer in ways that researchers may not have otherwise considered.

You can organise the questions logically, with a clear progression from simple to complex, or randomly between respondents. A logical flow helps respondents process the questionnaire easier and quicker, but it may lead to bias. Randomisation can minimise the bias from order effects.

Questionnaires can be self-administered or researcher-administered.

Self-administered questionnaires can be delivered online or in paper-and-pen formats, in person or by post. All questions are standardised so that all respondents receive the same questions with identical wording.

Researcher-administered questionnaires are interviews that take place by phone, in person, or online between researchers and respondents. You can gain deeper insights by clarifying questions for respondents or asking follow-up questions.

In a controlled experiment , all extraneous variables are held constant so that they can’t influence the results. Controlled experiments require:

  • A control group that receives a standard treatment, a fake treatment, or no treatment
  • Random assignment of participants to ensure the groups are equivalent

Depending on your study topic, there are various other methods of controlling variables .

A true experiment (aka a controlled experiment) always includes at least one control group that doesn’t receive the experimental treatment.

However, some experiments use a within-subjects design to test treatments without a control group. In these designs, you usually compare one group’s outcomes before and after a treatment (instead of comparing outcomes between different groups).

For strong internal validity , it’s usually best to include a control group if possible. Without a control group, it’s harder to be certain that the outcome was caused by the experimental treatment and not by other variables.

A questionnaire is a data collection tool or instrument, while a survey is an overarching research method that involves collecting and analysing data from people using questionnaires.

A Likert scale is a rating scale that quantitatively assesses opinions, attitudes, or behaviours. It is made up of four or more questions that measure a single attitude or trait when response scores are combined.

To use a Likert scale in a survey , you present participants with Likert-type questions or statements, and a continuum of items, usually with five or seven possible responses, to capture their degree of agreement.

Individual Likert-type questions are generally considered ordinal data , because the items have clear rank order, but don’t have an even distribution.

Overall Likert scale scores are sometimes treated as interval data. These scores are considered to have directionality and even spacing between them.

The type of data determines what statistical tests you should use to analyse your data.

A research hypothesis is your proposed answer to your research question. The research hypothesis usually includes an explanation (‘ x affects y because …’).

A statistical hypothesis, on the other hand, is a mathematical statement about a population parameter. Statistical hypotheses always come in pairs: the null and alternative hypotheses. In a well-designed study , the statistical hypotheses correspond logically to the research hypothesis.

A hypothesis states your predictions about what your research will find. It is a tentative answer to your research question that has not yet been tested. For some research projects, you might have to write several hypotheses that address different aspects of your research question.

A hypothesis is not just a guess. It should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations, and statistical analysis of data).

Cross-sectional studies are less expensive and time-consuming than many other types of study. They can provide useful insights into a population’s characteristics and identify correlations for further research.

Sometimes only cross-sectional data are available for analysis; other times your research question may only require a cross-sectional study to answer it.

Cross-sectional studies cannot establish a cause-and-effect relationship or analyse behaviour over a period of time. To investigate cause and effect, you need to do a longitudinal study or an experimental study .

Longitudinal studies and cross-sectional studies are two different types of research design . In a cross-sectional study you collect data from a population at a specific point in time; in a longitudinal study you repeatedly collect data from the same sample over an extended period of time.

Longitudinal study Cross-sectional study
observations Observations at a in time
Observes the multiple times Observes (a ‘cross-section’) in the population
Follows in participants over time Provides of society at a given point

Longitudinal studies are better to establish the correct sequence of events, identify changes over time, and provide insight into cause-and-effect relationships, but they also tend to be more expensive and time-consuming than other types of studies.

The 1970 British Cohort Study , which has collected data on the lives of 17,000 Brits since their births in 1970, is one well-known example of a longitudinal study .

Longitudinal studies can last anywhere from weeks to decades, although they tend to be at least a year long.

A correlation reflects the strength and/or direction of the association between two or more variables.

  • A positive correlation means that both variables change in the same direction.
  • A negative correlation means that the variables change in opposite directions.
  • A zero correlation means there’s no relationship between the variables.

A correlational research design investigates relationships between two variables (or more) without the researcher controlling or manipulating any of them. It’s a non-experimental type of quantitative research .

A correlation coefficient is a single number that describes the strength and direction of the relationship between your variables.

Different types of correlation coefficients might be appropriate for your data based on their levels of measurement and distributions . The Pearson product-moment correlation coefficient (Pearson’s r ) is commonly used to assess a linear relationship between two quantitative variables.

Controlled experiments establish causality, whereas correlational studies only show associations between variables.

  • In an experimental design , you manipulate an independent variable and measure its effect on a dependent variable. Other variables are controlled so they can’t impact the results.
  • In a correlational design , you measure variables without manipulating any of them. You can test whether your variables change together, but you can’t be sure that one variable caused a change in another.

In general, correlational research is high in external validity while experimental research is high in internal validity .

The third variable and directionality problems are two main reasons why correlation isn’t causation .

The third variable problem means that a confounding variable affects both variables to make them seem causally related when they are not.

The directionality problem is when two variables correlate and might actually have a causal relationship, but it’s impossible to conclude which variable causes changes in the other.

As a rule of thumb, questions related to thoughts, beliefs, and feelings work well in focus groups . Take your time formulating strong questions, paying special attention to phrasing. Be careful to avoid leading questions , which can bias your responses.

Overall, your focus group questions should be:

  • Open-ended and flexible
  • Impossible to answer with ‘yes’ or ‘no’ (questions that start with ‘why’ or ‘how’ are often best)
  • Unambiguous, getting straight to the point while still stimulating discussion
  • Unbiased and neutral

Social desirability bias is the tendency for interview participants to give responses that will be viewed favourably by the interviewer or other participants. It occurs in all types of interviews and surveys , but is most common in semi-structured interviews , unstructured interviews , and focus groups .

Social desirability bias can be mitigated by ensuring participants feel at ease and comfortable sharing their views. Make sure to pay attention to your own body language and any physical or verbal cues, such as nodding or widening your eyes.

This type of bias in research can also occur in observations if the participants know they’re being observed. They might alter their behaviour accordingly.

A focus group is a research method that brings together a small group of people to answer questions in a moderated setting. The group is chosen due to predefined demographic traits, and the questions are designed to shed light on a topic of interest. It is one of four types of interviews .

The four most common types of interviews are:

  • Structured interviews : The questions are predetermined in both topic and order.
  • Semi-structured interviews : A few questions are predetermined, but other questions aren’t planned.
  • Unstructured interviews : None of the questions are predetermined.
  • Focus group interviews : The questions are presented to a group instead of one individual.

An unstructured interview is the most flexible type of interview, but it is not always the best fit for your research topic.

Unstructured interviews are best used when:

  • You are an experienced interviewer and have a very strong background in your research topic, since it is challenging to ask spontaneous, colloquial questions
  • Your research question is exploratory in nature. While you may have developed hypotheses, you are open to discovering new or shifting viewpoints through the interview process.
  • You are seeking descriptive data, and are ready to ask questions that will deepen and contextualise your initial thoughts and hypotheses
  • Your research depends on forming connections with your participants and making them feel comfortable revealing deeper emotions, lived experiences, or thoughts

A semi-structured interview is a blend of structured and unstructured types of interviews. Semi-structured interviews are best used when:

  • You have prior interview experience. Spontaneous questions are deceptively challenging, and it’s easy to accidentally ask a leading question or make a participant uncomfortable.
  • Your research question is exploratory in nature. Participant answers can guide future research questions and help you develop a more robust knowledge base for future research.

The interviewer effect is a type of bias that emerges when a characteristic of an interviewer (race, age, gender identity, etc.) influences the responses given by the interviewee.

There is a risk of an interviewer effect in all types of interviews , but it can be mitigated by writing really high-quality interview questions.

A structured interview is a data collection method that relies on asking questions in a set order to collect data on a topic. They are often quantitative in nature. Structured interviews are best used when:

  • You already have a very clear understanding of your topic. Perhaps significant research has already been conducted, or you have done some prior research yourself, but you already possess a baseline for designing strong structured questions.
  • You are constrained in terms of time or resources and need to analyse your data quickly and efficiently
  • Your research question depends on strong parity between participants, with environmental conditions held constant

More flexible interview options include semi-structured interviews , unstructured interviews , and focus groups .

When conducting research, collecting original data has significant advantages:

  • You can tailor data collection to your specific research aims (e.g., understanding the needs of your consumers or user testing your website).
  • You can control and standardise the process for high reliability and validity (e.g., choosing appropriate measurements and sampling methods ).

However, there are also some drawbacks: data collection can be time-consuming, labour-intensive, and expensive. In some cases, it’s more efficient to use secondary data that has already been collected by someone else, but the data might be less reliable.

Data collection is the systematic process by which observations or measurements are gathered in research. It is used in many different contexts by academics, governments, businesses, and other organisations.

A mediator variable explains the process through which two variables are related, while a moderator variable affects the strength and direction of that relationship.

A confounder is a third variable that affects variables of interest and makes them seem related when they are not. In contrast, a mediator is the mechanism of a relationship between two variables: it explains the process by which they are related.

If something is a mediating variable :

  • It’s caused by the independent variable
  • It influences the dependent variable
  • When it’s taken into account, the statistical correlation between the independent and dependent variables is higher than when it isn’t considered

Including mediators and moderators in your research helps you go beyond studying a simple relationship between two variables for a fuller picture of the real world. They are important to consider when studying complex correlational or causal relationships.

Mediators are part of the causal pathway of an effect, and they tell you how or why an effect takes place. Moderators usually help you judge the external validity of your study by identifying the limitations of when the relationship between variables holds.

You can think of independent and dependent variables in terms of cause and effect: an independent variable is the variable you think is the cause , while a dependent variable is the effect .

In an experiment, you manipulate the independent variable and measure the outcome in the dependent variable. For example, in an experiment about the effect of nutrients on crop growth:

  • The  independent variable  is the amount of nutrients added to the crop field.
  • The  dependent variable is the biomass of the crops at harvest time.

Defining your variables, and deciding how you will manipulate and measure them, is an important part of experimental design .

Discrete and continuous variables are two types of quantitative variables :

  • Discrete variables represent counts (e.g., the number of objects in a collection).
  • Continuous variables represent measurable amounts (e.g., water volume or weight).

Quantitative variables are any variables where the data represent amounts (e.g. height, weight, or age).

Categorical variables are any variables where the data represent groups. This includes rankings (e.g. finishing places in a race), classifications (e.g. brands of cereal), and binary outcomes (e.g. coin flips).

You need to know what type of variables you are working with to choose the right statistical test for your data and interpret your results .

Determining cause and effect is one of the most important parts of scientific research. It’s essential to know which is the cause – the independent variable – and which is the effect – the dependent variable.

You want to find out how blood sugar levels are affected by drinking diet cola and regular cola, so you conduct an experiment .

  • The type of cola – diet or regular – is the independent variable .
  • The level of blood sugar that you measure is the dependent variable – it changes depending on the type of cola.

No. The value of a dependent variable depends on an independent variable, so a variable cannot be both independent and dependent at the same time. It must be either the cause or the effect, not both.

Yes, but including more than one of either type requires multiple research questions .

For example, if you are interested in the effect of a diet on health, you can use multiple measures of health: blood sugar, blood pressure, weight, pulse, and many more. Each of these is its own dependent variable with its own research question.

You could also choose to look at the effect of exercise levels as well as diet, or even the additional effect of the two combined. Each of these is a separate independent variable .

To ensure the internal validity of an experiment , you should only change one independent variable at a time.

To ensure the internal validity of your research, you must consider the impact of confounding variables. If you fail to account for them, you might over- or underestimate the causal relationship between your independent and dependent variables , or even find a causal relationship where none exists.

A confounding variable is closely related to both the independent and dependent variables in a study. An independent variable represents the supposed cause , while the dependent variable is the supposed effect . A confounding variable is a third variable that influences both the independent and dependent variables.

Failing to account for confounding variables can cause you to wrongly estimate the relationship between your independent and dependent variables.

There are several methods you can use to decrease the impact of confounding variables on your research: restriction, matching, statistical control, and randomisation.

In restriction , you restrict your sample by only including certain subjects that have the same values of potential confounding variables.

In matching , you match each of the subjects in your treatment group with a counterpart in the comparison group. The matched subjects have the same values on any potential confounding variables, and only differ in the independent variable .

In statistical control , you include potential confounders as variables in your regression .

In randomisation , you randomly assign the treatment (or independent variable) in your study to a sufficiently large number of subjects, which allows you to control for all potential confounding variables.

In scientific research, concepts are the abstract ideas or phenomena that are being studied (e.g., educational achievement). Variables are properties or characteristics of the concept (e.g., performance at school), while indicators are ways of measuring or quantifying variables (e.g., yearly grade reports).

The process of turning abstract concepts into measurable variables and indicators is called operationalisation .

In statistics, ordinal and nominal variables are both considered categorical variables .

Even though ordinal data can sometimes be numerical, not all mathematical operations can be performed on them.

A control variable is any variable that’s held constant in a research study. It’s not a variable of interest in the study, but it’s controlled because it could influence the outcomes.

Control variables help you establish a correlational or causal relationship between variables by enhancing internal validity .

If you don’t control relevant extraneous variables , they may influence the outcomes of your study, and you may not be able to demonstrate that your results are really an effect of your independent variable .

‘Controlling for a variable’ means measuring extraneous variables and accounting for them statistically to remove their effects on other variables.

Researchers often model control variable data along with independent and dependent variable data in regression analyses and ANCOVAs . That way, you can isolate the control variable’s effects from the relationship between the variables of interest.

An extraneous variable is any variable that you’re not investigating that can potentially affect the dependent variable of your research study.

A confounding variable is a type of extraneous variable that not only affects the dependent variable, but is also related to the independent variable.

There are 4 main types of extraneous variables :

  • Demand characteristics : Environmental cues that encourage participants to conform to researchers’ expectations
  • Experimenter effects : Unintentional actions by researchers that influence study outcomes
  • Situational variables : Eenvironmental variables that alter participants’ behaviours
  • Participant variables : Any characteristic or aspect of a participant’s background that could affect study results

The difference between explanatory and response variables is simple:

  • An explanatory variable is the expected cause, and it explains the results.
  • A response variable is the expected effect, and it responds to other variables.

The term ‘ explanatory variable ‘ is sometimes preferred over ‘ independent variable ‘ because, in real-world contexts, independent variables are often influenced by other variables. This means they aren’t totally independent.

Multiple independent variables may also be correlated with each other, so ‘explanatory variables’ is a more appropriate term.

On graphs, the explanatory variable is conventionally placed on the x -axis, while the response variable is placed on the y -axis.

  • If you have quantitative variables , use a scatterplot or a line graph.
  • If your response variable is categorical, use a scatterplot or a line graph.
  • If your explanatory variable is categorical, use a bar graph.

A correlation is usually tested for two variables at a time, but you can test correlations between three or more variables.

An independent variable is the variable you manipulate, control, or vary in an experimental study to explore its effects. It’s called ‘independent’ because it’s not influenced by any other variables in the study.

Independent variables are also called:

  • Explanatory variables (they explain an event or outcome)
  • Predictor variables (they can be used to predict the value of a dependent variable)
  • Right-hand-side variables (they appear on the right-hand side of a regression equation)

A dependent variable is what changes as a result of the independent variable manipulation in experiments . It’s what you’re interested in measuring, and it ‘depends’ on your independent variable.

In statistics, dependent variables are also called:

  • Response variables (they respond to a change in another variable)
  • Outcome variables (they represent the outcome you want to measure)
  • Left-hand-side variables (they appear on the left-hand side of a regression equation)

Deductive reasoning is commonly used in scientific research, and it’s especially associated with quantitative research .

In research, you might have come across something called the hypothetico-deductive method . It’s the scientific method of testing hypotheses to check whether your predictions are substantiated by real-world data.

Deductive reasoning is a logical approach where you progress from general ideas to specific conclusions. It’s often contrasted with inductive reasoning , where you start with specific observations and form general conclusions.

Deductive reasoning is also called deductive logic.

Inductive reasoning is a method of drawing conclusions by going from the specific to the general. It’s usually contrasted with deductive reasoning, where you proceed from general information to specific conclusions.

Inductive reasoning is also called inductive logic or bottom-up reasoning.

In inductive research , you start by making observations or gathering data. Then, you take a broad scan of your data and search for patterns. Finally, you make general conclusions that you might incorporate into theories.

Inductive reasoning is a bottom-up approach, while deductive reasoning is top-down.

Inductive reasoning takes you from the specific to the general, while in deductive reasoning, you make inferences by going from general premises to specific conclusions.

There are many different types of inductive reasoning that people use formally or informally.

Here are a few common types:

  • Inductive generalisation : You use observations about a sample to come to a conclusion about the population it came from.
  • Statistical generalisation: You use specific numbers about samples to make statements about populations.
  • Causal reasoning: You make cause-and-effect links between different things.
  • Sign reasoning: You make a conclusion about a correlational relationship between different things.
  • Analogical reasoning: You make a conclusion about something based on its similarities to something else.

It’s often best to ask a variety of people to review your measurements. You can ask experts, such as other researchers, or laypeople, such as potential participants, to judge the face validity of tests.

While experts have a deep understanding of research methods , the people you’re studying can provide you with valuable insights you may have missed otherwise.

Face validity is important because it’s a simple first step to measuring the overall validity of a test or technique. It’s a relatively intuitive, quick, and easy way to start checking whether a new measure seems useful at first glance.

Good face validity means that anyone who reviews your measure says that it seems to be measuring what it’s supposed to. With poor face validity, someone reviewing your measure may be left confused about what you’re measuring and why you’re using this method.

Face validity is about whether a test appears to measure what it’s supposed to measure. This type of validity is concerned with whether a measure seems relevant and appropriate for what it’s assessing only on the surface.

Statistical analyses are often applied to test validity with data from your measures. You test convergent validity and discriminant validity with correlations to see if results from your test are positively or negatively related to those of other established tests.

You can also use regression analyses to assess whether your measure is actually predictive of outcomes that you expect it to predict theoretically. A regression analysis that supports your expectations strengthens your claim of construct validity .

When designing or evaluating a measure, construct validity helps you ensure you’re actually measuring the construct you’re interested in. If you don’t have construct validity, you may inadvertently measure unrelated or distinct constructs and lose precision in your research.

Construct validity is often considered the overarching type of measurement validity ,  because it covers all of the other types. You need to have face validity , content validity, and criterion validity to achieve construct validity.

Construct validity is about how well a test measures the concept it was designed to evaluate. It’s one of four types of measurement validity , which includes construct validity, face validity , and criterion validity.

There are two subtypes of construct validity.

  • Convergent validity : The extent to which your measure corresponds to measures of related constructs
  • Discriminant validity: The extent to which your measure is unrelated or negatively related to measures of distinct constructs

Attrition bias can skew your sample so that your final sample differs significantly from your original sample. Your sample is biased because some groups from your population are underrepresented.

With a biased final sample, you may not be able to generalise your findings to the original population that you sampled from, so your external validity is compromised.

There are seven threats to external validity : selection bias , history, experimenter effect, Hawthorne effect , testing effect, aptitude-treatment, and situation effect.

The two types of external validity are population validity (whether you can generalise to other groups of people) and ecological validity (whether you can generalise to other situations and settings).

The external validity of a study is the extent to which you can generalise your findings to different groups of people, situations, and measures.

Attrition bias is a threat to internal validity . In experiments, differential rates of attrition between treatment and control groups can skew results.

This bias can affect the relationship between your independent and dependent variables . It can make variables appear to be correlated when they are not, or vice versa.

Internal validity is the extent to which you can be confident that a cause-and-effect relationship established in a study cannot be explained by other factors.

There are eight threats to internal validity : history, maturation, instrumentation, testing, selection bias , regression to the mean, social interaction, and attrition .

A sampling error is the difference between a population parameter and a sample statistic .

A statistic refers to measures about the sample , while a parameter refers to measures about the population .

Populations are used when a research question requires data from every member of the population. This is usually only feasible when the population is small and easily accessible.

Systematic sampling is a probability sampling method where researchers select members of the population at a regular interval – for example, by selecting every 15th person on a list of the population. If the population is in a random order, this can imitate the benefits of simple random sampling .

There are three key steps in systematic sampling :

  • Define and list your population , ensuring that it is not ordered in a cyclical or periodic order.
  • Decide on your sample size and calculate your interval, k , by dividing your population by your target sample size.
  • Choose every k th member of the population as your sample.

Yes, you can create a stratified sample using multiple characteristics, but you must ensure that every participant in your study belongs to one and only one subgroup. In this case, you multiply the numbers of subgroups for each characteristic to get the total number of groups.

For example, if you were stratifying by location with three subgroups (urban, rural, or suburban) and marital status with five subgroups (single, divorced, widowed, married, or partnered), you would have 3 × 5 = 15 subgroups.

You should use stratified sampling when your sample can be divided into mutually exclusive and exhaustive subgroups that you believe will take on different mean values for the variable that you’re studying.

Using stratified sampling will allow you to obtain more precise (with lower variance ) statistical estimates of whatever you are trying to measure.

For example, say you want to investigate how income differs based on educational attainment, but you know that this relationship can vary based on race. Using stratified sampling, you can ensure you obtain a large enough sample from each racial group, allowing you to draw more precise conclusions.

In stratified sampling , researchers divide subjects into subgroups called strata based on characteristics that they share (e.g., race, gender, educational attainment).

Once divided, each subgroup is randomly sampled using another probability sampling method .

Multistage sampling can simplify data collection when you have large, geographically spread samples, and you can obtain a probability sample without a complete sampling frame.

But multistage sampling may not lead to a representative sample, and larger samples are needed for multistage samples to achieve the statistical properties of simple random samples .

In multistage sampling , you can use probability or non-probability sampling methods.

For a probability sample, you have to probability sampling at every stage. You can mix it up by using simple random sampling , systematic sampling , or stratified sampling to select units at different stages, depending on what is applicable and relevant to your study.

Cluster sampling is a probability sampling method in which you divide a population into clusters, such as districts or schools, and then randomly select some of these clusters as your sample.

The clusters should ideally each be mini-representations of the population as a whole.

There are three types of cluster sampling : single-stage, double-stage and multi-stage clustering. In all three types, you first divide the population into clusters, then randomly select clusters for use in your sample.

  • In single-stage sampling , you collect data from every unit within the selected clusters.
  • In double-stage sampling , you select a random sample of units from within the clusters.
  • In multi-stage sampling , you repeat the procedure of randomly sampling elements from within the clusters until you have reached a manageable sample.

Cluster sampling is more time- and cost-efficient than other probability sampling methods , particularly when it comes to large samples spread across a wide geographical area.

