Status of the Yakutsk Air Shower Array and Future Plans

  • Elementary Particles and Fields/Experiment
  • Published: 29 December 2021
  • Volume 84 , pages 893–906, ( 2021 )

Cite this article

agasa experiment

  • A. K. Alekseev 1 ,
  • E. A. Atlasov 1 ,
  • N. G. Bolotnikov 1 ,
  • A. V. Bosikov 1 ,
  • N. A. Dyachkovskiy 1 ,
  • N. S. Gerasimova 1 ,
  • A. V. Glushkov 1 ,
  • A. A. Ivanov 1 ,
  • O. N. Ivanov 1 ,
  • D. N. Kardashevsky 1 ,
  • I. A. Kellarev 1 ,
  • S. P. Knurenko 1 ,
  • A. D. Krasilnikov 1 ,
  • A. N. Krivenkov 1 ,
  • I. V. Ksenofontov 1 ,
  • L. T. Ksenofontov 1 ,
  • K. G. Lebedev 1 ,
  • S. V. Matarkin 1 ,
  • V. P. Mokhnachevskaya 1 ,
  • E. V. Nikolaeva 1 ,
  • N. I. Neustroev 1 ,
  • I. S. Petrov 1 ,
  • N. D. Platonov 1 ,
  • A. S. Proshutinsky 1 ,
  • A. V. Saburov 1 ,
  • I. Ye. Sleptsov 1 ,
  • G. G. Struchkov 1 ,
  • L. V. Timofeev 1 &
  • B. B. Yakovlev 1  

114 Accesses

4 Citations

8 Altmetric

Explore all metrics

The Yakutsk Extensive Air Shower Array has been continuously operating for more than 50 years (since 1970) and up until recently it has been one of world’s largest ground-based instruments aimed at studying the properties of cosmic rays in the ultra-high energy domain. In this report we discuss results recently obtained at the array—on cosmic rays’ energy spectrum, mass composition and directional anisotropy—and how they fit into the world data. Special attention is paid to the measurements of muonic component of extensive air showers. Theoretical results of particle acceleration at shocks are also briefly reviewed. Future scientific and engineering plans on the array modernization are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save.

  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime

Price includes VAT (Russian Federation)

Instant access to the full article PDF.

Rent this article via DeepDyve

Institutional subscriptions

agasa experiment

Similar content being viewed by others

agasa experiment

Investigations of the Transition Region between Galactic and Extragalactic Cosmic Rays with Arrays for Extensive Air-Shower Detection

agasa experiment

Cosmic-Ray Research at the TAIGA Astrophysical Facility: Results and Plans

The search for diffuse gamma rays using data from the tunka-grande experiment.

With energies \({\geq}1\) GeV.

G. T. Zatsepin and V. A. Kuzmin, JETP Lett. 4 , 78 (1966).

ADS   Google Scholar  

K. Greisen, Phys. Rev. Lett. 16 , 748 (1966).

Article   ADS   Google Scholar  

A. V. Glushkov, O. S. Diminshtein, T. A. Egorov, N. N. Efimov, L. I. Kaganov, D. D. Krasil’nikov, S. V. Maksimov, V. A. Orlov, M. I. Pravdin, and I. Y. Slepsov, in Proceedings of the Soviet Symposium on Experimental Methods of Very High Energy Cosmic Rays Research (YaF SO AN SSSR, Yakutsk, 1974), p. 43.

G. A. Borodina, V. P. Valkov, V. E. Gevrasev, A. V. Glushkov, S. V. Maksimov, V. P. Odegov, V. V. Sizov, and I. I. Chupin, in emphProceedings of the Soviet Symposium on Experimental Methods of Very High Energy Cosmic Rays Research (YaF SO AN SSSR, Yakutsk, 1974), p. 48.

S. P. Knurenko, V. A. Kolosov, Z. E. Petrov, A. Pudov, R. G. Sidorov, and I. Y. Sleptsov, Nauka Obrazov. 1998 (4), 46 (1998).

