• Resources Home 🏠
  • Try SciSpace Copilot
  • Search research papers
  • Add Copilot Extension
  • Try AI Detector
  • Try Paraphraser
  • Try Citation Generator
  • April Papers
  • June Papers
  • July Papers

SciSpace Resources

The Craft of Writing a Strong Hypothesis

Deeptanshu D

Table of Contents

Writing a hypothesis is one of the essential elements of a scientific research paper. It needs to be to the point, clearly communicating what your research is trying to accomplish. A blurry, drawn-out, or complexly-structured hypothesis can confuse your readers. Or worse, the editor and peer reviewers.

A captivating hypothesis is not too intricate. This blog will take you through the process so that, by the end of it, you have a better idea of how to convey your research paper's intent in just one sentence.

What is a Hypothesis?

The first step in your scientific endeavor, a hypothesis, is a strong, concise statement that forms the basis of your research. It is not the same as a thesis statement , which is a brief summary of your research paper .

The sole purpose of a hypothesis is to predict your paper's findings, data, and conclusion. It comes from a place of curiosity and intuition . When you write a hypothesis, you're essentially making an educated guess based on scientific prejudices and evidence, which is further proven or disproven through the scientific method.

The reason for undertaking research is to observe a specific phenomenon. A hypothesis, therefore, lays out what the said phenomenon is. And it does so through two variables, an independent and dependent variable.

The independent variable is the cause behind the observation, while the dependent variable is the effect of the cause. A good example of this is “mixing red and blue forms purple.” In this hypothesis, mixing red and blue is the independent variable as you're combining the two colors at your own will. The formation of purple is the dependent variable as, in this case, it is conditional to the independent variable.

Different Types of Hypotheses‌

Types-of-hypotheses

Types of hypotheses

Some would stand by the notion that there are only two types of hypotheses: a Null hypothesis and an Alternative hypothesis. While that may have some truth to it, it would be better to fully distinguish the most common forms as these terms come up so often, which might leave you out of context.

Apart from Null and Alternative, there are Complex, Simple, Directional, Non-Directional, Statistical, and Associative and casual hypotheses. They don't necessarily have to be exclusive, as one hypothesis can tick many boxes, but knowing the distinctions between them will make it easier for you to construct your own.

1. Null hypothesis

A null hypothesis proposes no relationship between two variables. Denoted by H 0 , it is a negative statement like “Attending physiotherapy sessions does not affect athletes' on-field performance.” Here, the author claims physiotherapy sessions have no effect on on-field performances. Even if there is, it's only a coincidence.

2. Alternative hypothesis

Considered to be the opposite of a null hypothesis, an alternative hypothesis is donated as H1 or Ha. It explicitly states that the dependent variable affects the independent variable. A good  alternative hypothesis example is “Attending physiotherapy sessions improves athletes' on-field performance.” or “Water evaporates at 100 °C. ” The alternative hypothesis further branches into directional and non-directional.

  • Directional hypothesis: A hypothesis that states the result would be either positive or negative is called directional hypothesis. It accompanies H1 with either the ‘<' or ‘>' sign.
  • Non-directional hypothesis: A non-directional hypothesis only claims an effect on the dependent variable. It does not clarify whether the result would be positive or negative. The sign for a non-directional hypothesis is ‘≠.'

3. Simple hypothesis

A simple hypothesis is a statement made to reflect the relation between exactly two variables. One independent and one dependent. Consider the example, “Smoking is a prominent cause of lung cancer." The dependent variable, lung cancer, is dependent on the independent variable, smoking.

4. Complex hypothesis

In contrast to a simple hypothesis, a complex hypothesis implies the relationship between multiple independent and dependent variables. For instance, “Individuals who eat more fruits tend to have higher immunity, lesser cholesterol, and high metabolism.” The independent variable is eating more fruits, while the dependent variables are higher immunity, lesser cholesterol, and high metabolism.

5. Associative and casual hypothesis

Associative and casual hypotheses don't exhibit how many variables there will be. They define the relationship between the variables. In an associative hypothesis, changing any one variable, dependent or independent, affects others. In a casual hypothesis, the independent variable directly affects the dependent.

6. Empirical hypothesis

Also referred to as the working hypothesis, an empirical hypothesis claims a theory's validation via experiments and observation. This way, the statement appears justifiable and different from a wild guess.

Say, the hypothesis is “Women who take iron tablets face a lesser risk of anemia than those who take vitamin B12.” This is an example of an empirical hypothesis where the researcher  the statement after assessing a group of women who take iron tablets and charting the findings.

7. Statistical hypothesis

The point of a statistical hypothesis is to test an already existing hypothesis by studying a population sample. Hypothesis like “44% of the Indian population belong in the age group of 22-27.” leverage evidence to prove or disprove a particular statement.

Characteristics of a Good Hypothesis

Writing a hypothesis is essential as it can make or break your research for you. That includes your chances of getting published in a journal. So when you're designing one, keep an eye out for these pointers:

  • A research hypothesis has to be simple yet clear to look justifiable enough.
  • It has to be testable — your research would be rendered pointless if too far-fetched into reality or limited by technology.
  • It has to be precise about the results —what you are trying to do and achieve through it should come out in your hypothesis.
  • A research hypothesis should be self-explanatory, leaving no doubt in the reader's mind.
  • If you are developing a relational hypothesis, you need to include the variables and establish an appropriate relationship among them.
  • A hypothesis must keep and reflect the scope for further investigations and experiments.

Separating a Hypothesis from a Prediction

Outside of academia, hypothesis and prediction are often used interchangeably. In research writing, this is not only confusing but also incorrect. And although a hypothesis and prediction are guesses at their core, there are many differences between them.

A hypothesis is an educated guess or even a testable prediction validated through research. It aims to analyze the gathered evidence and facts to define a relationship between variables and put forth a logical explanation behind the nature of events.

Predictions are assumptions or expected outcomes made without any backing evidence. They are more fictionally inclined regardless of where they originate from.

For this reason, a hypothesis holds much more weight than a prediction. It sticks to the scientific method rather than pure guesswork. "Planets revolve around the Sun." is an example of a hypothesis as it is previous knowledge and observed trends. Additionally, we can test it through the scientific method.

Whereas "COVID-19 will be eradicated by 2030." is a prediction. Even though it results from past trends, we can't prove or disprove it. So, the only way this gets validated is to wait and watch if COVID-19 cases end by 2030.

Finally, How to Write a Hypothesis

Quick-tips-on-how-to-write-a-hypothesis

Quick tips on writing a hypothesis

1.  Be clear about your research question

A hypothesis should instantly address the research question or the problem statement. To do so, you need to ask a question. Understand the constraints of your undertaken research topic and then formulate a simple and topic-centric problem. Only after that can you develop a hypothesis and further test for evidence.

2. Carry out a recce

Once you have your research's foundation laid out, it would be best to conduct preliminary research. Go through previous theories, academic papers, data, and experiments before you start curating your research hypothesis. It will give you an idea of your hypothesis's viability or originality.

Making use of references from relevant research papers helps draft a good research hypothesis. SciSpace Discover offers a repository of over 270 million research papers to browse through and gain a deeper understanding of related studies on a particular topic. Additionally, you can use SciSpace Copilot , your AI research assistant, for reading any lengthy research paper and getting a more summarized context of it. A hypothesis can be formed after evaluating many such summarized research papers. Copilot also offers explanations for theories and equations, explains paper in simplified version, allows you to highlight any text in the paper or clip math equations and tables and provides a deeper, clear understanding of what is being said. This can improve the hypothesis by helping you identify potential research gaps.

3. Create a 3-dimensional hypothesis

Variables are an essential part of any reasonable hypothesis. So, identify your independent and dependent variable(s) and form a correlation between them. The ideal way to do this is to write the hypothetical assumption in the ‘if-then' form. If you use this form, make sure that you state the predefined relationship between the variables.

In another way, you can choose to present your hypothesis as a comparison between two variables. Here, you must specify the difference you expect to observe in the results.

4. Write the first draft

Now that everything is in place, it's time to write your hypothesis. For starters, create the first draft. In this version, write what you expect to find from your research.

Clearly separate your independent and dependent variables and the link between them. Don't fixate on syntax at this stage. The goal is to ensure your hypothesis addresses the issue.

5. Proof your hypothesis

After preparing the first draft of your hypothesis, you need to inspect it thoroughly. It should tick all the boxes, like being concise, straightforward, relevant, and accurate. Your final hypothesis has to be well-structured as well.

Research projects are an exciting and crucial part of being a scholar. And once you have your research question, you need a great hypothesis to begin conducting research. Thus, knowing how to write a hypothesis is very important.

Now that you have a firmer grasp on what a good hypothesis constitutes, the different kinds there are, and what process to follow, you will find it much easier to write your hypothesis, which ultimately helps your research.

Now it's easier than ever to streamline your research workflow with SciSpace Discover . Its integrated, comprehensive end-to-end platform for research allows scholars to easily discover, write and publish their research and fosters collaboration.

It includes everything you need, including a repository of over 270 million research papers across disciplines, SEO-optimized summaries and public profiles to show your expertise and experience.

If you found these tips on writing a research hypothesis useful, head over to our blog on Statistical Hypothesis Testing to learn about the top researchers, papers, and institutions in this domain.

Frequently Asked Questions (FAQs)

1. what is the definition of hypothesis.

According to the Oxford dictionary, a hypothesis is defined as “An idea or explanation of something that is based on a few known facts, but that has not yet been proved to be true or correct”.

2. What is an example of hypothesis?

The hypothesis is a statement that proposes a relationship between two or more variables. An example: "If we increase the number of new users who join our platform by 25%, then we will see an increase in revenue."

3. What is an example of null hypothesis?

A null hypothesis is a statement that there is no relationship between two variables. The null hypothesis is written as H0. The null hypothesis states that there is no effect. For example, if you're studying whether or not a particular type of exercise increases strength, your null hypothesis will be "there is no difference in strength between people who exercise and people who don't."

4. What are the types of research?

• Fundamental research

• Applied research

• Qualitative research

• Quantitative research

• Mixed research

• Exploratory research

• Longitudinal research

• Cross-sectional research

• Field research

• Laboratory research

• Fixed research

• Flexible research

• Action research

• Policy research

• Classification research

• Comparative research

• Causal research

• Inductive research

• Deductive research

5. How to write a hypothesis?

• Your hypothesis should be able to predict the relationship and outcome.

• Avoid wordiness by keeping it simple and brief.

• Your hypothesis should contain observable and testable outcomes.

• Your hypothesis should be relevant to the research question.

6. What are the 2 types of hypothesis?

• Null hypotheses are used to test the claim that "there is no difference between two groups of data".

• Alternative hypotheses test the claim that "there is a difference between two data groups".

7. Difference between research question and research hypothesis?

A research question is a broad, open-ended question you will try to answer through your research. A hypothesis is a statement based on prior research or theory that you expect to be true due to your study. Example - Research question: What are the factors that influence the adoption of the new technology? Research hypothesis: There is a positive relationship between age, education and income level with the adoption of the new technology.

8. What is plural for hypothesis?

The plural of hypothesis is hypotheses. Here's an example of how it would be used in a statement, "Numerous well-considered hypotheses are presented in this part, and they are supported by tables and figures that are well-illustrated."

9. What is the red queen hypothesis?

The red queen hypothesis in evolutionary biology states that species must constantly evolve to avoid extinction because if they don't, they will be outcompeted by other species that are evolving. Leigh Van Valen first proposed it in 1973; since then, it has been tested and substantiated many times.

10. Who is known as the father of null hypothesis?

The father of the null hypothesis is Sir Ronald Fisher. He published a paper in 1925 that introduced the concept of null hypothesis testing, and he was also the first to use the term itself.

11. When to reject null hypothesis?

You need to find a significant difference between your two populations to reject the null hypothesis. You can determine that by running statistical tests such as an independent sample t-test or a dependent sample t-test. You should reject the null hypothesis if the p-value is less than 0.05.

how to identify the hypothesis in a research study

You might also like

Consensus GPT vs. SciSpace GPT: Choose the Best GPT for Research

Consensus GPT vs. SciSpace GPT: Choose the Best GPT for Research

Sumalatha G

Literature Review and Theoretical Framework: Understanding the Differences

Nikhil Seethi

Types of Essays in Academic Writing - Quick Guide (2024)

Educational resources and simple solutions for your research journey

Research hypothesis: What it is, how to write it, types, and examples

What is a Research Hypothesis: How to Write it, Types, and Examples

how to identify the hypothesis in a research study

Any research begins with a research question and a research hypothesis . A research question alone may not suffice to design the experiment(s) needed to answer it. A hypothesis is central to the scientific method. But what is a hypothesis ? A hypothesis is a testable statement that proposes a possible explanation to a phenomenon, and it may include a prediction. Next, you may ask what is a research hypothesis ? Simply put, a research hypothesis is a prediction or educated guess about the relationship between the variables that you want to investigate.  

It is important to be thorough when developing your research hypothesis. Shortcomings in the framing of a hypothesis can affect the study design and the results. A better understanding of the research hypothesis definition and characteristics of a good hypothesis will make it easier for you to develop your own hypothesis for your research. Let’s dive in to know more about the types of research hypothesis , how to write a research hypothesis , and some research hypothesis examples .  

Table of Contents

What is a hypothesis ?  

A hypothesis is based on the existing body of knowledge in a study area. Framed before the data are collected, a hypothesis states the tentative relationship between independent and dependent variables, along with a prediction of the outcome.  

What is a research hypothesis ?  

Young researchers starting out their journey are usually brimming with questions like “ What is a hypothesis ?” “ What is a research hypothesis ?” “How can I write a good research hypothesis ?”   

A research hypothesis is a statement that proposes a possible explanation for an observable phenomenon or pattern. It guides the direction of a study and predicts the outcome of the investigation. A research hypothesis is testable, i.e., it can be supported or disproven through experimentation or observation.     

how to identify the hypothesis in a research study

Characteristics of a good hypothesis  

Here are the characteristics of a good hypothesis :  

  • Clearly formulated and free of language errors and ambiguity  
  • Concise and not unnecessarily verbose  
  • Has clearly defined variables  
  • Testable and stated in a way that allows for it to be disproven  
  • Can be tested using a research design that is feasible, ethical, and practical   
  • Specific and relevant to the research problem  
  • Rooted in a thorough literature search  
  • Can generate new knowledge or understanding.  

How to create an effective research hypothesis  

A study begins with the formulation of a research question. A researcher then performs background research. This background information forms the basis for building a good research hypothesis . The researcher then performs experiments, collects, and analyzes the data, interprets the findings, and ultimately, determines if the findings support or negate the original hypothesis.  

Let’s look at each step for creating an effective, testable, and good research hypothesis :  

  • Identify a research problem or question: Start by identifying a specific research problem.   
  • Review the literature: Conduct an in-depth review of the existing literature related to the research problem to grasp the current knowledge and gaps in the field.   
  • Formulate a clear and testable hypothesis : Based on the research question, use existing knowledge to form a clear and testable hypothesis . The hypothesis should state a predicted relationship between two or more variables that can be measured and manipulated. Improve the original draft till it is clear and meaningful.  
  • State the null hypothesis: The null hypothesis is a statement that there is no relationship between the variables you are studying.   
  • Define the population and sample: Clearly define the population you are studying and the sample you will be using for your research.  
  • Select appropriate methods for testing the hypothesis: Select appropriate research methods, such as experiments, surveys, or observational studies, which will allow you to test your research hypothesis .  

Remember that creating a research hypothesis is an iterative process, i.e., you might have to revise it based on the data you collect. You may need to test and reject several hypotheses before answering the research problem.  

How to write a research hypothesis  

When you start writing a research hypothesis , you use an “if–then” statement format, which states the predicted relationship between two or more variables. Clearly identify the independent variables (the variables being changed) and the dependent variables (the variables being measured), as well as the population you are studying. Review and revise your hypothesis as needed.  

An example of a research hypothesis in this format is as follows:  

“ If [athletes] follow [cold water showers daily], then their [endurance] increases.”  

Population: athletes  

Independent variable: daily cold water showers  

Dependent variable: endurance  

You may have understood the characteristics of a good hypothesis . But note that a research hypothesis is not always confirmed; a researcher should be prepared to accept or reject the hypothesis based on the study findings.  

how to identify the hypothesis in a research study

Research hypothesis checklist  

Following from above, here is a 10-point checklist for a good research hypothesis :  

  • Testable: A research hypothesis should be able to be tested via experimentation or observation.  
  • Specific: A research hypothesis should clearly state the relationship between the variables being studied.  
  • Based on prior research: A research hypothesis should be based on existing knowledge and previous research in the field.  
  • Falsifiable: A research hypothesis should be able to be disproven through testing.  
  • Clear and concise: A research hypothesis should be stated in a clear and concise manner.  
  • Logical: A research hypothesis should be logical and consistent with current understanding of the subject.  
  • Relevant: A research hypothesis should be relevant to the research question and objectives.  
  • Feasible: A research hypothesis should be feasible to test within the scope of the study.  
  • Reflects the population: A research hypothesis should consider the population or sample being studied.  
  • Uncomplicated: A good research hypothesis is written in a way that is easy for the target audience to understand.  

By following this research hypothesis checklist , you will be able to create a research hypothesis that is strong, well-constructed, and more likely to yield meaningful results.  

Research hypothesis: What it is, how to write it, types, and examples

Types of research hypothesis  

Different types of research hypothesis are used in scientific research:  

1. Null hypothesis:

A null hypothesis states that there is no change in the dependent variable due to changes to the independent variable. This means that the results are due to chance and are not significant. A null hypothesis is denoted as H0 and is stated as the opposite of what the alternative hypothesis states.   

Example: “ The newly identified virus is not zoonotic .”  

2. Alternative hypothesis:

This states that there is a significant difference or relationship between the variables being studied. It is denoted as H1 or Ha and is usually accepted or rejected in favor of the null hypothesis.  

Example: “ The newly identified virus is zoonotic .”  

3. Directional hypothesis :

This specifies the direction of the relationship or difference between variables; therefore, it tends to use terms like increase, decrease, positive, negative, more, or less.   

Example: “ The inclusion of intervention X decreases infant mortality compared to the original treatment .”   

4. Non-directional hypothesis:

While it does not predict the exact direction or nature of the relationship between the two variables, a non-directional hypothesis states the existence of a relationship or difference between variables but not the direction, nature, or magnitude of the relationship. A non-directional hypothesis may be used when there is no underlying theory or when findings contradict previous research.  

Example, “ Cats and dogs differ in the amount of affection they express .”  

5. Simple hypothesis :

A simple hypothesis only predicts the relationship between one independent and another independent variable.  

Example: “ Applying sunscreen every day slows skin aging .”  

6 . Complex hypothesis :

A complex hypothesis states the relationship or difference between two or more independent and dependent variables.   

Example: “ Applying sunscreen every day slows skin aging, reduces sun burn, and reduces the chances of skin cancer .” (Here, the three dependent variables are slowing skin aging, reducing sun burn, and reducing the chances of skin cancer.)  

7. Associative hypothesis:  

An associative hypothesis states that a change in one variable results in the change of the other variable. The associative hypothesis defines interdependency between variables.  

Example: “ There is a positive association between physical activity levels and overall health .”  

8 . Causal hypothesis:

A causal hypothesis proposes a cause-and-effect interaction between variables.  

Example: “ Long-term alcohol use causes liver damage .”  

Note that some of the types of research hypothesis mentioned above might overlap. The types of hypothesis chosen will depend on the research question and the objective of the study.  

how to identify the hypothesis in a research study

Research hypothesis examples  

Here are some good research hypothesis examples :  

“The use of a specific type of therapy will lead to a reduction in symptoms of depression in individuals with a history of major depressive disorder.”  