However, it provides less statistical certainty than other methods, such as simple random sampling , because it is difficult to ensure that your clusters properly represent the population as a whole.

If properly implemented, simple random sampling is usually the best sampling method for ensuring both internal and external validity . However, it can sometimes be impractical and expensive to implement, depending on the size of the population to be studied,

If you have a list of every member of the population and the ability to reach whichever members are selected, you can use simple random sampling.

The American Community Survey  is an example of simple random sampling . In order to collect detailed data on the population of the US, the Census Bureau officials randomly select 3.5 million households per year and use a variety of methods to convince them to fill out the survey.

Simple random sampling is a type of probability sampling in which the researcher randomly selects a subset of participants from a population . Each member of the population has an equal chance of being selected. Data are then collected from as large a percentage as possible of this random subset.

Sampling bias occurs when some members of a population are systematically more likely to be selected in a sample than others.

In multistage sampling , or multistage cluster sampling, you draw a sample from a population using smaller and smaller groups at each stage.

This method is often used to collect data from a large, geographically spread group of people in national surveys, for example. You take advantage of hierarchical groupings (e.g., from county to city to neighbourhood) to create a sample that’s less expensive and time-consuming to collect data from.

In non-probability sampling , the sample is selected based on non-random criteria, and not every member of the population has a chance of being included.

Common non-probability sampling methods include convenience sampling , voluntary response sampling, purposive sampling , snowball sampling , and quota sampling .

Probability sampling means that every member of the target population has a known chance of being included in the sample.

Probability sampling methods include simple random sampling , systematic sampling , stratified sampling , and cluster sampling .

Samples are used to make inferences about populations . Samples are easier to collect data from because they are practical, cost-effective, convenient, and manageable.

While a between-subjects design has fewer threats to internal validity , it also requires more participants for high statistical power than a within-subjects design .

Advantages:

  • Prevents carryover effects of learning and fatigue.
  • Shorter study duration.

Disadvantages:

  • Needs larger samples for high power.
  • Uses more resources to recruit participants, administer sessions, cover costs, etc.
  • Individual differences may be an alternative explanation for results.

In a factorial design, multiple independent variables are tested.

If you test two variables, each level of one independent variable is combined with each level of the other independent variable to create different conditions.

Yes. Between-subjects and within-subjects designs can be combined in a single study when you have two or more independent variables (a factorial design). In a mixed factorial design, one variable is altered between subjects and another is altered within subjects.

Within-subjects designs have many potential threats to internal validity , but they are also very statistically powerful .

  • Only requires small samples
  • Statistically powerful
  • Removes the effects of individual differences on the outcomes
  • Internal validity threats reduce the likelihood of establishing a direct relationship between variables
  • Time-related effects, such as growth, can influence the outcomes
  • Carryover effects mean that the specific order of different treatments affect the outcomes

Quasi-experimental design is most useful in situations where it would be unethical or impractical to run a true experiment .

Quasi-experiments have lower internal validity than true experiments, but they often have higher external validity  as they can use real-world interventions instead of artificial laboratory settings.

In experimental research, random assignment is a way of placing participants from your sample into different groups using randomisation. With this method, every member of the sample has a known or equal chance of being placed in a control group or an experimental group.

A quasi-experiment is a type of research design that attempts to establish a cause-and-effect relationship. The main difference between this and a true experiment is that the groups are not randomly assigned.

In a between-subjects design , every participant experiences only one condition, and researchers assess group differences between participants in various conditions.

In a within-subjects design , each participant experiences all conditions, and researchers test the same participants repeatedly for differences between conditions.

The word ‘between’ means that you’re comparing different conditions between groups, while the word ‘within’ means you’re comparing different conditions within the same group.

A confounding variable , also called a confounder or confounding factor, is a third variable in a study examining a potential cause-and-effect relationship.

A confounding variable is related to both the supposed cause and the supposed effect of the study. It can be difficult to separate the true effect of the independent variable from the effect of the confounding variable.

In your research design , it’s important to identify potential confounding variables and plan how you will reduce their impact.

Triangulation can help:

  • Reduce bias that comes from using a single method, theory, or investigator
  • Enhance validity by approaching the same topic with different tools
  • Establish credibility by giving you a complete picture of the research problem

But triangulation can also pose problems:

  • It’s time-consuming and labour-intensive, often involving an interdisciplinary team.
  • Your results may be inconsistent or even contradictory.

There are four main types of triangulation :

  • Data triangulation : Using data from different times, spaces, and people
  • Investigator triangulation : Involving multiple researchers in collecting or analysing data
  • Theory triangulation : Using varying theoretical perspectives in your research
  • Methodological triangulation : Using different methodologies to approach the same topic

Experimental designs are a set of procedures that you plan in order to examine the relationship between variables that interest you.

To design a successful experiment, first identify:

  • A testable hypothesis
  • One or more independent variables that you will manipulate
  • One or more dependent variables that you will measure

When designing the experiment, first decide:

  • How your variable(s) will be manipulated
  • How you will control for any potential confounding or lurking variables
  • How many subjects you will include
  • How you will assign treatments to your subjects

Exploratory research explores the main aspects of a new or barely researched question.

Explanatory research explains the causes and effects of an already widely researched question.

The key difference between observational studies and experiments is that, done correctly, an observational study will never influence the responses or behaviours of participants. Experimental designs will have a treatment condition applied to at least a portion of participants.

An observational study could be a good fit for your research if your research question is based on things you observe. If you have ethical, logistical, or practical concerns that make an experimental design challenging, consider an observational study. Remember that in an observational study, it is critical that there be no interference or manipulation of the research subjects. Since it’s not an experiment, there are no control or treatment groups either.

These are four of the most common mixed methods designs :

  • Convergent parallel: Quantitative and qualitative data are collected at the same time and analysed separately. After both analyses are complete, compare your results to draw overall conclusions. 
  • Embedded: Quantitative and qualitative data are collected at the same time, but within a larger quantitative or qualitative design. One type of data is secondary to the other.
  • Explanatory sequential: Quantitative data is collected and analysed first, followed by qualitative data. You can use this design if you think your qualitative data will explain and contextualise your quantitative findings.
  • Exploratory sequential: Qualitative data is collected and analysed first, followed by quantitative data. You can use this design if you think the quantitative data will confirm or validate your qualitative findings.

Triangulation in research means using multiple datasets, methods, theories and/or investigators to address a research question. It’s a research strategy that can help you enhance the validity and credibility of your findings.

Triangulation is mainly used in qualitative research , but it’s also commonly applied in quantitative research . Mixed methods research always uses triangulation.

Operationalisation means turning abstract conceptual ideas into measurable observations.

For example, the concept of social anxiety isn’t directly observable, but it can be operationally defined in terms of self-rating scores, behavioural avoidance of crowded places, or physical anxiety symptoms in social situations.

Before collecting data , it’s important to consider how you will operationalise the variables that you want to measure.

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics. It is used by scientists to test specific predictions, called hypotheses , by calculating how likely it is that a pattern or relationship between variables could have arisen by chance.

There are five common approaches to qualitative research :

  • Grounded theory involves collecting data in order to develop new theories.
  • Ethnography involves immersing yourself in a group or organisation to understand its culture.
  • Narrative research involves interpreting stories to understand how people make sense of their experiences and perceptions.
  • Phenomenological research involves investigating phenomena through people’s lived experiences.
  • Action research links theory and practice in several cycles to drive innovative changes.

There are various approaches to qualitative data analysis , but they all share five steps in common:

  • Prepare and organise your data.
  • Review and explore your data.
  • Develop a data coding system.
  • Assign codes to the data.
  • Identify recurring themes.

The specifics of each step depend on the focus of the analysis. Some common approaches include textual analysis , thematic analysis , and discourse analysis .

In mixed methods research , you use both qualitative and quantitative data collection and analysis methods to answer your research question .

Methodology refers to the overarching strategy and rationale of your research project . It involves studying the methods used in your field and the theories or principles behind them, in order to develop an approach that matches your objectives.

Methods are the specific tools and procedures you use to collect and analyse data (e.g. experiments, surveys , and statistical tests ).

In shorter scientific papers, where the aim is to report the findings of a specific study, you might simply describe what you did in a methods section .

In a longer or more complex research project, such as a thesis or dissertation , you will probably include a methodology section , where you explain your approach to answering the research questions and cite relevant sources to support your choice of methods.

The research methods you use depend on the type of data you need to answer your research question .

  • If you want to measure something or test a hypothesis , use quantitative methods . If you want to explore ideas, thoughts, and meanings, use qualitative methods .
  • If you want to analyse a large amount of readily available data, use secondary data. If you want data specific to your purposes with control over how they are generated, collect primary data.
  • If you want to establish cause-and-effect relationships between variables , use experimental methods. If you want to understand the characteristics of a research subject, use descriptive methods.

Ask our team

Want to contact us directly? No problem. We are always here for you.

Support team - Nina

Our support team is here to help you daily via chat, WhatsApp, email, or phone between 9:00 a.m. to 11:00 p.m. CET.

Our APA experts default to APA 7 for editing and formatting. For the Citation Editing Service you are able to choose between APA 6 and 7.

Yes, if your document is longer than 20,000 words, you will get a sample of approximately 2,000 words. This sample edit gives you a first impression of the editor’s editing style and a chance to ask questions and give feedback.

How does the sample edit work?

You will receive the sample edit within 24 hours after placing your order. You then have 24 hours to let us know if you’re happy with the sample or if there’s something you would like the editor to do differently.

Read more about how the sample edit works

Yes, you can upload your document in sections.

We try our best to ensure that the same editor checks all the different sections of your document. When you upload a new file, our system recognizes you as a returning customer, and we immediately contact the editor who helped you before.

However, we cannot guarantee that the same editor will be available. Your chances are higher if

  • You send us your text as soon as possible and
  • You can be flexible about the deadline.

Please note that the shorter your deadline is, the lower the chance that your previous editor is not available.

If your previous editor isn’t available, then we will inform you immediately and look for another qualified editor. Fear not! Every Scribbr editor follows the  Scribbr Improvement Model  and will deliver high-quality work.

Yes, our editors also work during the weekends and holidays.

Because we have many editors available, we can check your document 24 hours per day and 7 days per week, all year round.

If you choose a 72 hour deadline and upload your document on a Thursday evening, you’ll have your thesis back by Sunday evening!

Yes! Our editors are all native speakers, and they have lots of experience editing texts written by ESL students. They will make sure your grammar is perfect and point out any sentences that are difficult to understand. They’ll also notice your most common mistakes, and give you personal feedback to improve your writing in English.

Every Scribbr order comes with our award-winning Proofreading & Editing service , which combines two important stages of the revision process.

For a more comprehensive edit, you can add a Structure Check or Clarity Check to your order. With these building blocks, you can customize the kind of feedback you receive.

You might be familiar with a different set of editing terms. To help you understand what you can expect at Scribbr, we created this table:

Types of editing Available at Scribbr?


This is the “proofreading” in Scribbr’s standard service. It can only be selected in combination with editing.


This is the “editing” in Scribbr’s standard service. It can only be selected in combination with proofreading.


Select the Structure Check and Clarity Check to receive a comprehensive edit equivalent to a line edit.


This kind of editing involves heavy rewriting and restructuring. Our editors cannot help with this.

View an example

When you place an order, you can specify your field of study and we’ll match you with an editor who has familiarity with this area.

However, our editors are language specialists, not academic experts in your field. Your editor’s job is not to comment on the content of your dissertation, but to improve your language and help you express your ideas as clearly and fluently as possible.

This means that your editor will understand your text well enough to give feedback on its clarity, logic and structure, but not on the accuracy or originality of its content.

Good academic writing should be understandable to a non-expert reader, and we believe that academic editing is a discipline in itself. The research, ideas and arguments are all yours – we’re here to make sure they shine!

After your document has been edited, you will receive an email with a link to download the document.

The editor has made changes to your document using ‘Track Changes’ in Word. This means that you only have to accept or ignore the changes that are made in the text one by one.

It is also possible to accept all changes at once. However, we strongly advise you not to do so for the following reasons:

  • You can learn a lot by looking at the mistakes you made.
  • The editors don’t only change the text – they also place comments when sentences or sometimes even entire paragraphs are unclear. You should read through these comments and take into account your editor’s tips and suggestions.
  • With a final read-through, you can make sure you’re 100% happy with your text before you submit!

You choose the turnaround time when ordering. We can return your dissertation within 24 hours , 3 days or 1 week . These timescales include weekends and holidays. As soon as you’ve paid, the deadline is set, and we guarantee to meet it! We’ll notify you by text and email when your editor has completed the job.

Very large orders might not be possible to complete in 24 hours. On average, our editors can complete around 13,000 words in a day while maintaining our high quality standards. If your order is longer than this and urgent, contact us to discuss possibilities.

Always leave yourself enough time to check through the document and accept the changes before your submission deadline.

Scribbr is specialised in editing study related documents. We check:

  • Graduation projects
  • Dissertations
  • Admissions essays
  • College essays
  • Application essays
  • Personal statements
  • Process reports
  • Reflections
  • Internship reports
  • Academic papers
  • Research proposals
  • Prospectuses

Calculate the costs

The fastest turnaround time is 24 hours.

You can upload your document at any time and choose between four deadlines:

At Scribbr, we promise to make every customer 100% happy with the service we offer. Our philosophy: Your complaint is always justified – no denial, no doubts.

Our customer support team is here to find the solution that helps you the most, whether that’s a free new edit or a refund for the service.

Yes, in the order process you can indicate your preference for American, British, or Australian English .

If you don’t choose one, your editor will follow the style of English you currently use. If your editor has any questions about this, we will contact you.

Difference Wiki

Control Group vs. Experimental Group: What's the Difference?

control group and experimental group similarities

Key Differences

Comparison chart, exposure to, expected change, result utilization, control group and experimental group definitions, control group, experimental group, what is a control group, can an experiment have more than one control group, what is an experimental group, why does the experimental group undergo variable testing, how are participants allocated to control or experimental groups, what distinguishes the control group from the experimental group, what role does a control group play in scientific research, can an experiment proceed without an experimental group, why is a control group important, is it possible to have multiple experimental groups in a study, how should control and experimental groups be similar or different, what happens if an experiment lacks a control group, what types of variables are typically introduced to experimental groups, how is data compared between control and experimental groups, are control groups always necessary in experiments, can a participant be in both control and experimental groups, is it possible for a control group to exhibit changes, what is a placebo, concerning control groups, can control and experimental groups consist of different types of subjects, how are results validated using experimental and control groups.

control group and experimental group similarities

Trending Comparisons

control group and experimental group similarities

Popular Comparisons

control group and experimental group similarities

New Comparisons

control group and experimental group similarities

Study.com

In order to continue enjoying our site, we ask that you confirm your identity as a human. Thank you very much for your cooperation.

control group and experimental group similarities

Understanding Control Groups for Research

control group and experimental group similarities

Introduction

What are control groups in research, examples of control groups in research, control group vs. experimental group, types of control groups, control groups in non-experimental research.

A control group is typically thought of as the baseline in an experiment. In an experiment, clinical trial, or other sort of controlled study, there are at least two groups whose results are compared against each other.

The experimental group receives some sort of treatment, and their results are compared against those of the control group, which is not given the treatment. This is important to determine whether there is an identifiable causal relationship between the treatment and the resulting effects.

As intuitive as this may sound, there is an entire methodology that is useful to understanding the role of the control group in experimental research and as part of a broader concept in research. This article will examine the particulars of that methodology so you can design your research more rigorously .

control group and experimental group similarities

Suppose that a friend or colleague of yours has a headache. You give them some over-the-counter medicine to relieve some of the pain. Shortly after they take the medicine, the pain is gone and they feel better. In casual settings, we can assume that it must be the medicine that was the cause of their headache going away.

In scientific research, however, we don't really know if the medicine made a difference or if the headache would have gone away on its own. Maybe in the time it took for the headache to go away, they ate or drank something that might have had an effect. Perhaps they had a quick nap that helped relieve the tension from the headache. Without rigorously exploring this phenomenon , any number of confounding factors exist that can make us question the actual efficacy of any particular treatment.

Experimental research relies on observing differences between the two groups by "controlling" the independent variable , or in the case of our example above, the medicine that is given or not given depending on the group. The dependent variable in this case is the change in how the person suffering the headache feels, and the difference between taking and not taking the medicine is evidence (or lack thereof) that the treatment is effective.

The catch is that, between the control group and other groups (typically called experimental groups), it's important to ensure that all other factors are the same or at least as similar as possible. Things such as age, fitness level, and even occupation can affect the likelihood someone has a headache and whether a certain medication is effective.

Faced with this dynamic, researchers try to make sure that participants in their control group and experimental group are as similar as possible to each other, with the only difference being the treatment they receive.

Experimental research is often associated with scientists in lab coats holding beakers containing liquids with funny colors. Clinical trials that deal with medical treatments rely primarily, if not exclusively, on experimental research designs involving comparisons between control and experimental groups.

However, many studies in the social sciences also employ some sort of experimental design which calls for the use of control groups. This type of research is useful when researchers are trying to confirm or challenge an existing notion or measure the difference in effects.

Workplace efficiency research

How might a company know if an employee training program is effective? They may decide to pilot the program to a small group of their employees before they implement the training to their entire workforce.

If they adopt an experimental design, they could compare results between an experimental group of workers who participate in the training program against a control group who continues as per usual without any additional training.

control group and experimental group similarities

Qualitative data analysis starts with ATLAS.ti

Turn data into rich insights with our powerful data analysis software. Get started with a free trial.

Mental health research

Music certainly has profound effects on psychology, but what kind of music would be most effective for concentration? Here, a researcher might be interested in having participants in a control group perform a series of tasks in an environment with no background music, and participants in multiple experimental groups perform those same tasks with background music of different genres. The subsequent analysis could determine how well people perform with classical music, jazz music, or no music at all in the background.

Educational research

Suppose that you want to improve reading ability among elementary school students, and there is research on a particular teaching method that is associated with facilitating reading comprehension. How do you measure the effects of that teaching method?

A study could be conducted on two groups of otherwise equally proficient students to measure the difference in test scores. The teacher delivers the same instruction to the control group as they have to previous students, but they teach the experimental group using the new technique. A reading test after a certain amount of instruction could determine the extent of effectiveness of the new teaching method.

control group and experimental group similarities

As you can see from the three examples above, experimental groups are the counterbalance to control groups. A control group offers an essential point of comparison. For an experimental study to be considered credible, it must establish a baseline against which novel research is conducted.

Researchers can determine the makeup of their experimental and control groups from their literature review . Remember that the objective of a review is to establish what is known about the object of inquiry and what is not known. Where experimental groups explore the unknown aspects of scientific knowledge, a control group is a sort of simulation of what would happen if the treatment or intervention was not administered. As a result, it will benefit researchers to have a foundational knowledge of the existing research to create a credible control group against which experimental results are compared, especially in terms of remaining sensitive to relevant participant characteristics that could confound the effects of your treatment or intervention so that you can appropriately distribute participants between the experimental and control groups.

There are multiple control groups to consider depending on the study you are looking to conduct. All of them are variations of the basic control group used to establish a baseline for experimental conditions.

No-treatment control group

This kind of control group is common when trying to establish the effects of an experimental treatment against the absence of treatment. This is arguably the most straightforward approach to an experimental design as it aims to directly demonstrate how a certain change in conditions produces an effect.

Placebo control group

In this case, the control group receives some sort of treatment under the exact same procedures as those in the experimental group. The only difference in this case is that the treatment in the placebo control group has already been judged to be ineffective, except that the research participants don't know that it is ineffective.

Placebo control groups (or negative control groups) are useful for allowing researchers to account for any psychological or affective factors that might impact the outcomes. The negative control group exists to explicitly eliminate factors other than changes in the independent variable conditions as causes of the effects experienced in the experimental group.

Positive control group

Contrasted with a no-treatment control group, a positive control group employs a treatment against which the treatment in the experimental group is compared. However, unlike in a placebo group, participants in a positive control group receive treatment that is known to have an effect.

If we were to use our first example of headache medicine, a researcher could compare results between medication that is commonly known as effective against the newer medication that the researcher thinks is more effective. Positive control groups are useful for validating experimental results when compared against familiar results.

Historical control group

Rather than study participants in control group conditions, researchers may employ existing data to create historical control groups. This form of control group is useful for examining changing conditions over time, particularly when incorporating past conditions that can't be replicated in the analysis.

Qualitative research more often relies on non-experimental research such as observations and interviews to examine phenomena in their natural environments. This sort of research is more suited for inductive and exploratory inquiries, not confirmatory studies meant to test or measure a phenomenon.

That said, the broader concept of a control group is still present in observational and interview research in the form of a comparison group. Comparison groups are used in qualitative research designs to show differences between phenomena, with the exception being that there is no baseline against which data is analyzed.

Comparison groups are useful when an experimental environment cannot produce results that would be applicable to real-world conditions. Research inquiries examining the social world face challenges of having too many variables to control, making observations and interviews across comparable groups more appropriate for data collection than clinical or sterile environments.

control group and experimental group similarities

Analyze data and generate rich results with ATLAS.ti

Try out a free trial of ATLAS.ti to see how you can make the most of your qualitative data.

control group and experimental group similarities

  • Skip to secondary menu
  • Skip to main content
  • Skip to primary sidebar

Statistics By Jim

Making statistics intuitive

Control Group in an Experiment

By Jim Frost 3 Comments

A control group in an experiment does not receive the treatment. Instead, it serves as a comparison group for the treatments. Researchers compare the results of a treatment group to the control group to determine the effect size, also known as the treatment effect.

Scientist performing an experiment that has a control group.

Imagine that a treatment group receives a vaccine and it has an infection rate of 10%. By itself, you don’t know if that’s an improvement. However, if you also have an unvaccinated control group with an infection rate of 20%, you know the vaccine improved the outcome by 10 percentage points.

By serving as a basis for comparison, the control group reveals the treatment’s effect.

Related post : Effect Sizes in Statistics

Using Control Groups in Experiments

Most experiments include a control group and at least one treatment group. In an ideal experiment, the subjects in all groups start with the same overall characteristics except that those in the treatment groups receive a treatment. When the groups are otherwise equivalent before treatment begins, you can attribute differences after the experiment to the treatments.

Randomized controlled trials (RCTs) assign subjects to the treatment and control groups randomly. This process helps ensure the groups are comparable when treatment begins. Consequently, treatment effects are the most likely cause for differences between groups at the end of the study. Statisticians consider RCTs to be the gold standard. To learn more about this process, read my post, Random Assignment in Experiments .

Observational studies either can’t use randomized groups or don’t use them because they’re too costly or problematic. In these studies, the characteristics of the control group might be different from the treatment groups at the start of the study, making it difficult to estimate the treatment effect accurately at the end. Case-Control studies are a specific type of observational study that uses a control group.