Google Scholar  

V. P. Mokhnachevskaya, Y. A. Egorov, S. P. Knurenko, and Z. E. Petrov, PoS(ICRC2017) 341 (2017).

S. P. Knurenko and I. S. Petrov, Phys. Rev. D 102 , 023036 (2020); arXiv: 2007.08135 [astroph.HE].

S. P. Knurenko, Z. E. Petrov, and I. S. Petrov, Nucl. Instrum. Methods Phys. Res., Sect. A 866 , 230 (2017).

A. V. Glushkov, M. I. Pravdin, and A. V. Saburov, Phys. At. Nucl. 81 , 575 (2018).

Article   Google Scholar  

T. A. Egorov (for the Yakutsk EAS array), in Proceedings of the Tokyo Workshop on Techniques for the Study of Extremely High Energy Cosmic Rays, Ed. by M. Nagano (ICRR, Univ. Tokyo, 1993), p. 35.

D. Heck, J. Knapp, J. N. Capdevielle, G. Schatz, and T. Thouw, CORSIKA: A Monte Carlo Code to Simulate Extensive Air Showers, FZKA 6019 (Forschungszentrum, Karlsruhe, 1988).

S. P. Knurenko and A. Sabourov, EPJ Web Conf. 53 , 04004 (2013).

E. S. Berezhnev, H. Besson, N. M. Budnev, A. Chiavassa, O. A. Gress, A. N. Dyachok, S. N. Epimakhov, A. Haungs, N. I. Karpov, N. N. Kalmykov, E. N. Konstantinov, A. Korobchenko, E. E. Korosteleva, V. A. Kozhin, L. A. Kuzmichev, B. K. Lubsandorzhiev, et al., Nucl. Instrum. Methods Phys. Res., Sect. A 692 , 98 (2012); arXiv: 1201.2122 [astro-ph.HE].

M. G. Aartsen et al. (IceCube Collab.), Phys. Rev. D 88 , 042004 (2013); arXiv: 1307.3795 [astroph.HE].

R. U. Abbasi, M. Abe, T. Abu-Zayyad, M. Allen, R. Azuma, E. Barcikowski, J. W. Belz, D. R. Bergman, S. A. Blake, R. Cady, B. G. Cheon, J. Chiba, M. Chikawa, W. R. Cho, T. Fujii, M. Fukushima, et al., Astropart. Phys. 80 , 131 (2016).

A. Aab et al. (The Pierre Auger Collab.), in Proceedings of the 34th International Cosmic Ray Conference ICRC, 2015, The Hague, The Netherlands ; arXiv: 1509.03732 [astro-ph.HE].

Z. Zundel (for Telescope Array Collab.), PoS(ICRC2015) 445 (2015).

M. Nagano, M. Teshima, Y. Matsubara, H. Y. Dai, T. Hara, N. Hayashida, M. Honda, H. Ohoka, and S. Yoshida, J. Phys. G: Nucl. Phys. 18 , 423 (1992).

K. Shinozaki (for AGASA Collab.), Nucl. Phys. B: Proc. Suppl. 151 , 3 (2006).

E. G. Berezhko, S. P. Knurenko, and L. T. Ksenofontov, Astropart. Phys. 36 , 31 (2012).

S. P. Knurenko and I. S. Petrov, Adv. Space Res. 64 , 2570 (2019).

V. V. Prosin, S. F. Berezhnev, N. M. Budnev, M. Brückner, A. Chiavassa, O. A. Chvalaev, A. V. Dyachok, S. N. Epimakhov, A. V. Gafarov, O. A. Gress, T. I. Gress, D. Horns, N. N. Kalmykov, N. I. Karpov, S. Kiryuhin, E. N. Konstantinov, et al., EPJ Web Conf. 121 , 03004 (2016).

R. Ulruch and L. Cazon, Astropart. Phys. 38 , 41 (2012).

J. Bellido (for The Pierre Auger Collab.), PoS(ICRC2017), 506 (2017).

R. U. Abbasi, M. Abe, T. Aby-Zayyad, M. Allen, R. Azuma, E. Barcikowski, J. W. Belz, D. R. Bergman, S. A. Blake, R. Cady, B. G. Cheon, J. Chiba, M. Chikawa, A. di Matteo, T. Fujii, K. Fujita, et al., Astrophys. J. 858 , 76 (2018).

S. Buitnik, A. Corstanje, H. Falcke, J. R. Hörandel, T. Huege, A. Nelles, J. P. Rachen, L. Rossetto, P. Schellart, O. Scholten, S. ter Veen, S. Thoudam, T. N. G. Trinh, J. Anderson, A. Asgekar, I. M. Avruch, et al., Nature (London, U.K.) 531 , 70 (2016).