“Providing educational interventions on healthy eating habits will result in weight loss in overweight individuals.”  

“Plants that are exposed to certain types of music will grow taller than those that are not exposed to music.”  

“The use of the plant growth regulator X will lead to an increase in the number of flowers produced by plants.”  

Characteristics that make a research hypothesis weak are unclear variables, unoriginality, being too general or too vague, and being untestable. A weak hypothesis leads to weak research and improper methods.   

Some bad research hypothesis examples (and the reasons why they are “bad”) are as follows:  

“This study will show that treatment X is better than any other treatment . ” (This statement is not testable, too broad, and does not consider other treatments that may be effective.)  

“This study will prove that this type of therapy is effective for all mental disorders . ” (This statement is too broad and not testable as mental disorders are complex and different disorders may respond differently to different types of therapy.)  

“Plants can communicate with each other through telepathy . ” (This statement is not testable and lacks a scientific basis.)  

Importance of testable hypothesis  

If a research hypothesis is not testable, the results will not prove or disprove anything meaningful. The conclusions will be vague at best. A testable hypothesis helps a researcher focus on the study outcome and understand the implication of the question and the different variables involved. A testable hypothesis helps a researcher make precise predictions based on prior research.  

To be considered testable, there must be a way to prove that the hypothesis is true or false; further, the results of the hypothesis must be reproducible.  

Research hypothesis: What it is, how to write it, types, and examples

Frequently Asked Questions (FAQs) on research hypothesis  

1. What is the difference between research question and research hypothesis ?  

A research question defines the problem and helps outline the study objective(s). It is an open-ended statement that is exploratory or probing in nature. Therefore, it does not make predictions or assumptions. It helps a researcher identify what information to collect. A research hypothesis , however, is a specific, testable prediction about the relationship between variables. Accordingly, it guides the study design and data analysis approach.

2. When to reject null hypothesis ?

A null hypothesis should be rejected when the evidence from a statistical test shows that it is unlikely to be true. This happens when the test statistic (e.g., p -value) is less than the defined significance level (e.g., 0.05). Rejecting the null hypothesis does not necessarily mean that the alternative hypothesis is true; it simply means that the evidence found is not compatible with the null hypothesis.  

3. How can I be sure my hypothesis is testable?  

A testable hypothesis should be specific and measurable, and it should state a clear relationship between variables that can be tested with data. To ensure that your hypothesis is testable, consider the following:  

  • Clearly define the key variables in your hypothesis. You should be able to measure and manipulate these variables in a way that allows you to test the hypothesis.  
  • The hypothesis should predict a specific outcome or relationship between variables that can be measured or quantified.   
  • You should be able to collect the necessary data within the constraints of your study.  
  • It should be possible for other researchers to replicate your study, using the same methods and variables.   
  • Your hypothesis should be testable by using appropriate statistical analysis techniques, so you can draw conclusions, and make inferences about the population from the sample data.  
  • The hypothesis should be able to be disproven or rejected through the collection of data.  

4. How do I revise my research hypothesis if my data does not support it?  

If your data does not support your research hypothesis , you will need to revise it or develop a new one. You should examine your data carefully and identify any patterns or anomalies, re-examine your research question, and/or revisit your theory to look for any alternative explanations for your results. Based on your review of the data, literature, and theories, modify your research hypothesis to better align it with the results you obtained. Use your revised hypothesis to guide your research design and data collection. It is important to remain objective throughout the process.  

5. I am performing exploratory research. Do I need to formulate a research hypothesis?  

As opposed to “confirmatory” research, where a researcher has some idea about the relationship between the variables under investigation, exploratory research (or hypothesis-generating research) looks into a completely new topic about which limited information is available. Therefore, the researcher will not have any prior hypotheses. In such cases, a researcher will need to develop a post-hoc hypothesis. A post-hoc research hypothesis is generated after these results are known.  

6. How is a research hypothesis different from a research question?

A research question is an inquiry about a specific topic or phenomenon, typically expressed as a question. It seeks to explore and understand a particular aspect of the research subject. In contrast, a research hypothesis is a specific statement or prediction that suggests an expected relationship between variables. It is formulated based on existing knowledge or theories and guides the research design and data analysis.

7. Can a research hypothesis change during the research process?

Yes, research hypotheses can change during the research process. As researchers collect and analyze data, new insights and information may emerge that require modification or refinement of the initial hypotheses. This can be due to unexpected findings, limitations in the original hypotheses, or the need to explore additional dimensions of the research topic. Flexibility is crucial in research, allowing for adaptation and adjustment of hypotheses to align with the evolving understanding of the subject matter.

8. How many hypotheses should be included in a research study?

The number of research hypotheses in a research study varies depending on the nature and scope of the research. It is not necessary to have multiple hypotheses in every study. Some studies may have only one primary hypothesis, while others may have several related hypotheses. The number of hypotheses should be determined based on the research objectives, research questions, and the complexity of the research topic. It is important to ensure that the hypotheses are focused, testable, and directly related to the research aims.

9. Can research hypotheses be used in qualitative research?

Yes, research hypotheses can be used in qualitative research, although they are more commonly associated with quantitative research. In qualitative research, hypotheses may be formulated as tentative or exploratory statements that guide the investigation. Instead of testing hypotheses through statistical analysis, qualitative researchers may use the hypotheses to guide data collection and analysis, seeking to uncover patterns, themes, or relationships within the qualitative data. The emphasis in qualitative research is often on generating insights and understanding rather than confirming or rejecting specific research hypotheses through statistical testing.

Editage All Access is a subscription-based platform that unifies the best AI tools and services designed to speed up, simplify, and streamline every step of a researcher’s journey. The Editage All Access Pack is a one-of-a-kind subscription that unlocks full access to an AI writing assistant, literature recommender, journal finder, scientific illustration tool, and exclusive discounts on professional publication services from Editage.  

Based on 22+ years of experience in academia, Editage All Access empowers researchers to put their best research forward and move closer to success. Explore our top AI Tools pack, AI Tools + Publication Services pack, or Build Your Own Plan. Find everything a researcher needs to succeed, all in one place –  Get All Access now starting at just $14 a month !    

Related Posts

Peer Review Basics: Who is Reviewer 2?

How to Write a Dissertation: A Beginner’s Guide 

Back to school 2024 sale

Back to School – Lock-in All Access Pack for a Year at the Best Price

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Methodology
  • How to Write a Strong Hypothesis | Guide & Examples

How to Write a Strong Hypothesis | Guide & Examples

Published on 6 May 2022 by Shona McCombes .

A hypothesis is a statement that can be tested by scientific research. If you want to test a relationship between two or more variables, you need to write hypotheses before you start your experiment or data collection.

Table of contents

What is a hypothesis, developing a hypothesis (with example), hypothesis examples, frequently asked questions about writing hypotheses.

A hypothesis states your predictions about what your research will find. It is a tentative answer to your research question that has not yet been tested. For some research projects, you might have to write several hypotheses that address different aspects of your research question.

A hypothesis is not just a guess – it should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations, and statistical analysis of data).

Variables in hypotheses

Hypotheses propose a relationship between two or more variables . An independent variable is something the researcher changes or controls. A dependent variable is something the researcher observes and measures.

In this example, the independent variable is exposure to the sun – the assumed cause . The dependent variable is the level of happiness – the assumed effect .

Prevent plagiarism, run a free check.

Step 1: ask a question.

Writing a hypothesis begins with a research question that you want to answer. The question should be focused, specific, and researchable within the constraints of your project.

Step 2: Do some preliminary research

Your initial answer to the question should be based on what is already known about the topic. Look for theories and previous studies to help you form educated assumptions about what your research will find.

At this stage, you might construct a conceptual framework to identify which variables you will study and what you think the relationships are between them. Sometimes, you’ll have to operationalise more complex constructs.

Step 3: Formulate your hypothesis

Now you should have some idea of what you expect to find. Write your initial answer to the question in a clear, concise sentence.

Step 4: Refine your hypothesis

You need to make sure your hypothesis is specific and testable. There are various ways of phrasing a hypothesis, but all the terms you use should have clear definitions, and the hypothesis should contain:

  • The relevant variables
  • The specific group being studied
  • The predicted outcome of the experiment or analysis

Step 5: Phrase your hypothesis in three ways

To identify the variables, you can write a simple prediction in if … then form. The first part of the sentence states the independent variable and the second part states the dependent variable.

In academic research, hypotheses are more commonly phrased in terms of correlations or effects, where you directly state the predicted relationship between variables.

If you are comparing two groups, the hypothesis can state what difference you expect to find between them.

Step 6. Write a null hypothesis

If your research involves statistical hypothesis testing , you will also have to write a null hypothesis. The null hypothesis is the default position that there is no association between the variables. The null hypothesis is written as H 0 , while the alternative hypothesis is H 1 or H a .

Research question Hypothesis Null hypothesis
What are the health benefits of eating an apple a day? Increasing apple consumption in over-60s will result in decreasing frequency of doctor’s visits. Increasing apple consumption in over-60s will have no effect on frequency of doctor’s visits.
Which airlines have the most delays? Low-cost airlines are more likely to have delays than premium airlines. Low-cost and premium airlines are equally likely to have delays.
Can flexible work arrangements improve job satisfaction? Employees who have flexible working hours will report greater job satisfaction than employees who work fixed hours. There is no relationship between working hour flexibility and job satisfaction.
How effective is secondary school sex education at reducing teen pregnancies? Teenagers who received sex education lessons throughout secondary school will have lower rates of unplanned pregnancy than teenagers who did not receive any sex education. Secondary school sex education has no effect on teen pregnancy rates.
What effect does daily use of social media have on the attention span of under-16s? There is a negative correlation between time spent on social media and attention span in under-16s. There is no relationship between social media use and attention span in under-16s.

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics. It is used by scientists to test specific predictions, called hypotheses , by calculating how likely it is that a pattern or relationship between variables could have arisen by chance.

A hypothesis is not just a guess. It should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations, and statistical analysis of data).

A research hypothesis is your proposed answer to your research question. The research hypothesis usually includes an explanation (‘ x affects y because …’).

A statistical hypothesis, on the other hand, is a mathematical statement about a population parameter. Statistical hypotheses always come in pairs: the null and alternative hypotheses. In a well-designed study , the statistical hypotheses correspond logically to the research hypothesis.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

McCombes, S. (2022, May 06). How to Write a Strong Hypothesis | Guide & Examples. Scribbr. Retrieved 9 September 2024, from https://www.scribbr.co.uk/research-methods/hypothesis-writing/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, operationalisation | a guide with examples, pros & cons, what is a conceptual framework | tips & examples, a quick guide to experimental design | 5 steps & examples.

how to identify the hypothesis in a research study

How to Write a Hypothesis: A Step-by-Step Guide

how to identify the hypothesis in a research study

Introduction

An overview of the research hypothesis, different types of hypotheses, variables in a hypothesis, how to formulate an effective research hypothesis, designing a study around your hypothesis.

The scientific method can derive and test predictions as hypotheses. Empirical research can then provide support (or lack thereof) for the hypotheses. Even failure to find support for a hypothesis still represents a valuable contribution to scientific knowledge. Let's look more closely at the idea of the hypothesis and the role it plays in research.

how to identify the hypothesis in a research study

As much as the term exists in everyday language, there is a detailed development that informs the word "hypothesis" when applied to research. A good research hypothesis is informed by prior research and guides research design and data analysis , so it is important to understand how a hypothesis is defined and understood by researchers.

What is the simple definition of a hypothesis?

A hypothesis is a testable prediction about an outcome between two or more variables . It functions as a navigational tool in the research process, directing what you aim to predict and how.

What is the hypothesis for in research?

In research, a hypothesis serves as the cornerstone for your empirical study. It not only lays out what you aim to investigate but also provides a structured approach for your data collection and analysis.

Essentially, it bridges the gap between the theoretical and the empirical, guiding your investigation throughout its course.

how to identify the hypothesis in a research study

What is an example of a hypothesis?

If you are studying the relationship between physical exercise and mental health, a suitable hypothesis could be: "Regular physical exercise leads to improved mental well-being among adults."

This statement constitutes a specific and testable hypothesis that directly relates to the variables you are investigating.

What makes a good hypothesis?

A good hypothesis possesses several key characteristics. Firstly, it must be testable, allowing you to analyze data through empirical means, such as observation or experimentation, to assess if there is significant support for the hypothesis. Secondly, a hypothesis should be specific and unambiguous, giving a clear understanding of the expected relationship between variables. Lastly, it should be grounded in existing research or theoretical frameworks , ensuring its relevance and applicability.

Understanding the types of hypotheses can greatly enhance how you construct and work with hypotheses. While all hypotheses serve the essential function of guiding your study, there are varying purposes among the types of hypotheses. In addition, all hypotheses stand in contrast to the null hypothesis, or the assumption that there is no significant relationship between the variables .

Here, we explore various kinds of hypotheses to provide you with the tools needed to craft effective hypotheses for your specific research needs. Bear in mind that many of these hypothesis types may overlap with one another, and the specific type that is typically used will likely depend on the area of research and methodology you are following.

Null hypothesis

The null hypothesis is a statement that there is no effect or relationship between the variables being studied. In statistical terms, it serves as the default assumption that any observed differences are due to random chance.

For example, if you're studying the effect of a drug on blood pressure, the null hypothesis might state that the drug has no effect.

Alternative hypothesis

Contrary to the null hypothesis, the alternative hypothesis suggests that there is a significant relationship or effect between variables.

Using the drug example, the alternative hypothesis would posit that the drug does indeed affect blood pressure. This is what researchers aim to prove.

how to identify the hypothesis in a research study

Simple hypothesis

A simple hypothesis makes a prediction about the relationship between two variables, and only two variables.

For example, "Increased study time results in better exam scores." Here, "study time" and "exam scores" are the only variables involved.

Complex hypothesis

A complex hypothesis, as the name suggests, involves more than two variables. For instance, "Increased study time and access to resources result in better exam scores." Here, "study time," "access to resources," and "exam scores" are all variables.

This hypothesis refers to multiple potential mediating variables. Other hypotheses could also include predictions about variables that moderate the relationship between the independent variable and dependent variable .

Directional hypothesis

A directional hypothesis specifies the direction of the expected relationship between variables. For example, "Eating more fruits and vegetables leads to a decrease in heart disease."

Here, the direction of heart disease is explicitly predicted to decrease, due to effects from eating more fruits and vegetables. All hypotheses typically specify the expected direction of the relationship between the independent and dependent variable, such that researchers can test if this prediction holds in their data analysis .

how to identify the hypothesis in a research study

Statistical hypothesis

A statistical hypothesis is one that is testable through statistical methods, providing a numerical value that can be analyzed. This is commonly seen in quantitative research .

For example, "There is a statistically significant difference in test scores between students who study for one hour and those who study for two."

Empirical hypothesis

An empirical hypothesis is derived from observations and is tested through empirical methods, often through experimentation or survey data . Empirical hypotheses may also be assessed with statistical analyses.

For example, "Regular exercise is correlated with a lower incidence of depression," could be tested through surveys that measure exercise frequency and depression levels.

Causal hypothesis

A causal hypothesis proposes that one variable causes a change in another. This type of hypothesis is often tested through controlled experiments.

For example, "Smoking causes lung cancer," assumes a direct causal relationship.

Associative hypothesis

Unlike causal hypotheses, associative hypotheses suggest a relationship between variables but do not imply causation.

For instance, "People who smoke are more likely to get lung cancer," notes an association but doesn't claim that smoking causes lung cancer directly.

Relational hypothesis

A relational hypothesis explores the relationship between two or more variables but doesn't specify the nature of the relationship.

For example, "There is a relationship between diet and heart health," leaves the nature of the relationship (causal, associative, etc.) open to interpretation.

Logical hypothesis

A logical hypothesis is based on sound reasoning and logical principles. It's often used in theoretical research to explore abstract concepts, rather than being based on empirical data.

For example, "If all men are mortal and Socrates is a man, then Socrates is mortal," employs logical reasoning to make its point.

how to identify the hypothesis in a research study

Let ATLAS.ti take you from research question to key insights

Get started with a free trial and see how ATLAS.ti can make the most of your data.

In any research hypothesis, variables play a critical role. These are the elements or factors that the researcher manipulates, controls, or measures. Understanding variables is essential for crafting a clear, testable hypothesis and for the stages of research that follow, such as data collection and analysis.

In the realm of hypotheses, there are generally two types of variables to consider: independent and dependent. Independent variables are what you, as the researcher, manipulate or change in your study. It's considered the cause in the relationship you're investigating. For instance, in a study examining the impact of sleep duration on academic performance, the independent variable would be the amount of sleep participants get.

Conversely, the dependent variable is the outcome you measure to gauge the effect of your manipulation. It's the effect in the cause-and-effect relationship. The dependent variable thus refers to the main outcome of interest in your study. In the same sleep study example, the academic performance, perhaps measured by exam scores or GPA, would be the dependent variable.

Beyond these two primary types, you might also encounter control variables. These are variables that could potentially influence the outcome and are therefore kept constant to isolate the relationship between the independent and dependent variables . For example, in the sleep and academic performance study, control variables could include age, diet, or even the subject of study.

By clearly identifying and understanding the roles of these variables in your hypothesis, you set the stage for a methodologically sound research project. It helps you develop focused research questions, design appropriate experiments or observations, and carry out meaningful data analysis . It's a step that lays the groundwork for the success of your entire study.

how to identify the hypothesis in a research study

Crafting a strong, testable hypothesis is crucial for the success of any research project. It sets the stage for everything from your study design to data collection and analysis . Below are some key considerations to keep in mind when formulating your hypothesis:

  • Be specific : A vague hypothesis can lead to ambiguous results and interpretations . Clearly define your variables and the expected relationship between them.
  • Ensure testability : A good hypothesis should be testable through empirical means, whether by observation , experimentation, or other forms of data analysis.
  • Ground in literature : Before creating your hypothesis, consult existing research and theories. This not only helps you identify gaps in current knowledge but also gives you valuable context and credibility for crafting your hypothesis.
  • Use simple language : While your hypothesis should be conceptually sound, it doesn't have to be complicated. Aim for clarity and simplicity in your wording.
  • State direction, if applicable : If your hypothesis involves a directional outcome (e.g., "increase" or "decrease"), make sure to specify this. You also need to think about how you will measure whether or not the outcome moved in the direction you predicted.
  • Keep it focused : One of the common pitfalls in hypothesis formulation is trying to answer too many questions at once. Keep your hypothesis focused on a specific issue or relationship.
  • Account for control variables : Identify any variables that could potentially impact the outcome and consider how you will control for them in your study.
  • Be ethical : Make sure your hypothesis and the methods for testing it comply with ethical standards , particularly if your research involves human or animal subjects.

how to identify the hypothesis in a research study

Designing your study involves multiple key phases that help ensure the rigor and validity of your research. Here we discuss these crucial components in more detail.

Literature review

Starting with a comprehensive literature review is essential. This step allows you to understand the existing body of knowledge related to your hypothesis and helps you identify gaps that your research could fill. Your research should aim to contribute some novel understanding to existing literature, and your hypotheses can reflect this. A literature review also provides valuable insights into how similar research projects were executed, thereby helping you fine-tune your own approach.

how to identify the hypothesis in a research study

Research methods

Choosing the right research methods is critical. Whether it's a survey, an experiment, or observational study, the methodology should be the most appropriate for testing your hypothesis. Your choice of methods will also depend on whether your research is quantitative, qualitative, or mixed-methods. Make sure the chosen methods align well with the variables you are studying and the type of data you need.

Preliminary research

Before diving into a full-scale study, it’s often beneficial to conduct preliminary research or a pilot study . This allows you to test your research methods on a smaller scale, refine your tools, and identify any potential issues. For instance, a pilot survey can help you determine if your questions are clear and if the survey effectively captures the data you need. This step can save you both time and resources in the long run.