For these types of studies, analytical methods and design choices, such as regression analysis and matching, can help statistically mitigate confounding variables. Matching involves selecting participants with similar characteristics. For each participant in the treatment group, the researchers find a subject with comparable traits to include in the control group. To learn more about this type of study and matching, read my post, Observational Studies Explained .

Control groups are key way to increase the internal validity of an experiment. To learn more, read my post about internal and external validity .

Randomized versus non-randomized control groups are just several of the different types you can have. We’ll look at more kinds later!

Related posts : When to Use Regression Analysis

Example of a Control Group

Suppose we want to determine whether regular vitamin consumption affects the risk of dying. Our experiment has the following two experimental groups:

  • Control group : Does not consume vitamin supplements
  • Treatment group : Regularly consumes vitamin supplements.

In this experiment, we randomly assign subjects to the two groups. Because we use random assignment, the two groups start with similar characteristics, including healthy habits, physical attributes, medical conditions, and other factors affecting the outcome. The intentional introduction of vitamin supplements in the treatment group is the only systematic difference between the groups.

After the experiment is complete, we compare the death risk between the treatment and control groups. Because the groups started roughly equal, we can reasonably attribute differences in death risk at the end of the study to vitamin consumption. By having the control group as the basis of comparison, the effect of vitamin consumption becomes clear!

Types of Control Groups

Researchers can use different types of control groups in their experiments. Earlier, you learned about the random versus non-random kinds, but there are other variations. You can use various types depending on your research goals, constraints, and ethical issues, among other things.

Negative Control Group

The group introduces a condition that the researchers expect won’t have an effect. This group typically receives no treatment. These experiments compare the effectiveness of the experimental treatment to no treatment. For example, in a vaccine study, a negative control group does not get the vaccine.

Positive Control Group

Positive control groups typically receive a standard treatment that science has already proven effective. These groups serve as a benchmark for the performance of a conventional treatment. In this vein, experiments with positive control groups compare the effectiveness of a new treatment to a standard one.

For example, an old blood pressure medicine can be the treatment in a positive control group, while the treatment group receives the new, experimental blood pressure medicine. The researchers want to determine whether the new treatment is better than the previous treatment.

In these studies, subjects can still take the standard medication for their condition, a potentially critical ethics issue.

Placebo Control Group

Placebo control groups introduce a treatment lookalike that will not affect the outcome. Standard examples of placebos are sugar pills and saline solution injections instead of genuine medicine. The key is that the placebo looks like the actual treatment. Researchers use this approach when the recipients’ belief that they’re receiving the treatment might influence their outcomes. By using placebos, the experiment controls for these psychological benefits. The researchers want to determine whether the treatment performs better than the placebo effect.

Learn more about the Placebo Effect .

Blinded Control Groups

If the subject’s awareness of their group assignment might affect their outcomes, the researchers can use a blinded experimental design that does not tell participants their group membership. Typically, blinded control groups will receive placebos, as described above. In a double-blinded control group, both subjects and researchers don’t know group assignments.

Waitlist Control Group

When there is a waitlist to receive a new treatment, those on the waitlist can serve as a control group until they receive treatment. This type of design avoids ethical concerns about withholding a better treatment until the study finishes. This design can be a variation of a positive control group because the subjects might be using conventional medicines while on the waitlist.

Historical Control Group

When historical data for a comparison group exists, it can serve as a control group for an experiment. The group doesn’t exist in the study, but the researchers compare the treatment group to the existing data. For example, the researchers might have infection rate data for unvaccinated individuals to compare to the infection rate among the vaccinated participants in their study. This approach allows everyone in the experiment to receive the new treatment. However, differences in place, time, and other circumstances can reduce the value of these comparisons. In other words, other factors might account for the apparent effects.

Share this:

control group and experimental group similarities

Reader Interactions

' src=

December 19, 2021 at 9:17 am

Thank you very much Jim for your quick and comprehensive feedback. Extremely helpful!! Regards, Arthur

' src=

December 17, 2021 at 4:46 pm

Thank you very much Jim, very interesting article.

Can I select a control group at the end of intervention/experiment? Currently I am managing a project in rural Cambodia in five villages, however I did not select any comparison/control site at the beginning. Since I know there are other villages which have not been exposed to any type of intervention, can i select them as a control site during my end-line data collection or it will not be a legitimate control? Thank you very much, Arthur

' src=

December 18, 2021 at 1:51 am

You might be able to use that approach, but it’s not ideal. The ideal is to have control groups defined at the beginning of the study. You can use the untreated villages as a type of historical control groups that I talk about in this article. Or, if they’re awaiting to receive the intervention, it might be akin to a waitlist control group.

If you go that route, you’ll need to consider whether there was some systematic reason why these villages have not received any intervention. For example, are the villages in question more remote? And, if there is a systematic reason, would that affect your outcome variable? More generally, are they systematically different? How well do the untreated villages represent your target population?

If you had selected control villages at the beginning, you’d have been better able to ensure there weren’t any systematic differences between the villages receiving interventions and those that didn’t.

If the villages that didn’t receive any interventions are systematically different, you’ll need to incorporate that into your interpretation of the results. Are they different in ways that affect the outcomes you’re measuring? Can those differences account for the difference in outcomes between the treated and untreated villages? Hopefully, you’d be able to measure those differences between untreated/treated villages.

So, yes, you can use that approach. It’s not perfect and there will potentially be more things for you to consider and factor into your conclusions. Despite these drawbacks, it’s possible that using a pseudo control group like that is better than not doing that because at least you can make comparisons to something. Otherwise, you won’t know whether the outcomes in the intervention villages represent an improvement! Just be aware of the extra considerations!

Best of luck with your research!

Comments and Questions Cancel reply

Frequently asked questions

What is the difference between a control group and an experimental group.

An experimental group, also known as a treatment group, receives the treatment whose effect researchers wish to study, whereas a control group does not. They should be identical in all other ways.

Frequently asked questions: Methodology

Attrition refers to participants leaving a study. It always happens to some extent—for example, in randomized controlled trials for medical research.

Differential attrition occurs when attrition or dropout rates differ systematically between the intervention and the control group . As a result, the characteristics of the participants who drop out differ from the characteristics of those who stay in the study. Because of this, study results may be biased .

Action research is conducted in order to solve a particular issue immediately, while case studies are often conducted over a longer period of time and focus more on observing and analyzing a particular ongoing phenomenon.

Action research is focused on solving a problem or informing individual and community-based knowledge in a way that impacts teaching, learning, and other related processes. It is less focused on contributing theoretical input, instead producing actionable input.

Action research is particularly popular with educators as a form of systematic inquiry because it prioritizes reflection and bridges the gap between theory and practice. Educators are able to simultaneously investigate an issue as they solve it, and the method is very iterative and flexible.

A cycle of inquiry is another name for action research . It is usually visualized in a spiral shape following a series of steps, such as “planning → acting → observing → reflecting.”

To make quantitative observations , you need to use instruments that are capable of measuring the quantity you want to observe. For example, you might use a ruler to measure the length of an object or a thermometer to measure its temperature.

Criterion validity and construct validity are both types of measurement validity . In other words, they both show you how accurately a method measures something.

While construct validity is the degree to which a test or other measurement method measures what it claims to measure, criterion validity is the degree to which a test can predictively (in the future) or concurrently (in the present) measure something.

Construct validity is often considered the overarching type of measurement validity . You need to have face validity , content validity , and criterion validity in order to achieve construct validity.

Convergent validity and discriminant validity are both subtypes of construct validity . Together, they help you evaluate whether a test measures the concept it was designed to measure.

  • Convergent validity indicates whether a test that is designed to measure a particular construct correlates with other tests that assess the same or similar construct.
  • Discriminant validity indicates whether two tests that should not be highly related to each other are indeed not related. This type of validity is also called divergent validity .

You need to assess both in order to demonstrate construct validity. Neither one alone is sufficient for establishing construct validity.

  • Discriminant validity indicates whether two tests that should not be highly related to each other are indeed not related

Content validity shows you how accurately a test or other measurement method taps  into the various aspects of the specific construct you are researching.

In other words, it helps you answer the question: “does the test measure all aspects of the construct I want to measure?” If it does, then the test has high content validity.

The higher the content validity, the more accurate the measurement of the construct.

If the test fails to include parts of the construct, or irrelevant parts are included, the validity of the instrument is threatened, which brings your results into question.

Face validity and content validity are similar in that they both evaluate how suitable the content of a test is. The difference is that face validity is subjective, and assesses content at surface level.

When a test has strong face validity, anyone would agree that the test’s questions appear to measure what they are intended to measure.

For example, looking at a 4th grade math test consisting of problems in which students have to add and multiply, most people would agree that it has strong face validity (i.e., it looks like a math test).

On the other hand, content validity evaluates how well a test represents all the aspects of a topic. Assessing content validity is more systematic and relies on expert evaluation. of each question, analyzing whether each one covers the aspects that the test was designed to cover.

A 4th grade math test would have high content validity if it covered all the skills taught in that grade. Experts(in this case, math teachers), would have to evaluate the content validity by comparing the test to the learning objectives.

Snowball sampling is a non-probability sampling method . Unlike probability sampling (which involves some form of random selection ), the initial individuals selected to be studied are the ones who recruit new participants.

Because not every member of the target population has an equal chance of being recruited into the sample, selection in snowball sampling is non-random.

Snowball sampling is a non-probability sampling method , where there is not an equal chance for every member of the population to be included in the sample .

This means that you cannot use inferential statistics and make generalizations —often the goal of quantitative research . As such, a snowball sample is not representative of the target population and is usually a better fit for qualitative research .

Snowball sampling relies on the use of referrals. Here, the researcher recruits one or more initial participants, who then recruit the next ones.

Participants share similar characteristics and/or know each other. Because of this, not every member of the population has an equal chance of being included in the sample, giving rise to sampling bias .

Snowball sampling is best used in the following cases:

  • If there is no sampling frame available (e.g., people with a rare disease)
  • If the population of interest is hard to access or locate (e.g., people experiencing homelessness)
  • If the research focuses on a sensitive topic (e.g., extramarital affairs)

The reproducibility and replicability of a study can be ensured by writing a transparent, detailed method section and using clear, unambiguous language.

Reproducibility and replicability are related terms.

  • Reproducing research entails reanalyzing the existing data in the same manner.
  • Replicating (or repeating ) the research entails reconducting the entire analysis, including the collection of new data . 
  • A successful reproduction shows that the data analyses were conducted in a fair and honest manner.
  • A successful replication shows that the reliability of the results is high.

Stratified sampling and quota sampling both involve dividing the population into subgroups and selecting units from each subgroup. The purpose in both cases is to select a representative sample and/or to allow comparisons between subgroups.

The main difference is that in stratified sampling, you draw a random sample from each subgroup ( probability sampling ). In quota sampling you select a predetermined number or proportion of units, in a non-random manner ( non-probability sampling ).

Purposive and convenience sampling are both sampling methods that are typically used in qualitative data collection.

A convenience sample is drawn from a source that is conveniently accessible to the researcher. Convenience sampling does not distinguish characteristics among the participants. On the other hand, purposive sampling focuses on selecting participants possessing characteristics associated with the research study.

The findings of studies based on either convenience or purposive sampling can only be generalized to the (sub)population from which the sample is drawn, and not to the entire population.

Random sampling or probability sampling is based on random selection. This means that each unit has an equal chance (i.e., equal probability) of being included in the sample.

On the other hand, convenience sampling involves stopping people at random, which means that not everyone has an equal chance of being selected depending on the place, time, or day you are collecting your data.

Convenience sampling and quota sampling are both non-probability sampling methods. They both use non-random criteria like availability, geographical proximity, or expert knowledge to recruit study participants.

However, in convenience sampling, you continue to sample units or cases until you reach the required sample size.

In quota sampling, you first need to divide your population of interest into subgroups (strata) and estimate their proportions (quota) in the population. Then you can start your data collection, using convenience sampling to recruit participants, until the proportions in each subgroup coincide with the estimated proportions in the population.

A sampling frame is a list of every member in the entire population . It is important that the sampling frame is as complete as possible, so that your sample accurately reflects your population.

Stratified and cluster sampling may look similar, but bear in mind that groups created in cluster sampling are heterogeneous , so the individual characteristics in the cluster vary. In contrast, groups created in stratified sampling are homogeneous , as units share characteristics.

Relatedly, in cluster sampling you randomly select entire groups and include all units of each group in your sample. However, in stratified sampling, you select some units of all groups and include them in your sample. In this way, both methods can ensure that your sample is representative of the target population .

A systematic review is secondary research because it uses existing research. You don’t collect new data yourself.

The key difference between observational studies and experimental designs is that a well-done observational study does not influence the responses of participants, while experiments do have some sort of treatment condition applied to at least some participants by random assignment .

An observational study is a great choice for you if your research question is based purely on observations. If there are ethical, logistical, or practical concerns that prevent you from conducting a traditional experiment , an observational study may be a good choice. In an observational study, there is no interference or manipulation of the research subjects, as well as no control or treatment groups .

It’s often best to ask a variety of people to review your measurements. You can ask experts, such as other researchers, or laypeople, such as potential participants, to judge the face validity of tests.

While experts have a deep understanding of research methods , the people you’re studying can provide you with valuable insights you may have missed otherwise.

Face validity is important because it’s a simple first step to measuring the overall validity of a test or technique. It’s a relatively intuitive, quick, and easy way to start checking whether a new measure seems useful at first glance.

Good face validity means that anyone who reviews your measure says that it seems to be measuring what it’s supposed to. With poor face validity, someone reviewing your measure may be left confused about what you’re measuring and why you’re using this method.

Face validity is about whether a test appears to measure what it’s supposed to measure. This type of validity is concerned with whether a measure seems relevant and appropriate for what it’s assessing only on the surface.

Statistical analyses are often applied to test validity with data from your measures. You test convergent validity and discriminant validity with correlations to see if results from your test are positively or negatively related to those of other established tests.

You can also use regression analyses to assess whether your measure is actually predictive of outcomes that you expect it to predict theoretically. A regression analysis that supports your expectations strengthens your claim of construct validity .

When designing or evaluating a measure, construct validity helps you ensure you’re actually measuring the construct you’re interested in. If you don’t have construct validity, you may inadvertently measure unrelated or distinct constructs and lose precision in your research.

Construct validity is often considered the overarching type of measurement validity ,  because it covers all of the other types. You need to have face validity , content validity , and criterion validity to achieve construct validity.

Construct validity is about how well a test measures the concept it was designed to evaluate. It’s one of four types of measurement validity , which includes construct validity, face validity , and criterion validity.

There are two subtypes of construct validity.

  • Convergent validity : The extent to which your measure corresponds to measures of related constructs
  • Discriminant validity : The extent to which your measure is unrelated or negatively related to measures of distinct constructs

Naturalistic observation is a valuable tool because of its flexibility, external validity , and suitability for topics that can’t be studied in a lab setting.

The downsides of naturalistic observation include its lack of scientific control , ethical considerations , and potential for bias from observers and subjects.

Naturalistic observation is a qualitative research method where you record the behaviors of your research subjects in real world settings. You avoid interfering or influencing anything in a naturalistic observation.

You can think of naturalistic observation as “people watching” with a purpose.

A dependent variable is what changes as a result of the independent variable manipulation in experiments . It’s what you’re interested in measuring, and it “depends” on your independent variable.

In statistics, dependent variables are also called:

  • Response variables (they respond to a change in another variable)
  • Outcome variables (they represent the outcome you want to measure)
  • Left-hand-side variables (they appear on the left-hand side of a regression equation)

An independent variable is the variable you manipulate, control, or vary in an experimental study to explore its effects. It’s called “independent” because it’s not influenced by any other variables in the study.

Independent variables are also called:

  • Explanatory variables (they explain an event or outcome)
  • Predictor variables (they can be used to predict the value of a dependent variable)
  • Right-hand-side variables (they appear on the right-hand side of a regression equation).

As a rule of thumb, questions related to thoughts, beliefs, and feelings work well in focus groups. Take your time formulating strong questions, paying special attention to phrasing. Be careful to avoid leading questions , which can bias your responses.

Overall, your focus group questions should be:

  • Open-ended and flexible
  • Impossible to answer with “yes” or “no” (questions that start with “why” or “how” are often best)
  • Unambiguous, getting straight to the point while still stimulating discussion
  • Unbiased and neutral

A structured interview is a data collection method that relies on asking questions in a set order to collect data on a topic. They are often quantitative in nature. Structured interviews are best used when: 

  • You already have a very clear understanding of your topic. Perhaps significant research has already been conducted, or you have done some prior research yourself, but you already possess a baseline for designing strong structured questions.
  • You are constrained in terms of time or resources and need to analyze your data quickly and efficiently.
  • Your research question depends on strong parity between participants, with environmental conditions held constant.

More flexible interview options include semi-structured interviews , unstructured interviews , and focus groups .

Social desirability bias is the tendency for interview participants to give responses that will be viewed favorably by the interviewer or other participants. It occurs in all types of interviews and surveys , but is most common in semi-structured interviews , unstructured interviews , and focus groups .

Social desirability bias can be mitigated by ensuring participants feel at ease and comfortable sharing their views. Make sure to pay attention to your own body language and any physical or verbal cues, such as nodding or widening your eyes.

This type of bias can also occur in observations if the participants know they’re being observed. They might alter their behavior accordingly.

The interviewer effect is a type of bias that emerges when a characteristic of an interviewer (race, age, gender identity, etc.) influences the responses given by the interviewee.

There is a risk of an interviewer effect in all types of interviews , but it can be mitigated by writing really high-quality interview questions.

A semi-structured interview is a blend of structured and unstructured types of interviews. Semi-structured interviews are best used when:

  • You have prior interview experience. Spontaneous questions are deceptively challenging, and it’s easy to accidentally ask a leading question or make a participant uncomfortable.
  • Your research question is exploratory in nature. Participant answers can guide future research questions and help you develop a more robust knowledge base for future research.

An unstructured interview is the most flexible type of interview, but it is not always the best fit for your research topic.

Unstructured interviews are best used when:

  • You are an experienced interviewer and have a very strong background in your research topic, since it is challenging to ask spontaneous, colloquial questions.
  • Your research question is exploratory in nature. While you may have developed hypotheses, you are open to discovering new or shifting viewpoints through the interview process.
  • You are seeking descriptive data, and are ready to ask questions that will deepen and contextualize your initial thoughts and hypotheses.
  • Your research depends on forming connections with your participants and making them feel comfortable revealing deeper emotions, lived experiences, or thoughts.

The four most common types of interviews are:

  • Structured interviews : The questions are predetermined in both topic and order. 
  • Semi-structured interviews : A few questions are predetermined, but other questions aren’t planned.
  • Unstructured interviews : None of the questions are predetermined.
  • Focus group interviews : The questions are presented to a group instead of one individual.

Deductive reasoning is commonly used in scientific research, and it’s especially associated with quantitative research .

In research, you might have come across something called the hypothetico-deductive method . It’s the scientific method of testing hypotheses to check whether your predictions are substantiated by real-world data.

Deductive reasoning is a logical approach where you progress from general ideas to specific conclusions. It’s often contrasted with inductive reasoning , where you start with specific observations and form general conclusions.

Deductive reasoning is also called deductive logic.

There are many different types of inductive reasoning that people use formally or informally.

Here are a few common types:

  • Inductive generalization : You use observations about a sample to come to a conclusion about the population it came from.
  • Statistical generalization: You use specific numbers about samples to make statements about populations.
  • Causal reasoning: You make cause-and-effect links between different things.
  • Sign reasoning: You make a conclusion about a correlational relationship between different things.
  • Analogical reasoning: You make a conclusion about something based on its similarities to something else.

Inductive reasoning is a bottom-up approach, while deductive reasoning is top-down.

Inductive reasoning takes you from the specific to the general, while in deductive reasoning, you make inferences by going from general premises to specific conclusions.

In inductive research , you start by making observations or gathering data. Then, you take a broad scan of your data and search for patterns. Finally, you make general conclusions that you might incorporate into theories.

Inductive reasoning is a method of drawing conclusions by going from the specific to the general. It’s usually contrasted with deductive reasoning, where you proceed from general information to specific conclusions.

Inductive reasoning is also called inductive logic or bottom-up reasoning.

A hypothesis states your predictions about what your research will find. It is a tentative answer to your research question that has not yet been tested. For some research projects, you might have to write several hypotheses that address different aspects of your research question.

A hypothesis is not just a guess — it should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations and statistical analysis of data).

Triangulation can help:

  • Reduce research bias that comes from using a single method, theory, or investigator
  • Enhance validity by approaching the same topic with different tools
  • Establish credibility by giving you a complete picture of the research problem

But triangulation can also pose problems:

  • It’s time-consuming and labor-intensive, often involving an interdisciplinary team.
  • Your results may be inconsistent or even contradictory.

There are four main types of triangulation :

  • Data triangulation : Using data from different times, spaces, and people
  • Investigator triangulation : Involving multiple researchers in collecting or analyzing data
  • Theory triangulation : Using varying theoretical perspectives in your research
  • Methodological triangulation : Using different methodologies to approach the same topic

Many academic fields use peer review , largely to determine whether a manuscript is suitable for publication. Peer review enhances the credibility of the published manuscript.

However, peer review is also common in non-academic settings. The United Nations, the European Union, and many individual nations use peer review to evaluate grant applications. It is also widely used in medical and health-related fields as a teaching or quality-of-care measure. 

Peer assessment is often used in the classroom as a pedagogical tool. Both receiving feedback and providing it are thought to enhance the learning process, helping students think critically and collaboratively.

Peer review can stop obviously problematic, falsified, or otherwise untrustworthy research from being published. It also represents an excellent opportunity to get feedback from renowned experts in your field. It acts as a first defense, helping you ensure your argument is clear and that there are no gaps, vague terms, or unanswered questions for readers who weren’t involved in the research process.

Peer-reviewed articles are considered a highly credible source due to this stringent process they go through before publication.

In general, the peer review process follows the following steps: 

  • First, the author submits the manuscript to the editor.
  • Reject the manuscript and send it back to author, or 
  • Send it onward to the selected peer reviewer(s) 
  • Next, the peer review process occurs. The reviewer provides feedback, addressing any major or minor issues with the manuscript, and gives their advice regarding what edits should be made. 
  • Lastly, the edited manuscript is sent back to the author. They input the edits, and resubmit it to the editor for publication.

Exploratory research is often used when the issue you’re studying is new or when the data collection process is challenging for some reason.

You can use exploratory research if you have a general idea or a specific question that you want to study but there is no preexisting knowledge or paradigm with which to study it.