S. Ostapchenko, Phys. Rev. D 83 , 014018 (2011); arXiv: 1010.1869 [hep-ph].

T. Pierog, I. Karpenko, J. M. Katzy, E. Yatsenko, and K. Werner, Phys. Rev. C 92 , 034906 (2015); arXiv: 1306.0121 [hep-ph].

F. Riehn, H. Dembinski, R. Engel, A. Fedynitch, T. Gaisser, and T. Stanev, PoS(ICRC2017), 301 (2017).

M. I. Pravdin, A. V. Glushkov, and A. V. Saburov, Astron. Lett. 44 , 588 (2018).

S. P. Knurenko and I. S. Petrov, JETP Lett. 107 , 676 (2018).

A. V. Glushkov, I. T. Makarov, M. I. Pravdin, I. E. Sleptsov, D. S. Gorbunov, G. I. Rubtsov, and S. V. Troitsky (Yakutsk EAS Array), Phys. Rev. D 82 , 041101(R) (2010).

J. Abraham et al. (The Pierre Auger Collab.), Astropart. Phys. 29 , 243 (2008); arXiv: 0712.1147 [astro-ph].

A. Aab, P. Abreu, M. Aglietta, I. Al Samarai, I. F. M. Albuquerque, I. Allekotte, A. Almela, J. Alvarez Castillo, J. Alvarez-Muniz, G. A. Anastasi, L. Anchordoqui, B. Andrada, S. Andringa, C. Aramo, F. Arqueros, N. Arsene, et al., J. Cosmol. Astropart. Phys. 1704 , 009 (2017).

K. Shinozaki, M. Chikawa, M. Fukushima, N. Hayashida, N. Inoue, K. Honda, K. Kadota, F. Kakimoto, K. Kamata, S. Kawaguchi, S. Kawakami, Y. Kawasaki, N. Kawasumi, A. M. Mahrous, K. Mase, S. Mizobuchi, et al., Astrophys. J. 571 , L117 (2002).

G. Rubtsov, M. Fukushima, D. Ivanov, M. Kuznetsov, M. Piskunov, G. Thomson, S. Troitsky, and Y. Zhezher, PoS(ICRC2017), 551 (2018).

J. Ellis, V. E. Mayes, and D. V. Nanopoulos, Phys. Rev. D 74 , 115003 (2006).

P. Bhattacharjee and G. Sigl, Phys. Rep. 327 , 109 (2000).

V. S. Berezinsky and G. T. Zatsepin, Phys. Lett. B 28 , 423 (1969).

G. B. Gelmini, O. E. Kalashev, and D. V. Semikoz, J. Exp. Theor. Phys. 106 , 1061 (2008); arXiv: astroph/0506128.

G. F. Krymskii, Sov. Phys. Dokl. 22 , 327 (1977).

ADS   MathSciNet   Google Scholar  

E. G. Berezhko and G. F. Krymsky, Sov. Phys. Usp. 31 , 27 (1988).

E. G. Berezhko, V. K. Yelshin, and L. T. Ksenofontov, Astropart. Phys. 2 , 215 (1994).

E. G. Berezhko, V. K. Elshin, and L. T. Ksenofontov, J. Exp. Theor. Phys. 82 , 1 (1996).

E. G. Berezhko, Astrophys. J. 684 , L69 (2008).

H. P. Dembinski et al. (for the EAS-MSU, IceCube, KASCADE-Grande, NEVOD-DECOR, Pierre Auger Observatory, SUGAR, Telescope Array, and Yakutsk EAS Array Collabs.), EPJ Web Conf. 210 , 02004 (2019).

A. Corstanje, S. Buitink, H. Falcke, B. M. Hare, J. R. Hörandel, T. Huege, G. K. Krampah, P. Mitra, K. Mulrey, A. Nelles, H. Pandya, J. P. Rachen, O. Scholten, S. ter Veen, S. Thoudam, G. Trinh, et al., Phys. Rev. D 103 , 102006 (2021); arXiv: 2103.12549 [astro-ph.HE].

A. V. Glushkov and A. V. Saburov, JETP Lett. 109 , 559 (2019).

A. G. Bogdanov, D. M. Gromushkin, R. P. Kokoulin, G. Manocchi, A. A. Petrukhin, O. Saavedra, G. Trinchero, D. V. Chernov, V. V. Shutenko, and I. I. Yashin, Phys. At. Nucl. 73 , 1852 (2010).