Data analysis

Finally, planning your data analysis in advance is crucial for a successful study. Decide which statistical or analytical tools are most suited for your data type and research questions . For quantitative research, you might opt for t-tests, ANOVA, or regression analyses. For qualitative research , thematic analysis or grounded theory may be more appropriate. This phase is integral for interpreting your results and drawing meaningful conclusions in relation to your research question.

how to identify the hypothesis in a research study

Turn data into evidence for insights with ATLAS.ti

Powerful analysis for your research paper or presentation is at your fingertips starting with a free trial.

how to identify the hypothesis in a research study

  • Thesis Action Plan New
  • Academic Project Planner

Literature Navigator

Thesis dialogue blueprint, writing wizard's template, research proposal compass.

  • Why students love us
  • Rebels Blog
  • Why we are different
  • All Products
  • Coming Soon

What Is the Correct Way to Write a Hypothesis? Best Practices Explained

Writing a hypothesis is a key part of the scientific method. A hypothesis is a statement that can be tested. It predicts what will happen in an experiment. This article will explain the correct way to write a hypothesis. We will cover what a hypothesis is, its parts, types, and why it is important. We will also guide you on how to create one, what makes it good, common mistakes, how to test it, and examples of well-written hypotheses. Lastly, we will discuss how to revise and refine your hypothesis.

Key Takeaways

  • A hypothesis is a testable statement that predicts the outcome of an experiment.
  • Understanding the parts of a hypothesis helps in writing a clear and focused statement.
  • There are different types of hypotheses, each serving a unique purpose.
  • A well-written hypothesis is crucial for guiding scientific research.
  • Testing and refining your hypothesis is an important step in the research process.

1. Understanding a Hypothesis

A hypothesis is a statement that you can test through study and experimentation. It is a prediction of what you think will happen in your research. A good hypothesis is clear and testable . It should be based on existing knowledge and should be able to be proven right or wrong.

When you write a hypothesis, you are making an educated guess about the relationship between two or more variables. This guess is based on your research question and what you already know about the topic. A hypothesis helps guide your study and gives you a focus for your experiments.

In research, a hypothesis is important because it provides a direction for your study. It helps you decide what data to collect and how to analyze it. Without a hypothesis, your research might lack focus and purpose.

To sum up, a hypothesis is a crucial part of any research paper. It helps you make predictions, test your ideas, and draw conclusions based on your findings.

2. Components of a Hypothesis

When writing a hypothesis, you need to include several key parts to make it clear and testable. A well-structured hypothesis typically has the following components:

1. The Independent Variable

This is the variable that you change or control in an experiment. It is what you think will affect the dependent variable.

2. The Dependent Variable

This is the variable that you measure in the experiment. It is what you think will be affected by the independent variable.

3. The Relationship Between Variables

Your hypothesis should clearly state the expected relationship between the independent and dependent variables. For example, "If the amount of sunlight is increased, then the growth of the plant will increase."

4. The Population

Specify the group or population you are studying. This helps to define the scope of your hypothesis.

5. The Outcome

Describe the expected outcome of the experiment. This is what you predict will happen as a result of the changes you make to the independent variable.

By including these main components that are common to all hypothesis tests , you ensure that your hypothesis is clear, focused, and testable.

3. Types of Hypotheses

When writing a hypothesis, it's important to know the different types you might use. Each type serves a unique purpose in research and helps in targeted research .

Null Hypothesis

A null hypothesis states that there is no relationship between two variables. It is often used as a starting point for scientific experiments. For example, you might say, "There is no effect of sunlight on plant growth."

Alternative Hypothesis

An alternative hypothesis suggests that there is a relationship between two variables. This is what you aim to prove through your research. For instance, "Sunlight increases plant growth."

Directional Hypothesis

A directional hypothesis specifies the direction of the relationship between variables. It tells you whether the relationship is positive or negative. An example would be, "Increased sunlight leads to faster plant growth."

Non-Directional Hypothesis

A non-directional hypothesis states that there is a relationship between variables, but it does not specify the direction. For example, "There is a relationship between sunlight and plant growth."

Complex Hypothesis

A complex hypothesis involves more than two variables. It looks at how multiple factors interact with each other. For example, "Sunlight and water together affect plant growth."

Statistical Hypothesis

A statistical hypothesis is used when you are dealing with data that can be measured. It often involves statistical tests to determine if your hypothesis is correct. For example, "The average height of plants exposed to sunlight is greater than those not exposed."

Understanding these types of hypotheses helps you in facing the unexpected: dealing with data that contradicts your hypothesis . When faced with contradictory data, consider limitations, revise hypothesis, adjust methodology, and interpret findings.

4. Importance of a Hypothesis

A hypothesis is a vital part of any research project. It serves as a foundation for your study, guiding your investigation and helping you stay focused. Crafting a thesis statement is crucial in the writing process. It should be specific, arguable, and insightful, guiding the research and shaping the paper's structure effectively.

A well-written hypothesis can:

  • Provide direction for your research.
  • Help you stay on track.
  • Make it easier to analyze your results.
  • Allow others to understand your study's purpose.

In essence, a hypothesis is like a roadmap. It tells you where you're going and how to get there. Without it, your research might lack focus and clarity. So, always take the time to write a clear and concise hypothesis before you start your study.

5. How to Formulate a Hypothesis

Formulating a hypothesis is a crucial step in the research process . It begins with identifying a clear research question or problem . A well-defined problem sets the stage for a strong hypothesis. Next, conduct a thorough review of existing literature to understand what has already been studied and where gaps exist. This helps in refining your research question and forming a hypothesis that is both original and relevant.

Steps to Formulate a Hypothesis

  • Identify the Research Problem: Start by clearly stating the problem you aim to address. This will guide your entire research process.
  • Conduct a Literature Review: Look into existing studies to see what has been done and what questions remain unanswered.
  • Formulate the Hypothesis: Based on your research problem and literature review, draft a statement that predicts an outcome. This statement should be testable and measurable.
  • Define Variables: Clearly identify the independent and dependent variables in your hypothesis. This will help in designing your experiment or study.
  • Refine the Hypothesis: Make sure your hypothesis is specific and concise. Avoid vague language and ensure it can be tested through empirical methods.

Example of a Hypothesis

For instance, if your research problem is about the impact of study habits on academic performance, your hypothesis could be: "Students who follow a structured study schedule will perform better academically than those who do not." This hypothesis is clear, testable, and directly related to the research problem.

By following these steps, you can formulate a hypothesis that is both meaningful and testable, setting a solid foundation for your research.

6. Characteristics of a Good Hypothesis

A good hypothesis is essential for any scientific study. It should be clear and specific , making it easy to understand and test. A well-defined hypothesis guides your research and helps you stay focused. It should be based on existing knowledge and be testable through experiments or observations.

A strong hypothesis should also be falsifiable , meaning it can be proven wrong. This is important because it allows for the possibility of new discoveries and advancements in science. Additionally, a good hypothesis should be simple and concise, avoiding unnecessary complexity.

When writing a hypothesis, make sure it is relevant to your research question and aligns with your study's objectives. It should also be measurable, allowing you to collect data and analyze results effectively. By following these guidelines, you can create a solid foundation for your research and increase the chances of obtaining meaningful results.

7. Common Mistakes in Writing Hypotheses

When writing a hypothesis, there are several common mistakes that you should avoid to ensure your research is on the right track. One major mistake is being too vague. A hypothesis needs to be clear and specific so that it can be tested effectively. If your hypothesis is too broad, it will be difficult to measure and analyze the results.

Another common error is not basing your hypothesis on existing research. Before you formulate your hypothesis, make sure to review the literature and gather sources . This will help you create a more informed and credible hypothesis. Skipping this step can lead to a weak foundation for your research.

Additionally, avoid making your hypothesis too complex. A good hypothesis should be simple and straightforward. Overcomplicating it can lead to confusion and make it harder to test. Remember, the goal is to create a hypothesis that is easy to understand and evaluate.

Lastly, don't forget to revise effectively. Just like any other part of your research, your hypothesis may need to be refined as you gather more information. Be open to making changes to improve the clarity and accuracy of your hypothesis.

By avoiding these common mistakes, you can reduce thesis anxiety and create a strong foundation for your research.

8. Testing a Hypothesis

Testing a hypothesis is a crucial step in the scientific method. It allows you to determine if your hypothesis is supported by the data you collect. This process involves several key steps that help ensure your results are reliable and valid.

Designing an Experiment

To test your hypothesis, you need to design an experiment. This involves selecting the variables you will manipulate and measure. Make sure to control other variables to avoid skewing your results. A well-designed experiment is the foundation of statistical storytelling .

Collecting Data

Once your experiment is set up, the next step is to collect data. This data will help you understand whether your hypothesis is correct. Be meticulous in recording your observations and measurements.

Analyzing Results

After collecting data, you need to analyze it. Use statistical methods to determine if the results support your hypothesis. This step is essential for drawing meaningful conclusions from your data.

Drawing Conclusions

Finally, based on your analysis, you can draw conclusions. Do the results support your hypothesis, or do they suggest an alternative explanation? This is where the significance and practical implications of your findings come into play.

Reporting Findings

Once you have drawn your conclusions, it's important to report your findings. This involves writing a detailed report that includes your hypothesis, methods, results, and conclusions. This step is crucial for sharing your work with others and contributing to the broader scientific community.

9. Examples of Well-Written Hypotheses

When writing a hypothesis, it's important to be clear and specific. A well-written hypothesis explains a phenomenon or the relationships between variables in the real world . Here are some examples to guide you:

  • If-Then Statements : Hypotheses are often written as if-then statements . For example, "If students get at least 8 hours of sleep, then their test scores will improve."
  • Comparative Hypotheses: These hypotheses compare two groups. For instance, "Students who study in a quiet environment will score higher than those who study with background music."
  • Descriptive Hypotheses: These describe a relationship between variables. An example is, "There is a positive relationship between the amount of time spent on homework and academic performance."

By following these examples, you can ensure your hypothesis is clear and testable.

10. Revising and Refining Hypotheses

Revising and refining your hypothesis is a crucial step in the research process. A well-crafted hypothesis can guide your entire study . To start, revisit your research question and ensure it aligns with your hypothesis . This alignment is essential for a coherent study.

Next, conduct a thorough literature review. This helps you understand the existing research and identify gaps your study can fill. Make sure your hypothesis is specific and testable. If it's too broad, narrow it down.

Define your variables clearly. This step is vital for the accuracy of your study. Your hypothesis should include both independent and dependent variables. If these are not clear, your results may be misleading.

Finally, consider the feasibility of your hypothesis. Ask yourself if you have the resources and time to test it effectively. If not, you may need to refine it further. Remember, a good hypothesis is not just a guess; it's a well-thought-out prediction based on existing knowledge.

In the process of refining your hypotheses, it's crucial to revisit and adjust them based on new data and insights. This step ensures that your research remains relevant and accurate. If you're struggling with this part of your thesis, don't worry! Our Thesis Action Plan is designed to guide you through every stage, making the process much simpler. Visit our website to learn more and claim your special offer today!

Writing a hypothesis is a key step in the scientific method. It helps guide your research and gives you a clear focus. By following best practices, such as making your hypothesis clear and testable, you can improve the quality of your work. Remember to keep it simple and specific. A good hypothesis should be easy to understand and directly related to your research question. With these tips, you can write a strong hypothesis that will help you in your studies and experiments.

Frequently Asked Questions

What is a hypothesis.

A hypothesis is an idea or guess that you can test through study and experiments. It tries to explain something that happens or why something is the way it is.

Why is a hypothesis important in research?

A hypothesis gives direction to your research. It helps you know what you are looking for and guides your experiments.

What are the main parts of a hypothesis?

A good hypothesis usually has two main parts: the 'if' part and the 'then' part. The 'if' part states the condition, and the 'then' part states the expected result.

Can a hypothesis be proven true?

A hypothesis can't be proven true beyond all doubt. It can only be supported by evidence. If the evidence doesn't support it, the hypothesis needs to be changed.

How do you test a hypothesis?

You test a hypothesis by doing experiments and collecting data. You then analyze the data to see if it supports your hypothesis.

What should you do if your hypothesis is wrong?

If your hypothesis is wrong, don't worry. It's a normal part of science. You can revise your hypothesis and test it again.

Discovering Statistics Using IBM SPSS Statistics: A Fun and Informative Guide

Discovering Statistics Using IBM SPSS Statistics: A Fun and Informative Guide

Unlocking the Power of Data: A Review of 'Essentials of Modern Business Statistics with Microsoft Excel'

Unlocking the Power of Data: A Review of 'Essentials of Modern Business Statistics with Microsoft Excel'

Discovering Statistics Using SAS: A Comprehensive Review

Discovering Statistics Using SAS: A Comprehensive Review

Trending Topics for Your Thesis: What's Hot in 2024

Trending Topics for Your Thesis: What's Hot in 2024

How to Deal with a Total Lack of Motivation, Stress, and Anxiety When Finishing Your Master's Thesis

How to Deal with a Total Lack of Motivation, Stress, and Anxiety When Finishing Your Master's Thesis

Confident student with laptop and colorful books

Mastering the First Step: How to Start Your Thesis with Confidence

Thesis Action Plan

Thesis Action Plan

Research Proposal Compass

  • Blog Articles
  • Affiliate Program
  • Terms and Conditions
  • Payment and Shipping Terms
  • Privacy Policy
  • Return Policy

© 2024 Research Rebels, All rights reserved.

Your cart is currently empty.

  • How it works

"Christmas Offer"

Terms & conditions.

As the Christmas season is upon us, we find ourselves reflecting on the past year and those who we have helped to shape their future. It’s been quite a year for us all! The end of the year brings no greater joy than the opportunity to express to you Christmas greetings and good wishes.

At this special time of year, Research Prospect brings joyful discount of 10% on all its services. May your Christmas and New Year be filled with joy.

We are looking back with appreciation for your loyalty and looking forward to moving into the New Year together.

"Claim this offer"

In unfamiliar and hard times, we have stuck by you. This Christmas, Research Prospect brings you all the joy with exciting discount of 10% on all its services.

Offer valid till 5-1-2024

We love being your partner in success. We know you have been working hard lately, take a break this holiday season to spend time with your loved ones while we make sure you succeed in your academics

Discount code: RP23720

researchprospect post subheader

Published by Nicolas at January 16th, 2024 , Revised On January 23, 2024

How To Write A Hypotheses – Guide For Students

The word “hypothesis” might conjure up images of scientists in white coats, but crafting a solid hypothesis is a crucial skill for students in any field. Whether you are analyzing Shakespeare’s sonnets or conducting a science experiment, a well-defined research hypothesis sets the stage for your dissertation or thesis and fuels your investigation. 

Table of Contents

Writing a hypothesis is a crucial step in the research process. A hypothesis serves as the foundation of your research paper because it guides the direction of your study and provides a clear framework for investigation. But how to write a hypothesis? This blog will help you craft one. Let’s get started.

What Is A Hypothesis

A hypothesis is a clear and testable thesis statement or prediction that serves as the foundation of a research study. It is formulated based on existing knowledge, observations, and theoretical frameworks. 

A hypothesis articulates the researcher’s expectations regarding the relationship between variables in a study.

Hypothesis Example

Students exposed to multimedia-enhanced teaching methods will demonstrate higher retention of information compared to those taught using traditional methods.

The formulation of a hypothesis is crucial for guiding the research process and providing a clear direction for data collection and analysis. A well-crafted research hypothesis not only makes the research purpose explicit but also sets the stage for drawing meaningful conclusions from the study’s findings.

What Is A Null Hypothesis And Alternative Hypothesis

There are two main types of hypotheses: the null hypothesis (H0) and the alternative hypothesis (H1 or Ha). 

The null hypothesis posits that there is no significant effect or relationship, while the alternative hypothesis suggests the presence of a significant effect or relationship.

For example, in a study investigating the effect of a new drug on blood pressure, the null hypothesis might state that there is no difference in blood pressure between the control group (not receiving the drug) and the experimental group (receiving the drug). The alternative hypothesis, on the other hand, would propose that there is a significant difference in blood pressure between the two groups.

The literature review we write have:

  • Precision and Clarity
  • Zero Plagiarism
  • High-level Encryption
  • Authentic Sources

proposals we write

How To Write A Good Research Hypothesis

Writing a hypothesis involves a systematic process that guides your research and provides a clear and testable statement about the expected relationship between variables. Go through the MLA vs. APA guidelines before writing. Here are the steps to help you how to write a hypothesis:

Step 1: Identify The Research Topic

Clearly define the research topic or question that you want to investigate. Ensure that your research question is specific and focused, providing a clear direction for your study.

Step 2: Conduct A Literature Review

Review existing literature related to your research topic. A thorough literature review helps you understand what is already known in the field, identify gaps, and build a foundation for formulating your hypothesis.

Step 3: Define Variables

Identify the variables involved in your study. The independent variable is the factor you manipulate, and the dependent variable is the one you measure. Clearly define the characteristics or conditions you are studying.

Step 4: Establish The Relationship

Determine the expected relationship between the independent and dependent variables. Will a change in the independent variable lead to a change in the dependent variable? Specify whether you anticipate a positive, negative, or no relationship.

Step 5: Formulate The Null Hypothesis (H0)

The null hypothesis represents the default position, suggesting that there is no significant effect or relationship between the variables you are studying. It serves as the baseline to be tested against. The null hypothesis is often denoted as H0.

Step 6: Formulate The Alternative Hypothesis (H1 or Ha)

The alternative hypothesis articulates the researcher’s expectation about the existence of a significant effect or relationship. It is what you aim to support with your research paper . The alternative hypothesis is denoted as H1 or Ha.

For example, if your research topic is about the effect of a new fertilizer on plant growth:

  • Null Hypothesis (H0): There is no significant difference in plant growth between plants treated with the traditional fertilizer and those treated with the new fertilizer.
  • Alternative Hypothesis (H1): There is a significant difference in plant growth between plants treated with the traditional fertilizer and those treated with the new fertilizer.

Step 7: Ensure Testability And Specificity

Confirm that your research hypothesis is testable and can be empirically investigated. Ensure that it is specific, providing a clear and measurable statement that can be validated or refuted through data collection and analysis.

Hypothesis Examples

Does caffeine consumption affect reaction time?There is a significant difference in reaction time between individuals who consume caffeine and those who do not.There is no significant difference in reaction time between individuals who consume caffeine and those who do not.There is a significant difference in reaction time between individuals who consume caffeine and those who do not.
What is the impact of exercise on weight loss?Increased exercise leads to a greater amount of weight loss.Increased exercise has no impact on the amount of weight loss.Increased exercise does not lead to a greater amount of weight loss.
Is there a correlation between study hours and exam scores?There is a positive correlation between the number of study hours and exam scores.There is no correlation between the number of study hours and exam scores.There is a negative correlation between the number of study hours and exam scores.
How does temperature affect plant growth? – Plants grow better in higher temperatures.There is no effect of temperature on plant growth.Plants grow better in lower temperatures.
Can music improve concentration during work?Listening to music enhances concentration and productivity.Listening to music has no effect on concentration and productivity.Listening to music impairs concentration and productivity.

What Makes A Good Hypothesis

  • Clear Statement: A hypothesis should be stated clearly and precisely. It should be easily understandable and convey the expected relationship between variables.
  • Testability: A hypothesis must be testable through empirical observation or experimentation. This means that there should be a feasible way to collect data and assess whether the expected relationship holds true.
  • Specificity: The research hypothesis should be specific in terms of the variables involved and the nature of the expected relationship. Vague or ambiguous hypotheses can lead to unclear research outcomes.
  • Measurability: Variables in a hypothesis should be measurable, meaning they can be quantified or observed objectively. This ensures that the research can be conducted with precision.
  • Falsifiability: A good research hypothesis should be falsifiable, meaning there should be a possibility of proving it wrong. This concept is fundamental to the scientific method, as hypotheses that cannot be tested or disproven lack scientific validity.