Exploratory research is a methodology approach that explores research questions that have not previously been studied in depth. It is often used when the issue you’re studying is new, or the data collection process is challenging in some way.

Explanatory research is used to investigate how or why a phenomenon occurs. Therefore, this type of research is often one of the first stages in the research process , serving as a jumping-off point for future research.

Exploratory research aims to explore the main aspects of an under-researched problem, while explanatory research aims to explain the causes and consequences of a well-defined problem.

Explanatory research is a research method used to investigate how or why something occurs when only a small amount of information is available pertaining to that topic. It can help you increase your understanding of a given topic.

Clean data are valid, accurate, complete, consistent, unique, and uniform. Dirty data include inconsistencies and errors.

Dirty data can come from any part of the research process, including poor research design , inappropriate measurement materials, or flawed data entry.

Data cleaning takes place between data collection and data analyses. But you can use some methods even before collecting data.

For clean data, you should start by designing measures that collect valid data. Data validation at the time of data entry or collection helps you minimize the amount of data cleaning you’ll need to do.

After data collection, you can use data standardization and data transformation to clean your data. You’ll also deal with any missing values, outliers, and duplicate values.

Every dataset requires different techniques to clean dirty data , but you need to address these issues in a systematic way. You focus on finding and resolving data points that don’t agree or fit with the rest of your dataset.

These data might be missing values, outliers, duplicate values, incorrectly formatted, or irrelevant. You’ll start with screening and diagnosing your data. Then, you’ll often standardize and accept or remove data to make your dataset consistent and valid.

Data cleaning is necessary for valid and appropriate analyses. Dirty data contain inconsistencies or errors , but cleaning your data helps you minimize or resolve these.

Without data cleaning, you could end up with a Type I or II error in your conclusion. These types of erroneous conclusions can be practically significant with important consequences, because they lead to misplaced investments or missed opportunities.

Data cleaning involves spotting and resolving potential data inconsistencies or errors to improve your data quality. An error is any value (e.g., recorded weight) that doesn’t reflect the true value (e.g., actual weight) of something that’s being measured.

In this process, you review, analyze, detect, modify, or remove “dirty” data to make your dataset “clean.” Data cleaning is also called data cleansing or data scrubbing.

Research misconduct means making up or falsifying data, manipulating data analyses, or misrepresenting results in research reports. It’s a form of academic fraud.

These actions are committed intentionally and can have serious consequences; research misconduct is not a simple mistake or a point of disagreement but a serious ethical failure.

Anonymity means you don’t know who the participants are, while confidentiality means you know who they are but remove identifying information from your research report. Both are important ethical considerations .

You can only guarantee anonymity by not collecting any personally identifying information—for example, names, phone numbers, email addresses, IP addresses, physical characteristics, photos, or videos.

You can keep data confidential by using aggregate information in your research report, so that you only refer to groups of participants rather than individuals.

Research ethics matter for scientific integrity, human rights and dignity, and collaboration between science and society. These principles make sure that participation in studies is voluntary, informed, and safe.

Ethical considerations in research are a set of principles that guide your research designs and practices. These principles include voluntary participation, informed consent, anonymity, confidentiality, potential for harm, and results communication.

Scientists and researchers must always adhere to a certain code of conduct when collecting data from others .

These considerations protect the rights of research participants, enhance research validity , and maintain scientific integrity.

In multistage sampling , you can use probability or non-probability sampling methods .

For a probability sample, you have to conduct probability sampling at every stage.

You can mix it up by using simple random sampling , systematic sampling , or stratified sampling to select units at different stages, depending on what is applicable and relevant to your study.

Multistage sampling can simplify data collection when you have large, geographically spread samples, and you can obtain a probability sample without a complete sampling frame.

But multistage sampling may not lead to a representative sample, and larger samples are needed for multistage samples to achieve the statistical properties of simple random samples .

These are four of the most common mixed methods designs :

  • Convergent parallel: Quantitative and qualitative data are collected at the same time and analyzed separately. After both analyses are complete, compare your results to draw overall conclusions. 
  • Embedded: Quantitative and qualitative data are collected at the same time, but within a larger quantitative or qualitative design. One type of data is secondary to the other.
  • Explanatory sequential: Quantitative data is collected and analyzed first, followed by qualitative data. You can use this design if you think your qualitative data will explain and contextualize your quantitative findings.
  • Exploratory sequential: Qualitative data is collected and analyzed first, followed by quantitative data. You can use this design if you think the quantitative data will confirm or validate your qualitative findings.

Triangulation in research means using multiple datasets, methods, theories and/or investigators to address a research question. It’s a research strategy that can help you enhance the validity and credibility of your findings.

Triangulation is mainly used in qualitative research , but it’s also commonly applied in quantitative research . Mixed methods research always uses triangulation.

In multistage sampling , or multistage cluster sampling, you draw a sample from a population using smaller and smaller groups at each stage.

This method is often used to collect data from a large, geographically spread group of people in national surveys, for example. You take advantage of hierarchical groupings (e.g., from state to city to neighborhood) to create a sample that’s less expensive and time-consuming to collect data from.

No, the steepness or slope of the line isn’t related to the correlation coefficient value. The correlation coefficient only tells you how closely your data fit on a line, so two datasets with the same correlation coefficient can have very different slopes.

To find the slope of the line, you’ll need to perform a regression analysis .

Correlation coefficients always range between -1 and 1.

The sign of the coefficient tells you the direction of the relationship: a positive value means the variables change together in the same direction, while a negative value means they change together in opposite directions.

The absolute value of a number is equal to the number without its sign. The absolute value of a correlation coefficient tells you the magnitude of the correlation: the greater the absolute value, the stronger the correlation.

These are the assumptions your data must meet if you want to use Pearson’s r :

  • Both variables are on an interval or ratio level of measurement
  • Data from both variables follow normal distributions
  • Your data have no outliers
  • Your data is from a random or representative sample
  • You expect a linear relationship between the two variables

Quantitative research designs can be divided into two main categories:

  • Correlational and descriptive designs are used to investigate characteristics, averages, trends, and associations between variables.
  • Experimental and quasi-experimental designs are used to test causal relationships .

Qualitative research designs tend to be more flexible. Common types of qualitative design include case study , ethnography , and grounded theory designs.

A well-planned research design helps ensure that your methods match your research aims, that you collect high-quality data, and that you use the right kind of analysis to answer your questions, utilizing credible sources . This allows you to draw valid , trustworthy conclusions.

The priorities of a research design can vary depending on the field, but you usually have to specify:

  • Your research questions and/or hypotheses
  • Your overall approach (e.g., qualitative or quantitative )
  • The type of design you’re using (e.g., a survey , experiment , or case study )
  • Your sampling methods or criteria for selecting subjects
  • Your data collection methods (e.g., questionnaires , observations)
  • Your data collection procedures (e.g., operationalization , timing and data management)
  • Your data analysis methods (e.g., statistical tests  or thematic analysis )

A research design is a strategy for answering your   research question . It defines your overall approach and determines how you will collect and analyze data.

Questionnaires can be self-administered or researcher-administered.

Self-administered questionnaires can be delivered online or in paper-and-pen formats, in person or through mail. All questions are standardized so that all respondents receive the same questions with identical wording.

Researcher-administered questionnaires are interviews that take place by phone, in-person, or online between researchers and respondents. You can gain deeper insights by clarifying questions for respondents or asking follow-up questions.

You can organize the questions logically, with a clear progression from simple to complex, or randomly between respondents. A logical flow helps respondents process the questionnaire easier and quicker, but it may lead to bias. Randomization can minimize the bias from order effects.

Closed-ended, or restricted-choice, questions offer respondents a fixed set of choices to select from. These questions are easier to answer quickly.

Open-ended or long-form questions allow respondents to answer in their own words. Because there are no restrictions on their choices, respondents can answer in ways that researchers may not have otherwise considered.

A questionnaire is a data collection tool or instrument, while a survey is an overarching research method that involves collecting and analyzing data from people using questionnaires.

The third variable and directionality problems are two main reasons why correlation isn’t causation .

The third variable problem means that a confounding variable affects both variables to make them seem causally related when they are not.

The directionality problem is when two variables correlate and might actually have a causal relationship, but it’s impossible to conclude which variable causes changes in the other.

Correlation describes an association between variables : when one variable changes, so does the other. A correlation is a statistical indicator of the relationship between variables.

Causation means that changes in one variable brings about changes in the other (i.e., there is a cause-and-effect relationship between variables). The two variables are correlated with each other, and there’s also a causal link between them.

While causation and correlation can exist simultaneously, correlation does not imply causation. In other words, correlation is simply a relationship where A relates to B—but A doesn’t necessarily cause B to happen (or vice versa). Mistaking correlation for causation is a common error and can lead to false cause fallacy .

Controlled experiments establish causality, whereas correlational studies only show associations between variables.

  • In an experimental design , you manipulate an independent variable and measure its effect on a dependent variable. Other variables are controlled so they can’t impact the results.
  • In a correlational design , you measure variables without manipulating any of them. You can test whether your variables change together, but you can’t be sure that one variable caused a change in another.

In general, correlational research is high in external validity while experimental research is high in internal validity .

A correlation is usually tested for two variables at a time, but you can test correlations between three or more variables.

A correlation coefficient is a single number that describes the strength and direction of the relationship between your variables.

Different types of correlation coefficients might be appropriate for your data based on their levels of measurement and distributions . The Pearson product-moment correlation coefficient (Pearson’s r ) is commonly used to assess a linear relationship between two quantitative variables.

A correlational research design investigates relationships between two variables (or more) without the researcher controlling or manipulating any of them. It’s a non-experimental type of quantitative research .

A correlation reflects the strength and/or direction of the association between two or more variables.

  • A positive correlation means that both variables change in the same direction.
  • A negative correlation means that the variables change in opposite directions.
  • A zero correlation means there’s no relationship between the variables.

Random error  is almost always present in scientific studies, even in highly controlled settings. While you can’t eradicate it completely, you can reduce random error by taking repeated measurements, using a large sample, and controlling extraneous variables .

You can avoid systematic error through careful design of your sampling , data collection , and analysis procedures. For example, use triangulation to measure your variables using multiple methods; regularly calibrate instruments or procedures; use random sampling and random assignment ; and apply masking (blinding) where possible.

Systematic error is generally a bigger problem in research.

With random error, multiple measurements will tend to cluster around the true value. When you’re collecting data from a large sample , the errors in different directions will cancel each other out.

Systematic errors are much more problematic because they can skew your data away from the true value. This can lead you to false conclusions ( Type I and II errors ) about the relationship between the variables you’re studying.

Random and systematic error are two types of measurement error.

Random error is a chance difference between the observed and true values of something (e.g., a researcher misreading a weighing scale records an incorrect measurement).

Systematic error is a consistent or proportional difference between the observed and true values of something (e.g., a miscalibrated scale consistently records weights as higher than they actually are).

On graphs, the explanatory variable is conventionally placed on the x-axis, while the response variable is placed on the y-axis.

  • If you have quantitative variables , use a scatterplot or a line graph.
  • If your response variable is categorical, use a scatterplot or a line graph.
  • If your explanatory variable is categorical, use a bar graph.

The term “ explanatory variable ” is sometimes preferred over “ independent variable ” because, in real world contexts, independent variables are often influenced by other variables. This means they aren’t totally independent.

Multiple independent variables may also be correlated with each other, so “explanatory variables” is a more appropriate term.

The difference between explanatory and response variables is simple:

  • An explanatory variable is the expected cause, and it explains the results.
  • A response variable is the expected effect, and it responds to other variables.

In a controlled experiment , all extraneous variables are held constant so that they can’t influence the results. Controlled experiments require:

  • A control group that receives a standard treatment, a fake treatment, or no treatment.
  • Random assignment of participants to ensure the groups are equivalent.

Depending on your study topic, there are various other methods of controlling variables .

There are 4 main types of extraneous variables :

  • Demand characteristics : environmental cues that encourage participants to conform to researchers’ expectations.
  • Experimenter effects : unintentional actions by researchers that influence study outcomes.
  • Situational variables : environmental variables that alter participants’ behaviors.
  • Participant variables : any characteristic or aspect of a participant’s background that could affect study results.

An extraneous variable is any variable that you’re not investigating that can potentially affect the dependent variable of your research study.

A confounding variable is a type of extraneous variable that not only affects the dependent variable, but is also related to the independent variable.

In a factorial design, multiple independent variables are tested.

If you test two variables, each level of one independent variable is combined with each level of the other independent variable to create different conditions.

Within-subjects designs have many potential threats to internal validity , but they are also very statistically powerful .

Advantages:

  • Only requires small samples
  • Statistically powerful
  • Removes the effects of individual differences on the outcomes

Disadvantages:

  • Internal validity threats reduce the likelihood of establishing a direct relationship between variables
  • Time-related effects, such as growth, can influence the outcomes
  • Carryover effects mean that the specific order of different treatments affect the outcomes

While a between-subjects design has fewer threats to internal validity , it also requires more participants for high statistical power than a within-subjects design .

  • Prevents carryover effects of learning and fatigue.
  • Shorter study duration.
  • Needs larger samples for high power.
  • Uses more resources to recruit participants, administer sessions, cover costs, etc.
  • Individual differences may be an alternative explanation for results.

Yes. Between-subjects and within-subjects designs can be combined in a single study when you have two or more independent variables (a factorial design). In a mixed factorial design, one variable is altered between subjects and another is altered within subjects.

In a between-subjects design , every participant experiences only one condition, and researchers assess group differences between participants in various conditions.

In a within-subjects design , each participant experiences all conditions, and researchers test the same participants repeatedly for differences between conditions.

The word “between” means that you’re comparing different conditions between groups, while the word “within” means you’re comparing different conditions within the same group.

Random assignment is used in experiments with a between-groups or independent measures design. In this research design, there’s usually a control group and one or more experimental groups. Random assignment helps ensure that the groups are comparable.

In general, you should always use random assignment in this type of experimental design when it is ethically possible and makes sense for your study topic.

To implement random assignment , assign a unique number to every member of your study’s sample .

Then, you can use a random number generator or a lottery method to randomly assign each number to a control or experimental group. You can also do so manually, by flipping a coin or rolling a dice to randomly assign participants to groups.

Random selection, or random sampling , is a way of selecting members of a population for your study’s sample.

In contrast, random assignment is a way of sorting the sample into control and experimental groups.

Random sampling enhances the external validity or generalizability of your results, while random assignment improves the internal validity of your study.

In experimental research, random assignment is a way of placing participants from your sample into different groups using randomization. With this method, every member of the sample has a known or equal chance of being placed in a control group or an experimental group.

“Controlling for a variable” means measuring extraneous variables and accounting for them statistically to remove their effects on other variables.

Researchers often model control variable data along with independent and dependent variable data in regression analyses and ANCOVAs . That way, you can isolate the control variable’s effects from the relationship between the variables of interest.

Control variables help you establish a correlational or causal relationship between variables by enhancing internal validity .

If you don’t control relevant extraneous variables , they may influence the outcomes of your study, and you may not be able to demonstrate that your results are really an effect of your independent variable .

A control variable is any variable that’s held constant in a research study. It’s not a variable of interest in the study, but it’s controlled because it could influence the outcomes.

Including mediators and moderators in your research helps you go beyond studying a simple relationship between two variables for a fuller picture of the real world. They are important to consider when studying complex correlational or causal relationships.

Mediators are part of the causal pathway of an effect, and they tell you how or why an effect takes place. Moderators usually help you judge the external validity of your study by identifying the limitations of when the relationship between variables holds.

If something is a mediating variable :

  • It’s caused by the independent variable .
  • It influences the dependent variable
  • When it’s taken into account, the statistical correlation between the independent and dependent variables is higher than when it isn’t considered.

A confounder is a third variable that affects variables of interest and makes them seem related when they are not. In contrast, a mediator is the mechanism of a relationship between two variables: it explains the process by which they are related.

A mediator variable explains the process through which two variables are related, while a moderator variable affects the strength and direction of that relationship.

There are three key steps in systematic sampling :

  • Define and list your population , ensuring that it is not ordered in a cyclical or periodic order.
  • Decide on your sample size and calculate your interval, k , by dividing your population by your target sample size.
  • Choose every k th member of the population as your sample.

Systematic sampling is a probability sampling method where researchers select members of the population at a regular interval – for example, by selecting every 15th person on a list of the population. If the population is in a random order, this can imitate the benefits of simple random sampling .

Yes, you can create a stratified sample using multiple characteristics, but you must ensure that every participant in your study belongs to one and only one subgroup. In this case, you multiply the numbers of subgroups for each characteristic to get the total number of groups.

For example, if you were stratifying by location with three subgroups (urban, rural, or suburban) and marital status with five subgroups (single, divorced, widowed, married, or partnered), you would have 3 x 5 = 15 subgroups.

You should use stratified sampling when your sample can be divided into mutually exclusive and exhaustive subgroups that you believe will take on different mean values for the variable that you’re studying.

Using stratified sampling will allow you to obtain more precise (with lower variance ) statistical estimates of whatever you are trying to measure.

For example, say you want to investigate how income differs based on educational attainment, but you know that this relationship can vary based on race. Using stratified sampling, you can ensure you obtain a large enough sample from each racial group, allowing you to draw more precise conclusions.

In stratified sampling , researchers divide subjects into subgroups called strata based on characteristics that they share (e.g., race, gender, educational attainment).

Once divided, each subgroup is randomly sampled using another probability sampling method.

Cluster sampling is more time- and cost-efficient than other probability sampling methods , particularly when it comes to large samples spread across a wide geographical area.

However, it provides less statistical certainty than other methods, such as simple random sampling , because it is difficult to ensure that your clusters properly represent the population as a whole.

There are three types of cluster sampling : single-stage, double-stage and multi-stage clustering. In all three types, you first divide the population into clusters, then randomly select clusters for use in your sample.

  • In single-stage sampling , you collect data from every unit within the selected clusters.
  • In double-stage sampling , you select a random sample of units from within the clusters.
  • In multi-stage sampling , you repeat the procedure of randomly sampling elements from within the clusters until you have reached a manageable sample.

Cluster sampling is a probability sampling method in which you divide a population into clusters, such as districts or schools, and then randomly select some of these clusters as your sample.

The clusters should ideally each be mini-representations of the population as a whole.

If properly implemented, simple random sampling is usually the best sampling method for ensuring both internal and external validity . However, it can sometimes be impractical and expensive to implement, depending on the size of the population to be studied,

If you have a list of every member of the population and the ability to reach whichever members are selected, you can use simple random sampling.

The American Community Survey  is an example of simple random sampling . In order to collect detailed data on the population of the US, the Census Bureau officials randomly select 3.5 million households per year and use a variety of methods to convince them to fill out the survey.

Simple random sampling is a type of probability sampling in which the researcher randomly selects a subset of participants from a population . Each member of the population has an equal chance of being selected. Data is then collected from as large a percentage as possible of this random subset.

Quasi-experimental design is most useful in situations where it would be unethical or impractical to run a true experiment .

Quasi-experiments have lower internal validity than true experiments, but they often have higher external validity  as they can use real-world interventions instead of artificial laboratory settings.

A quasi-experiment is a type of research design that attempts to establish a cause-and-effect relationship. The main difference with a true experiment is that the groups are not randomly assigned.

Blinding is important to reduce research bias (e.g., observer bias , demand characteristics ) and ensure a study’s internal validity .

If participants know whether they are in a control or treatment group , they may adjust their behavior in ways that affect the outcome that researchers are trying to measure. If the people administering the treatment are aware of group assignment, they may treat participants differently and thus directly or indirectly influence the final results.

  • In a single-blind study , only the participants are blinded.
  • In a double-blind study , both participants and experimenters are blinded.
  • In a triple-blind study , the assignment is hidden not only from participants and experimenters, but also from the researchers analyzing the data.

Blinding means hiding who is assigned to the treatment group and who is assigned to the control group in an experiment .

A true experiment (a.k.a. a controlled experiment) always includes at least one control group that doesn’t receive the experimental treatment.

However, some experiments use a within-subjects design to test treatments without a control group. In these designs, you usually compare one group’s outcomes before and after a treatment (instead of comparing outcomes between different groups).

For strong internal validity , it’s usually best to include a control group if possible. Without a control group, it’s harder to be certain that the outcome was caused by the experimental treatment and not by other variables.

Individual Likert-type questions are generally considered ordinal data , because the items have clear rank order, but don’t have an even distribution.

Overall Likert scale scores are sometimes treated as interval data. These scores are considered to have directionality and even spacing between them.

The type of data determines what statistical tests you should use to analyze your data.

A Likert scale is a rating scale that quantitatively assesses opinions, attitudes, or behaviors. It is made up of 4 or more questions that measure a single attitude or trait when response scores are combined.

To use a Likert scale in a survey , you present participants with Likert-type questions or statements, and a continuum of items, usually with 5 or 7 possible responses, to capture their degree of agreement.

In scientific research, concepts are the abstract ideas or phenomena that are being studied (e.g., educational achievement). Variables are properties or characteristics of the concept (e.g., performance at school), while indicators are ways of measuring or quantifying variables (e.g., yearly grade reports).

The process of turning abstract concepts into measurable variables and indicators is called operationalization .

There are various approaches to qualitative data analysis , but they all share five steps in common:

  • Prepare and organize your data.
  • Review and explore your data.
  • Develop a data coding system.
  • Assign codes to the data.
  • Identify recurring themes.

The specifics of each step depend on the focus of the analysis. Some common approaches include textual analysis , thematic analysis , and discourse analysis .

There are five common approaches to qualitative research :

  • Grounded theory involves collecting data in order to develop new theories.
  • Ethnography involves immersing yourself in a group or organization to understand its culture.
  • Narrative research involves interpreting stories to understand how people make sense of their experiences and perceptions.
  • Phenomenological research involves investigating phenomena through people’s lived experiences.
  • Action research links theory and practice in several cycles to drive innovative changes.

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics. It is used by scientists to test specific predictions, called hypotheses , by calculating how likely it is that a pattern or relationship between variables could have arisen by chance.

Operationalization means turning abstract conceptual ideas into measurable observations.

For example, the concept of social anxiety isn’t directly observable, but it can be operationally defined in terms of self-rating scores, behavioral avoidance of crowded places, or physical anxiety symptoms in social situations.

Before collecting data , it’s important to consider how you will operationalize the variables that you want to measure.

When conducting research, collecting original data has significant advantages:

  • You can tailor data collection to your specific research aims (e.g. understanding the needs of your consumers or user testing your website)
  • You can control and standardize the process for high reliability and validity (e.g. choosing appropriate measurements and sampling methods )

However, there are also some drawbacks: data collection can be time-consuming, labor-intensive and expensive. In some cases, it’s more efficient to use secondary data that has already been collected by someone else, but the data might be less reliable.