A. G. Bogdanov, R. P. Kokoulin, G. Mannocchi, A. A. Petrukhin, O. Saavedra, V. V. Shutenko, G. Trinchero, and I. I. Yashin, Astropart. Phys. 98 , 13 (2018).

A. Aab et al. (The Pierre Auger Collab.), Phys. Rev. D 91 , 032003 (2015); arXiv: 1408.1421 [astro-ph.HE].

A. Aab et al. (The Pierre Auger Collab.), Phys. Rev. Lett. 117 , 192001 (2016); arXiv: 1610.08509 [hep-ex].

S. Müller (for The Pierre Auger Collab.), EPJ Web Conf. 210 , 02013 (2019).

J. G. Gonzalez (for the IceCube Collab.), EPJ Web Conf. 208 , 03003 (2019).

J. Albrecht, L. Cazon, H. Dembinski, A. Fedynitch, K.-H. Kampert, T. Pierog, W. Rhode, D. Soldin, B. Spaan, R. Ulruch, and M. Unger, arXiv: 2105.06148 [astro-ph.HE].

A. V. Glushkov, V. M. Grigoriev, O. S. Diminshtein, T. A. Egorov, N. N. Efimov, V. D. Koryakin, A. I. Kuz’min, S. V. Makarov, I. T. Maksimov, P. D. Petrov, M. I. Pravdin, G. V. Skripin, and Y. G. Shafer, in Cosmic Rays of Ultra-High Energies, A Collection of Scientific Papers (YaF SO AN SSSR, Yakutsk, 1979), p. 130 [in Russian].

V. P. Artamonov, B. N. Afanasiev, A. Glushkov, V. P. Grigoriev, M. N. Dyakonov, T. A. Egorov, V. P. Egorova, N. N. Efremov, A. A. Ivanov, A. P. Kangalasov, S. P. Knurenko, V. A. Kolosov, V. D. Koryakin, V. B. Kosarev, A. D. Krasilnikov, I. T. Makarov, et al., Bull. Russ. Acad. Sci.: Phys. 58 , 2026 (1994).

A. A. Ivanov, S. P. Knurenko, M. I. Pravdin, and I. E. Sleptsov, Moscow Univ. Phys. Bull. 65 , 292 (2010).

R. U. Abbasi, M. Abe, T. Abu-Zayyad, M. Allen, R. Anderson, R. Azuma, E. Barcikowski, J. W. Belz, D. R. Bergman, S. A. Blake, R. Cady, M. J. Chae, B. G. Cheon, J. Chiba, M. Chikawa, W. R. Cho, et al., Astrophys. J. Lett. 790 , L21 (2014).

G. F. Krymsky, M. I. Pravdin, and I. E. Sleptsov, Astron. Lett. 43 , 703 (2017).

G. F. Krymsky, M. I. Pravdin, I. E. Sleptsov, and A. D. Krasilnikov, Astron. Lett. 45 , 576 (2019).

I. Sidelnik (for the Pierre Auger Collab.), in Proceedings of the 33rd International Cosmic Ray Conference ICRC, Ed. by A. Saa (Rio de Janeiro, Brazil, 2013), Vol. 1, p. 479.

A. Aab et al. (The Pierre Auger Collab.), Science (Washington, DC, U. S.) 357 , 1266 (2017); arXiv: 1709.07321 [astroph.HE].

M. I. Pravdin, A. A. Ivanov, A. D. Krasilnikov, V. A. Kolosov, I. T. Makarov, A. A. Mikhailov, I. E. Sleptsov, and G. G. Struchkov, Izv. Akad. Nauk, Ser. Fiz. 66 , 1594 (2002).

A. A. Ivanov, Phys. Rev. D 97 , 083003 (2018); arXiv: 1803.06792 [astro-ph.HE].

R. U. Abbasi, M. Abe, T. Abu-Zayyad, M. Allen, R. Azuma, E. Barcikowski, J. W. Belz, D. R. Bergman, S. A. Blake, R. Cady, B. G. Cheon, J. Chiba, M. Chikawa, T. Fujii, M. Fukushima, T. Goto, et al., Astropart. Phys. 86 , 21 (2017); arXiv: 1608.06306 [astro-ph.HE].