Frequently Asked Questions

How to write a hypothesis.

  • Clearly state the research question.
  • Identify the variables involved.
  • Formulate a clear and testable prediction.
  • Use specific and measurable terms.
  • Align the hypothesis with the research question.
  • Distinguish between the null hypothesis (no effect) and alternative hypothesis (expected effect).
  • Ensure the hypothesis is falsifiable and subject to empirical testing.

How to write a hypothesis for a lab?

  • Identify the purpose of the lab.
  • Clearly state the relationship between variables.
  • Use concise language and specific terms.
  • Make the hypothesis testable through experimentation.
  • Align with the lab’s objectives.
  • Include an if-then statement to express the expected outcome.
  • Ensure clarity and relevance to the experimental setup.

What Is A Null Hypothesis?

A null hypothesis is a statement suggesting no effect or relationship between variables in a research study. It serves as the default assumption, stating that any observed differences or effects are due to chance. Researchers aim to reject the null hypothesis based on statistical evidence to support their alternative hypothesis.

How to write a null hypothesis?

  • State there is no effect, difference, or relationship between variables.
  • Use clear and specific language.
  • Frame it in a testable manner.
  • Align with the research question.
  • Specify parameters for statistical testing.
  • Consider it as the default assumption to be tested and potentially rejected in favour of the alternative hypothesis.

What is the p-value of a hypothesis test?

The p-value in a hypothesis test represents the probability of obtaining observed results, or more extreme ones, if the null hypothesis is true. A lower p-value suggests stronger evidence against the null hypothesis, often leading to its rejection. Common significance thresholds include 0.05 or 0.01.

How to write a hypothesis in science?

  • Clearly state the research question
  • Identify the variables and their relationship.
  • Formulate a testable and falsifiable prediction.
  • Use specific, measurable terms.
  • Distinguish between the null and alternative hypotheses.
  • Ensure clarity and relevance to the scientific investigation.

How to write a hypothesis for a research proposal?

  • Clearly define the research question.
  • Identify variables and their expected relationship.
  • Formulate a specific, testable hypothesis.
  • Align the hypothesis with the proposal’s objectives.
  • Clearly articulate the null hypothesis.
  • Use concise language and measurable terms.
  • Ensure the hypothesis aligns with the proposed research methodology.

How to write a good hypothesis psychology?

  • Formulate a specific and testable prediction.
  • Use precise and measurable terms.
  • Align the hypothesis with psychological theories.
  • Articulate the null hypothesis.
  • Ensure the hypothesis guides empirical testing in psychological research.

You May Also Like

Do you require captivating and feasible research subjects in the area of nursing and medicine?  If so, then your search […]

The answer to the question, “Can literature review include newspaper articles?” is provided in this comprehensive guide. Read more.

To cite a TED Talk in APA style, include speaker’s name, publication year, talk title, “TED Conferences,” and URL for clarity and accuracy.

Ready to place an order?

USEFUL LINKS

Learning resources.

DMCA.com Protection Status

COMPANY DETAILS

Research-Prospect-Writing-Service

  • How It Works
  • Research Process
  • Manuscript Preparation
  • Manuscript Review
  • Publication Process
  • Publication Recognition
  • Language Editing Services
  • Translation Services

Elsevier QRcode Wechat

Step-by-Step Guide: How to Craft a Strong Research Hypothesis

  • 4 minute read
  • 369.4K views

Table of Contents

A research hypothesis is a concise statement about the expected result of an experiment or project. In many ways, a research hypothesis represents the starting point for a scientific endeavor, as it establishes a tentative assumption that is eventually substantiated or falsified, ultimately improving our certainty about the subject investigated.   

To help you with this and ease the process, in this article, we discuss the purpose of research hypotheses and list the most essential qualities of a compelling hypothesis. Let’s find out!  

How to Craft a Research Hypothesis  

Crafting a research hypothesis begins with a comprehensive literature review to identify a knowledge gap in your field. Once you find a question or problem, come up with a possible answer or explanation, which becomes your hypothesis. Now think about the specific methods of experimentation that can prove or disprove the hypothesis, which ultimately lead to the results of the study.   

Enlisted below are some standard formats in which you can formulate a hypothesis¹ :  

  • A hypothesis can use the if/then format when it seeks to explore the correlation between two variables in a study primarily.  

Example: If administered drug X, then patients will experience reduced fatigue from cancer treatment.  

  • A hypothesis can adopt when X/then Y format when it primarily aims to expose a connection between two variables  

Example: When workers spend a significant portion of their waking hours in sedentary work , then they experience a greater frequency of digestive problems.  

  • A hypothesis can also take the form of a direct statement.  

Example: Drug X and drug Y reduce the risk of cognitive decline through the same chemical pathways  

What are the Features of an Effective Hypothesis?  

Hypotheses in research need to satisfy specific criteria to be considered scientifically rigorous. Here are the most notable qualities of a strong hypothesis:  

  • Testability: Ensure the hypothesis allows you to work towards observable and testable results.  
  • Brevity and objectivity: Present your hypothesis as a brief statement and avoid wordiness.  
  • Clarity and Relevance: The hypothesis should reflect a clear idea of what we know and what we expect to find out about a phenomenon and address the significant knowledge gap relevant to a field of study.   

Understanding Null and Alternative Hypotheses in Research  

There are two types of hypotheses used commonly in research that aid statistical analyses. These are known as the null hypothesis and the alternative hypothesis . A null hypothesis is a statement assumed to be factual in the initial phase of the study.   

For example, if a researcher is testing the efficacy of a new drug, then the null hypothesis will posit that the drug has no benefits compared to an inactive control or placebo . Suppose the data collected through a drug trial leads a researcher to reject the null hypothesis. In that case, it is considered to substantiate the alternative hypothesis in the above example, that the new drug provides benefits compared to the placebo.  

Let’s take a closer look at the null hypothesis and alternative hypothesis with two more examples:  

Null Hypothesis:  

The rate of decline in the number of species in habitat X in the last year is the same as in the last 100 years when controlled for all factors except the recent wildfires.  

In the next experiment, the researcher will experimentally reject this null hypothesis in order to confirm the following alternative hypothesis :  

The rate of decline in the number of species in habitat X in the last year is different from the rate of decline in the last 100 years when controlled for all factors other than the recent wildfires.  

In the pair of null and alternative hypotheses stated above, a statistical comparison of the rate of species decline over a century and the preceding year will help the research experimentally test the null hypothesis, helping to draw scientifically valid conclusions about two factors—wildfires and species decline.   

We also recommend that researchers pay attention to contextual echoes and connections when writing research hypotheses. Research hypotheses are often closely linked to the introduction ² , such as the context of the study, and can similarly influence the reader’s judgment of the relevance and validity of the research hypothesis.  

Seasoned experts, such as professionals at Elsevier Language Services, guide authors on how to best embed a hypothesis within an article so that it communicates relevance and credibility. Contact us if you want help in ensuring readers find your hypothesis robust and unbiased.  

References  

  • Hypotheses – The University Writing Center. (n.d.). https://writingcenter.tamu.edu/writing-speaking-guides/hypotheses  
  • Shaping the research question and hypothesis. (n.d.). Students. https://students.unimelb.edu.au/academic-skills/graduate-research-services/writing-thesis-sections-part-2/shaping-the-research-question-and-hypothesis  

Systematic Literature Review or Literature Review

Systematic Literature Review or Literature Review?

Problem Statement

How to Write an Effective Problem Statement for Your Research Paper

You may also like.

Academic paper format

Submission 101: What format should be used for academic papers?

Being Mindful of Tone and Structure in Artilces

Page-Turner Articles are More Than Just Good Arguments: Be Mindful of Tone and Structure!

How to Ensure Inclusivity in Your Scientific Writing

A Must-see for Researchers! How to Ensure Inclusivity in Your Scientific Writing

impactful introduction section

Make Hook, Line, and Sinker: The Art of Crafting Engaging Introductions

Limitations of a Research

Can Describing Study Limitations Improve the Quality of Your Paper?

Guide to Crafting Impactful Sentences

A Guide to Crafting Shorter, Impactful Sentences in Academic Writing

Write an Excellent Discussion in Your Manuscript

6 Steps to Write an Excellent Discussion in Your Manuscript

How to Write Clear Civil Engineering Papers

How to Write Clear and Crisp Civil Engineering Papers? Here are 5 Key Tips to Consider

Input your search keywords and press Enter.

  • How it works

researchprospect post subheader

How to Write a Hypothesis – Steps & Tips

Published by Alaxendra Bets at August 14th, 2021 , Revised On October 26, 2023

What is a Research Hypothesis?

You can test a research statement with the help of experimental or theoretical research, known as a hypothesis.

If you want to find out the similarities, differences, and relationships between variables, you must write a testable hypothesis before compiling the data, performing analysis, and generating results to complete.

The data analysis and findings will help you test the hypothesis and see whether it is true or false. Here is all you need to know about how to write a hypothesis for a  dissertation .

Research Hypothesis Definition

Not sure what the meaning of the research hypothesis is?

A research hypothesis predicts an answer to the research question  based on existing theoretical knowledge or experimental data.

Some studies may have multiple hypothesis statements depending on the research question(s).  A research hypothesis must be based on formulas, facts, and theories. It should be testable by data analysis, observations, experiments, or other scientific methodologies that can refute or support the statement.

Variables in Hypothesis

Developing a hypothesis is easy. Most research studies have two or more variables in the hypothesis, particularly studies involving correlational and experimental research. The researcher can control or change the independent variable(s) while measuring and observing the independent variable(s).

“How long a student sleeps affects test scores.”

In the above statement, the dependent variable is the test score, while the independent variable is the length of time spent in sleep. Developing a hypothesis will be easy if you know your research’s dependent and independent variables.

Once you have developed a thesis statement, questions such as how to write a hypothesis for the dissertation and how to test a research hypothesis become pretty straightforward.

Looking for dissertation help?

Researchprospect to the rescue then.

We have expert writers on our team who are skilled at helping students with quantitative dissertations across a variety of STEM disciplines. Guaranteeing 100% satisfaction!

dissertation help

Step-by-Step Guide on How to Write a Hypothesis

Here are the steps involved in how to write a hypothesis for a dissertation.

Step 1: Start with a Research Question

  • Begin by asking a specific question about a topic of interest.
  • This question should be clear, concise, and researchable.

Example: Does exposure to sunlight affect plant growth?

Step 2: Do Preliminary Research

  • Before formulating a hypothesis, conduct background research to understand existing knowledge on the topic.
  • Familiarise yourself with prior studies, theories, or observations related to the research question.

Step 3: Define Variables

  • Independent Variable (IV): The factor that you change or manipulate in an experiment.
  • Dependent Variable (DV): The factor that you measure.

Example: IV: Amount of sunlight exposure (e.g., 2 hours/day, 4 hours/day, 8 hours/day) DV: Plant growth (e.g., height in centimetres)

Step 4: Formulate the Hypothesis

  • A hypothesis is a statement that predicts the relationship between variables.
  • It is often written as an “if-then” statement.

Example: If plants receive more sunlight, then they will grow taller.

Step 5: Ensure it is Testable

A good hypothesis is empirically testable. This means you should be able to design an experiment or observation to test its validity.

Example: You can set up an experiment where plants are exposed to varying amounts of sunlight and then measure their growth over a period of time.

Step 6: Consider Potential Confounding Variables

  • Confounding variables are factors other than the independent variable that might affect the outcome.
  • It is important to identify these to ensure that they do not skew your results.

Example: Soil quality, water frequency, or type of plant can all affect growth. Consider keeping these constant in your experiment.

Step 7: Write the Null Hypothesis

  • The null hypothesis is a statement that there is no effect or no relationship between the variables.
  • It is what you aim to disprove or reject through your research.

Example: There is no difference in plant growth regardless of the amount of sunlight exposure.

Step 8: Test your Hypothesis

Design an experiment or conduct observations to test your hypothesis.

Example: Grow three sets of plants: one set exposed to 2 hours of sunlight daily, another exposed to 4 hours, and a third exposed to 8 hours. Measure and compare their growth after a set period.

Step 9: Analyse the Results

After testing, review your data to determine if it supports your hypothesis.

Step 10: Draw Conclusions

  • Based on your findings, determine whether you can accept or reject the hypothesis.
  • Remember, even if you reject your hypothesis, it’s a valuable result. It can guide future research and refine questions.

Three Ways to Phrase a Hypothesis

Try to use “if”… and “then”… to identify the variables. The independent variable should be present in the first part of the hypothesis, while the dependent variable will form the second part of the statement. Consider understanding the below research hypothesis example to create a specific, clear, and concise research hypothesis;

If an obese lady starts attending Zomba fitness classes, her health will improve.

In academic research, you can write the predicted variable relationship directly because most research studies correlate terms.

The number of Zomba fitness classes attended by the obese lady has a positive effect on health.

If your research compares two groups, then you can develop a hypothesis statement on their differences.

An obese lady who attended most Zumba fitness classes will have better health than those who attended a few.

How to Write a Null Hypothesis

If a statistical analysis is involved in your research, then you must create a null hypothesis. If you find any relationship between the variables, then the null hypothesis will be the default position that there is no relationship between them. H0 is the symbol for the null hypothesis, while the hypothesis is represented as H1. The null hypothesis will also answer your question, “How to test the research hypothesis in the dissertation.”

H0: The number of Zumba fitness classes attended by the obese lady does not affect her health.

H1: The number of Zumba fitness classes attended by obese lady positively affects health.

Also see:  Your Dissertation in Education

Hypothesis Examples

Research Question: Does the amount of sunlight a plant receives affect its growth? Hypothesis: Plants that receive more sunlight will grow taller than plants that receive less sunlight.

Research Question: Do students who eat breakfast perform better in school exams than those who don’t? Hypothesis: Students who eat a morning breakfast will score higher on school exams compared to students who skip breakfast.

Research Question: Does listening to music while studying impact a student’s ability to retain information? Hypothesis 1 (Directional): Students who listen to music while studying will retain less information than those who study in silence. Hypothesis 2 (Non-directional): There will be a difference in information retention between students who listen to music while studying and those who study in silence.

How can ResearchProspect Help?

If you are unsure about how to rest a research hypothesis in a dissertation or simply unsure about how to develop a hypothesis for your research, then you can take advantage of our dissertation services which cover every tiny aspect of a dissertation project you might need help with including but not limited to setting up a hypothesis and research questions,  help with individual chapters ,  full dissertation writing ,  statistical analysis , and much more.

Frequently Asked Questions

What are the 5 rules for writing a good hypothesis.

  • Clear Statement: State a clear relationship between variables.
  • Testable: Ensure it can be investigated and measured.
  • Specific: Avoid vague terms, be precise in predictions.
  • Falsifiable: Design to allow potential disproof.
  • Relevant: Address research question and align with existing knowledge.

What is a hypothesis in simple words?

A hypothesis is an educated guess or prediction about something that can be tested. It is a statement that suggests a possible explanation for an event or phenomenon based on prior knowledge or observation. Scientists use hypotheses as a starting point for experiments to discover if they are true or false.

What is the hypothesis and examples?

A hypothesis is a testable prediction or explanation for an observation or phenomenon. For example, if plants are given sunlight, then they will grow. In this case, the hypothesis suggests that sunlight has a positive effect on plant growth. It can be tested by experimenting with plants in varying light conditions.

What is the hypothesis in research definition?

A hypothesis in research is a clear, testable statement predicting the possible outcome of a study based on prior knowledge and observation. It serves as the foundation for conducting experiments or investigations. Researchers test the validity of the hypothesis to draw conclusions and advance knowledge in a particular field.

Why is it called a hypothesis?

The term “hypothesis” originates from the Greek word “hypothesis,” which means “base” or “foundation.” It’s used to describe a foundational statement or proposition that can be tested. In scientific contexts, it denotes a tentative explanation for a phenomenon, serving as a starting point for investigation or experimentation.

You May Also Like

How to write a hypothesis for dissertation,? A hypothesis is a statement that can be tested with the help of experimental or theoretical research.

Penning your dissertation proposal can be a rather daunting task. Here are comprehensive guidelines on how to write a dissertation proposal.

Here we explore what is research problem in dissertation with research problem examples to help you understand how and when to write a research problem.

USEFUL LINKS

LEARNING RESOURCES

researchprospect-reviews-trust-site

COMPANY DETAILS

Research-Prospect-Writing-Service

  • How It Works
  • Privacy Policy

Research Method

Home » What is a Hypothesis – Types, Examples and Writing Guide

What is a Hypothesis – Types, Examples and Writing Guide

Table of Contents

What is a Hypothesis

Definition:

Hypothesis is an educated guess or proposed explanation for a phenomenon, based on some initial observations or data. It is a tentative statement that can be tested and potentially proven or disproven through further investigation and experimentation.

Hypothesis is often used in scientific research to guide the design of experiments and the collection and analysis of data. It is an essential element of the scientific method, as it allows researchers to make predictions about the outcome of their experiments and to test those predictions to determine their accuracy.

Types of Hypothesis

Types of Hypothesis are as follows:

Research Hypothesis

A research hypothesis is a statement that predicts a relationship between variables. It is usually formulated as a specific statement that can be tested through research, and it is often used in scientific research to guide the design of experiments.

Null Hypothesis

The null hypothesis is a statement that assumes there is no significant difference or relationship between variables. It is often used as a starting point for testing the research hypothesis, and if the results of the study reject the null hypothesis, it suggests that there is a significant difference or relationship between variables.

Alternative Hypothesis

An alternative hypothesis is a statement that assumes there is a significant difference or relationship between variables. It is often used as an alternative to the null hypothesis and is tested against the null hypothesis to determine which statement is more accurate.

Directional Hypothesis

A directional hypothesis is a statement that predicts the direction of the relationship between variables. For example, a researcher might predict that increasing the amount of exercise will result in a decrease in body weight.

Non-directional Hypothesis

A non-directional hypothesis is a statement that predicts the relationship between variables but does not specify the direction. For example, a researcher might predict that there is a relationship between the amount of exercise and body weight, but they do not specify whether increasing or decreasing exercise will affect body weight.

Statistical Hypothesis

A statistical hypothesis is a statement that assumes a particular statistical model or distribution for the data. It is often used in statistical analysis to test the significance of a particular result.

Composite Hypothesis

A composite hypothesis is a statement that assumes more than one condition or outcome. It can be divided into several sub-hypotheses, each of which represents a different possible outcome.

Empirical Hypothesis

An empirical hypothesis is a statement that is based on observed phenomena or data. It is often used in scientific research to develop theories or models that explain the observed phenomena.

Simple Hypothesis

A simple hypothesis is a statement that assumes only one outcome or condition. It is often used in scientific research to test a single variable or factor.

Complex Hypothesis

A complex hypothesis is a statement that assumes multiple outcomes or conditions. It is often used in scientific research to test the effects of multiple variables or factors on a particular outcome.