Data collection is the systematic process by which observations or measurements are gathered in research. It is used in many different contexts by academics, governments, businesses, and other organizations.

There are several methods you can use to decrease the impact of confounding variables on your research: restriction, matching, statistical control and randomization.

In restriction , you restrict your sample by only including certain subjects that have the same values of potential confounding variables.

In matching , you match each of the subjects in your treatment group with a counterpart in the comparison group. The matched subjects have the same values on any potential confounding variables, and only differ in the independent variable .

In statistical control , you include potential confounders as variables in your regression .

In randomization , you randomly assign the treatment (or independent variable) in your study to a sufficiently large number of subjects, which allows you to control for all potential confounding variables.

A confounding variable is closely related to both the independent and dependent variables in a study. An independent variable represents the supposed cause , while the dependent variable is the supposed effect . A confounding variable is a third variable that influences both the independent and dependent variables.

Failing to account for confounding variables can cause you to wrongly estimate the relationship between your independent and dependent variables.

To ensure the internal validity of your research, you must consider the impact of confounding variables. If you fail to account for them, you might over- or underestimate the causal relationship between your independent and dependent variables , or even find a causal relationship where none exists.

Yes, but including more than one of either type requires multiple research questions .

For example, if you are interested in the effect of a diet on health, you can use multiple measures of health: blood sugar, blood pressure, weight, pulse, and many more. Each of these is its own dependent variable with its own research question.

You could also choose to look at the effect of exercise levels as well as diet, or even the additional effect of the two combined. Each of these is a separate independent variable .

To ensure the internal validity of an experiment , you should only change one independent variable at a time.

No. The value of a dependent variable depends on an independent variable, so a variable cannot be both independent and dependent at the same time. It must be either the cause or the effect, not both!

You want to find out how blood sugar levels are affected by drinking diet soda and regular soda, so you conduct an experiment .

  • The type of soda – diet or regular – is the independent variable .
  • The level of blood sugar that you measure is the dependent variable – it changes depending on the type of soda.

Determining cause and effect is one of the most important parts of scientific research. It’s essential to know which is the cause – the independent variable – and which is the effect – the dependent variable.

In non-probability sampling , the sample is selected based on non-random criteria, and not every member of the population has a chance of being included.

Common non-probability sampling methods include convenience sampling , voluntary response sampling, purposive sampling , snowball sampling, and quota sampling .

Probability sampling means that every member of the target population has a known chance of being included in the sample.

Probability sampling methods include simple random sampling , systematic sampling , stratified sampling , and cluster sampling .

Using careful research design and sampling procedures can help you avoid sampling bias . Oversampling can be used to correct undercoverage bias .

Some common types of sampling bias include self-selection bias , nonresponse bias , undercoverage bias , survivorship bias , pre-screening or advertising bias, and healthy user bias.

Sampling bias is a threat to external validity – it limits the generalizability of your findings to a broader group of people.

A sampling error is the difference between a population parameter and a sample statistic .

A statistic refers to measures about the sample , while a parameter refers to measures about the population .

Populations are used when a research question requires data from every member of the population. This is usually only feasible when the population is small and easily accessible.

Samples are used to make inferences about populations . Samples are easier to collect data from because they are practical, cost-effective, convenient, and manageable.

There are seven threats to external validity : selection bias , history, experimenter effect, Hawthorne effect , testing effect, aptitude-treatment and situation effect.

The two types of external validity are population validity (whether you can generalize to other groups of people) and ecological validity (whether you can generalize to other situations and settings).

The external validity of a study is the extent to which you can generalize your findings to different groups of people, situations, and measures.

Cross-sectional studies cannot establish a cause-and-effect relationship or analyze behavior over a period of time. To investigate cause and effect, you need to do a longitudinal study or an experimental study .

Cross-sectional studies are less expensive and time-consuming than many other types of study. They can provide useful insights into a population’s characteristics and identify correlations for further research.

Sometimes only cross-sectional data is available for analysis; other times your research question may only require a cross-sectional study to answer it.

Longitudinal studies can last anywhere from weeks to decades, although they tend to be at least a year long.

The 1970 British Cohort Study , which has collected data on the lives of 17,000 Brits since their births in 1970, is one well-known example of a longitudinal study .

Longitudinal studies are better to establish the correct sequence of events, identify changes over time, and provide insight into cause-and-effect relationships, but they also tend to be more expensive and time-consuming than other types of studies.

Longitudinal studies and cross-sectional studies are two different types of research design . In a cross-sectional study you collect data from a population at a specific point in time; in a longitudinal study you repeatedly collect data from the same sample over an extended period of time.

Longitudinal study Cross-sectional study
observations Observations at a in time
Observes the multiple times Observes (a “cross-section”) in the population
Follows in participants over time Provides of society at a given point

There are eight threats to internal validity : history, maturation, instrumentation, testing, selection bias , regression to the mean, social interaction and attrition .

Internal validity is the extent to which you can be confident that a cause-and-effect relationship established in a study cannot be explained by other factors.

In mixed methods research , you use both qualitative and quantitative data collection and analysis methods to answer your research question .

The research methods you use depend on the type of data you need to answer your research question .

  • If you want to measure something or test a hypothesis , use quantitative methods . If you want to explore ideas, thoughts and meanings, use qualitative methods .
  • If you want to analyze a large amount of readily-available data, use secondary data. If you want data specific to your purposes with control over how it is generated, collect primary data.
  • If you want to establish cause-and-effect relationships between variables , use experimental methods. If you want to understand the characteristics of a research subject, use descriptive methods.

A confounding variable , also called a confounder or confounding factor, is a third variable in a study examining a potential cause-and-effect relationship.

A confounding variable is related to both the supposed cause and the supposed effect of the study. It can be difficult to separate the true effect of the independent variable from the effect of the confounding variable.

In your research design , it’s important to identify potential confounding variables and plan how you will reduce their impact.

Discrete and continuous variables are two types of quantitative variables :

  • Discrete variables represent counts (e.g. the number of objects in a collection).
  • Continuous variables represent measurable amounts (e.g. water volume or weight).

Quantitative variables are any variables where the data represent amounts (e.g. height, weight, or age).

Categorical variables are any variables where the data represent groups. This includes rankings (e.g. finishing places in a race), classifications (e.g. brands of cereal), and binary outcomes (e.g. coin flips).

You need to know what type of variables you are working with to choose the right statistical test for your data and interpret your results .

You can think of independent and dependent variables in terms of cause and effect: an independent variable is the variable you think is the cause , while a dependent variable is the effect .

In an experiment, you manipulate the independent variable and measure the outcome in the dependent variable. For example, in an experiment about the effect of nutrients on crop growth:

  • The  independent variable  is the amount of nutrients added to the crop field.
  • The  dependent variable is the biomass of the crops at harvest time.

Defining your variables, and deciding how you will manipulate and measure them, is an important part of experimental design .

Experimental design means planning a set of procedures to investigate a relationship between variables . To design a controlled experiment, you need:

  • A testable hypothesis
  • At least one independent variable that can be precisely manipulated
  • At least one dependent variable that can be precisely measured

When designing the experiment, you decide:

  • How you will manipulate the variable(s)
  • How you will control for any potential confounding variables
  • How many subjects or samples will be included in the study
  • How subjects will be assigned to treatment levels

Experimental design is essential to the internal and external validity of your experiment.

I nternal validity is the degree of confidence that the causal relationship you are testing is not influenced by other factors or variables .

External validity is the extent to which your results can be generalized to other contexts.

The validity of your experiment depends on your experimental design .

Reliability and validity are both about how well a method measures something:

  • Reliability refers to the  consistency of a measure (whether the results can be reproduced under the same conditions).
  • Validity   refers to the  accuracy of a measure (whether the results really do represent what they are supposed to measure).

If you are doing experimental research, you also have to consider the internal and external validity of your experiment.

A sample is a subset of individuals from a larger population . Sampling means selecting the group that you will actually collect data from in your research. For example, if you are researching the opinions of students in your university, you could survey a sample of 100 students.

In statistics, sampling allows you to test a hypothesis about the characteristics of a population.

Quantitative research deals with numbers and statistics, while qualitative research deals with words and meanings.

Quantitative methods allow you to systematically measure variables and test hypotheses . Qualitative methods allow you to explore concepts and experiences in more detail.

Methodology refers to the overarching strategy and rationale of your research project . It involves studying the methods used in your field and the theories or principles behind them, in order to develop an approach that matches your objectives.

Methods are the specific tools and procedures you use to collect and analyze data (for example, experiments, surveys , and statistical tests ).

In shorter scientific papers, where the aim is to report the findings of a specific study, you might simply describe what you did in a methods section .

In a longer or more complex research project, such as a thesis or dissertation , you will probably include a methodology section , where you explain your approach to answering the research questions and cite relevant sources to support your choice of methods.

Ask our team

Want to contact us directly? No problem.  We  are always here for you.

Support team - Nina

Our team helps students graduate by offering:

  • A world-class citation generator
  • Plagiarism Checker software powered by Turnitin
  • Innovative Citation Checker software
  • Professional proofreading services
  • Over 300 helpful articles about academic writing, citing sources, plagiarism, and more

Scribbr specializes in editing study-related documents . We proofread:

  • PhD dissertations
  • Research proposals
  • Personal statements
  • Admission essays
  • Motivation letters
  • Reflection papers
  • Journal articles
  • Capstone projects

Scribbr’s Plagiarism Checker is powered by elements of Turnitin’s Similarity Checker , namely the plagiarism detection software and the Internet Archive and Premium Scholarly Publications content databases .

The add-on AI detector is powered by Scribbr’s proprietary software.

The Scribbr Citation Generator is developed using the open-source Citation Style Language (CSL) project and Frank Bennett’s citeproc-js . It’s the same technology used by dozens of other popular citation tools, including Mendeley and Zotero.

You can find all the citation styles and locales used in the Scribbr Citation Generator in our publicly accessible repository on Github .

What is a control group?

Last updated

6 February 2023

Reviewed by

The independent variable is the thing the researchers are testing. They are trying to determine whether it’s responsible for any change that occurs in the experiment. The research control group is key for this as it allows them to isolate the independent variable’s effect on the experiment.

Make research less tedious

Dovetail streamlines research to help you uncover and share actionable insights

  • What is a control group in simple terms?

Splitting the audience you’re testing into two identical groups will give you a control group and an experimental group.

Nothing will change for the control group during the research. For example, this group would receive a placebo in pharmaceutical research.

In contrast, one key variable changes for the experimental group. In a pharmaceutical experiment, researchers might administer a different drug. In advertising research, this might involve increasing the experimental group’s exposure to ads.

When evaluating the results, researchers will compare those obtained from the experimental group against the control group. The control group is the baseline.

In research where the two groups are truly identical, seeing different results between the groups suggests they were caused by the independent variable—the only thing that changed.

Control gr oup examples

Examples of control groups in research exist in a wide range of business contexts. For example:

You want to test whether a 15% loyalty discount for repeat purchases would positively impact retention and revenue. So, you send a discount email to 50% of your customers who were randomly selected. The other 50% of customers are your control group.

You want to test whether a personal sales call will increase your chance of a sales conversion. You add this step to your existing nurturing campaign for a randomly selected portion of leads. Those who don’t receive a phone call are your control group.

You want to test whether different product packaging can change brand perceptions. To do this, you change the packaging for a randomly selected portion of customers. Customers who receive the same packaging as before are your control group. Sending a survey to all customers about their brand perceptions before and after the experiment will reveal the impact of the new packaging.

These are just some of the countless examples of control groups. Perhaps the most well-known example is in the medical field, where placebos treatments are used. Control groups receive placebo treatments under the exact same conditions as the experimental group to determine the treatment’s effects.

  • The importance of control groups

Control groups matter in research because they act as the benchmark to establish your results’ validity . They enable you to compare the results you see in your experimental group and determine if the variable you changed caused a different outcome. 

Control groups and experimental groups should be identical in their makeup and environment in every possible way. You’ll be able to draw more definitive conclusions as long as the research process is identical for both groups. In other words, working with control groups improves your research’s internal validity .

  • Control groups in experiments

Control groups are most common in experimental research, where you’re trying to determine the impact of a variable you’re changing. You split your research group into two groups that are as identical as possible. One receives a placebo, for example, while the other receives a treatment.

In this environment, the identical makeup of the group is essential. The most common way to accomplish this is by randomly splitting the group in two and ensuring that any variables you’re not testing remain the same throughout the research process.

You can also conduct experiments with multiple control groups. For example, when testing new ad messaging, the split between two control groups and one experimental group may be as follows:

Control group 1 receives no advertising

Control group 2 receives the existing advertising

Control group 3 receives the new ad messaging

This more complex type of experiment can test both the overall impact of ads and how much of that impact you could attribute to the new messaging.

  • Control groups in non-experimental research

Control groups are less common in non-experimental research but can still be useful. They most commonly occur in the following process designs:

Matching design

In this research process, every person in the experimental group is matched to one other person based on their environmental and demographic similarities.

This is most common when randomly selecting two groups on a broader scale would not result in them being equal. It can help you ensure that the control group or individual continues to act as the baseline for the variable you are studying.

Quasi-experimental design

This is where multiple groups are part of the research, but they are not randomly assigned to test and control conditions.

Quasi-experimental design is most common when the groups you are studying already exist, like customers being shown new ad messaging versus non-customers. The control group in this example is made up of your non-customers, as the variable did not change for them.

  • Two common types of control groups

While control groups tend to be similar across research contexts, they generally fall into two categories: negative and positive control groups.

Negative control groups

The independent variable does not change in a negative control group. This group represents the true status quo, and you would test the experimental group against it.

Examples of negative control groups include many of the experiments listed above, like only changing product packaging or only offering a discount for one group of customers.

Positive control groups

In positive control groups, the independent variable is changed where it is already known to have an effect. You would compare this group’s results against those from the experimental group receiving a variation of the same independent variable. This would enable you to determine if the effect changes.

In the example of a multi-control group experiment seen above, control group 1 (receiving no advertising) is a negative control group, while control group 2 (receiving the current level of advertising) is a positive control group.

Should you be using a customer insights hub?

Do you want to discover previous research faster?

Do you share your research findings with others?

Do you analyze research data?

Start for free today, add your research, and get to key insights faster

Editor’s picks

Last updated: 18 April 2023

Last updated: 27 February 2023

Last updated: 6 February 2023

Last updated: 5 February 2023

Last updated: 16 April 2023

Last updated: 9 March 2023

Last updated: 30 April 2024

Last updated: 12 December 2023

Last updated: 11 March 2024

Last updated: 4 July 2024

Last updated: 6 March 2024

Last updated: 5 March 2024

Last updated: 13 May 2024

Latest articles

Related topics, .css-je19u9{-webkit-align-items:flex-end;-webkit-box-align:flex-end;-ms-flex-align:flex-end;align-items:flex-end;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-flex-direction:row;-ms-flex-direction:row;flex-direction:row;-webkit-box-flex-wrap:wrap;-webkit-flex-wrap:wrap;-ms-flex-wrap:wrap;flex-wrap:wrap;-webkit-box-pack:center;-ms-flex-pack:center;-webkit-justify-content:center;justify-content:center;row-gap:0;text-align:center;max-width:671px;}@media (max-width: 1079px){.css-je19u9{max-width:400px;}.css-je19u9>span{white-space:pre;}}@media (max-width: 799px){.css-je19u9{max-width:400px;}.css-je19u9>span{white-space:pre;}} decide what to .css-1kiodld{max-height:56px;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-align-items:center;-webkit-box-align:center;-ms-flex-align:center;align-items:center;}@media (max-width: 1079px){.css-1kiodld{display:none;}} build next, decide what to build next, log in or sign up.

Get started for free

  • Skip to primary navigation
  • Skip to main content
  • Skip to footer

control group and experimental group similarities

Understanding Science

How science REALLY works...

Frequently asked questions about how science works

The Understanding Science site is assembling an expanded list of FAQs for the site and you can contribute. Have a question about how science works, what science is, or what it’s like to be a scientist? Send it to  [email protected] !

Expand the individual panels to reveal the answers or Expand all | Collapse all

What is the scientific method?

The “scientific method” is traditionally presented in the first chapter of science textbooks as a simple, linear, five- or six-step procedure for performing scientific investigations. Although the Scientific Method captures the core logic of science (testing ideas with evidence), it misrepresents many other aspects of the true process of science — the dynamic, nonlinear, and creative ways in which science is actually done. In fact, the Scientific Method more accurately describes how science is summarized  after the fact  — in textbooks and journal articles — than how scientific research is actually performed. Teachers may ask that students use the format of the scientific method to write up the results of their investigations (e.g., by reporting their  question, background information, hypothesis, study design, data analysis,  and  conclusion ), even though the process that students went through in their investigations may have involved many iterations of questioning, background research, data collection, and data analysis and even though the students’ “conclusions” will always be tentative ones. To learn more about how science really works and to see a more accurate representation of this process, visit  The  real  process of science .

Why do scientists often seem tentative about their explanations?

Scientists often seem tentative about their explanations because they are aware that those explanations could change if new evidence or perspectives come to light. When scientists write about their ideas in journal articles, they are expected to carefully analyze the evidence for and against their ideas and to be explicit about alternative explanations for what they are observing. Because they are trained to do this for their scientific writing, scientist often do the same thing when talking to the press or a broader audience about their ideas. Unfortunately, this means that they are sometimes misinterpreted as being wishy-washy or unsure of their ideas. Even worse, ideas supported by masses of evidence are sometimes discounted by the public or the press because scientists talk about those ideas in tentative terms. It’s important for the public to recognize that, while provisionality is a fundamental characteristic of scientific knowledge, scientific ideas supported by evidence are trustworthy. To learn more about provisionality in science, visit our page describing  how science builds knowledge . To learn more about how this provisionality can be misinterpreted, visit a section of the  Science toolkit .

Why is peer review useful?

Peer review helps assure the quality of published scientific work: that the authors haven’t ignored key ideas or lines of evidence, that the study was fairly-designed, that the authors were objective in their assessment of their results, etc. This means that even if you are unfamiliar with the research presented in a particular peer-reviewed study, you can trust it to meet certain standards of scientific quality. This also saves scientists time in keeping up-to-date with advances in their fields by weeding out untrustworthy studies. Peer-reviewed work isn’t necessarily correct or conclusive, but it does meet the standards of science. To learn more, visit  Scrutinizing science .

What is the difference between independent and dependent variables?

In an experiment, the independent variables are the factors that the experimenter manipulates. The dependent variable is the outcome of interest—the outcome that depends on the experimental set-up. Experiments are set-up to learn more about how the independent variable does or does not affect the dependent variable. So, for example, if you were testing a new drug to treat Alzheimer’s disease, the independent variable might be whether or not the patient received the new drug, and the dependent variable might be how well participants perform on memory tests. On the other hand, to study how the temperature, volume, and pressure of a gas are related, you might set up an experiment in which you change the volume of a gas, while keeping the temperature constant, and see how this affects the gas’s pressure. In this case, the independent variable is the gas’s volume, and the dependent variable is the pressure of the gas. The temperature of the gas is a controlled variable. To learn more about experimental design, visit Fair tests: A do-it-yourself guide .

What is a control group?

In scientific testing, a control group is a group of individuals or cases that is treated in the same way as the experimental group, but that is not exposed to the experimental treatment or factor. Results from the experimental group and control group can be compared. If the control group is treated very similarly to the experimental group, it increases our confidence that any difference in outcome is caused by the presence of the experimental treatment in the experimental group. For an example, visit our side trip  Fair tests in the field of medicine .

What is the difference between a positive and a negative control group?

A negative control group is a control group that is not exposed to the experimental treatment or to any other treatment that is expected to have an effect. A positive control group is a control group that is not exposed to the experimental treatment but that is exposed to some other treatment that is known to produce the expected effect. These sorts of controls are particularly useful for validating the experimental procedure. For example, imagine that you wanted to know if some lettuce carried bacteria. You set up an experiment in which you wipe lettuce leaves with a swab, wipe the swab on a bacterial growth plate, incubate the plate, and see what grows on the plate. As a negative control, you might just wipe a sterile swab on the growth plate. You would not expect to see any bacterial growth on this plate, and if you do, it is an indication that your swabs, plates, or incubator are contaminated with bacteria that could interfere with the results of the experiment. As a positive control, you might swab an existing colony of bacteria and wipe it on the growth plate. In this case, you  would  expect to see bacterial growth on the plate, and if you do not, it is an indication that something in your experimental set-up is preventing the growth of bacteria. Perhaps the growth plates contain an antibiotic or the incubator is set to too high a temperature. If either the positive or negative control does not produce the expected result, it indicates that the investigator should reconsider his or her experimental procedure. To learn more about experimental design, visit  Fair tests: A do-it-yourself guide .

What is a correlational study, and how is it different from an experimental study?

In a correlational study, a scientist looks for associations between variables (e.g., are people who eat lots of vegetables less likely to suffer heart attacks than others?) without manipulating any variables (e.g., without asking a group of people to eat more or fewer vegetables than they usually would). In a correlational study, researchers may be interested in any sort of statistical association — a positive relationship among variables, a negative relationship among variables, or a more complex one. Correlational studies are used in many fields (e.g., ecology, epidemiology, astronomy, etc.), but the term is frequently associated with psychology. Correlational studies are often discussed in contrast to experimental studies. In experimental studies, researchers do manipulate a variable (e.g., by asking one group of people to eat more vegetables and asking a second group of people to eat as they usually do) and investigate the effect of that change. If an experimental study is well-designed, it can tell a researcher more about the cause of an association than a correlational study of the same system can. Despite this difference, correlational studies still generate important lines of evidence for testing ideas and often serve as the inspiration for new hypotheses. Both types of study are very important in science and rely on the same logic to relate evidence to ideas. To learn more about the basic logic of scientific arguments, visit  The core of science .

What is the difference between deductive and inductive reasoning?

Deductive reasoning involves logically extrapolating from a set of premises or hypotheses. You can think of this as logical “if-then” reasoning. For example, IF an asteroid strikes Earth, and IF iridium is more prevalent in asteroids than in Earth’s crust, and IF nothing else happens to the asteroid iridium afterwards, THEN there will be a spike in iridium levels at Earth’s surface. The THEN statement is the logical consequence of the IF statements. Another case of deductive reasoning involves reasoning from a general premise or hypothesis to a specific instance. For example, based on the idea that all living things are built from cells, we might  deduce  that a jellyfish (a specific example of a living thing) has cells. Inductive reasoning, on the other hand, involves making a generalization based on many individual observations. For example, a scientist who samples rock layers from the Cretaceous-Tertiary (KT) boundary in many different places all over the world and always observes a spike in iridium may  induce  that all KT boundary layers display an iridium spike. The logical leap from many individual observations to one all-inclusive statement isn’t always warranted. For example, it’s possible that, somewhere in the world, there is a KT boundary layer without the iridium spike. Nevertheless, many individual observations often make a strong case for a more general pattern. Deductive, inductive, and other modes of reasoning are all useful in science. It’s more important to understand the logic behind these different ways of reasoning than to worry about what they are called.