T. Wibig and A. Wolfendale, J. Phys. G 25 , 2001 (1999).

S. V. Matarkin and L. V. Timofeev, Bull. Russ. Acad. Sci.: Phys. 83 , 640 (2019).

A. A. Ivanov, S. V. Matarkin, and L. V. Timofeev, Int. J. Mod. Phys. D 29 , 2050033 (2020).

Download references

ACKNOWLEDGMENTS

This report was made within the framework of the research project AAAA-A21-121011990011-8 curated by the Ministry of Science and Higher Education of the Russian Federation.

Author information

Authors and affiliations.

Yu.G. Shafer Institute of Cosmophysical Research and Aeronomy SB RAS, 677027, Yakutsk, Russia

A. K. Alekseev, E. A. Atlasov, N. G. Bolotnikov, A. V. Bosikov, N. A. Dyachkovskiy, N. S. Gerasimova, A. V. Glushkov, A. A. Ivanov, O. N. Ivanov, D. N. Kardashevsky, I. A. Kellarev, S. P. Knurenko, A. D. Krasilnikov, A. N. Krivenkov, I. V. Ksenofontov, L. T. Ksenofontov, K. G. Lebedev, S. V. Matarkin, V. P. Mokhnachevskaya, E. V. Nikolaeva, N. I. Neustroev, I. S. Petrov, N. D. Platonov, A. S. Proshutinsky, A. V. Saburov, I. Ye. Sleptsov, G. G. Struchkov, L. V. Timofeev & B. B. Yakovlev

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to A. V. Saburov .

Rights and permissions

Reprints and permissions

About this article

Alekseev, A.K., Atlasov, E.A., Bolotnikov, N.G. et al. Status of the Yakutsk Air Shower Array and Future Plans. Phys. Atom. Nuclei 84 , 893–906 (2021). https://doi.org/10.1134/S1063778821130020

Download citation

Received : 12 July 2021

Revised : 12 July 2021

Accepted : 12 July 2021

Published : 29 December 2021

Issue Date : November 2021

DOI : https://doi.org/10.1134/S1063778821130020

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Find a journal
  • Publish with us
  • Track your research
  • Atmospheric Sciences

Energy determination in the Akeno Giant Air Shower Array experiment

  • September 2002
  • Astroparticle Physics 19(4):447-462
  • 19(4):447-462
  • This person is not on ResearchGate, or hasn't claimed this research yet.

Naoto Sakaki at Osaka City University

  • Osaka City University

Kristine Honda at Bastyr University, United States, Washington

  • Bastyr University, United States, Washington

Michiyuki Chikawa at Kindai University

  • Kindai University

Discover the world's research

  • 25+ million members
  • 160+ million publication pages
  • 2.3+ billion citations

The Energy Spectrum Observed by the AGASA Experiment and the Spatial Distribution of the Sources of Ultra-High-Energy Cosmic Rays

Gustavo A. Medina-Tanco 1

Published 1998 December 15 • © 1999. The American Astronomical Society. All rights reserved. Printed in U.S.A. The Astrophysical Journal , Volume 510 , Number 2 Citation Gustavo A. Medina-Tanco 1999 ApJ 510 L91 DOI 10.1086/311814

Article metrics

466 Total downloads

Permissions

Get permission to re-use this article

Share this article

Author affiliations.

1 Instituto Astronômico e Geofísico, Universidade de São Paulo, Caixa Postal 9638, São Paulo, SP 01065-970, Brasil; and Department of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, England, UK

  • Received 1998 September 23
  • Accepted 1998 October 28
  • Published 1998 December 15

Receive alerts on all new research papers in American Astronomical Society ( A A S  ) journals as soon as they are published. Select your desired journals and corridors below. You will need to select a minimum of one corridor.

Please note, The Planetary Science Journal (PSJ) does not currently use the corridors.

What are corridors? opens in new tab

Seven and a half years of continuous monitoring of giant air showers triggered by ultra-high-energy cosmic rays have been summarized recently by the AGASA collaboration. The resulting energy spectrum indicates clearly that the cosmic-ray spectrum extends well beyond the Greisen-Zatsepin-Kuzmin (GZK) cutoff at ~5 × 10 19 eV. Furthermore, despite the small-number statistics involved, some structure in the spectrum may be emerging. Using numerical simulations, it is demonstrated in the present work that these features are consistent with a spatial distribution of sources that follows the distribution of luminous matter in the local universe. Therefore, from this point of view, there is no need for a second high-energy component of cosmic rays dominating the spectrum beyond the GZK cutoff.