Applications of Hypothesis

Hypotheses are used in various fields to guide research and make predictions about the outcomes of experiments or observations. Here are some examples of how hypotheses are applied in different fields:

  • Science : In scientific research, hypotheses are used to test the validity of theories and models that explain natural phenomena. For example, a hypothesis might be formulated to test the effects of a particular variable on a natural system, such as the effects of climate change on an ecosystem.
  • Medicine : In medical research, hypotheses are used to test the effectiveness of treatments and therapies for specific conditions. For example, a hypothesis might be formulated to test the effects of a new drug on a particular disease.
  • Psychology : In psychology, hypotheses are used to test theories and models of human behavior and cognition. For example, a hypothesis might be formulated to test the effects of a particular stimulus on the brain or behavior.
  • Sociology : In sociology, hypotheses are used to test theories and models of social phenomena, such as the effects of social structures or institutions on human behavior. For example, a hypothesis might be formulated to test the effects of income inequality on crime rates.
  • Business : In business research, hypotheses are used to test the validity of theories and models that explain business phenomena, such as consumer behavior or market trends. For example, a hypothesis might be formulated to test the effects of a new marketing campaign on consumer buying behavior.
  • Engineering : In engineering, hypotheses are used to test the effectiveness of new technologies or designs. For example, a hypothesis might be formulated to test the efficiency of a new solar panel design.

How to write a Hypothesis

Here are the steps to follow when writing a hypothesis:

Identify the Research Question

The first step is to identify the research question that you want to answer through your study. This question should be clear, specific, and focused. It should be something that can be investigated empirically and that has some relevance or significance in the field.

Conduct a Literature Review

Before writing your hypothesis, it’s essential to conduct a thorough literature review to understand what is already known about the topic. This will help you to identify the research gap and formulate a hypothesis that builds on existing knowledge.

Determine the Variables

The next step is to identify the variables involved in the research question. A variable is any characteristic or factor that can vary or change. There are two types of variables: independent and dependent. The independent variable is the one that is manipulated or changed by the researcher, while the dependent variable is the one that is measured or observed as a result of the independent variable.

Formulate the Hypothesis

Based on the research question and the variables involved, you can now formulate your hypothesis. A hypothesis should be a clear and concise statement that predicts the relationship between the variables. It should be testable through empirical research and based on existing theory or evidence.

Write the Null Hypothesis

The null hypothesis is the opposite of the alternative hypothesis, which is the hypothesis that you are testing. The null hypothesis states that there is no significant difference or relationship between the variables. It is important to write the null hypothesis because it allows you to compare your results with what would be expected by chance.

Refine the Hypothesis

After formulating the hypothesis, it’s important to refine it and make it more precise. This may involve clarifying the variables, specifying the direction of the relationship, or making the hypothesis more testable.

Examples of Hypothesis

Here are a few examples of hypotheses in different fields:

  • Psychology : “Increased exposure to violent video games leads to increased aggressive behavior in adolescents.”
  • Biology : “Higher levels of carbon dioxide in the atmosphere will lead to increased plant growth.”
  • Sociology : “Individuals who grow up in households with higher socioeconomic status will have higher levels of education and income as adults.”
  • Education : “Implementing a new teaching method will result in higher student achievement scores.”
  • Marketing : “Customers who receive a personalized email will be more likely to make a purchase than those who receive a generic email.”
  • Physics : “An increase in temperature will cause an increase in the volume of a gas, assuming all other variables remain constant.”
  • Medicine : “Consuming a diet high in saturated fats will increase the risk of developing heart disease.”

Purpose of Hypothesis

The purpose of a hypothesis is to provide a testable explanation for an observed phenomenon or a prediction of a future outcome based on existing knowledge or theories. A hypothesis is an essential part of the scientific method and helps to guide the research process by providing a clear focus for investigation. It enables scientists to design experiments or studies to gather evidence and data that can support or refute the proposed explanation or prediction.

The formulation of a hypothesis is based on existing knowledge, observations, and theories, and it should be specific, testable, and falsifiable. A specific hypothesis helps to define the research question, which is important in the research process as it guides the selection of an appropriate research design and methodology. Testability of the hypothesis means that it can be proven or disproven through empirical data collection and analysis. Falsifiability means that the hypothesis should be formulated in such a way that it can be proven wrong if it is incorrect.

In addition to guiding the research process, the testing of hypotheses can lead to new discoveries and advancements in scientific knowledge. When a hypothesis is supported by the data, it can be used to develop new theories or models to explain the observed phenomenon. When a hypothesis is not supported by the data, it can help to refine existing theories or prompt the development of new hypotheses to explain the phenomenon.

When to use Hypothesis

Here are some common situations in which hypotheses are used:

  • In scientific research , hypotheses are used to guide the design of experiments and to help researchers make predictions about the outcomes of those experiments.
  • In social science research , hypotheses are used to test theories about human behavior, social relationships, and other phenomena.
  • I n business , hypotheses can be used to guide decisions about marketing, product development, and other areas. For example, a hypothesis might be that a new product will sell well in a particular market, and this hypothesis can be tested through market research.

Characteristics of Hypothesis

Here are some common characteristics of a hypothesis:

  • Testable : A hypothesis must be able to be tested through observation or experimentation. This means that it must be possible to collect data that will either support or refute the hypothesis.
  • Falsifiable : A hypothesis must be able to be proven false if it is not supported by the data. If a hypothesis cannot be falsified, then it is not a scientific hypothesis.
  • Clear and concise : A hypothesis should be stated in a clear and concise manner so that it can be easily understood and tested.
  • Based on existing knowledge : A hypothesis should be based on existing knowledge and research in the field. It should not be based on personal beliefs or opinions.
  • Specific : A hypothesis should be specific in terms of the variables being tested and the predicted outcome. This will help to ensure that the research is focused and well-designed.
  • Tentative: A hypothesis is a tentative statement or assumption that requires further testing and evidence to be confirmed or refuted. It is not a final conclusion or assertion.
  • Relevant : A hypothesis should be relevant to the research question or problem being studied. It should address a gap in knowledge or provide a new perspective on the issue.

Advantages of Hypothesis

Hypotheses have several advantages in scientific research and experimentation:

  • Guides research: A hypothesis provides a clear and specific direction for research. It helps to focus the research question, select appropriate methods and variables, and interpret the results.
  • Predictive powe r: A hypothesis makes predictions about the outcome of research, which can be tested through experimentation. This allows researchers to evaluate the validity of the hypothesis and make new discoveries.
  • Facilitates communication: A hypothesis provides a common language and framework for scientists to communicate with one another about their research. This helps to facilitate the exchange of ideas and promotes collaboration.
  • Efficient use of resources: A hypothesis helps researchers to use their time, resources, and funding efficiently by directing them towards specific research questions and methods that are most likely to yield results.
  • Provides a basis for further research: A hypothesis that is supported by data provides a basis for further research and exploration. It can lead to new hypotheses, theories, and discoveries.
  • Increases objectivity: A hypothesis can help to increase objectivity in research by providing a clear and specific framework for testing and interpreting results. This can reduce bias and increase the reliability of research findings.

Limitations of Hypothesis

Some Limitations of the Hypothesis are as follows:

  • Limited to observable phenomena: Hypotheses are limited to observable phenomena and cannot account for unobservable or intangible factors. This means that some research questions may not be amenable to hypothesis testing.
  • May be inaccurate or incomplete: Hypotheses are based on existing knowledge and research, which may be incomplete or inaccurate. This can lead to flawed hypotheses and erroneous conclusions.
  • May be biased: Hypotheses may be biased by the researcher’s own beliefs, values, or assumptions. This can lead to selective interpretation of data and a lack of objectivity in research.
  • Cannot prove causation: A hypothesis can only show a correlation between variables, but it cannot prove causation. This requires further experimentation and analysis.
  • Limited to specific contexts: Hypotheses are limited to specific contexts and may not be generalizable to other situations or populations. This means that results may not be applicable in other contexts or may require further testing.
  • May be affected by chance : Hypotheses may be affected by chance or random variation, which can obscure or distort the true relationship between variables.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Research Topic

Research Topics – Ideas and Examples

Figures in Research Paper

Figures in Research Paper – Examples and Guide

Limitations in Research

Limitations in Research – Types, Examples and...

Implications in Research

Implications in Research – Types, Examples and...

Problem statement

Problem Statement – Writing Guide, Examples and...

References in Research

References in Research – Types, Examples and...

  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • QuestionPro

survey software icon

  • Solutions Industries Gaming Automotive Sports and events Education Government Travel & Hospitality Financial Services Healthcare Cannabis Technology Use Case AskWhy Communities Audience Contactless surveys Mobile LivePolls Member Experience GDPR Positive People Science 360 Feedback Surveys
  • Resources Blog eBooks Survey Templates Case Studies Training Help center

how to identify the hypothesis in a research study

Home Market Research

Research Hypothesis: What It Is, Types + How to Develop?

A research hypothesis proposes a link between variables. Uncover its types and the secrets to creating hypotheses for scientific inquiry.

A research study starts with a question. Researchers worldwide ask questions and create research hypotheses. The effectiveness of research relies on developing a good research hypothesis. Examples of research hypotheses can guide researchers in writing effective ones.

In this blog, we’ll learn what a research hypothesis is, why it’s important in research, and the different types used in science. We’ll also guide you through creating your research hypothesis and discussing ways to test and evaluate it.

What is a Research Hypothesis?

A hypothesis is like a guess or idea that you suggest to check if it’s true. A research hypothesis is a statement that brings up a question and predicts what might happen.

It’s really important in the scientific method and is used in experiments to figure things out. Essentially, it’s an educated guess about how things are connected in the research.

A research hypothesis usually includes pointing out the independent variable (the thing they’re changing or studying) and the dependent variable (the result they’re measuring or watching). It helps plan how to gather and analyze data to see if there’s evidence to support or deny the expected connection between these variables.

Importance of Hypothesis in Research

Hypotheses are really important in research. They help design studies, allow for practical testing, and add to our scientific knowledge. Their main role is to organize research projects, making them purposeful, focused, and valuable to the scientific community. Let’s look at some key reasons why they matter:

  • A research hypothesis helps test theories.

A hypothesis plays a pivotal role in the scientific method by providing a basis for testing existing theories. For example, a hypothesis might test the predictive power of a psychological theory on human behavior.

  • It serves as a great platform for investigation activities.

It serves as a launching pad for investigation activities, which offers researchers a clear starting point. A research hypothesis can explore the relationship between exercise and stress reduction.

  • Hypothesis guides the research work or study.

A well-formulated hypothesis guides the entire research process. It ensures that the study remains focused and purposeful. For instance, a hypothesis about the impact of social media on interpersonal relationships provides clear guidance for a study.

  • Hypothesis sometimes suggests theories.

In some cases, a hypothesis can suggest new theories or modifications to existing ones. For example, a hypothesis testing the effectiveness of a new drug might prompt a reconsideration of current medical theories.

  • It helps in knowing the data needs.

A hypothesis clarifies the data requirements for a study, ensuring that researchers collect the necessary information—a hypothesis guiding the collection of demographic data to analyze the influence of age on a particular phenomenon.

  • The hypothesis explains social phenomena.

Hypotheses are instrumental in explaining complex social phenomena. For instance, a hypothesis might explore the relationship between economic factors and crime rates in a given community.

  • Hypothesis provides a relationship between phenomena for empirical Testing.

Hypotheses establish clear relationships between phenomena, paving the way for empirical testing. An example could be a hypothesis exploring the correlation between sleep patterns and academic performance.

  • It helps in knowing the most suitable analysis technique.

A hypothesis guides researchers in selecting the most appropriate analysis techniques for their data. For example, a hypothesis focusing on the effectiveness of a teaching method may lead to the choice of statistical analyses best suited for educational research.

Characteristics of a Good Research Hypothesis

A hypothesis is a specific idea that you can test in a study. It often comes from looking at past research and theories. A good hypothesis usually starts with a research question that you can explore through background research. For it to be effective, consider these key characteristics:

  • Clear and Focused Language: A good hypothesis uses clear and focused language to avoid confusion and ensure everyone understands it.
  • Related to the Research Topic: The hypothesis should directly relate to the research topic, acting as a bridge between the specific question and the broader study.
  • Testable: An effective hypothesis can be tested, meaning its prediction can be checked with real data to support or challenge the proposed relationship.
  • Potential for Exploration: A good hypothesis often comes from a research question that invites further exploration. Doing background research helps find gaps and potential areas to investigate.
  • Includes Variables: The hypothesis should clearly state both the independent and dependent variables, specifying the factors being studied and the expected outcomes.
  • Ethical Considerations: Check if variables can be manipulated without breaking ethical standards. It’s crucial to maintain ethical research practices.
  • Predicts Outcomes: The hypothesis should predict the expected relationship and outcome, acting as a roadmap for the study and guiding data collection and analysis.
  • Simple and Concise: A good hypothesis avoids unnecessary complexity and is simple and concise, expressing the essence of the proposed relationship clearly.
  • Clear and Assumption-Free: The hypothesis should be clear and free from assumptions about the reader’s prior knowledge, ensuring universal understanding.
  • Observable and Testable Results: A strong hypothesis implies research that produces observable and testable results, making sure the study’s outcomes can be effectively measured and analyzed.

When you use these characteristics as a checklist, it can help you create a good research hypothesis. It’ll guide improving and strengthening the hypothesis, identifying any weaknesses, and making necessary changes. Crafting a hypothesis with these features helps you conduct a thorough and insightful research study.

Types of Research Hypotheses

The research hypothesis comes in various types, each serving a specific purpose in guiding the scientific investigation. Knowing the differences will make it easier for you to create your own hypothesis. Here’s an overview of the common types:

01. Null Hypothesis

The null hypothesis states that there is no connection between two considered variables or that two groups are unrelated. As discussed earlier, a hypothesis is an unproven assumption lacking sufficient supporting data. It serves as the statement researchers aim to disprove. It is testable, verifiable, and can be rejected.

For example, if you’re studying the relationship between Project A and Project B, assuming both projects are of equal standard is your null hypothesis. It needs to be specific for your study.

02. Alternative Hypothesis

The alternative hypothesis is basically another option to the null hypothesis. It involves looking for a significant change or alternative that could lead you to reject the null hypothesis. It’s a different idea compared to the null hypothesis.

When you create a null hypothesis, you’re making an educated guess about whether something is true or if there’s a connection between that thing and another variable. If the null view suggests something is correct, the alternative hypothesis says it’s incorrect. 

For instance, if your null hypothesis is “I’m going to be $1000 richer,” the alternative hypothesis would be “I’m not going to get $1000 or be richer.”

03. Directional Hypothesis

The directional hypothesis predicts the direction of the relationship between independent and dependent variables. They specify whether the effect will be positive or negative.

If you increase your study hours, you will experience a positive association with your exam scores. This hypothesis suggests that as you increase the independent variable (study hours), there will also be an increase in the dependent variable (exam scores).

04. Non-directional Hypothesis

The non-directional hypothesis predicts the existence of a relationship between variables but does not specify the direction of the effect. It suggests that there will be a significant difference or relationship, but it does not predict the nature of that difference.

For example, you will find no notable difference in test scores between students who receive the educational intervention and those who do not. However, once you compare the test scores of the two groups, you will notice an important difference.

05. Simple Hypothesis

A simple hypothesis predicts a relationship between one dependent variable and one independent variable without specifying the nature of that relationship. It’s simple and usually used when we don’t know much about how the two things are connected.

For example, if you adopt effective study habits, you will achieve higher exam scores than those with poor study habits.

06. Complex Hypothesis

A complex hypothesis is an idea that specifies a relationship between multiple independent and dependent variables. It is a more detailed idea than a simple hypothesis.

While a simple view suggests a straightforward cause-and-effect relationship between two things, a complex hypothesis involves many factors and how they’re connected to each other.

For example, when you increase your study time, you tend to achieve higher exam scores. The connection between your study time and exam performance is affected by various factors, including the quality of your sleep, your motivation levels, and the effectiveness of your study techniques.

If you sleep well, stay highly motivated, and use effective study strategies, you may observe a more robust positive correlation between the time you spend studying and your exam scores, unlike those who may lack these factors.

07. Associative Hypothesis

An associative hypothesis proposes a connection between two things without saying that one causes the other. Basically, it suggests that when one thing changes, the other changes too, but it doesn’t claim that one thing is causing the change in the other.

For example, you will likely notice higher exam scores when you increase your study time. You can recognize an association between your study time and exam scores in this scenario.

Your hypothesis acknowledges a relationship between the two variables—your study time and exam scores—without asserting that increased study time directly causes higher exam scores. You need to consider that other factors, like motivation or learning style, could affect the observed association.

08. Causal Hypothesis

A causal hypothesis proposes a cause-and-effect relationship between two variables. It suggests that changes in one variable directly cause changes in another variable.

For example, when you increase your study time, you experience higher exam scores. This hypothesis suggests a direct cause-and-effect relationship, indicating that the more time you spend studying, the higher your exam scores. It assumes that changes in your study time directly influence changes in your exam performance.

09. Empirical Hypothesis

An empirical hypothesis is a statement based on things we can see and measure. It comes from direct observation or experiments and can be tested with real-world evidence. If an experiment proves a theory, it supports the idea and shows it’s not just a guess. This makes the statement more reliable than a wild guess.

For example, if you increase the dosage of a certain medication, you might observe a quicker recovery time for patients. Imagine you’re in charge of a clinical trial. In this trial, patients are given varying dosages of the medication, and you measure and compare their recovery times. This allows you to directly see the effects of different dosages on how fast patients recover.

This way, you can create a research hypothesis: “Increasing the dosage of a certain medication will lead to a faster recovery time for patients.”

10. Statistical Hypothesis

A statistical hypothesis is a statement or assumption about a population parameter that is the subject of an investigation. It serves as the basis for statistical analysis and testing. It is often tested using statistical methods to draw inferences about the larger population.

In a hypothesis test, statistical evidence is collected to either reject the null hypothesis in favor of the alternative hypothesis or fail to reject the null hypothesis due to insufficient evidence.

For example, let’s say you’re testing a new medicine. Your hypothesis could be that the medicine doesn’t really help patients get better. So, you collect data and use statistics to see if your guess is right or if the medicine actually makes a difference.

If the data strongly shows that the medicine does help, you say your guess was wrong, and the medicine does make a difference. But if the proof isn’t strong enough, you can stick with your original guess because you didn’t get enough evidence to change your mind.

How to Develop a Research Hypotheses?

Step 1: identify your research problem or topic..

Define the area of interest or the problem you want to investigate. Make sure it’s clear and well-defined.

Start by asking a question about your chosen topic. Consider the limitations of your research and create a straightforward problem related to your topic. Once you’ve done that, you can develop and test a hypothesis with evidence.

Step 2: Conduct a literature review

Review existing literature related to your research problem. This will help you understand the current state of knowledge in the field, identify gaps, and build a foundation for your hypothesis. Consider the following questions:

  • What existing research has been conducted on your chosen topic?
  • Are there any gaps or unanswered questions in the current literature?
  • How will the existing literature contribute to the foundation of your research?

Step 3: Formulate your research question

Based on your literature review, create a specific and concise research question that addresses your identified problem. Your research question should be clear, focused, and relevant to your field of study.

Step 4: Identify variables

Determine the key variables involved in your research question. Variables are the factors or phenomena that you will study and manipulate to test your hypothesis.

  • Independent Variable: The variable you manipulate or control.
  • Dependent Variable: The variable you measure to observe the effect of the independent variable.

Step 5: State the Null hypothesis

The null hypothesis is a statement that there is no significant difference or effect. It serves as a baseline for comparison with the alternative hypothesis.

Step 6: Select appropriate methods for testing the hypothesis

Choose research methods that align with your study objectives, such as experiments, surveys, or observational studies. The selected methods enable you to test your research hypothesis effectively.

Creating a research hypothesis usually takes more than one try. Expect to make changes as you collect data. It’s normal to test and say no to a few hypotheses before you find the right answer to your research question.

Testing and Evaluating Hypotheses

Testing hypotheses is a really important part of research. It’s like the practical side of things. Here, real-world evidence will help you determine how different things are connected. Let’s explore the main steps in hypothesis testing:

  • State your research hypothesis.

Before testing, clearly articulate your research hypothesis. This involves framing both a null hypothesis, suggesting no significant effect or relationship, and an alternative hypothesis, proposing the expected outcome.