What is the difference between a theory and a hypothesis?

Scientific theories are broad explanations for a wide range of phenomena, whereas hypotheses are proposed explanations for a fairly narrow set of phenomena. The difference between the two is largely one of breadth. Theories have broader explanatory power than hypotheses do and often integrate and generalize many hypotheses. To be accepted by the scientific community, both theories and hypotheses must be supported by many different lines of evidence. However, both theories and hypotheses may be modified or overturned if warranted by new evidence and perspectives.

What is a null hypothesis?

A null hypothesis is usually a statement asserting that there is no difference or no association between variables. The null hypothesis is a tool that makes it possible to use certain statistical tests to figure out if another hypothesis of interest is likely to be accurate or not. For example, if you were testing the idea that sugar makes kids hyperactive, your null hypothesis might be that there is no difference in the amount of time that kids previously given a sugary drink and kids previously given a sugar-substitute drink are able to sit still. After making your observations, you would then perform a statistical test to determine whether or not there is a significant difference between the two groups of kids in time spent sitting still.

What is Ockhams's razor?

Ockham’s razor is an idea with a long philosophical history. Today, the term is frequently used to refer to the principle of parsimony — that, when two explanations fit the observations equally well, a simpler explanation should be preferred over a more convoluted and complex explanation. Stated another way, Ockham’s razor suggests that, all else being equal, a straightforward explanation should be preferred over an explanation requiring more assumptions and sub-hypotheses. Visit  Competing ideas: Other considerations  to read more about parsimony.

What does science have to say about ghosts, ESP, and astrology?

Rigorous and well controlled scientific investigations 1  have examined these topics and have found  no  evidence supporting their usual interpretations as natural phenomena (i.e., ghosts as apparitions of the dead, ESP as the ability to read minds, and astrology as the influence of celestial bodies on human personalities and affairs) — although, of course, different people interpret these topics in different ways. Science can investigate such phenomena and explanations only if they are thought to be part of the natural world. To learn more about the differences between science and astrology, visit  Astrology: Is it scientific?  To learn more about the natural world and the sorts of questions and phenomena that science can investigate, visit  What’s  natural ?  To learn more about how science approaches the topic of ESP, visit  ESP: What can science say?

Has science had any negative effects on people or the world in general?

Knowledge generated by science has had many effects that most would classify as positive (e.g., allowing humans to treat disease or communicate instantly with people half way around the world); it also has had some effects that are often considered negative (e.g., allowing humans to build nuclear weapons or pollute the environment with industrial processes). However, it’s important to remember that the process of science and scientific knowledge are distinct from the uses to which people put that knowledge. For example, through the process of science, we have learned a lot about deadly pathogens. That knowledge might be used to develop new medications for protecting people from those pathogens (which most would consider a positive outcome), or it might be used to build biological weapons (which many would consider a negative outcome). And sometimes, the same application of scientific knowledge can have effects that would be considered both positive and negative. For example, research in the first half of the 20th century allowed chemists to create pesticides and synthetic fertilizers. Supporters argue that the spread of these technologies prevented widespread famine. However, others argue that these technologies did more harm than good to global food security. Scientific knowledge itself is neither good nor bad; however, people can choose to use that knowledge in ways that have either positive or negative effects. Furthermore, different people may make different judgments about whether the overall impact of a particular piece of scientific knowledge is positive or negative. To learn more about the applications of scientific knowledge, visit  What has science done for you lately?

1 For examples, see:

  • Milton, J., and R. Wiseman. 1999. Does psi exist? Lack of replication of an anomalous process of information transfer.  Psychological Bulletin  125:387-391.
  • Carlson, S. 1985. A double-blind test of astrology.  Nature  318:419-425.
  • Arzy, S., M. Seeck, S. Ortigue, L. Spinelli, and O. Blanke. 2006. Induction of an illusory shadow person.  Nature  443:287.
  • Gassmann, G., and D. Glindemann. 1993. Phosphane (PH 3 ) in the biosphere.  Angewandte Chemie International Edition in English  32:761-763.

Subscribe to our newsletter

  • Understanding Science 101
  • The science flowchart
  • Science stories
  • Grade-level teaching guides
  • Teaching resource database
  • Journaling tool
  • Misconceptions

What Is the Difference Between a Control Variable and Control Group?

Hiya Images/Corbis/VCG/Getty Images

  • Scientific Method
  • Chemical Laws
  • Periodic Table
  • Projects & Experiments
  • Biochemistry
  • Physical Chemistry
  • Medical Chemistry
  • Chemistry In Everyday Life
  • Famous Chemists
  • Activities for Kids
  • Abbreviations & Acronyms
  • Weather & Climate
  • Ph.D., Biomedical Sciences, University of Tennessee at Knoxville
  • B.A., Physics and Mathematics, Hastings College

In experiments, controls are factors that you hold constant or don't expose to the condition you are testing. By creating a control, you make it possible to determine whether the variables alone are responsible for an outcome. Although control variables and the control group serve the same purpose, the terms refer to two different types of controls which are used for different kinds of experiments.

Why Experimental Controls Are Necessary

A student places a seedling in a dark closet, and the seedling dies. The student now knows what happened to the seedling, but he doesn't know why. Perhaps the seedling died from lack of light, but it might also have died because it was already sickly, or because of a chemical kept in the closet, or for any number of other reasons. 

In order to determine why the seedling died, it is necessary to compare that seedling's outcomes to another identical seedling outside the closet. If the closeted seedling died while the seedling kept in sunshine stayed alive, it's reasonable to hypothesize that darkness killed the closeted seedling. 

Even if the closeted seedling died while the seedling placed in sunshine lived, the student would still have unresolved questions about her experiment. Might there be something about the particular seedlings that caused the results she saw? For example, might one seedling have been healthier than the other to start with?

To answer all of her questions, the student might choose to put several identical seedlings in a closet and several in the sunshine. If at the end of a week, all of the closeted seedlings are dead while all of the seedlings kept in​ the sunshine are alive, it is reasonable to conclude that the darkness killed the seedlings.

Definition of a Control Variable

A control variable is any factor you control or hold constant during an experiment. A control variable is also called a controlled variable or constant variable. 

If you are studying the effect of the amount of water on seed germination, control variables might include temperature, light, and type of seed. In contrast, there may be variables you can't easily control, such as humidity, noise, vibration, and magnetic fields.

Ideally, a researcher wants to control every variable, but this isn't always possible. It's a good idea to note all recognizable variables in a lab notebook for reference.

Definition of a Control Group

A control group is a set of experimental samples or subjects that are kept separate and aren't exposed to the independent variable .

In an experiment to determine whether zinc helps people recover faster from a cold, the experimental group would be people taking zinc, while the control group would be people taking a placebo (not exposed to extra zinc, the independent variable).

A controlled experiment is one in which every parameter is held constant except for the experimental (independent) variable. Usually, controlled experiments have control groups. Sometimes a controlled experiment compares a variable against a standard.

  • Scientific Method Vocabulary Terms
  • The Role of a Controlled Variable in an Experiment
  • Understanding Simple vs Controlled Experiments
  • What Are the Elements of a Good Hypothesis?
  • What Is a Controlled Experiment?
  • Six Steps of the Scientific Method
  • DRY MIX Experiment Variables Acronym
  • What Is an Experimental Constant?
  • Scientific Method Flow Chart
  • Scientific Variable
  • What Are Examples of a Hypothesis?
  • What Is a Testable Hypothesis?
  • Null Hypothesis Examples
  • What Is a Hypothesis? (Science)
  • Scientific Hypothesis Examples
  • Random Error vs. Systematic Error

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Sports (Basel)

Logo of sports

Considerations of Control Groups: Comparing Active-Control with No Treatment for Examining the Effects of Brief Intervention

Andrew m. lane.

1 Research Centre for Sport, Physical Activity (SPARC) School of Sport, Faculty of Education, Health and Wellbeing, Walsall Campus, University of Wolverhampton, Walsall WS1 3BD, UK; [email protected]

Chris J. Beedie

2 School of Psychology, Canterbury Campus, University of Kent, Canterbury CT2 7NP, UK; [email protected]

Tracey J. Devonport

Andrew p. friesen.

3 Department of Kinesiology, Berks Campus, Pennsylvania State University, Berks, PA 19610, USA; ude.usp@617fxa

Associated Data

The data is not yet publicly available.

Background: A large-scale online study completed by this research team found that brief psychological interventions were associated with high-intensity pleasant emotions and predicted performance. The present study extends this work using data from participants ( n = 3376) who completed all self-report data and engaged in a performance task but who did not engage with an intervention or control condition and therefore present as an opportunistic no-treatment group. Methods: 41,720 participants were selected from the process and outcome focus goals intervention groups, which were the successful interventions ( n = 30,096), active-control ( n = 3039), and no-treatment ( n = 8585). Participants completed a competitive task four times: first as practice, second to establish a baseline, third following an opportunity to complete a brief psychological skills intervention, and lastly following an opportunity to repeat the intervention. Repeated measures MANOVA indicated that over four performance rounds, the intensity of positive emotions increased, performance improved, and the amount of effort participants exerted increased; however, these increases were significantly smaller in the no-treatment group. Conclusions: Findings suggest that not engaging in active training conditions had negative effects. We suggest that these findings have implications for the development and deployment of online interventions.

1. Introduction

The effectiveness of psychological skills such as imagery, goal-setting, and self-talk has been demonstrated in many areas of application [ 1 ], including sport [ 2 ], surgery [ 3 ], and computer gaming [ 4 ]. A recent large-scale study of 44,742 participants found support for the utility of following brief online active psychological skills training to aid emotion regulation and improve performance in a competitive task [ 5 ]. The aforementioned study [ 5 ] tested the effects of three psychological skills: (a) imagery, (b) self-talk, and (c) if–then planning, with each skill directed to one of four different foci: (a) outcome goal, (b) process goal, (c) instruction, or (d) arousal control, resulting in 12 different techniques. A 13th group labelled as a control group received a repetition of instructions on how to perform the task from Olympic gold-medallist Michael Johnson. The argument for labelling these participants as a control group was that they received no active training. They [ 5 ] compared the extent to which performance in the 12 intervention conditions improved over four rounds against the control group. The results illustrated the benefits of engaging in active psychological skills training, and the control group significantly improved also. Interestingly, the control group showed greater improvement in performance, felt more energetic, and exerted more mental effort than participants following instructional interventions.

A key aspect of this study [ 5 ] was the method used to produce the active control group which is used to form the case for the present study. In their study, participants were informed that they would learn about sport psychology and receive personalized feedback from Michael Johnson. Specifically, control group participants were informed, “You have played the game now. You have to find the numbers and finding them can be challenging. It’s a different grid but the challenges will be similar. Spend some time getting mentally ready. Give yourself about 90 seconds to prepare before you start the next round”. Although not receiving specific instructions, the control group received encouragement to perform again from former Olympian Michael Johnson, and encouragement is motivational [ 6 ].

A control group should seek to control the positive beliefs of using the intervention, a point that drives blind and double-blind placebo groups. The control condition should elicit some of the symptoms of the intervention but not those that are in the active treatment (e.g., decaffeinated coffee, a treatment that tastes like coffee, and so could have the active ingredient, but actually does not). In sport psychology interventions these typically involve active training, and as such it is difficult to have a traditional control group.

The present study extends this work [ 5 ] using previously unreported data from the same experiment. The investigators [ 5 ] found many participants engaged in all the performance tests but did not engage with the interventions. These unused data represent a novel condition and offers opportunistic no-treatment control data against the active control and active-training groups used in the previous study [ 5 ]. We hypothesized that the “no-treatment” group would perform significantly worse than the “active-training” and “active-control” groups reported previously [ 5 ].

2. Materials and Methods

2.1. participants.

Participants were 74,204 volunteers who provided informed consent and were recruited to the study via the British Broadcasting Corporation (BBC) Lab UK ( M age = 34.66 years, SD = 14.13). The project was advertised on national television and radio as an online experiment investigating performing under pressure. Participants originated from 103 different countries covering all continents. In the present study, we selected 41,720 ( M age = 34.34, SD = 13.93) participants from the process and outcome focus goals interventions, which were the successful interventions ( n = 30,096; M age = 34.64, SD = 14.07), active-control ( n = 3039, M age = 31.50, SD = 13.41), and no-treatment ( n = 8585, M age = 34.35, SD = 13.93).

2.2. Measures

The study uses the same measures reported previously [ 5 ] and so these are described only briefly here.

2.2.1. Emotion

The items to measure, “Happy”, “Anxious”, “Dejected”, “Angry”, and “Excited”, were used from the same-named factors in the Sport Emotion Questionnaire (SEQ) [ 7 ] and two items “Fatigued” and “Energetic” were included to reflect arousal [ 8 ]. Each item was rated on a 7-point Likert scale (1 = not at all to 7 = extremely) . A single measure of emotion was used so that a high score was indicative of pleasant emotion. Alpha coefficients for emotion at each completion were: Baseline α = 0.72, Round 1 α = 0.70, Round 2 α = 0.68, and Round 3 α = 0.70.

2.2.2. Concentration Game Task

A cognitive task was developed to allow the capture of a large dataset via an online method. The concentration grid task required participants to find and click on numbers in sequence from 1 to 36 as quickly as possible from a 6 × 6 grid. Numbers were presented in a randomised order within the grid, and as such participants had to concentrate and scan the grid to locate and click on the correct number. Participants completed a practice round, where participants performed alone and not against a competitor. Based on practice round results, an artificial computer opponent was introduced to create a sense of competition. The computer opponent was matched against the participant’s grid completion time from the practice round. The participant’s performance was measured by the number of seconds required to complete the grid.

2.2.3. Mental Effort

The Rating Scale of Mental Effort [ 9 ] is a single item scale that was used to assess mental effort (0 = no effort to 150 = complete effort).

2.2.4. Procedure

Data were collected online via the BBC Lab UK website. Participants completed informed consent forms before proceeding to the start of the online experiment. Videos guided participants through the completion of self-report scales and the concentration task. The online programme was narrated by Michael Johnson. Random allocation to experimental treatment groups was completed automatically by an online programme based on demographic data provided by participants. All participants completed the concentration game task before group allocation to provide a baseline measure of performance that could be used to assess whether the groups had pre-existing differences. Participants then rated their mental effort immediately following performance.

An opportunistic no-treatment group ( n = 8595) emerged which consisted of participants who chose not to view the allocated intervention or encouragement video (i.e., active-control group). Instead, these participants immediately proceeded to a second completion of the concentration grid. Further, this was their decision. Therefore, considerations that arise when positive treatment is denied to a subsection of the sample in a randomised control design are not applicable. This no-treatment group is closer to a traditional control group. However, a key difference is that participants were not randomly allocated.

2.2.5. Data Analysis

A repeated measures multivariate analysis of variance examining emotions, effort exerted and performance over the 4 rounds of practice, baseline, the implementation of the intervention, and finally, a repeat of the same intervention. The rationale for the data analysis strategy was to run as few tests as possible. With such a large sample size, it is easy to show significant results even though the size of the effect was low. In the present study, the focus is on significant interaction effects as they show that changes in data vary between groups.

Repeated MANOVA results revealed a significant intervention effect (Wilks lambda 18,83522 = 0.98, p < 0.0001, partial eta 2 = 0.10), a main effect for changes over time (Wilks lambda 9,41769 = 0.74, p < 0.0001, partial eta 2 = 0.26) and a main effect for active-training, active-control, and no-treatment (Wilks lambda 18,83522 = 0.98, p < 0.0001, partial eta 2 = 0.11).

Univariate results indicated that emotions became significantly more positive ( F   6,125304 = 1328.56, p < 0.0001, partial eta 2 = 0.03) following the completion of the intervention (see Figure 1 ). The pattern of significant differences showed that the active-training group benefited the most, followed by the active-control group, with the least benefits being found for the no-treatment group. Weaker significant interaction effects were found for effort invested in performance over rounds of competition ( F   6,125304 = 12.46, p < 0.0001, partial eta 2 = 0.01, see Figure 2 ) and for improvements in performance ( F   6,125304 = 6.42 p < 0.0001, partial eta 2 = 0.001, see Figure 3 ).

An external file that holds a picture, illustration, etc.
Object name is sports-09-00156-g001.jpg

Emotion by Competition Rounds, by Active-Training, Active-Control, and No-Treatment.

An external file that holds a picture, illustration, etc.
Object name is sports-09-00156-g002.jpg

Effort by Competition Round, by Active-Training, Active-control, and No-Treatment.

An external file that holds a picture, illustration, etc.
Object name is sports-09-00156-g003.jpg

Performance by Competition Round, by Active-Training, Active-Control, and No-Treatment.

Results show that there were main effects for time ( F   3,120856 = 1328.56, p = <0.001, partial eta 2 = 0.007) with emotions became significantly more positive ( F 3,1328.56 = 2132.93, p < 0.0001, partial eta 2 = 0.49), performance improving ( F   3,120856 = 1249.97, p = <0.001, partial eta 2 = 0.007) and effort invested ( F   3,120856 = 4836.33, p = <0.001, partial eta 2 = 0.104).

4. Discussion

The present study examined the effects of brief online interventions in comparison to a no-treatment group [ 5 ]. The large sample of data in the active-training and active-control groups offer a good opportunity to conduct a comprehensive examination. A total of 8585 participants did not complete the interventions but engaged fully in other parts of the experiment and therefore represent what typically looks like a non-treatment group. The key difference between these participants and a traditional control group was they were not randomly allocated. Participants in the no-treatment group showed performance improvement from baseline, increased intensity of positive emotions, and increased effort. This result is interpreted as suggesting participants in the no-treatment group were motivated to improve performance, and therefore resemble participants who sign up with a desire to improve performance. However, the rate of change between rounds was slower for the no-treatment group than the active-training and active-control groups, suggesting the active part of either control or training was influential. Compliance with participation protocols is a key factor when examining the effectiveness of interventions. In research, participants who do not comply with protocols is an issue. In real world settings, poor participant compliance minimizes the effectiveness of treatments ranging from COVID-19 vaccines to physical and mental health interventions.

Results demonstrated that the no-treatment group performed significantly worse, made less progress, and reported less optimal psychological states than the active-control and active-treatment groups. These results are not entirely unexpected but exploring possible reasons why they occurred and learning from using online interventions where naturally occurring no-treatment groups could emerge could have useful implications for future work. Positive benefits from participants receiving treatment could be explained by enhanced beliefs that the treatment would work, an effect normally described as a placebo effect. Controlling beliefs is typically achieved by using a blind placebo approach. However, this is not possible where an intervention requires the person to act consciously on information provided. A blind placebo arguably works much better in studies such as caffeine where people still participate in the treatment, believing they are taking the caffeine, but the active ingredients are removed. In such research, great care is made to make a placebo look like an authentic treatment. In a sport psychology intervention where a practitioner teaches the use of psychological skills, there is a requirement for the participant to be active in the process. An active-control group [ 5 ] is one in which basic instructions are repeated and so attempts to control for belief effects. The present study which used a no-treatment group offers the opportunity to compare the effects of active treatments against no-treatment. A no-treatment group resembles what happens in real life when people wish to pick up a skill and learn by trial and error and without specific guidance.

The active-control group benefited from participation in the study more than the no-treatment group. Receiving a message from an inspirational figure such as Michael Johnson and expecting personalised feedback can be argued to provide encouragement, which is motivating [ 6 ]. Whilst encouragement is a simple technique to use as an intervention, it is possible that the effectiveness of it in this context derives from it being delivered by a highly influential figure in sport. This raises the issue of the relative influence of the person who delivers the intervention as an active ingredient. Models of social influence from social psychology have highlighted the importance of the perceived status of the influencer [ 10 ]; however, this issue is under-examined within the context of conducting psychology research. We suggest future research compares the effectiveness of encouragement when the same message is given by different people, with a hypothesis that the more credible the persuader, the more influential it would be.

The current study can also inform future research that uses online methods to investigate psychology interventions. Online data collection that allows people to volitionally skip through the intervention creates naturally occurring control conditions where participants do not expect the intervention to work. In the present study, the no-treatment group was an opportunistic group that emerged once data had been collected and so differed from a traditional control group for whom the condition was randomised.

The present study offers a valuable contribution to knowledge in this area. Results show the value of online research which offers scalability and via data capture processes can facilitate the examination of points of engagement with the task and intervention being delivered. However, we recognise at least two limitations. The first limitation is that we did not obtain feedback from participants that measured any learning effects having completed the intervention. That is, we did not check to see if the knowledge gained was internalised before starting the task. The second limitation is that participants were not randomly allocated into the no-treatment group. We should not see engagement and disengagement as dichotomous concepts and appreciate that the intensity with which people engage with the intervention will vary. A limitation with online studies is that the conditions in which a person learns an intervention and takes a test has many unknown features. We suggest that future research focus on the learning process in terms of what intervention content is retained.

In conclusion, the BBC Lab UK data show the benefits of capturing all keyboard data. The present study used data that were not used previously [ 5 ]. On initial analysis these data were seen as incomplete; however, this shows the benefits of reflecting on what insights such data might provide. We encourage researchers to focus on using entire datasets to interrogate the issue of compliance in completing interventions, and to investigate why non-compliance occurs.

Author Contributions

Conceptualization, A.M.L. and T.J.D.; data collection, A.M.L. and T.J.D.; writing—original draft preparation, A.M.L., C.J.B., T.J.D. and A.P.F.; writing—review and editing, A.M.L., C.J.B., T.J.D. and A.P.F. All authors have read and agreed to the published version of the manuscript.

This Research received no funding.

Institutional Review Board Statement

The study was approved by the Ethics Committee of the University of Wolverhampton (15.02.12).

Informed Consent Statement

Informed consent was obtained from all participants involved in the study.

Data Availability Statement

Conflicts of interest.

The authors declare no conflict of interest.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

User Preferences

Content preview.

Arcu felis bibendum ut tristique et egestas quis:

  • Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris
  • Duis aute irure dolor in reprehenderit in voluptate
  • Excepteur sint occaecat cupidatat non proident

Keyboard Shortcuts

1.4.4 - control and placebo groups.