Export citation and abstract BibTeX RIS

  • NASA ADS Record opens in new tab
  • About Related Links

AIP Publishing Logo

  • Previous Article
  • Next Article

Results from AGASA experiment in the extremely high energy region

  • Article contents
  • Figures & tables
  • Supplementary Data
  • Peer Review
  • Reprints and Permissions
  • Cite Icon Cite
  • Search Site

Motohiko Nagano; Results from AGASA experiment in the extremely high energy region. AIP Conf. Proc. 15 June 1998; 433 (1): 76–86. https://doi.org/10.1063/1.56148

Download citation file:

  • Ris (Zotero)
  • Reference Manager

Recent results on primary cosmic rays of energies above 1×10 19   eV observed by the Akeno Giant Air Shower Array (AGASA) are summarized. It is likely that extremely high energy cosmic rays are from diffuse sources distributed isotropically in the universe. However, there are cosmic rays of energies in excess of the predicted cutoff energy and some fraction of cosmic rays beyond 4×10 19   eV seem to come nearby sources composing double events within a limited space angle.

Citing articles via

Publish with us - request a quote.

agasa experiment

Sign up for alerts

  • Online ISSN 1551-7616
  • Print ISSN 0094-243X
  • For Researchers
  • For Librarians
  • For Advertisers
  • Our Publishing Partners  
  • Physics Today
  • Conference Proceedings
  • Special Topics

pubs.aip.org

  • Privacy Policy
  • Terms of Use

Connect with AIP Publishing

This feature is available to subscribers only.

Sign In or Create an Account

  • DOI: 10.1086/311814
  • Corpus ID: 121754057

The Energy Spectrum Observed by the AGASA Experiment and the Spatial Distribution of the Sources of Ultra-High-Energy Cosmic Rays

  • G. Medina-Tanco
  • Published 10 January 1999
  • The Astrophysical Journal Letters

17 Citations

The high-energy cosmic ray spectrum from relic particle decay, a possible nearby origin for the highest-energy events observed, status and prospects of the ultrahigh energy cosmic rays, particle and astrophysical aspects of ultra-high energy cosmic rays, cosmic magnetic fields from the perspective of ultra-high-energy cosmic rays propagation, the greisen–zatzepin–kuzmin feature in our neighborhood of the universe, ultrahigh energy cosmic rays: the state of the art before the auger observatory, cosmic rays from remnants of quasars.

  • Highly Influenced

Ultra-high Energy Cosmic Rays: From GeV to ZeV

Ultrahigh-energy cosmic-ray propagation in the galaxy: clustering versus isotropy, 36 references, energy spectrum of ultra-high energy cosmic rays with extra-galactic origin, extension of the cosmic-ray energy spectrum beyond the predicted greisen-zatsepin-kuz'min cutoff, detection of a cosmic ray with measured energy well beyond the expected spectral cutoff due to cosmic microwave radiation, the highest energy cosmic rays, the extremely high energy cosmic rays, non-diffusive propagation of ultra high energy cosmic rays, ultrahigh energy cosmic rays without greisen-zatsepin-kuzmin cutoff, cosmological origin for cosmic rays above 1019 ev, the effect of highly structured cosmic magnetic fields on ultra-high-energy cosmic-ray propagation, ultra high energy cosmic rays, related papers.

Showing 1 through 3 of 0 Related Papers

IMAGES

  1. Left: Arrival direction uncertainty for the AGASA experiment. Closed

    agasa experiment

  2. Energy spectrum of UHECR measured by the AGASA experiment. The dashed

    agasa experiment

  3. UHECR flux measured by the AGASA experiment [5]. All other parameters

    agasa experiment

  4. PPT

    agasa experiment

  5. PPT

    agasa experiment

  6. UHECR data measured by the AGASA experiment. The meaning of the dashed

    agasa experiment

VIDEO

  1. #indianarmy #armyemotional #indianarmedforces #feelingproud #army #armylover

  2. Agasa nilavu ( Happy birthday Appa)

  3. agasa mariamman temple pattaveli...#singapore

  4. Agasa nilavu #song

  5. Introduction to Agarose Gel Microcapsules Technology

  6. Testing Fake or Real Ghee/Butter #shorts #devkeexperiment

COMMENTS

  1. Akeno Giant Air Shower Array

    The results from AGASA were used to calculate the energy spectrum and anisotropy of cosmic rays. The results helped to confirm the existence of ultra-high energy cosmic rays (> 5 × 10 19 eV), such as the so-called "Oh-My-God" particle that was observed by the Fly's Eye experiment run by the University of Utah.The Telescope Array, a merger of the AGASA and High Resolution Fly's Eye (HiRes ...