  • Collect data strategically.

Plan how you will gather information in a way that fits your study. Make sure your data collection method matches the things you’re studying.

Whether through surveys, observations, or experiments, this step demands precision and adherence to the established methodology. The quality of data collected directly influences the credibility of study outcomes.

  • Perform an appropriate statistical test.

Choose a statistical test that aligns with the nature of your data and the hypotheses being tested. Whether it’s a t-test, chi-square test, ANOVA, or regression analysis, selecting the right statistical tool is paramount for accurate and reliable results.

  • Decide if your idea was right or wrong.

Following the statistical analysis, evaluate the results in the context of your null hypothesis. You need to decide if you should reject your null hypothesis or not.

  • Share what you found.

When discussing what you found in your research, be clear and organized. Say whether your idea was supported or not, and talk about what your results mean. Also, mention any limits to your study and suggest ideas for future research.

The Role of QuestionPro to Develop a Good Research Hypothesis

QuestionPro is a survey and research platform that provides tools for creating, distributing, and analyzing surveys. It plays a crucial role in the research process, especially when you’re in the initial stages of hypothesis development. Here’s how QuestionPro can help you to develop a good research hypothesis:

  • Survey design and data collection: You can use the platform to create targeted questions that help you gather relevant data.
  • Exploratory research: Through surveys and feedback mechanisms on QuestionPro, you can conduct exploratory research to understand the landscape of a particular subject.
  • Literature review and background research: QuestionPro surveys can collect sample population opinions, experiences, and preferences. This data and a thorough literature evaluation can help you generate a well-grounded hypothesis by improving your research knowledge.
  • Identifying variables: Using targeted survey questions, you can identify relevant variables related to their research topic.
  • Testing assumptions: You can use surveys to informally test certain assumptions or hypotheses before formalizing a research hypothesis.
  • Data analysis tools: QuestionPro provides tools for analyzing survey data. You can use these tools to identify the collected data’s patterns, correlations, or trends.
  • Refining your hypotheses: As you collect data through QuestionPro, you can adjust your hypotheses based on the real-world responses you receive.

A research hypothesis is like a guide for researchers in science. It’s a well-thought-out idea that has been thoroughly tested. This idea is crucial as researchers can explore different fields, such as medicine, social sciences, and natural sciences. The research hypothesis links theories to real-world evidence and gives researchers a clear path to explore and make discoveries.

QuestionPro Research Suite is a helpful tool for researchers. It makes creating surveys, collecting data, and analyzing information easily. It supports all kinds of research, from exploring new ideas to forming hypotheses. With a focus on using data, it helps researchers do their best work.

Are you interested in learning more about QuestionPro Research Suite? Take advantage of QuestionPro’s free trial to get an initial look at its capabilities and realize the full potential of your research efforts.

LEARN MORE         FREE TRIAL

MORE LIKE THIS

Data Analyst

What Does a Data Analyst Do? Skills, Tools & Tips

Sep 9, 2024

Gallup Access alternatives

Best Gallup Access Alternatives & Competitors in 2024

Sep 6, 2024

Experimental vs Observational Studies: Differences & Examples

Experimental vs Observational Studies: Differences & Examples

Sep 5, 2024

Interactive forms

Interactive Forms: Key Features, Benefits, Uses + Design Tips

Sep 4, 2024

Other categories

  • Academic Research
  • Artificial Intelligence
  • Assessments
  • Brand Awareness
  • Case Studies
  • Communities
  • Consumer Insights
  • Customer effort score
  • Customer Engagement
  • Customer Experience
  • Customer Loyalty
  • Customer Research
  • Customer Satisfaction
  • Employee Benefits
  • Employee Engagement
  • Employee Retention
  • Friday Five
  • General Data Protection Regulation
  • Insights Hub
  • Life@QuestionPro
  • Market Research
  • Mobile diaries
  • Mobile Surveys
  • New Features
  • Online Communities
  • Question Types
  • Questionnaire
  • QuestionPro Products
  • Release Notes
  • Research Tools and Apps
  • Revenue at Risk
  • Survey Templates
  • Training Tips
  • Tuesday CX Thoughts (TCXT)
  • Uncategorized
  • What’s Coming Up
  • Workforce Intelligence

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Hypothesis Testing | A Step-by-Step Guide with Easy Examples

Published on November 8, 2019 by Rebecca Bevans . Revised on June 22, 2023.

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics . It is most often used by scientists to test specific predictions, called hypotheses, that arise from theories.

There are 5 main steps in hypothesis testing:

  • State your research hypothesis as a null hypothesis and alternate hypothesis (H o ) and (H a  or H 1 ).
  • Collect data in a way designed to test the hypothesis.
  • Perform an appropriate statistical test .
  • Decide whether to reject or fail to reject your null hypothesis.
  • Present the findings in your results and discussion section.

Though the specific details might vary, the procedure you will use when testing a hypothesis will always follow some version of these steps.

Table of contents

Step 1: state your null and alternate hypothesis, step 2: collect data, step 3: perform a statistical test, step 4: decide whether to reject or fail to reject your null hypothesis, step 5: present your findings, other interesting articles, frequently asked questions about hypothesis testing.

After developing your initial research hypothesis (the prediction that you want to investigate), it is important to restate it as a null (H o ) and alternate (H a ) hypothesis so that you can test it mathematically.

The alternate hypothesis is usually your initial hypothesis that predicts a relationship between variables. The null hypothesis is a prediction of no relationship between the variables you are interested in.

  • H 0 : Men are, on average, not taller than women. H a : Men are, on average, taller than women.

Prevent plagiarism. Run a free check.

For a statistical test to be valid , it is important to perform sampling and collect data in a way that is designed to test your hypothesis. If your data are not representative, then you cannot make statistical inferences about the population you are interested in.

There are a variety of statistical tests available, but they are all based on the comparison of within-group variance (how spread out the data is within a category) versus between-group variance (how different the categories are from one another).

If the between-group variance is large enough that there is little or no overlap between groups, then your statistical test will reflect that by showing a low p -value . This means it is unlikely that the differences between these groups came about by chance.

Alternatively, if there is high within-group variance and low between-group variance, then your statistical test will reflect that with a high p -value. This means it is likely that any difference you measure between groups is due to chance.

Your choice of statistical test will be based on the type of variables and the level of measurement of your collected data .

  • an estimate of the difference in average height between the two groups.
  • a p -value showing how likely you are to see this difference if the null hypothesis of no difference is true.

Based on the outcome of your statistical test, you will have to decide whether to reject or fail to reject your null hypothesis.

In most cases you will use the p -value generated by your statistical test to guide your decision. And in most cases, your predetermined level of significance for rejecting the null hypothesis will be 0.05 – that is, when there is a less than 5% chance that you would see these results if the null hypothesis were true.

In some cases, researchers choose a more conservative level of significance, such as 0.01 (1%). This minimizes the risk of incorrectly rejecting the null hypothesis ( Type I error ).

The results of hypothesis testing will be presented in the results and discussion sections of your research paper , dissertation or thesis .

In the results section you should give a brief summary of the data and a summary of the results of your statistical test (for example, the estimated difference between group means and associated p -value). In the discussion , you can discuss whether your initial hypothesis was supported by your results or not.

In the formal language of hypothesis testing, we talk about rejecting or failing to reject the null hypothesis. You will probably be asked to do this in your statistics assignments.

However, when presenting research results in academic papers we rarely talk this way. Instead, we go back to our alternate hypothesis (in this case, the hypothesis that men are on average taller than women) and state whether the result of our test did or did not support the alternate hypothesis.

If your null hypothesis was rejected, this result is interpreted as “supported the alternate hypothesis.”

These are superficial differences; you can see that they mean the same thing.

You might notice that we don’t say that we reject or fail to reject the alternate hypothesis . This is because hypothesis testing is not designed to prove or disprove anything. It is only designed to test whether a pattern we measure could have arisen spuriously, or by chance.

If we reject the null hypothesis based on our research (i.e., we find that it is unlikely that the pattern arose by chance), then we can say our test lends support to our hypothesis . But if the pattern does not pass our decision rule, meaning that it could have arisen by chance, then we say the test is inconsistent with our hypothesis .

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

  • Normal distribution
  • Descriptive statistics
  • Measures of central tendency
  • Correlation coefficient

Methodology

  • Cluster sampling
  • Stratified sampling
  • Types of interviews
  • Cohort study
  • Thematic analysis

Research bias

  • Implicit bias
  • Cognitive bias
  • Survivorship bias
  • Availability heuristic
  • Nonresponse bias
  • Regression to the mean

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics. It is used by scientists to test specific predictions, called hypotheses , by calculating how likely it is that a pattern or relationship between variables could have arisen by chance.

A hypothesis states your predictions about what your research will find. It is a tentative answer to your research question that has not yet been tested. For some research projects, you might have to write several hypotheses that address different aspects of your research question.

A hypothesis is not just a guess — it should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations and statistical analysis of data).

Null and alternative hypotheses are used in statistical hypothesis testing . The null hypothesis of a test always predicts no effect or no relationship between variables, while the alternative hypothesis states your research prediction of an effect or relationship.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

Bevans, R. (2023, June 22). Hypothesis Testing | A Step-by-Step Guide with Easy Examples. Scribbr. Retrieved September 9, 2024, from https://www.scribbr.com/statistics/hypothesis-testing/

Is this article helpful?

Rebecca Bevans

Rebecca Bevans

Other students also liked, choosing the right statistical test | types & examples, understanding p values | definition and examples, what is your plagiarism score.

how to identify the hypothesis in a research study

What Is A Research (Scientific) Hypothesis? A plain-language explainer + examples

By:  Derek Jansen (MBA)  | Reviewed By: Dr Eunice Rautenbach | June 2020

If you’re new to the world of research, or it’s your first time writing a dissertation or thesis, you’re probably noticing that the words “research hypothesis” and “scientific hypothesis” are used quite a bit, and you’re wondering what they mean in a research context .

“Hypothesis” is one of those words that people use loosely, thinking they understand what it means. However, it has a very specific meaning within academic research. So, it’s important to understand the exact meaning before you start hypothesizing. 

Research Hypothesis 101

  • What is a hypothesis ?
  • What is a research hypothesis (scientific hypothesis)?
  • Requirements for a research hypothesis
  • Definition of a research hypothesis
  • The null hypothesis

What is a hypothesis?

Let’s start with the general definition of a hypothesis (not a research hypothesis or scientific hypothesis), according to the Cambridge Dictionary:

Hypothesis: an idea or explanation for something that is based on known facts but has not yet been proved.

In other words, it’s a statement that provides an explanation for why or how something works, based on facts (or some reasonable assumptions), but that has not yet been specifically tested . For example, a hypothesis might look something like this:

Hypothesis: sleep impacts academic performance.

This statement predicts that academic performance will be influenced by the amount and/or quality of sleep a student engages in – sounds reasonable, right? It’s based on reasonable assumptions , underpinned by what we currently know about sleep and health (from the existing literature). So, loosely speaking, we could call it a hypothesis, at least by the dictionary definition.

But that’s not good enough…

Unfortunately, that’s not quite sophisticated enough to describe a research hypothesis (also sometimes called a scientific hypothesis), and it wouldn’t be acceptable in a dissertation, thesis or research paper . In the world of academic research, a statement needs a few more criteria to constitute a true research hypothesis .

What is a research hypothesis?

A research hypothesis (also called a scientific hypothesis) is a statement about the expected outcome of a study (for example, a dissertation or thesis). To constitute a quality hypothesis, the statement needs to have three attributes – specificity , clarity and testability .

Let’s take a look at these more closely.

Need a helping hand?

how to identify the hypothesis in a research study

Hypothesis Essential #1: Specificity & Clarity

A good research hypothesis needs to be extremely clear and articulate about both what’ s being assessed (who or what variables are involved ) and the expected outcome (for example, a difference between groups, a relationship between variables, etc.).

Let’s stick with our sleepy students example and look at how this statement could be more specific and clear.

Hypothesis: Students who sleep at least 8 hours per night will, on average, achieve higher grades in standardised tests than students who sleep less than 8 hours a night.

As you can see, the statement is very specific as it identifies the variables involved (sleep hours and test grades), the parties involved (two groups of students), as well as the predicted relationship type (a positive relationship). There’s no ambiguity or uncertainty about who or what is involved in the statement, and the expected outcome is clear.

Contrast that to the original hypothesis we looked at – “Sleep impacts academic performance” – and you can see the difference. “Sleep” and “academic performance” are both comparatively vague , and there’s no indication of what the expected relationship direction is (more sleep or less sleep). As you can see, specificity and clarity are key.

A good research hypothesis needs to be very clear about what’s being assessed and very specific about the expected outcome.

Hypothesis Essential #2: Testability (Provability)

A statement must be testable to qualify as a research hypothesis. In other words, there needs to be a way to prove (or disprove) the statement. If it’s not testable, it’s not a hypothesis – simple as that.

For example, consider the hypothesis we mentioned earlier:

Hypothesis: Students who sleep at least 8 hours per night will, on average, achieve higher grades in standardised tests than students who sleep less than 8 hours a night.  

We could test this statement by undertaking a quantitative study involving two groups of students, one that gets 8 or more hours of sleep per night for a fixed period, and one that gets less. We could then compare the standardised test results for both groups to see if there’s a statistically significant difference. 

Again, if you compare this to the original hypothesis we looked at – “Sleep impacts academic performance” – you can see that it would be quite difficult to test that statement, primarily because it isn’t specific enough. How much sleep? By who? What type of academic performance?

So, remember the mantra – if you can’t test it, it’s not a hypothesis 🙂

A good research hypothesis must be testable. In other words, you must able to collect observable data in a scientifically rigorous fashion to test it.

Defining A Research Hypothesis

You’re still with us? Great! Let’s recap and pin down a clear definition of a hypothesis.

A research hypothesis (or scientific hypothesis) is a statement about an expected relationship between variables, or explanation of an occurrence, that is clear, specific and testable.

So, when you write up hypotheses for your dissertation or thesis, make sure that they meet all these criteria. If you do, you’ll not only have rock-solid hypotheses but you’ll also ensure a clear focus for your entire research project.

What about the null hypothesis?

You may have also heard the terms null hypothesis , alternative hypothesis, or H-zero thrown around. At a simple level, the null hypothesis is the counter-proposal to the original hypothesis.

For example, if the hypothesis predicts that there is a relationship between two variables (for example, sleep and academic performance), the null hypothesis would predict that there is no relationship between those variables.

At a more technical level, the null hypothesis proposes that no statistical significance exists in a set of given observations and that any differences are due to chance alone.

And there you have it – hypotheses in a nutshell. 

If you have any questions, be sure to leave a comment below and we’ll do our best to help you. If you need hands-on help developing and testing your hypotheses, consider our private coaching service , where we hold your hand through the research journey.

Research Methodology Bootcamp

17 Comments

Lynnet Chikwaikwai

Very useful information. I benefit more from getting more information in this regard.

Dr. WuodArek

Very great insight,educative and informative. Please give meet deep critics on many research data of public international Law like human rights, environment, natural resources, law of the sea etc

Afshin

In a book I read a distinction is made between null, research, and alternative hypothesis. As far as I understand, alternative and research hypotheses are the same. Can you please elaborate? Best Afshin

GANDI Benjamin

This is a self explanatory, easy going site. I will recommend this to my friends and colleagues.

Lucile Dossou-Yovo

Very good definition. How can I cite your definition in my thesis? Thank you. Is nul hypothesis compulsory in a research?

Pereria

It’s a counter-proposal to be proven as a rejection

Egya Salihu

Please what is the difference between alternate hypothesis and research hypothesis?

Mulugeta Tefera

It is a very good explanation. However, it limits hypotheses to statistically tasteable ideas. What about for qualitative researches or other researches that involve quantitative data that don’t need statistical tests?

Derek Jansen

In qualitative research, one typically uses propositions, not hypotheses.

Samia

could you please elaborate it more

Patricia Nyawir

I’ve benefited greatly from these notes, thank you.

Hopeson Khondiwa

This is very helpful

Dr. Andarge

well articulated ideas are presented here, thank you for being reliable sources of information

TAUNO

Excellent. Thanks for being clear and sound about the research methodology and hypothesis (quantitative research)

I have only a simple question regarding the null hypothesis. – Is the null hypothesis (Ho) known as the reversible hypothesis of the alternative hypothesis (H1? – How to test it in academic research?

Tesfaye Negesa Urge

this is very important note help me much more

Elton Cleckley

Hi” best wishes to you and your very nice blog” 

Trackbacks/Pingbacks

  • What Is Research Methodology? Simple Definition (With Examples) - Grad Coach - […] Contrasted to this, a quantitative methodology is typically used when the research aims and objectives are confirmatory in nature. For example,…

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

how to identify the hypothesis in a research study

  • Print Friendly
  • Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Sweepstakes
  • Guided Meditations
  • Verywell Mind Insights
  • 2024 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

How to Write a Great Hypothesis

Hypothesis Definition, Format, Examples, and Tips

Verywell / Alex Dos Diaz

  • The Scientific Method

Hypothesis Format

Falsifiability of a hypothesis.

  • Operationalization

Hypothesis Types

Hypotheses examples.

  • Collecting Data

A hypothesis is a tentative statement about the relationship between two or more variables. It is a specific, testable prediction about what you expect to happen in a study. It is a preliminary answer to your question that helps guide the research process.

Consider a study designed to examine the relationship between sleep deprivation and test performance. The hypothesis might be: "This study is designed to assess the hypothesis that sleep-deprived people will perform worse on a test than individuals who are not sleep-deprived."

At a Glance

A hypothesis is crucial to scientific research because it offers a clear direction for what the researchers are looking to find. This allows them to design experiments to test their predictions and add to our scientific knowledge about the world. This article explores how a hypothesis is used in psychology research, how to write a good hypothesis, and the different types of hypotheses you might use.

The Hypothesis in the Scientific Method

In the scientific method , whether it involves research in psychology, biology, or some other area, a hypothesis represents what the researchers think will happen in an experiment. The scientific method involves the following steps:

  • Forming a question
  • Performing background research
  • Creating a hypothesis
  • Designing an experiment
  • Collecting data
  • Analyzing the results
  • Drawing conclusions
  • Communicating the results

The hypothesis is a prediction, but it involves more than a guess. Most of the time, the hypothesis begins with a question which is then explored through background research. At this point, researchers then begin to develop a testable hypothesis.

Unless you are creating an exploratory study, your hypothesis should always explain what you  expect  to happen.

In a study exploring the effects of a particular drug, the hypothesis might be that researchers expect the drug to have some type of effect on the symptoms of a specific illness. In psychology, the hypothesis might focus on how a certain aspect of the environment might influence a particular behavior.

Remember, a hypothesis does not have to be correct. While the hypothesis predicts what the researchers expect to see, the goal of the research is to determine whether this guess is right or wrong. When conducting an experiment, researchers might explore numerous factors to determine which ones might contribute to the ultimate outcome.

In many cases, researchers may find that the results of an experiment  do not  support the original hypothesis. When writing up these results, the researchers might suggest other options that should be explored in future studies.

In many cases, researchers might draw a hypothesis from a specific theory or build on previous research. For example, prior research has shown that stress can impact the immune system. So a researcher might hypothesize: "People with high-stress levels will be more likely to contract a common cold after being exposed to the virus than people who have low-stress levels."

In other instances, researchers might look at commonly held beliefs or folk wisdom. "Birds of a feather flock together" is one example of folk adage that a psychologist might try to investigate. The researcher might pose a specific hypothesis that "People tend to select romantic partners who are similar to them in interests and educational level."

Elements of a Good Hypothesis

So how do you write a good hypothesis? When trying to come up with a hypothesis for your research or experiments, ask yourself the following questions:

  • Is your hypothesis based on your research on a topic?
  • Can your hypothesis be tested?
  • Does your hypothesis include independent and dependent variables?