A  control group  is an experimental condition that does not receive the actual treatment and may serve as a baseline. A control group may receive a placebo or they may receive no treatment at all. A  placebo  is something that appears to the participants to be an active treatment, but does not actually contain the active treatment. For example, a placebo pill is a sugar pill that participants may take not knowing that it does not contain any active medicine. This can lead to a psychological phenomena called the placebo effect  which occurs when participants who are given a placebo treatment experience a change even though they are not receiving any active treatment. Researchers use placebos in the control group to determine if any differences between groups are due to the active medicine or the participants' perceptions (the placebo effect).

Example: Vitamin B Energy Study Section  

Researchers want to know if adults who consume a drink that is high in vitamin B-12 have increased energy. They obtain a representative sample of adults. All participants are given a drink that they are told to consume every morning. They are not told what is in the drink. Half are given a drink that is high in vitamin B-12 while the other half are given a drink that tastes the same but contains no vitamin B-12.

The participants who received the drink with no vitamin B-12 are the placebo group . The purpose of the placebo group in this study is to make the two groups equivalent except for the presence of the vitamin B-12. By comparing these two groups, the researchers will be able to determine what impact the vitamin B-12 had on the response variable. We could also say that this served as a  control group  because this group did not receive any active ingredients. 

  • Open access
  • Published: 13 August 2024

Enhancing physical attributes and performance in badminton players: efficacy of backward walking training on treadmill

  • Omkar Sudam Ghorpade 1 ,
  • Moattar Raza Rizvi 2 , 8 ,
  • Ankita Sharma 1 , 9 ,
  • Harun J. Almutairi 3 ,
  • Fuzail Ahmad 4 ,
  • Shahnaz Hasan 5 ,
  • Abdul Rahim Shaik 5 ,
  • Mohamed K. Seyam 5 ,
  • Shadab Uddin 6 ,
  • Saravanakumar Nanjan 6 ,
  • Amir Iqbal 7 &
  • Ahmad H. Alghadir 7  

BMC Sports Science, Medicine and Rehabilitation volume  16 , Article number:  170 ( 2024 ) Cite this article

Metrics details

Badminton, a dynamic sport, demands players to display exceptional physical attributes such as agility, core stability, and reaction time. Backward walking training on a treadmill has garnered attention for its potential to enhance physical attributes and optimize performance in athletes while minimizing the risk of injuries.

By investigating the efficacy of this novel approach, we aim to provide valuable insights to optimize training regimens and contribute to the advancement of sports science in badminton.

Methodology

Sixty-four participants were randomized into a control group ( n  = 32) and an experimental group ( n  = 32). The control group received routine exercise training, while the experimental group received routine exercise training along with additional backward walking training on the treadmill. Pre- and post-intervention measurements were taken for core stability using the Plank test, balance using the Star Excursion Balance test, reaction time using the 6-point footwork test, and agility using the Illinois Agility test.

The results showed that the experimental group demonstrated significant improvements in core stability ( p  < 0.001), balance ( p  < 0.001), reaction time ( p  < 0.05), and agility ( p  < 0.001) compared to the control group. The backward walking training proved to be effective in enhancing these physical attributes in badminton players.

Incorporating backward walking exercises into the training regimen of badminton players may contribute to their overall performance.

Peer Review reports

Introduction

Badminton is a popular and widely practiced racket sport that has gained immense popularity worldwide [ 1 ]. It is a fast-paced and highly dynamic game, requiring players to demonstrate a combination of technical skills, physical fitness, and mental acuity [ 2 ]. With its roots in ancient China and India, badminton has grown to become the national sport of several Asian countries, with a strong presence in both professional and recreational circles [ 3 ]. In the past few decades, badminton has gained global recognition as one of the fastest racket sports, attracting a diverse and ever-growing community of enthusiasts.

For winning the games and performing better the players must utilize a wide range of shot variations, including smashes, clears, drops, and drives, to outmaneuver their opponents and secure a competitive advantage [ 4 ]. The game’s rapid and dynamic nature necessitates a high level of physical fitness, making strength, endurance, power, reaction time, agility, speed, adaptability, balance, and coordination essential attributes for successful players [ 5 ]. To excel in badminton, athletes need to combine sound technical skills with a strong physical foundation to execute precise and powerful shots while maintaining fluid movement across the court [ 6 ].

Agility is a paramount attribute in badminton that significantly affects a player’s overall performance on the court [ 7 ]. Exceptional agility allows players to cover the court more efficiently, reach the shuttlecock in time, and execute shots accurately from various positions. In the dynamic and fast-paced nature of badminton, players must execute rapid body movements with precision and speed, making agility a critical factor in maintaining a competitive edge [ 8 ].

Reaction time is an essential characteristic for badminton players, as it has a significant impact on their ability to respond quickly and effectively to the dynamic and fast-paced nature of the game. Rapid shot return, anticipation, defensive skills, net play, drop shots, net kills, rally control, footwork and court coverage, deception and strategy, competitive edge, and mental agility are indispensable [ 9 ]. On the badminton court, training and enhancing reaction time through specific maneuvers and exercises can enhance a player’s performance and contribute to their success [ 10 , 11 ].

Another critical aspect of a badminton player’s physical preparation is core strength and stability [ 12 ]. Core muscles play a crucial role in stabilizing the spine, transferring force between the upper and lower extremities, and controlling the body’s center of gravity. They facilitate fluid movement and efficient power transfer during various game actions, such as lunges, jumps, and swings [ 13 ]. Core strength training has been extensively utilized not only to prevent lower back and lower limb injuries but also to optimize player performance in badminton and other sports [ 14 ].

Furthermore, posture and balance are key factors contributing to a player’s performance on the court. Maintaining proper body control and posture during rapid and complex movements is essential to execute shots accurately and efficiently [ 15 ]. The ability to control joint movement and position dynamically is crucial for swift changes in direction, evasive maneuvers, and quick responses to opponent shots. Badminton players with superior agility and balance tend to outperform their peers and are less prone to injuries resulting from incorrect footwork or unstable landing postures [ 16 , 17 ].

Backward walking, also known as retro walking, has gained popularity as an easy, cost-effective exercise that promotes health and quality of life. In the context of rehabilitation, backward walking training on treadmill has shown promising results in improving muscle action and lower extremity strength through increased motor unit recruitment, benefiting lower limb muscles [ 18 , 19 ]. Additionally, it has demonstrated positive effects on foot posture and alignment in long-distance runners. Moreover, backward walking has been associated with improvements in body balance and stability in adolescents [ 20 ]. Backward walking training has been widely utilized in various sports and has demonstrated its effectiveness in improving balance, stability, agility, coordination, and footwork skills. It has been particularly valuable in sports that require rapid changes of direction [ 21 , 22 ].

In this context, the present study aims to investigate the efficiency of backward walking training on treadmill on core stability, balance, agility, and reaction time in badminton players. While core strength training has been widely explored, the potential impact of backward walking on these specific aspects of physical performance remains relatively unexplored. Badminton involves quick, explosive movements and shuttlecock tracking which require exceptional lower limb strength, balance, and fast reaction times. Backward walking training is hypothesized to particularly enhance these abilities by improving proprioception and muscular coordination in ways that are directly translatable to badminton’s rapid on-court movements.

Understanding the benefits of backward walking on trunk stability, balance, agility, and reaction time can inform coaches and athletes on the optimal integration of this training approach to enhance performance and reduce the risk of injuries. By combining the sport’s rich history and global significance with cutting-edge research, this study endeavors to elevate the standard of badminton training and contribute to the development of well-rounded and resilient athletes.

Participants and methods

Study design.

The study design was a two-tailed experimental study. This type of study design was commonly used in scientific research to explore relationships and causality between variables. In this design, two groups were compared, and the hypothesis was formulated as a two-tailed (non-directional) hypothesis. The sampling method employed for participant selection was convenience sampling.

Study participants

The participants were selected based on their easy accessibility and availability to the researchers. The study included participants who were badminton players performing at the district level and above, and who had been actively practicing badminton for a period of more than 6 months in two badminton academies in Delhi NCR. The study focused specifically on participants of the both the genders within the age group of 18 to 26 years. Participants with recent knee and ankle injuries, recent fractures, or those currently on medication or supplements to improve performance were not included in the research. Additionally, individuals with neurological conditions were also excluded to ensure that the study sample comprised individuals without such conditions, thereby maintaining a more homogeneous group for analysis.

Ethical consideration

This study received ethical approval from the Ethical Committee of the Department of Physiotherapy, Faculty of Allied Health Sciences, Manav Rachna International Institute of Research and Studies. The approval reference number is MRIIRS/FAHS/PT/2022-23/S-008 dated 7th January 2023. The study design adhered to the guidelines outlined in the revised Helsinki Declaration of Biomedical Ethics, ensuring the ethical treatment of participants and the protection of their rights. Additionally, to ensure transparency and accountability, the study protocol was registered in the clinical trial registry at https://www.ctri.nic.in/ with the identifier CTRI/2023/05/052750. The registration date was 17th May 2023.

Sample size calculation

G*Power (version 3.1.9.2, Heinrich Heine-University, Düsseldorf, Germany) was used to calculate the sample size. An a priori power analysis using t-test to compare differences between two independent means, with a desired statistical power of 80%, a significance level of 5%, and an effect size of 0.72 resulted in a sample size of 64. The effect size was derived from a previous study [ 23 ], where the mean of the outcome variable “dynamic balance following backward walking” was used.

Study Procedure

In this study, 64 participants voluntarily took part after receiving detailed explanations and providing informed consent. The participants were divided into two groups: the control group and the experimental group, based on their eligibility determined by inclusion and exclusion criteria. The control group involved individuals undergoing routine exercise training, while the experimental group received routine exercise training combined with backward walking training. The outcome measures like core stability, balance, reaction time and agility were assessed at both pre- and post-training. To ensure unbiased results, the participants were blinded to their group assignment, while the outcomes assessor remained aware of the groupings for accurate evaluation. The randomization procedure was carried out using a double-blinded trial methodology. This rigorous methodology helps to minimize potential biases and enhances the validity and reliability of the research findings. This study conforms to the Consolidated Standards of Reporting Trials (CONSORT) guidelines for reporting randomized controlled trials. We have included a completed CONSORT checklist as an additional file to provide a comprehensive overview of our trial’s design, analysis, and interpretation. Furthermore, a CONSORT flow diagram (Fig.  1 .) depicts the study procedures, including enrollment, randomization, pre-assessment, intervention, post-assessment, and data analysis.

Prior to the initiation of the actual study, all participants underwent two familiarization sessions to ensure they were adequately prepared and understood the tests involved in the study. During these sessions, participants were introduced to the equipment and detailed procedures for each test, which included the Plank test, Star Excursion Balance Test (SEBT), 6-point footwork test, and Illinois Agility Test. Each participant had the opportunity to practice under supervision, which helped standardize the test administration and ensure accurate, reliable results. These sessions were not included as the part of intervention and baseline data was collected after these sessions only.

figure 1

A CONSORT flow diagram is depicting the study procedures

Outcome measures

The Illinois Agility Test was utilized to assess the agility of badminton players. The methodology was adopted in a previous study [ 24 ]. This widely recognized test involves positioning 8 cones in a specific pattern on a flat surface to create a zigzag course. The badminton players were instructed to navigate through the course, executing rapid and accurate directional changes. The test’s validity and reliability were established in the study, making it an effective tool for evaluating agility among athletes.

Core stability and strength

To assess core stability and strength, participants underwent the plank test [ 25 ]. Detailed instructions were provided to each participant before the test. The plank test required participants to assume a prone lying position with their elbows supported on the ground, lifting their bodies while keeping their hands pronated and parallel to the floor. Participants were instructed to maintain a straight bodyline off the ground, with their ankles in a neutral position, supported on their toes. A neutral head position, facing the ground, was also emphasized during the test. The stopwatch was started as soon as the subject assumed the correct plank position. Each participant’s performance was then measured continuously, recording the time they were able to maintain the plank position until they reached their limit or experienced loss of balance. This process was repeated three times for each participant, and the average of the three readings was used for analysis.

  • Reaction time

The reaction time of the badminton players was assessed using the randomized six-point footwork drill as describe previously [ 11 ]. Results of the reliability analysis indicated the visual reaction system using the stopwatch had excellent Intraclass Correlation Coefficient (ICC) for both tests (ICC = 0.95).This drill was conducted on the badminton court, with six cones strategically placed at different locations, including the forehand front corner, backhand front corner, forehand side, backhand side, forehand backcourt corner, and backhand backcourt corner. The purpose of this training exercise was to enhance the players’ agility, speed, and footwork by replicating real-game scenarios that require quick reactions and precise foot movements. The players were instructed to move rapidly between these designated points in a random order, simulating the unpredictability of actual game situations. To objectively measure their performance, a stopwatch was used to record the time taken by each player to complete the drill. Each participant performed three repetitions of the test with a resting time of 5 min after every repetition to ensure the best performance every time. The reaction times were recorded for each trial, with data being noted for the best (maximum) times achieved across the trials.

Balance assessment

The study utilized the Star Excursion Balance Test (SEBT) as a clinical tool to evaluate dynamic balance and postural control in participants [ 26 ]. The test involved creating a star-like pattern on the floor using tape, with eight distinct directions marked: anterior, anteromedial, anterolateral, medial, lateral, posterior, posteromedial, and posterolateral. Before commencing the test, participants received clear instructions and a detailed explanation of the procedure. They were asked to stand in a single-leg stance, with the tested limb placed at the center of the star pattern. During the test, participants lifted their non-tested leg and reached as far as possible along each marked direction, maintaining balance throughout each reach and returning to the starting position after each trial. Three trials were conducted for each direction, and the average reach distance achieved was recorded. To account for individual variations in leg length, the reach distance for each direction was normalized by dividing it by the participant’s limb length. The utilization of normalized units allowed for standardized measurements of balance performance, ensuring meaningful and comparable assessments across participants [ 16 ]. The SEBT was performed in a clockwise direction to maintain consistency in the testing procedure.

Interventions

Routine training.

Participants in the control group received routine training, which consisted of three sessions per week for six weeks. The training program included dynamic warm-ups with activities such as jogging, leg swings, and arm circles to prepare the body for more strenuous activities and prevent injuries. Strength training focused on building muscle strength and endurance through exercises like squats, lunges, push-ups, and planks. Agility drills involved ladder drills and cone drills to improve quick directional changes and overall agility. Core stability exercises such as the Russian twist, bird-dog, and bridge were incorporated to strengthen core muscles, vital for balance and efficient movement patterns. Endurance training was performed through longer duration, moderate-intensity cardiovascular activities like running or cycling. Each session concluded with a cool-down phase involving static stretching targeting all major muscle groups to aid in recovery and decrease muscle stiffness. The intensity and repetitions of these exercises were individually adjusted based on each athlete’s Perceived Rate of Exertion (PRE), ensuring the training was challenging yet manageable, optimizing the training program’s effectiveness tailored to individual fitness levels and recovery needs.

Backward walking training on treadmill

Participants in the experimental group were instructed about the training regimen, which incorporates a ball hanging in front of the treadmill to encourage the participants to maintain a forward-facing gaze during the exercise. The training session began with a 4-minute session of forward walking on the treadmill, followed by a 1-minute rest period. After the rest, the participants switch to backward walking on the treadmill for another 4-minute session, followed by another 1-minute rest period. This sequence was repeated for a total of 12 min of exercise. The training protocol was scheduled to be performed three times a week, continuously for a duration of 6 weeks [ 27 ]. Throughout the training period, participants maintain a constant walking speed of 3 km/hr. Backward training regimen aimed to enhance participant’s walking skills and proprioception, promoting balance and coordination during backward movement.

Statistical analysis

The statistical analysis was performed using SPSS (version 24.0, IBM Corp., Armonk, NY, USA). Descriptive statistics, including mean and standard deviation (SD), were calculated to summarize the characteristics of the study variables. The normal distribution of the data was assessed by, the Shapiro-Wilk test. To calculate within-group comparisons, paired t-tests was used to examine the differences between pre and post-intervention measurements for trunk stability, balance, reaction time, and agility. Independent t-tests was used to compare the control and experimental groups at the baseline. To see the effects of the intervention over time, repeated measures analysis of variance (ANOVA) was used, considering the factors of time (pre and post) and group (control and experimental). The significance level was set at p  < 0.05 for all statistical tests in the thesis.

The study was conducted on 64 badminton players divided equally in control and experimental groups. The control group consisted of a higher proportion of male participants compared to females, while a similar pattern was observed in the experimental group. The average age of participants in the control group was slightly higher than that of the experimental group. Heights were comparable in both groups, with the experimental group showing a slightly higher average. Average weight was similar in both groups, and the control group had a slightly higher BMI compared to the experimental group. Right-hand dominance was prevalent in most participants in both the control and experimental groups. Specifically, in the control group, a larger percentage of participants were right-handed, whereas the experimental group also had a higher number of right-handed participants. In both the control and experimental groups, a higher percentage of male participants had more than 5 years of badminton experience compared to females (Table  1 ).

Upon reviewing the participant characteristics presented in the provided data, it is clear that conducting a gender-based study for the comparison of outcome variables may not be feasible due to the limited number of female participants in both the control and experimental groups. Additionally, when comparing hand dominances, it is apparent that the majority of participants in both groups were right-hand dominant. As a result, we did not plan to present the results based on gender and hand dominance in the study, as the sample sizes for these subgroups were not sufficient for meaningful statistical comparisons. Instead, our primary focus was on comparing the outcome variables between the control and experimental groups and evaluating the impact of the intervention on the specified measures.

Table  2 presents the results of the independent t-test were used to assess differences between two independent groups at each time point—pre and post-intervention for agility, core stability, reaction time and balance. For the agility test, there was a significant improvement in the experimental group from pre (17.08 ± 0.43) to post (15.32 ± 0.34) with a mean difference of 1.75 (t = 21.28, p  < 0.001, 95% CI [1.58, 1.92]), whereas the control group showed no significant difference (t=-0.13, p  = 0.89, 95% CI [-1.09, 0.95]). Similarly, for the core stability, the experimental group showed a significant improvement from pre (3.44 ± 0.41) to post (5.39 ± 0.42) with a mean difference of -1.94 (t=-18.51, p  < 0.001, 95% CI [-2.16, -1.73]), while the control group had no significant change (t=-0.98, p  = 0.32, 95% CI [-0.26, 0.08]). Finally, for reaction time, the experimental group demonstrated a significant improvement from pre (17.93 ± 1.03) to post (15.02 ± 0.41) with a mean difference of 2.91 (t = 14.09, p  < 0.001, 95% CI [2.49, 3.33]), while the control group had no significant difference (t = 0.05, p  = 0.95, 95% CI [-0.51, 0.54]).

The independent t-test results for the SEBT measurements between pre and post-intervention showed significant improvements in the experimental group for various reach directions (Table  3 ). Notably, the experimental group displayed significant enhancements in anterior reach for both the right (MD= -6.87, p  < 0.001) and left legs (MD= -8.21, p  < 0.001), anterolateral reach for the right leg (MD = 10.40, p  < 0.001), lateral reach for the right leg (MD = 9.46, p  < 0.001), posterolateral reach for both the right (MD = 9.37, p  < 0.001) and left legs (MD= -8.87, p  < 0.001), and posteromedial reach for the right leg (MD = 9.18, p  < 0.001). In contrast, the control group had no significant changes in most reach directions. However, both groups showed significant improvements in posterior reach for both legs.

Paired t-tests was conducted to compare the pre and post-intervention measurement within each group for the agility, core stability, reaction time and balance (Fig.  2 ). For the agility, the experimental group showed a significant improvement from pre (17.08 ± 0.43) to post (15.32 ± 0.34) with a mean difference of 1.75 (t = 21.28, p  < 0.001, 95% CI [1.58, 1.92]), whereas the control group had no significant change (t = 0.88, p  = 0.38, 95% CI [-0.62, 1.57]). Further, the core stability in the experimental group demonstrated a significant improvement from pre (3.44 ± 0.41) to post (5.39 ± 0.42) with a mean difference of -1.94 (t= -18.51, p  < 0.001, 95% CI [-2.16, -1.73]), while the control group had no significant change (t= -0.23, p  = 0.88, 95% CI [-0.40, -0.06]). Similarly, for the reaction time, the experimental group showed a significant improvement from pre (17.93 ± 1.03) to post (15.02 ± 0.41) with a mean difference of 2.91 (t = 14.09, p  < 0.001, 95% CI [2.49, 3.33]), while the control group had no significant difference (t = 0.10, p  = 0.92, 95% CI [-0.51, 0.54]). As a whole, the experimental group showcased significant enhancements in balance, exemplified by marked improvements across diverse reach directions. In contrast, the control group exhibited minimal alterations in SEBT performance, underscoring the distinct disparity between the two groups. (Table  4 ).

The repeated measures ANOVA was conducted to assess changes in performance measures (agility test, core stability, and the reaction time) over time within each group (Table  5 ). For the agility, there was a significant time effect (F = 16.87, p  < 0.001, η² p  = 0.21), indicating that performance improved from pre to post within both the experimental and control groups. However, the group effect (F = 5.03, p  = 0.03, η² p  = 0.08) and time x group interaction (F = 5.57, p  = 0.02, η² p  = 0.08) were not significant, suggesting that the improvement in performance did not differ significantly between the two groups. For the core stability and reaction time, there were significant time effects (core stability: F = 262.06, p  < 0.001, η² p  = 0.81; reaction time: F = 199.77, p  < 0.001, η² p  = 0.76), indicating performance improvements from pre to post within both groups. Additionally, significant group effects (core stability: F = 220.04, p  < 0.001, η² p  = 0.78; reaction time: F = 49.07, p  < 0.001, η² p  = 0.44) and time x group interactions (core stability: F = 161.15, p  < 0.001, η² p  = 0.72; reaction time: F = 171.9, p  < 0.001, η² p  = 0.73) were found for both core stability and reaction time, suggesting that the improvement in performance differed significantly between the experimental and control groups.

figure 2

Pre and Post comparison of illinois agility test, plank test, and 6-point forward test between control and experimental group

The aim of the study was to investigate the efficiency of backward walking on agility, core stability, reaction time, and balance in badminton players. To assess these variables, the researchers employed specific outcome measures, including the Illinois agility test for agility, Plank test for core stability, the 6-point footwork test for reaction time, and the Star Excursion Balance Test (SEBT) for balance in the badminton players. The study included a total of 64 participants, with 32 individuals in each group (control and experimental).

Badminton is physically demanding, requiring athletes to possess high levels of aerobic and anaerobic fitness [ 28 ]. The ability to swiftly change direction, accelerate, and decelerate is essential for reaching the shuttlecock and maintaining court coverage effectively. The aerodynamics of a shuttlecock play a crucial role in badminton. Researchers investigate the factors influencing shuttlecock trajectory, spin, and speed, taking into account factors such as air resistance, drag, and shuttlecock design [ 29 ]. This knowledge helps players anticipate and react to shots more effectively. Backward walking training on treadmill offers a unique and innovative approach to enhancing the physical performance of athletes. By incorporating such exercises into their training regimen, players can improve their agility, balance, and proprioception, which are crucial attributes in badminton. By adding backward training to their training routines, badminton players can enhance their physical attributes, ultimately contributing to improved performance and reduced injury risk during competitive play [ 30 ].