  2. Agasa

    This array is called the Akeno Giant Air Shower Array (AGASA) . AGASA covers an area of about 100 km2 and consists of 111 detectors on the ground (surface detectors) and 27 detectors under absorbers (muon detectors). Each surface detector is placed with a nearest-neighbor separation of about 1 km and the detectors are sequentially connected ...

  3. Telescope Array Project

    The Telescope Array project is an international collaboration involving research and educational institutions in Japan, The United States, Russia, South Korea, and Belgium. [1] The experiment is designed to observe air showers induced by ultra-high-energy cosmic ray using a combination of ground array and air-fluorescence techniques. It is located in the high desert in Millard County, Utah ...

  4. Status of the Yakutsk Air Shower Array and Future Plans

    It is one of the longest running experiments that register the flux of the ultra-high energy CRs (UHECR): it has been continuously operating since 1973. From the very beginning it was created as a complex instrument, capable of measuring several EAS components with different types of detectors. ... , and AGASA . (d) Same as in panel (c) but ...

  5. AGASA results and the Telescope Array Project

    Here, we will discuss the results obtained by AGASA, the Akeno Giant Air Shower Array, covering over 100km2 area in operation at Akeno village about 130km west of Tokyo. 2 The Highest Energy Cosmic Rays Figure 1 shows the energy spectrum above 1018·5 eV observed by AGASA experiment (Takeda et al. 1998, Hayashida et al 2000). For reference, we ...

  6. Energy determination in the Akeno Giant Air Shower Array experiment

    In the AGASA experiment, pulse widths of all incident particles are recorded and their PWD is stored in the memory as shown in Fig. 1, and then t 1 is determined in every RUN. Fig. 4(a) shows the time variation of t 1 for a typical detector over 12 years of operation. There is a clear seasonal variation with a ±3% fluctuation, but this ...

  7. AGASA results

    Summary The AGASA experiment had been operated since 1990 and was finished in January 2004 having detected about 1000 UHECRs above 10 19 eV. With elaborate simulations and experimental studies, the data quality has been well confirmed. Through 14-year operation, we have obtained many important findings to deepen our understanding of the highest ...

  8. AGASA results

    Abstract: (Elsevier) Through a 14-year operation of the Akeno Giant Air Shower Array (AGASA), we detected about 1000 UHECRs above 10 19 eV including eleven events above 10 20 eV. The data indicate that the cosmic ray spectrum extends well beyond the predicted Greisen-Zatsepin-Kuzmin cutoff.

  9. AGASA Results

    The results from both experiments would meet except for the super-GZK part if the energy scale of HiRes were pushed up by ∼ 30% [29]. Surface array experiment such as AGASA is even more easily and preciously understood. It is suggested that the energy of the spectral change, ankle could be a calibration point.

  10. Energy determination in the Akeno Giant Air Shower Array experiment

    The energy spectrum measured by the AGASA experiment (black dots) [21] is compared with the calculations (green squares). The blue line is normalized to the Auger data[7] while the black ...

  11. The Energy Spectrum Observed by the AGASA Experiment and the Spatial

    Seven and a half years of continuous monitoring of giant air showers triggered by ultra-high-energy cosmic rays have been summarized recently by the AGASA collaboration. The resulting energy spectrum indicates clearly that the cosmic-ray spectrum extends well beyond the Greisen-Zatsepin-Kuzmin (GZK) cutoff at ~5 × 10 19 eV. Furthermore ...

  12. Energy determination in the Akeno Giant Air Shower Array experiment

    Using data from more than ten-years of observations with the Akeno Giant Air Shower Array (AGASA), we published a result that the energy spectrum of ultra-high energy cosmic rays extends beyond the cutoff energy predicted by Greisen, and Zatsepin and Kuzmin. In this paper, we reevaluate the energy determination method used for AGASA events with respect to the lateral distribution of shower ...