Before you come up with a specific hypothesis, spend some time doing background research. Once you have completed a literature review, start thinking about potential questions you still have. Pay attention to the discussion section in the  journal articles you read . Many authors will suggest questions that still need to be explored.

How to Formulate a Good Hypothesis

To form a hypothesis, you should take these steps:

  • Collect as many observations about a topic or problem as you can.
  • Evaluate these observations and look for possible causes of the problem.
  • Create a list of possible explanations that you might want to explore.
  • After you have developed some possible hypotheses, think of ways that you could confirm or disprove each hypothesis through experimentation. This is known as falsifiability.

In the scientific method ,  falsifiability is an important part of any valid hypothesis. In order to test a claim scientifically, it must be possible that the claim could be proven false.

Students sometimes confuse the idea of falsifiability with the idea that it means that something is false, which is not the case. What falsifiability means is that  if  something was false, then it is possible to demonstrate that it is false.

One of the hallmarks of pseudoscience is that it makes claims that cannot be refuted or proven false.

The Importance of Operational Definitions

A variable is a factor or element that can be changed and manipulated in ways that are observable and measurable. However, the researcher must also define how the variable will be manipulated and measured in the study.

Operational definitions are specific definitions for all relevant factors in a study. This process helps make vague or ambiguous concepts detailed and measurable.

For example, a researcher might operationally define the variable " test anxiety " as the results of a self-report measure of anxiety experienced during an exam. A "study habits" variable might be defined by the amount of studying that actually occurs as measured by time.

These precise descriptions are important because many things can be measured in various ways. Clearly defining these variables and how they are measured helps ensure that other researchers can replicate your results.

Replicability

One of the basic principles of any type of scientific research is that the results must be replicable.

Replication means repeating an experiment in the same way to produce the same results. By clearly detailing the specifics of how the variables were measured and manipulated, other researchers can better understand the results and repeat the study if needed.

Some variables are more difficult than others to define. For example, how would you operationally define a variable such as aggression ? For obvious ethical reasons, researchers cannot create a situation in which a person behaves aggressively toward others.

To measure this variable, the researcher must devise a measurement that assesses aggressive behavior without harming others. The researcher might utilize a simulated task to measure aggressiveness in this situation.

Hypothesis Checklist

  • Does your hypothesis focus on something that you can actually test?
  • Does your hypothesis include both an independent and dependent variable?
  • Can you manipulate the variables?
  • Can your hypothesis be tested without violating ethical standards?

The hypothesis you use will depend on what you are investigating and hoping to find. Some of the main types of hypotheses that you might use include:

  • Simple hypothesis : This type of hypothesis suggests there is a relationship between one independent variable and one dependent variable.
  • Complex hypothesis : This type suggests a relationship between three or more variables, such as two independent and dependent variables.
  • Null hypothesis : This hypothesis suggests no relationship exists between two or more variables.
  • Alternative hypothesis : This hypothesis states the opposite of the null hypothesis.
  • Statistical hypothesis : This hypothesis uses statistical analysis to evaluate a representative population sample and then generalizes the findings to the larger group.
  • Logical hypothesis : This hypothesis assumes a relationship between variables without collecting data or evidence.

A hypothesis often follows a basic format of "If {this happens} then {this will happen}." One way to structure your hypothesis is to describe what will happen to the  dependent variable  if you change the  independent variable .

The basic format might be: "If {these changes are made to a certain independent variable}, then we will observe {a change in a specific dependent variable}."

A few examples of simple hypotheses:

  • "Students who eat breakfast will perform better on a math exam than students who do not eat breakfast."
  • "Students who experience test anxiety before an English exam will get lower scores than students who do not experience test anxiety."​
  • "Motorists who talk on the phone while driving will be more likely to make errors on a driving course than those who do not talk on the phone."
  • "Children who receive a new reading intervention will have higher reading scores than students who do not receive the intervention."

Examples of a complex hypothesis include:

  • "People with high-sugar diets and sedentary activity levels are more likely to develop depression."
  • "Younger people who are regularly exposed to green, outdoor areas have better subjective well-being than older adults who have limited exposure to green spaces."

Examples of a null hypothesis include:

  • "There is no difference in anxiety levels between people who take St. John's wort supplements and those who do not."
  • "There is no difference in scores on a memory recall task between children and adults."
  • "There is no difference in aggression levels between children who play first-person shooter games and those who do not."

Examples of an alternative hypothesis:

  • "People who take St. John's wort supplements will have less anxiety than those who do not."
  • "Adults will perform better on a memory task than children."
  • "Children who play first-person shooter games will show higher levels of aggression than children who do not." 

Collecting Data on Your Hypothesis

Once a researcher has formed a testable hypothesis, the next step is to select a research design and start collecting data. The research method depends largely on exactly what they are studying. There are two basic types of research methods: descriptive research and experimental research.

Descriptive Research Methods

Descriptive research such as  case studies ,  naturalistic observations , and surveys are often used when  conducting an experiment is difficult or impossible. These methods are best used to describe different aspects of a behavior or psychological phenomenon.

Once a researcher has collected data using descriptive methods, a  correlational study  can examine how the variables are related. This research method might be used to investigate a hypothesis that is difficult to test experimentally.

Experimental Research Methods

Experimental methods  are used to demonstrate causal relationships between variables. In an experiment, the researcher systematically manipulates a variable of interest (known as the independent variable) and measures the effect on another variable (known as the dependent variable).

Unlike correlational studies, which can only be used to determine if there is a relationship between two variables, experimental methods can be used to determine the actual nature of the relationship—whether changes in one variable actually  cause  another to change.

The hypothesis is a critical part of any scientific exploration. It represents what researchers expect to find in a study or experiment. In situations where the hypothesis is unsupported by the research, the research still has value. Such research helps us better understand how different aspects of the natural world relate to one another. It also helps us develop new hypotheses that can then be tested in the future.

Thompson WH, Skau S. On the scope of scientific hypotheses .  R Soc Open Sci . 2023;10(8):230607. doi:10.1098/rsos.230607

Taran S, Adhikari NKJ, Fan E. Falsifiability in medicine: what clinicians can learn from Karl Popper [published correction appears in Intensive Care Med. 2021 Jun 17;:].  Intensive Care Med . 2021;47(9):1054-1056. doi:10.1007/s00134-021-06432-z

Eyler AA. Research Methods for Public Health . 1st ed. Springer Publishing Company; 2020. doi:10.1891/9780826182067.0004

Nosek BA, Errington TM. What is replication ?  PLoS Biol . 2020;18(3):e3000691. doi:10.1371/journal.pbio.3000691

Aggarwal R, Ranganathan P. Study designs: Part 2 - Descriptive studies .  Perspect Clin Res . 2019;10(1):34-36. doi:10.4103/picr.PICR_154_18

Nevid J. Psychology: Concepts and Applications. Wadworth, 2013.

By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

Enago Academy

How to Develop a Good Research Hypothesis

' src=

The story of a research study begins by asking a question. Researchers all around the globe are asking curious questions and formulating research hypothesis. However, whether the research study provides an effective conclusion depends on how well one develops a good research hypothesis. Research hypothesis examples could help researchers get an idea as to how to write a good research hypothesis.

This blog will help you understand what is a research hypothesis, its characteristics and, how to formulate a research hypothesis

Table of Contents

What is Hypothesis?

Hypothesis is an assumption or an idea proposed for the sake of argument so that it can be tested. It is a precise, testable statement of what the researchers predict will be outcome of the study.  Hypothesis usually involves proposing a relationship between two variables: the independent variable (what the researchers change) and the dependent variable (what the research measures).

What is a Research Hypothesis?

Research hypothesis is a statement that introduces a research question and proposes an expected result. It is an integral part of the scientific method that forms the basis of scientific experiments. Therefore, you need to be careful and thorough when building your research hypothesis. A minor flaw in the construction of your hypothesis could have an adverse effect on your experiment. In research, there is a convention that the hypothesis is written in two forms, the null hypothesis, and the alternative hypothesis (called the experimental hypothesis when the method of investigation is an experiment).

Characteristics of a Good Research Hypothesis

As the hypothesis is specific, there is a testable prediction about what you expect to happen in a study. You may consider drawing hypothesis from previously published research based on the theory.

A good research hypothesis involves more effort than just a guess. In particular, your hypothesis may begin with a question that could be further explored through background research.

To help you formulate a promising research hypothesis, you should ask yourself the following questions:

  • Is the language clear and focused?
  • What is the relationship between your hypothesis and your research topic?
  • Is your hypothesis testable? If yes, then how?
  • What are the possible explanations that you might want to explore?
  • Does your hypothesis include both an independent and dependent variable?
  • Can you manipulate your variables without hampering the ethical standards?
  • Does your research predict the relationship and outcome?
  • Is your research simple and concise (avoids wordiness)?
  • Is it clear with no ambiguity or assumptions about the readers’ knowledge
  • Is your research observable and testable results?
  • Is it relevant and specific to the research question or problem?

research hypothesis example

The questions listed above can be used as a checklist to make sure your hypothesis is based on a solid foundation. Furthermore, it can help you identify weaknesses in your hypothesis and revise it if necessary.

Source: Educational Hub

How to formulate a research hypothesis.

A testable hypothesis is not a simple statement. It is rather an intricate statement that needs to offer a clear introduction to a scientific experiment, its intentions, and the possible outcomes. However, there are some important things to consider when building a compelling hypothesis.

1. State the problem that you are trying to solve.

Make sure that the hypothesis clearly defines the topic and the focus of the experiment.

2. Try to write the hypothesis as an if-then statement.

Follow this template: If a specific action is taken, then a certain outcome is expected.

3. Define the variables

Independent variables are the ones that are manipulated, controlled, or changed. Independent variables are isolated from other factors of the study.

Dependent variables , as the name suggests are dependent on other factors of the study. They are influenced by the change in independent variable.

4. Scrutinize the hypothesis

Evaluate assumptions, predictions, and evidence rigorously to refine your understanding.

Types of Research Hypothesis

The types of research hypothesis are stated below:

1. Simple Hypothesis

It predicts the relationship between a single dependent variable and a single independent variable.

2. Complex Hypothesis

It predicts the relationship between two or more independent and dependent variables.

3. Directional Hypothesis

It specifies the expected direction to be followed to determine the relationship between variables and is derived from theory. Furthermore, it implies the researcher’s intellectual commitment to a particular outcome.

4. Non-directional Hypothesis

It does not predict the exact direction or nature of the relationship between the two variables. The non-directional hypothesis is used when there is no theory involved or when findings contradict previous research.

5. Associative and Causal Hypothesis

The associative hypothesis defines interdependency between variables. A change in one variable results in the change of the other variable. On the other hand, the causal hypothesis proposes an effect on the dependent due to manipulation of the independent variable.

6. Null Hypothesis

Null hypothesis states a negative statement to support the researcher’s findings that there is no relationship between two variables. There will be no changes in the dependent variable due the manipulation of the independent variable. Furthermore, it states results are due to chance and are not significant in terms of supporting the idea being investigated.

7. Alternative Hypothesis

It states that there is a relationship between the two variables of the study and that the results are significant to the research topic. An experimental hypothesis predicts what changes will take place in the dependent variable when the independent variable is manipulated. Also, it states that the results are not due to chance and that they are significant in terms of supporting the theory being investigated.

Research Hypothesis Examples of Independent and Dependent Variables

Research Hypothesis Example 1 The greater number of coal plants in a region (independent variable) increases water pollution (dependent variable). If you change the independent variable (building more coal factories), it will change the dependent variable (amount of water pollution).
Research Hypothesis Example 2 What is the effect of diet or regular soda (independent variable) on blood sugar levels (dependent variable)? If you change the independent variable (the type of soda you consume), it will change the dependent variable (blood sugar levels)

You should not ignore the importance of the above steps. The validity of your experiment and its results rely on a robust testable hypothesis. Developing a strong testable hypothesis has few advantages, it compels us to think intensely and specifically about the outcomes of a study. Consequently, it enables us to understand the implication of the question and the different variables involved in the study. Furthermore, it helps us to make precise predictions based on prior research. Hence, forming a hypothesis would be of great value to the research. Here are some good examples of testable hypotheses.

More importantly, you need to build a robust testable research hypothesis for your scientific experiments. A testable hypothesis is a hypothesis that can be proved or disproved as a result of experimentation.

Importance of a Testable Hypothesis

To devise and perform an experiment using scientific method, you need to make sure that your hypothesis is testable. To be considered testable, some essential criteria must be met:

  • There must be a possibility to prove that the hypothesis is true.
  • There must be a possibility to prove that the hypothesis is false.
  • The results of the hypothesis must be reproducible.

Without these criteria, the hypothesis and the results will be vague. As a result, the experiment will not prove or disprove anything significant.

What are your experiences with building hypotheses for scientific experiments? What challenges did you face? How did you overcome these challenges? Please share your thoughts with us in the comments section.

Frequently Asked Questions

The steps to write a research hypothesis are: 1. Stating the problem: Ensure that the hypothesis defines the research problem 2. Writing a hypothesis as an 'if-then' statement: Include the action and the expected outcome of your study by following a ‘if-then’ structure. 3. Defining the variables: Define the variables as Dependent or Independent based on their dependency to other factors. 4. Scrutinizing the hypothesis: Identify the type of your hypothesis

Hypothesis testing is a statistical tool which is used to make inferences about a population data to draw conclusions for a particular hypothesis.

Hypothesis in statistics is a formal statement about the nature of a population within a structured framework of a statistical model. It is used to test an existing hypothesis by studying a population.

Research hypothesis is a statement that introduces a research question and proposes an expected result. It forms the basis of scientific experiments.

The different types of hypothesis in research are: • Null hypothesis: Null hypothesis is a negative statement to support the researcher’s findings that there is no relationship between two variables. • Alternate hypothesis: Alternate hypothesis predicts the relationship between the two variables of the study. • Directional hypothesis: Directional hypothesis specifies the expected direction to be followed to determine the relationship between variables. • Non-directional hypothesis: Non-directional hypothesis does not predict the exact direction or nature of the relationship between the two variables. • Simple hypothesis: Simple hypothesis predicts the relationship between a single dependent variable and a single independent variable. • Complex hypothesis: Complex hypothesis predicts the relationship between two or more independent and dependent variables. • Associative and casual hypothesis: Associative and casual hypothesis predicts the relationship between two or more independent and dependent variables. • Empirical hypothesis: Empirical hypothesis can be tested via experiments and observation. • Statistical hypothesis: A statistical hypothesis utilizes statistical models to draw conclusions about broader populations.

' src=

Wow! You really simplified your explanation that even dummies would find it easy to comprehend. Thank you so much.

Thanks a lot for your valuable guidance.

I enjoy reading the post. Hypotheses are actually an intrinsic part in a study. It bridges the research question and the methodology of the study.

Useful piece!

This is awesome.Wow.

It very interesting to read the topic, can you guide me any specific example of hypothesis process establish throw the Demand and supply of the specific product in market

Nicely explained

It is really a useful for me Kindly give some examples of hypothesis

It was a well explained content ,can you please give me an example with the null and alternative hypothesis illustrated

clear and concise. thanks.

So Good so Amazing

Good to learn

Thanks a lot for explaining to my level of understanding

Explained well and in simple terms. Quick read! Thank you

It awesome. It has really positioned me in my research project

Brief and easily digested

Rate this article Cancel Reply

Your email address will not be published.

how to identify the hypothesis in a research study

Enago Academy's Most Popular Articles

Content Analysis vs Thematic Analysis: What's the difference?

  • Reporting Research

Choosing the Right Analytical Approach: Thematic analysis vs. content analysis for data interpretation

In research, choosing the right approach to understand data is crucial for deriving meaningful insights.…

Cross-sectional and Longitudinal Study Design

Comparing Cross Sectional and Longitudinal Studies: 5 steps for choosing the right approach

The process of choosing the right research design can put ourselves at the crossroads of…

how to identify the hypothesis in a research study

  • Industry News

COPE Forum Discussion Highlights Challenges and Urges Clarity in Institutional Authorship Standards

The COPE forum discussion held in December 2023 initiated with a fundamental question — is…

Networking in Academic Conferences

  • Career Corner

Unlocking the Power of Networking in Academic Conferences

Embarking on your first academic conference experience? Fear not, we got you covered! Academic conferences…

Research recommendation

Research Recommendations – Guiding policy-makers for evidence-based decision making

Research recommendations play a crucial role in guiding scholars and researchers toward fruitful avenues of…

Choosing the Right Analytical Approach: Thematic analysis vs. content analysis for…

Comparing Cross Sectional and Longitudinal Studies: 5 steps for choosing the right…

How to Design Effective Research Questionnaires for Robust Findings

how to identify the hypothesis in a research study

Sign-up to read more

Subscribe for free to get unrestricted access to all our resources on research writing and academic publishing including:

  • 2000+ blog articles
  • 50+ Webinars
  • 10+ Expert podcasts
  • 50+ Infographics
  • 10+ Checklists
  • Research Guides

We hate spam too. We promise to protect your privacy and never spam you.

  • Publishing Research
  • AI in Academia
  • Promoting Research
  • Diversity and Inclusion
  • Infographics
  • Expert Video Library
  • Other Resources
  • Enago Learn
  • Upcoming & On-Demand Webinars
  • Peer Review Week 2024
  • Open Access Week 2023
  • Conference Videos
  • Enago Report
  • Journal Finder
  • Enago Plagiarism & AI Grammar Check
  • Editing Services
  • Publication Support Services
  • Research Impact
  • Translation Services
  • Publication solutions
  • AI-Based Solutions
  • Thought Leadership
  • Call for Articles
  • Call for Speakers
  • Author Training
  • Edit Profile

I am looking for Editing/ Proofreading services for my manuscript Tentative date of next journal submission:

how to identify the hypothesis in a research study

Which among these features would you prefer the most in a peer review assistant?

Ohio State nav bar

The Ohio State University

  • BuckeyeLink
  • Find People
  • Search Ohio State

Research Questions & Hypotheses

Generally, in quantitative studies, reviewers expect hypotheses rather than research questions. However, both research questions and hypotheses serve different purposes and can be beneficial when used together.

Research Questions

Clarify the research’s aim (farrugia et al., 2010).

  • Research often begins with an interest in a topic, but a deep understanding of the subject is crucial to formulate an appropriate research question.
  • Descriptive: “What factors most influence the academic achievement of senior high school students?”
  • Comparative: “What is the performance difference between teaching methods A and B?”
  • Relationship-based: “What is the relationship between self-efficacy and academic achievement?”
  • Increasing knowledge about a subject can be achieved through systematic literature reviews, in-depth interviews with patients (and proxies), focus groups, and consultations with field experts.
  • Some funding bodies, like the Canadian Institute for Health Research, recommend conducting a systematic review or a pilot study before seeking grants for full trials.
  • The presence of multiple research questions in a study can complicate the design, statistical analysis, and feasibility.
  • It’s advisable to focus on a single primary research question for the study.
  • The primary question, clearly stated at the end of a grant proposal’s introduction, usually specifies the study population, intervention, and other relevant factors.
  • The FINER criteria underscore aspects that can enhance the chances of a successful research project, including specifying the population of interest, aligning with scientific and public interest, clinical relevance, and contribution to the field, while complying with ethical and national research standards.
Feasible
Interesting
Novel
Ethical
Relevant
  • The P ICOT approach is crucial in developing the study’s framework and protocol, influencing inclusion and exclusion criteria and identifying patient groups for inclusion.
Population (patients)
Intervention (for intervention studies only)
Comparison group
Outcome of interest
Time
  • Defining the specific population, intervention, comparator, and outcome helps in selecting the right outcome measurement tool.
  • The more precise the population definition and stricter the inclusion and exclusion criteria, the more significant the impact on the interpretation, applicability, and generalizability of the research findings.
  • A restricted study population enhances internal validity but may limit the study’s external validity and generalizability to clinical practice.
  • A broadly defined study population may better reflect clinical practice but could increase bias and reduce internal validity.
  • An inadequately formulated research question can negatively impact study design, potentially leading to ineffective outcomes and affecting publication prospects.