In the present study, the control group received routine exercise training focusing on improving sports performance, whereas the experimental group received routine exercise training along with backward walking training. Pre and post-intervention assessment were taken to measure core stability using plank test, balance using the SEBT, reaction time using the 6-point footwork test and agility using the Illinois agility test. The experimental group demonstrated significant improvement in core stability, balance, reaction time, and agility as compared to the group following only regular exercise protocol.

There were significant difference in stability between the control and experimental groups. The improved core strength enhances dynamic balance, and agility in adolescent badminton players [ 14 ]. The six weeks of backward walking training leads to enhanced core strength, as evidenced by the outcomes of the plank test. This improvement in core strength could potentially contribute to the observed enhancements in agility and balance. These findings align with findings of previous studies which demonstrated that backward walking has the potential to enhance balance and stability among badminton players [ 31 ]. Notably, their study revealed the most significant improvements within the short-term duration of 4 weeks of training.

Backward training targets specific muscle groups involved in maintaining stability and generating power during quick movements on the court, such as the quadriceps, hamstrings, and calf muscles. Strengthening these muscles through backward training can help prevent injuries and improve overall lower body strength and stability. Additionally, backward training challenges players’ motor skills by requiring them to perform movements in reverse, leading to increased motor unit recruitment and improved coordination [ 32 ]. The focus on core stability during backward training can also benefit badminton players in maintaining a strong and balanced stance while executing shots and moving swiftly on the court [ 16 ].

Further, the control group did not show a significant difference in agility, whereas the experimental group of backward training exhibited a significant improvement in agility. These findings suggest that incorporating backward walking training can be effective in enhancing agility. Studies in the past shows that repeated backward running training (RBRT) can have positive effects on various measures of physical fitness in youth male soccer players and netball players [ 17 , 21 , 22 ]. Within-group analysis revealed that RBRT improved all performance variables, including speed, agility, power and other physical fitness measures.

In this study, there was no significant difference in the control group of the six-point footwork test, whereas there was a significant difference in the experimental group that underwent backward training. The backward training helped improve backward running when the shuttle was behind and helped maintain balance with control. A previous study reported discovered that a twelve-week intervention focused on agility training, utilizing the Visual Reaction Time technique with a foundation in six-point footwork and T-footwork, yielded significant differences in the recorded reaction and action times for the fixed-light-mode six-point footwork test [ 11 ]. Additional research has corroborated the notion that engaging in recurrent backward running exercises can enhance diverse aspects of physical fitness among adolescent male football players and netball players. These improvements encompass enhanced speed, agility, power, and other pertinent physical fitness indicators. The inclusion of backward training in conditioning and skills training regimens has the potential to yield positive outcomes in terms of improving physical fitness among adolescent male football and netball athletes [ 21 , 22 ].

The improved balance improves footwork performance in adolescent competitive badminton players also the visual reaction training improves the six-point footwork [ 15 ]. The improved footwork has also been associated with enhanced reaction time and agility [ 11 ]. Another study has shown the significant differences in short-sprint speed and power measures were observed in adolescent athlete after backward running training shows the effectiveness of backward training [ 17 ]. Balance training has been identified as an effective approach to mitigate the risk of falls during backward running, offering benefits during gameplay when players need to respond to the shuttle being behind them, thereby preventing potential falls and enhancing performance.

Backward walking training on treadmill offers a unique and innovative approach to enhancing the physical performance of athletes. By incorporating such exercises into their training regimen, players can improve their agility, balance, and proprioception, which are crucial attributes in badminton. By adding backward training to their training routines, badminton players can enhance their physical attributes, ultimately contributing to improved performance and reduced injury risk during competitive play.

While this study provides valuable insights into the effects of backward walking on trunk stability, balance, agility, and reaction time in badminton players, there are some limitations to consider. The six-week duration of the intervention may not fully capture the long-term effects. The study did not control for external factors that could influence the outcomes, such as participants’ training regimens or nutrition. Additionally, the lack of long-term follow-up limits our understanding of the durability of the observed improvements. There may also be unaccounted confounding variables that could influence the results. Future research should address these limitations to enhance the validity and broader applicability of the findings.

Despite the limitations, this study opens avenues for future research. Firstly, investigations could focus on exploring the optimal duration and frequency of backward walking training to maximize its effectiveness in improving trunk stability, balance, agility, and reaction time. Additionally, further studies could examine the underlying mechanisms through which backward walking influences these physical attributes, such as changes in muscle activation patterns or proprioceptive feedback. Moreover, investigations could extend beyond laboratory settings and explore the real-world application of backward walking training in badminton players during their actual game performance. Lastly, future research could explore the potential benefits of combining backward walking with other training modalities or interventions to enhance overall athletic performance in badminton players.

This study demonstrates that a six-week intervention of backward walking has the potential to improve trunk stability, balance, agility, and reaction time in badminton players. The experimental group showed significant and clinically relevant improvements as compared to the control group. The findings suggest that incorporating backward walking into training regimens may be an effective strategy for enhancing athletic performance in badminton players. However, further research is needed to validate the results in larger and more diverse populations, consider longer intervention duration, and address potential confounding factors to establish the full benefits and applicability of backward walking as a training modality.

Data availability

All data generated or analyzed during this study will be available upon a reasonable request from the corresponding author.

Panda M, Rizvi MR, Sharma A, Sethi P, Ahmad I, Kumari S. Effect of electromyostimulation and plyometrics training on sports-specific parameters in badminton players. Sports Med Health Sci. 2022;4(4):280–6.

Article   PubMed   PubMed Central   Google Scholar  

Ghosh I, Ramamurthy SR, Roy N, editors. Stancescorer: A data driven approach to score badminton player. 2020 IEEE international conference on pervasive computing and communications workshops (PerCom Workshops); 2020: IEEE.

Wörner EA, Safran MR. Racquet sports: tennis, badminton, racquetball, squash. Specific Sports-Related Injuries: Springer; 2022. pp. 431–46.

Google Scholar  

Valldecabres R, Casal CA, Chiminazzo JGC, De Benito AM. Players’ on-court movements and contextual variables in badminton world championship. Front Psychol. 2020;11:1567.

Chandra S, Sharma A, Malhotra N, Rizvi MR, Kumari S. Effects of plyometric training on the agility, speed, and explosive power of male collegiate badminton players. J Lifestyle Med. 2023;13(1):52.

Phomsoupha M, Laffaye G. The science of badminton: game characteristics, anthropometry, physiology, visual fitness and biomechanics. Sports Med. 2015;45:473–95.

Article   PubMed   Google Scholar  

Dong M, Lyu J, Hart T, Zhu Q. Should agility training for novice badminton players be physically or perceptually challenging? PeerJ Preprints. 2018;6:e27359v1.

Wong TK, Ma AW, Liu KP, Chung LM, Bae Y-H, Fong SS et al. Balance control, agility, eye–hand coordination, and sport performance of amateur badminton players: a cross-sectional study. Medicine. 2019;98(2).

Bańkosz Z, Nawara H, Ociepa M. Assessment of simple reaction time in badminton players. 2013.

Yüksel MF, Tunç GT. Examining the reaction times of international level badminton players under 15. Sports. 2018;6(1):20.

Kuo K-P, Tsai H-H, Lin C-Y, Wu W-T. Verification and evaluation of a visual reaction system for badminton training. Sensors. 2020;20(23):6808.

Xie M, editor. The Role of Core Strength Training in Badminton. International Conference on Educational Research and Environmental Studies; 2016.

Savla HN, Sangaonkar M, Palekar T. Correlation of core strength and agility in badminton players. Int J Appl Res. 2020;6(12):383–7.

Ozmen T, Aydogmus M. Effect of core strength training on dynamic balance and agility in adolescent badminton players. J Bodyw Mov Ther. 2016;20(3):565–70.

Malwanage KT, Senadheera VV, Dassanayake TL. Effect of balance training on footwork performance in badminton: an interventional study. PLoS ONE. 2022;17(11):e0277775.

Article   PubMed   PubMed Central   CAS   Google Scholar  

Hassan IHI. The effect of core stability training on dynamic balance and smash stroke performance in badminton players. Int J Sports Sci Phys Educ. 2017;2(3):44–52.

Article   Google Scholar  

Uthoff A, Oliver J, Cronin J, Harrison C, Winwood P. Sprint-specific training in youth: Backward running vs. forward running training on speed and power measures in adolescent male athletes. J Strength Conditioning Res. 2020;34(4):1113–22.

Zhang S, Lin Z, Yuan Y, Wu X. Effect of backward-walking on the static balance ability and gait of the aged people. Chin J Sports Med. 2008;27:304–7.

El-Basatiny HMY, Abdel-Aziem AA. Effect of backward walking training on postural balance in children with hemiparetic cerebral palsy: a randomized controlled study. Clin Rehabil. 2015;29(5):457–67.

Hao W-Y, Chen Y. Backward walking training improves balance in school-aged boys. Sports Medicine, Arthroscopy, Rehabilitation, Therapy & Technology. 2011;3:1–7.

Terblanche E, Venter RE. The effect of backward training on the speed, agility and power of netball players. South Afr J Res Sport Phys Educ Recreation. 2009;31(2):135–45.

Negra Y, Sammoud S, Uthoff A, Ramirez-Campillo R, Moran J, Chaabene H. The effects of repeated backward running training on measures of physical fitness in youth male soccer players. J Sports Sci. 2022;40(24):2688–96.

Kachanathu SJ, Alabdulwahab SS, Negi N, Anand P, Hafeez AR. An analysis of physical performance between backward and forward walking training in young healthy individuals. Saudi J Sports Med. 2016;16(1):68–73.

Kamuk YU. Reliability and validity of a novel agility measurement device for badminton players. Afr Educ Res J. 2020;8(1):54–61.

Dass B, Madiha K, Hotwani R, Arora SP. Impact of strength and plyometric training on agility, anaerobic power and core strength in badminton players. J Med Pharm Allied Sci. 2021;10(4):1300.

Gupta U, Sharma A, Rizvi MR, Alqahtani MM, Ahmad F, Kashoo FZ, et al. editors. Instrument-assisted soft tissue mobilization technique versus Static stretching in patients with Pronated Dominant Foot: a comparison in effectiveness on flexibility, Foot posture. Foot Function Index, and Dynamic Balance. Healthcare;: MDPI; 2023.

Sedhom MG. Backward walking training improves knee proprioception in non athletic males. Int J Physiotherapy. 2017;4(1):33–7.

Alcock A, Cable NT. A comparison of singles and doubles badminton: heart rate response, player profiles and game characteristics. Int J Perform Anal Sport. 2009;9(2):228–37.

Goff JE. A review of recent research into aerodynamics of sport projectiles. Sports Eng. 2013;16(3):137–54.

Dufek J, House A, Mangus B, Melcher G, Mercer J. Backward walking: a possible active Exercise for Low Back Pain reduction and enhanced function in athletes. J Exerc Physiol Online. 2011;14(2).

Ahmed S, Saraswat A, Esht V. Correlation of core stability with balance, agility and upper limb power in badminton players: a cross-sectional study. Sport Sci Health. 2022:1–5.

Hoogkamer W, Meyns P, Duysens J. Steps forward in understanding backward gait: from basic circuits to rehabilitation. Exerc Sport Sci Rev. 2014;42(1):23–9.

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research,  King Saud University for funding through Vice Deanship of Scientific Research Chairs; Rehabilitation Research Chair.

This study was funded by King Saud University, Deanship of Scientific Research, Vice Deanship of Scientific Research Chairs; Rehabilitation Research Chairs. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision to publish the results.

Author information

Authors and affiliations.

Department of Physiotherapy, Faculty of Allied Health Sciences, Manav Rachna International Institute and Studies (MRIIRS), Faridabad, 121001, India

Omkar Sudam Ghorpade & Ankita Sharma

Faculty of Allied Health Sciences, Manav Rachna International Institute and Studies (MRIIRS), Faridabad, 121001, India

Moattar Raza Rizvi

Basic Medical Science Unit, Prince Sultan Military College of Health Sciences, Dhahran, 34313, Saudi Arabia

Harun J. Almutairi

Respiratory Care Department, College of Applied Sciences, AlMaarefa University, Diriyah, Riyadh, 13713, Saudi Arabia

Fuzail Ahmad

Department of Physical Therapy & Health Rehabilitation, College of Applied Medical Sciences, Majmaah University, Al Majmaah, 11952, Saudi Arabia

Shahnaz Hasan, Abdul Rahim Shaik & Mohamed K. Seyam

Physical Therapy Department, College of Nursing and Health Sciences, Jazan University, Jazan, 45142, Saudi Arabia

Shadab Uddin & Saravanakumar Nanjan

Rehabilitation Research Chair, Department of Rehabilitation Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box. 10219, Riyadh, 11433, Saudi Arabia

Amir Iqbal & Ahmad H. Alghadir

College of Healthcare Professions, Dehradun Institute of Technology (D.I.T) University, Diversion Road, Makka Wala, Mussoorie, Uttarakhand, 248009, India

Department of Physiotherapy, Amity Institute of Allied and Health Sciences, Amity University, Noida, Uttar Pradesh, 201301, India

Ankita Sharma

You can also search for this author in PubMed   Google Scholar

Contributions

O.S.G. M.R.R. A.S. S.H. F.A. A.H.A. and A.I. proposed the study concept and design. O.S.G. M.R.R. and A.S. planned the methodology. O.S.G. and A.S. collected data. H.J.A. A.I., A.H.A., and F.A. contributed to the data analysis. F.A. S.H. A.R.S. M.K.S. S.U. S.N. A.H.A. and A.I. contributed to the data interpretation. O.S.G. A.S. M.R.A. F.A. S.H. and A.I. prepared the manuscript’s initial draft. O.S.G. M.R.R. A.S. F.A. S.H. A.R.S. M.K.S. S.U. S.N. A.H.A. and A.I. critically reviewed and edited the manuscript for intellectual content. All authors have read, understood, reviewed, and approved the manuscript’s final version to be submitted or published and take responsibility for the intellectual content of the same manuscript.

Corresponding author

Correspondence to Amir Iqbal .

Ethics declarations

Ethics statement and consent to participate, consent for publication.

Not applicable.

Completing interest

The authors declare that they have no competing interests, either financial or non-financial in this study.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/ .

Reprints and permissions

About this article

Cite this article.

Ghorpade, O.S., Rizvi, M.R., Sharma, A. et al. Enhancing physical attributes and performance in badminton players: efficacy of backward walking training on treadmill. BMC Sports Sci Med Rehabil 16 , 170 (2024). https://doi.org/10.1186/s13102-024-00962-x

Download citation

Received : 17 April 2024

Accepted : 08 August 2024

Published : 13 August 2024

DOI : https://doi.org/10.1186/s13102-024-00962-x

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Backward walking
  • Trunk stability

BMC Sports Science, Medicine and Rehabilitation

ISSN: 2052-1847

control group and experimental group similarities

IMAGES

  1. Control Group Definition and Examples

    control group and experimental group similarities

  2. Control Group Vs Experimental Group In Science

    control group and experimental group similarities

  3. What is a Control Group? -Voxco

    control group and experimental group similarities

  4. Exploring The Distinctions: Control Group Vs. Experimental Group

    control group and experimental group similarities

  5. Clinical Research, control versus experimental group 21790126 Vector Art at Vecteezy

    control group and experimental group similarities

  6. Groupe témoin et groupe expérimental: en quoi diffèrent-ils?

    control group and experimental group similarities

COMMENTS

  1. Control Group Vs Experimental Group In Science

    In research, the control group is the one not exposed to the variable of interest (the independent variable) and provides a baseline for comparison. The experimental group, on the other hand, is exposed to the independent variable. Comparing results between these groups helps determine if the independent variable has a significant effect on the outcome (the dependent variable).

  2. Control Group vs. Experimental Group: 5 Key Differences, Pros

    Control Group vs. Experimental Group Similarities. The control group and experimental group are two essential components of any research study. The main similarity between these groups is that they are both used to assess the effects of a treatment or intervention. The control group is intended to provide a baseline measurement of the outcomes ...

  3. The Difference Between Control Group and Experimental Group

    The control group and experimental group are compared against each other in an experiment. The only difference between the two groups is that the independent variable is changed in the experimental group. The independent variable is "controlled", or held constant, in the control group. A single experiment may include multiple experimental ...

  4. Control Groups and Treatment Groups

    A true experiment (a.k.a. a controlled experiment) always includes at least one control group that doesn't receive the experimental treatment.. However, some experiments use a within-subjects design to test treatments without a control group. In these designs, you usually compare one group's outcomes before and after a treatment (instead of comparing outcomes between different groups).

  5. The Importance of Experimental and Control Groups in Research Design

    Explains the function of experimental and control groups in the context of psychological experiments. It describes how experimental groups receive the intervention or manipulation under study, while control groups do not, serving as a baseline for comparison. This section stresses the value of random assignment in creating comparable groups, thereby enhancing the validity of research findings ...

  6. Experimental Design: Types, Examples & Methods

    Three types of experimental designs are commonly used: 1. Independent Measures. Independent measures design, also known as between-groups, is an experimental design where different participants are used in each condition of the independent variable. This means that each condition of the experiment includes a different group of participants.

  7. Controlled experiments (article)

    There are two groups in the experiment, and they are identical except that one receives a treatment (water) while the other does not. The group that receives the treatment in an experiment (here, the watered pot) is called the experimental group, while the group that does not receive the treatment (here, the dry pot) is called the control group.The control group provides a baseline that lets ...

  8. What Is a Control Group?

    Positive control groups: In this case, researchers already know that a treatment is effective but want to learn more about the impact of variations of the treatment.In this case, the control group receives the treatment that is known to work, while the experimental group receives the variation so that researchers can learn more about how it performs and compares to the control.

  9. Control Group

    In many studies, control groups are crucial for the conclusion that can be drawn from the investigation. In the case of an experimental treatment study, a well-created control group makes the group type the independent variable of the experiment. Ideally, all conditions in the control groups (including the sample characteristics) should be ...

  10. Control group

    Table of Contents control group, the standard to which comparisons are made in an experiment.Many experiments are designed to include a control group and one or more experimental groups; in fact, some scholars reserve the term experiment for study designs that include a control group. Ideally, the control group and the experimental groups are identical in every way except that the experimental ...

  11. Control Group Definition and Examples

    A control group is not the same thing as a control variable. A control variable or controlled variable is any factor that is held constant during an experiment. Examples of common control variables include temperature, duration, and sample size. The control variables are the same for both the control and experimental groups.

  12. The Experimental Group in Psychology Experiments

    In this experiment, the group of participants listening to no music while working out is the control group. They serve as a baseline with which to compare the performance of the other two groups. The other two groups in the experiment are the experimental groups. They each receive some level of the independent variable, which in this case is ...

  13. What's the difference between a control group and an experimental group?

    A true experiment (aka a controlled experiment) always includes at least one control group that doesn't receive the experimental treatment. However, some experiments use a within-subjects design to test treatments without a control group. In these designs, you usually compare one group's outcomes before and after a treatment (instead of ...

  14. Control Group vs. Experimental Group: What's the Difference?

    The alterations made to this group are deliberate and strategic, aiming to explore the effects of specific changes or treatments. Comparing the outcomes from the experimental group with those of the control group allows researchers to deduce the impact of the variable being tested, thereby, providing a framework for interpreting the results.

  15. Experimental & Control Group

    A control group is used as a comparison for the experimental group. The control group is the group in an ... Both the experimental and control groups should be kept as similar to each other as ...

  16. What are Control Groups?

    A control group is typically thought of as the baseline in an experiment. In an experiment, clinical trial, or other sort of controlled study, there are at least two groups whose results are compared against each other. The experimental group receives some sort of treatment, and their results are compared against those of the control group ...

  17. Control Group in an Experiment

    Control group: Does not consume vitamin supplements; Treatment group: Regularly consumes vitamin supplements.; In this experiment, we randomly assign subjects to the two groups. Because we use random assignment, the two groups start with similar characteristics, including healthy habits, physical attributes, medical conditions, and other factors affecting the outcome.

  18. What is the difference between a control group and an experimental group?

    A true experiment (a.k.a. a controlled experiment) always includes at least one control group that doesn't receive the experimental treatment. However, some experiments use a within-subjects design to test treatments without a control group. In these designs, you usually compare one group's outcomes before and after a treatment (instead of ...

  19. What is Control Group? Types, Examples, and Pros & Cons

    Hugh Good. A control group is a common tool that researchers use. It allows them to prove a cause-and-effect relationship with an independent variable. This variable does not change for the control group. In this sense, the control group is the status quo. Researchers compare the effects in the experimental group against the control group.

  20. Frequently asked questions about how science works

    In scientific testing, a control group is a group of individuals or cases that is treated in the same way as the experimental group, but that is not exposed to the experimental treatment or factor. Results from the experimental group and control group can be compared. If the control group is treated very similarly to the experimental group, it ...

  21. The Difference Between a Control Variable and Control Group

    A control group is a set of experimental samples or subjects that are kept separate and aren't exposed to the independent variable . In an experiment to determine whether zinc helps people recover faster from a cold, the experimental group would be people taking zinc, while the control group would be people taking a placebo (not exposed to ...

  22. Considerations of Control Groups: Comparing Active-Control with No

    A control group should seek to control the positive beliefs of using the intervention, a point that drives blind and double-blind placebo groups. The control condition should elicit some of the symptoms of the intervention but not those that are in the active treatment (e.g., decaffeinated coffee, a treatment that tastes like coffee, and so ...

  23. 1.4.4

    A control group is an experimental condition that does not receive the actual treatment and may serve as a baseline.A control group may receive a placebo or they may receive no treatment at all. A placebo is something that appears to the participants to be an active treatment, but does not actually contain the active treatment.For example, a placebo pill is a sugar pill that participants may ...

  24. Treatment and control groups

    Treatment and control groups. In the design of experiments, hypotheses are applied to experimental units in a treatment group. [ 1] In comparative experiments, members of a control group receive a standard treatment, a placebo, or no treatment at all. [ 2] There may be more than one treatment group, more than one control group, or both.

  25. Enhancing physical attributes and performance in badminton players

    The control group received routine exercise training, while the experimental group received routine exercise training along with additional backward walking training on the treadmill. Pre- and post-intervention measurements were taken for core stability using the Plank test, balance using the Star Excursion Balance test, reaction time using the ...