  13. What's the Source of the Most Energetic Cosmic Rays?

    A cosmic ray—an atomic nucleus hurtling through space—struck a detector in an array called the Volcano Ranch experiment with an energy of 10 20 electronvolts, or 100 ... near Tokyo, bagged about a dozen more particles with energies of about 200 EeV. The AGASA results galvanized astrophysicists into building a much bigger detector optimized ...

  14. PDF EnergydeterminationintheAkenoGiantAir ShowerArray experiment

    In this experiment, the total number of electrons, known as the shower size Ne, was used as an energy estimator. The relation between this energy spectrum and the AGASA energy spectrum is discussed in §4. 2 Densities measured by scintillation detectors The AGASA array consists of plastic scintillators of 2.2m2 area, and the

  15. Results from AGASA experiment in the extremely high energy region

    Object moved to here.

  16. The energy spectrum observed by the AGASA experiment and the spatial

    Seven and a half years of continuous monitoring of giant air showers triggered by ultra high-energy cosmic rays have been recently summarized by the AGASA collaboration. The resulting energy spectrum indicates clearly that the cosmic ray spectrum extends well beyond the Greisen-Zatsepin-Kuzmin (GZK) cut-off at $\\sim 5 \\times 10^{19}$ eV. Furthermore, despite the small number statistics ...

  17. Further development of data acquisition system of the Akeno Giant Air

    The data acquisition system of the Akeno Giant Air Shower Array (AGASA) is described. The AGASA array covers an area of about 100 km 2 and has been operated since 1990 to study the origin of extremely high energy cosmic rays. In the early stage of our experiment, AGASA was divided into four sub-arrays called branches for topographical reasons so that air showers were observed independently at ...

  18. PDF The Telescope Array Experiment

    Abstract: The Telescope Array (TA) Experiment is the largest ultra-high energy cosmic ray detector in the northern hemisphere. The Telescope Array is a follow up to the High Resolution Fly s Eye and AGASA experiments. It is located near Delta, Utah, about 200 kilometers southwest of SaltLake City, Utah, USA.The detector consists of 507 three square

  19. The Energy Spectrum Observed by the AGASA Experiment and the Spatial

    Seven and a half years of continuous monitoring of giant air showers triggered by ultra-high-energy cosmic rays have been summarized recently by the AGASA collaboration. The resulting energy spectrum indicates clearly that the cosmic-ray spectrum extends well beyond the Greisen-Zatsepin-Kuzmin (GZK) cutoff at ~5 × 1019 eV. Furthermore, despite the small-number statistics involved, some ...

  20. Comparison of AGASA data with CORSIKA simulation

    The AGASA energy spectrum in the highest energy region, which is adjusted to the one of the 1 km 2 array at Akeno [11] 2 are compared with the spectra from the Haverah Park [12], Yakutsk [13] and stereo Fly's Eye [14] experiments in Fig. 1.All four spectra agree with one another within ±15% in energy.

  21. PDF ComparisonofAGASAdatawith CORSIKA simulation

    5.1 Definition of density used in Akeno/AGASA experiment. In the AGASA experiment, a scintillator of 5 cm thickness is used to detect particles on the surface. The scintillator is placed inside an enclosure made of iron of 1.5 ∼ 2 mm thickness and the detector is in a hut whose roof is made of an iron plate of.

  22. PDF Status and Prospect of Telescope Array (TA) Experiment

    AirShowerArray(AGASA)inJapanandtheHigh Resolution Fly's Eye (HiRes) in the USA. The AGASA experiment published an energy spectrum which does not exhibit the GZK cutoff in 1998 [2]. The spectrum above 1019 eV is well described by E−2.78 distribution, and a total of 6 events was observed above 1020 eV with an ex-posure of 0.83 × 103 km2 sr ...

  23. On a possible photon origin of the most-energetic AGASA events

    In this work the ultra high energy cosmic ray events recorded by the AGASA experiment are analyzed. With detailed simulations of the extensive air showers initiated by photons, the probabilities are determined of the photonic origin of the 6 AGASA events for which the muon densities were measured and the reconstructed energies exceeded 10 20 eV. On this basis a new, preliminary upper limit on ...