Checklist: Good research questions for social science projects (Panke, 2018)

how to identify the hypothesis in a research study

Research Hypotheses

Present the researcher’s predictions based on specific statements.

  • These statements define the research problem or issue and indicate the direction of the researcher’s predictions.
  • Formulating the research question and hypothesis from existing data (e.g., a database) can lead to multiple statistical comparisons and potentially spurious findings due to chance.
  • The research or clinical hypothesis, derived from the research question, shapes the study’s key elements: sampling strategy, intervention, comparison, and outcome variables.
  • Hypotheses can express a single outcome or multiple outcomes.
  • After statistical testing, the null hypothesis is either rejected or not rejected based on whether the study’s findings are statistically significant.
  • Hypothesis testing helps determine if observed findings are due to true differences and not chance.
  • Hypotheses can be 1-sided (specific direction of difference) or 2-sided (presence of a difference without specifying direction).
  • 2-sided hypotheses are generally preferred unless there’s a strong justification for a 1-sided hypothesis.
  • A solid research hypothesis, informed by a good research question, influences the research design and paves the way for defining clear research objectives.

Types of Research Hypothesis

  • In a Y-centered research design, the focus is on the dependent variable (DV) which is specified in the research question. Theories are then used to identify independent variables (IV) and explain their causal relationship with the DV.
  • Example: “An increase in teacher-led instructional time (IV) is likely to improve student reading comprehension scores (DV), because extensive guided practice under expert supervision enhances learning retention and skill mastery.”
  • Hypothesis Explanation: The dependent variable (student reading comprehension scores) is the focus, and the hypothesis explores how changes in the independent variable (teacher-led instructional time) affect it.
  • In X-centered research designs, the independent variable is specified in the research question. Theories are used to determine potential dependent variables and the causal mechanisms at play.
  • Example: “Implementing technology-based learning tools (IV) is likely to enhance student engagement in the classroom (DV), because interactive and multimedia content increases student interest and participation.”
  • Hypothesis Explanation: The independent variable (technology-based learning tools) is the focus, with the hypothesis exploring its impact on a potential dependent variable (student engagement).
  • Probabilistic hypotheses suggest that changes in the independent variable are likely to lead to changes in the dependent variable in a predictable manner, but not with absolute certainty.
  • Example: “The more teachers engage in professional development programs (IV), the more their teaching effectiveness (DV) is likely to improve, because continuous training updates pedagogical skills and knowledge.”
  • Hypothesis Explanation: This hypothesis implies a probable relationship between the extent of professional development (IV) and teaching effectiveness (DV).
  • Deterministic hypotheses state that a specific change in the independent variable will lead to a specific change in the dependent variable, implying a more direct and certain relationship.
  • Example: “If the school curriculum changes from traditional lecture-based methods to project-based learning (IV), then student collaboration skills (DV) are expected to improve because project-based learning inherently requires teamwork and peer interaction.”
  • Hypothesis Explanation: This hypothesis presumes a direct and definite outcome (improvement in collaboration skills) resulting from a specific change in the teaching method.
  • Example : “Students who identify as visual learners will score higher on tests that are presented in a visually rich format compared to tests presented in a text-only format.”
  • Explanation : This hypothesis aims to describe the potential difference in test scores between visual learners taking visually rich tests and text-only tests, without implying a direct cause-and-effect relationship.
  • Example : “Teaching method A will improve student performance more than method B.”
  • Explanation : This hypothesis compares the effectiveness of two different teaching methods, suggesting that one will lead to better student performance than the other. It implies a direct comparison but does not necessarily establish a causal mechanism.
  • Example : “Students with higher self-efficacy will show higher levels of academic achievement.”
  • Explanation : This hypothesis predicts a relationship between the variable of self-efficacy and academic achievement. Unlike a causal hypothesis, it does not necessarily suggest that one variable causes changes in the other, but rather that they are related in some way.

Tips for developing research questions and hypotheses for research studies

  • Perform a systematic literature review (if one has not been done) to increase knowledge and familiarity with the topic and to assist with research development.
  • Learn about current trends and technological advances on the topic.
  • Seek careful input from experts, mentors, colleagues, and collaborators to refine your research question as this will aid in developing the research question and guide the research study.
  • Use the FINER criteria in the development of the research question.
  • Ensure that the research question follows PICOT format.
  • Develop a research hypothesis from the research question.
  • Ensure that the research question and objectives are answerable, feasible, and clinically relevant.

If your research hypotheses are derived from your research questions, particularly when multiple hypotheses address a single question, it’s recommended to use both research questions and hypotheses. However, if this isn’t the case, using hypotheses over research questions is advised. It’s important to note these are general guidelines, not strict rules. If you opt not to use hypotheses, consult with your supervisor for the best approach.

Farrugia, P., Petrisor, B. A., Farrokhyar, F., & Bhandari, M. (2010). Practical tips for surgical research: Research questions, hypotheses and objectives.  Canadian journal of surgery. Journal canadien de chirurgie ,  53 (4), 278–281.

Hulley, S. B., Cummings, S. R., Browner, W. S., Grady, D., & Newman, T. B. (2007). Designing clinical research. Philadelphia.

Panke, D. (2018). Research design & method selection: Making good choices in the social sciences.  Research Design & Method Selection , 1-368.

  • Affiliate Program

Wordvice

  • UNITED STATES
  • 台灣 (TAIWAN)
  • TÜRKIYE (TURKEY)
  • Academic Editing Services
  • - Research Paper
  • - Journal Manuscript
  • - Dissertation
  • - College & University Assignments
  • Admissions Editing Services
  • - Application Essay
  • - Personal Statement
  • - Recommendation Letter
  • - Cover Letter
  • - CV/Resume
  • Business Editing Services
  • - Business Documents
  • - Report & Brochure
  • - Website & Blog
  • Writer Editing Services
  • - Script & Screenplay
  • Our Editors
  • Client Reviews
  • Editing & Proofreading Prices
  • Wordvice Points
  • Partner Discount
  • Plagiarism Checker
  • APA Citation Generator
  • MLA Citation Generator
  • Chicago Citation Generator
  • Vancouver Citation Generator
  • - APA Style
  • - MLA Style
  • - Chicago Style
  • - Vancouver Style
  • Writing & Editing Guide
  • Academic Resources
  • Admissions Resources

How to Write a Research Hypothesis: Good & Bad Examples

how to identify the hypothesis in a research study

What is a research hypothesis?

A research hypothesis is an attempt at explaining a phenomenon or the relationships between phenomena/variables in the real world. Hypotheses are sometimes called “educated guesses”, but they are in fact (or let’s say they should be) based on previous observations, existing theories, scientific evidence, and logic. A research hypothesis is also not a prediction—rather, predictions are ( should be) based on clearly formulated hypotheses. For example, “We tested the hypothesis that KLF2 knockout mice would show deficiencies in heart development” is an assumption or prediction, not a hypothesis. 

The research hypothesis at the basis of this prediction is “the product of the KLF2 gene is involved in the development of the cardiovascular system in mice”—and this hypothesis is probably (hopefully) based on a clear observation, such as that mice with low levels of Kruppel-like factor 2 (which KLF2 codes for) seem to have heart problems. From this hypothesis, you can derive the idea that a mouse in which this particular gene does not function cannot develop a normal cardiovascular system, and then make the prediction that we started with. 

What is the difference between a hypothesis and a prediction?

You might think that these are very subtle differences, and you will certainly come across many publications that do not contain an actual hypothesis or do not make these distinctions correctly. But considering that the formulation and testing of hypotheses is an integral part of the scientific method, it is good to be aware of the concepts underlying this approach. The two hallmarks of a scientific hypothesis are falsifiability (an evaluation standard that was introduced by the philosopher of science Karl Popper in 1934) and testability —if you cannot use experiments or data to decide whether an idea is true or false, then it is not a hypothesis (or at least a very bad one).

So, in a nutshell, you (1) look at existing evidence/theories, (2) come up with a hypothesis, (3) make a prediction that allows you to (4) design an experiment or data analysis to test it, and (5) come to a conclusion. Of course, not all studies have hypotheses (there is also exploratory or hypothesis-generating research), and you do not necessarily have to state your hypothesis as such in your paper. 

But for the sake of understanding the principles of the scientific method, let’s first take a closer look at the different types of hypotheses that research articles refer to and then give you a step-by-step guide for how to formulate a strong hypothesis for your own paper.

Types of Research Hypotheses

Hypotheses can be simple , which means they describe the relationship between one single independent variable (the one you observe variations in or plan to manipulate) and one single dependent variable (the one you expect to be affected by the variations/manipulation). If there are more variables on either side, you are dealing with a complex hypothesis. You can also distinguish hypotheses according to the kind of relationship between the variables you are interested in (e.g., causal or associative ). But apart from these variations, we are usually interested in what is called the “alternative hypothesis” and, in contrast to that, the “null hypothesis”. If you think these two should be listed the other way round, then you are right, logically speaking—the alternative should surely come second. However, since this is the hypothesis we (as researchers) are usually interested in, let’s start from there.

Alternative Hypothesis

If you predict a relationship between two variables in your study, then the research hypothesis that you formulate to describe that relationship is your alternative hypothesis (usually H1 in statistical terms). The goal of your hypothesis testing is thus to demonstrate that there is sufficient evidence that supports the alternative hypothesis, rather than evidence for the possibility that there is no such relationship. The alternative hypothesis is usually the research hypothesis of a study and is based on the literature, previous observations, and widely known theories. 

Null Hypothesis

The hypothesis that describes the other possible outcome, that is, that your variables are not related, is the null hypothesis ( H0 ). Based on your findings, you choose between the two hypotheses—usually that means that if your prediction was correct, you reject the null hypothesis and accept the alternative. Make sure, however, that you are not getting lost at this step of the thinking process: If your prediction is that there will be no difference or change, then you are trying to find support for the null hypothesis and reject H1. 

Directional Hypothesis

While the null hypothesis is obviously “static”, the alternative hypothesis can specify a direction for the observed relationship between variables—for example, that mice with higher expression levels of a certain protein are more active than those with lower levels. This is then called a one-tailed hypothesis. 

Another example for a directional one-tailed alternative hypothesis would be that 

H1: Attending private classes before important exams has a positive effect on performance. 

Your null hypothesis would then be that

H0: Attending private classes before important exams has no/a negative effect on performance.

Nondirectional Hypothesis

A nondirectional hypothesis does not specify the direction of the potentially observed effect, only that there is a relationship between the studied variables—this is called a two-tailed hypothesis. For instance, if you are studying a new drug that has shown some effects on pathways involved in a certain condition (e.g., anxiety) in vitro in the lab, but you can’t say for sure whether it will have the same effects in an animal model or maybe induce other/side effects that you can’t predict and potentially increase anxiety levels instead, you could state the two hypotheses like this:

H1: The only lab-tested drug (somehow) affects anxiety levels in an anxiety mouse model.

You then test this nondirectional alternative hypothesis against the null hypothesis:

H0: The only lab-tested drug has no effect on anxiety levels in an anxiety mouse model.

hypothesis in a research paper

How to Write a Hypothesis for a Research Paper

Now that we understand the important distinctions between different kinds of research hypotheses, let’s look at a simple process of how to write a hypothesis.

Writing a Hypothesis Step:1

Ask a question, based on earlier research. Research always starts with a question, but one that takes into account what is already known about a topic or phenomenon. For example, if you are interested in whether people who have pets are happier than those who don’t, do a literature search and find out what has already been demonstrated. You will probably realize that yes, there is quite a bit of research that shows a relationship between happiness and owning a pet—and even studies that show that owning a dog is more beneficial than owning a cat ! Let’s say you are so intrigued by this finding that you wonder: 

What is it that makes dog owners even happier than cat owners? 

Let’s move on to Step 2 and find an answer to that question.

Writing a Hypothesis Step 2:

Formulate a strong hypothesis by answering your own question. Again, you don’t want to make things up, take unicorns into account, or repeat/ignore what has already been done. Looking at the dog-vs-cat papers your literature search returned, you see that most studies are based on self-report questionnaires on personality traits, mental health, and life satisfaction. What you don’t find is any data on actual (mental or physical) health measures, and no experiments. You therefore decide to make a bold claim come up with the carefully thought-through hypothesis that it’s maybe the lifestyle of the dog owners, which includes walking their dog several times per day, engaging in fun and healthy activities such as agility competitions, and taking them on trips, that gives them that extra boost in happiness. You could therefore answer your question in the following way:

Dog owners are happier than cat owners because of the dog-related activities they engage in.

Now you have to verify that your hypothesis fulfills the two requirements we introduced at the beginning of this resource article: falsifiability and testability . If it can’t be wrong and can’t be tested, it’s not a hypothesis. We are lucky, however, because yes, we can test whether owning a dog but not engaging in any of those activities leads to lower levels of happiness or well-being than owning a dog and playing and running around with them or taking them on trips.  

Writing a Hypothesis Step 3:

Make your predictions and define your variables. We have verified that we can test our hypothesis, but now we have to define all the relevant variables, design our experiment or data analysis, and make precise predictions. You could, for example, decide to study dog owners (not surprising at this point), let them fill in questionnaires about their lifestyle as well as their life satisfaction (as other studies did), and then compare two groups of active and inactive dog owners. Alternatively, if you want to go beyond the data that earlier studies produced and analyzed and directly manipulate the activity level of your dog owners to study the effect of that manipulation, you could invite them to your lab, select groups of participants with similar lifestyles, make them change their lifestyle (e.g., couch potato dog owners start agility classes, very active ones have to refrain from any fun activities for a certain period of time) and assess their happiness levels before and after the intervention. In both cases, your independent variable would be “ level of engagement in fun activities with dog” and your dependent variable would be happiness or well-being . 

Examples of a Good and Bad Hypothesis

Let’s look at a few examples of good and bad hypotheses to get you started.

Good Hypothesis Examples

Working from home improves job satisfaction.Employees who are allowed to work from home are less likely to quit within 2 years than those who need to come to the office.
Sleep deprivation affects cognition.Students who sleep <5 hours/night don’t perform as well on exams as those who sleep >7 hours/night. 
Animals adapt to their environment.Birds of the same species living on different islands have differently shaped beaks depending on the available food source.
Social media use causes anxiety.Do teenagers who refrain from using social media for 4 weeks show improvements in anxiety symptoms?

Bad Hypothesis Examples

Garlic repels vampires.Participants who eat garlic daily will not be harmed by vampires.Nobody gets harmed by vampires— .
Chocolate is better than vanilla.           No clearly defined variables— .

Tips for Writing a Research Hypothesis

If you understood the distinction between a hypothesis and a prediction we made at the beginning of this article, then you will have no problem formulating your hypotheses and predictions correctly. To refresh your memory: We have to (1) look at existing evidence, (2) come up with a hypothesis, (3) make a prediction, and (4) design an experiment. For example, you could summarize your dog/happiness study like this:

(1) While research suggests that dog owners are happier than cat owners, there are no reports on what factors drive this difference. (2) We hypothesized that it is the fun activities that many dog owners (but very few cat owners) engage in with their pets that increases their happiness levels. (3) We thus predicted that preventing very active dog owners from engaging in such activities for some time and making very inactive dog owners take up such activities would lead to an increase and decrease in their overall self-ratings of happiness, respectively. (4) To test this, we invited dog owners into our lab, assessed their mental and emotional well-being through questionnaires, and then assigned them to an “active” and an “inactive” group, depending on… 

Note that you use “we hypothesize” only for your hypothesis, not for your experimental prediction, and “would” or “if – then” only for your prediction, not your hypothesis. A hypothesis that states that something “would” affect something else sounds as if you don’t have enough confidence to make a clear statement—in which case you can’t expect your readers to believe in your research either. Write in the present tense, don’t use modal verbs that express varying degrees of certainty (such as may, might, or could ), and remember that you are not drawing a conclusion while trying not to exaggerate but making a clear statement that you then, in a way, try to disprove . And if that happens, that is not something to fear but an important part of the scientific process.

Similarly, don’t use “we hypothesize” when you explain the implications of your research or make predictions in the conclusion section of your manuscript, since these are clearly not hypotheses in the true sense of the word. As we said earlier, you will find that many authors of academic articles do not seem to care too much about these rather subtle distinctions, but thinking very clearly about your own research will not only help you write better but also ensure that even that infamous Reviewer 2 will find fewer reasons to nitpick about your manuscript. 

Perfect Your Manuscript With Professional Editing

Now that you know how to write a strong research hypothesis for your research paper, you might be interested in our free AI Proofreader , Wordvice AI, which finds and fixes errors in grammar, punctuation, and word choice in academic texts. Or if you are interested in human proofreading , check out our English editing services , including research paper editing and manuscript editing .

On the Wordvice academic resources website , you can also find many more articles and other resources that can help you with writing the other parts of your research paper , with making a research paper outline before you put everything together, or with writing an effective cover letter once you are ready to submit.

PrepScholar

Choose Your Test

  • Search Blogs By Category
  • College Admissions
  • AP and IB Exams
  • GPA and Coursework

What Is a Hypothesis and How Do I Write One?

author image

General Education

body-glowing-question-mark

Think about something strange and unexplainable in your life. Maybe you get a headache right before it rains, or maybe you think your favorite sports team wins when you wear a certain color. If you wanted to see whether these are just coincidences or scientific fact, you would form a hypothesis, then create an experiment to see whether that hypothesis is true or not.

But what is a hypothesis, anyway? If you’re not sure about what a hypothesis is--or how to test for one!--you’re in the right place. This article will teach you everything you need to know about hypotheses, including: 

  • Defining the term “hypothesis” 
  • Providing hypothesis examples 
  • Giving you tips for how to write your own hypothesis

So let’s get started!

body-picture-ask-sign

What Is a Hypothesis?

Merriam Webster defines a hypothesis as “an assumption or concession made for the sake of argument.” In other words, a hypothesis is an educated guess . Scientists make a reasonable assumption--or a hypothesis--then design an experiment to test whether it’s true or not. Keep in mind that in science, a hypothesis should be testable. You have to be able to design an experiment that tests your hypothesis in order for it to be valid. 

As you could assume from that statement, it’s easy to make a bad hypothesis. But when you’re holding an experiment, it’s even more important that your guesses be good...after all, you’re spending time (and maybe money!) to figure out more about your observation. That’s why we refer to a hypothesis as an educated guess--good hypotheses are based on existing data and research to make them as sound as possible.

Hypotheses are one part of what’s called the scientific method .  Every (good) experiment or study is based in the scientific method. The scientific method gives order and structure to experiments and ensures that interference from scientists or outside influences does not skew the results. It’s important that you understand the concepts of the scientific method before holding your own experiment. Though it may vary among scientists, the scientific method is generally made up of six steps (in order):

  • Observation
  • Asking questions
  • Forming a hypothesis
  • Analyze the data
  • Communicate your results

You’ll notice that the hypothesis comes pretty early on when conducting an experiment. That’s because experiments work best when they’re trying to answer one specific question. And you can’t conduct an experiment until you know what you’re trying to prove!

Independent and Dependent Variables 

After doing your research, you’re ready for another important step in forming your hypothesis: identifying variables. Variables are basically any factor that could influence the outcome of your experiment . Variables have to be measurable and related to the topic being studied.

There are two types of variables:  independent variables and dependent variables. I ndependent variables remain constant . For example, age is an independent variable; it will stay the same, and researchers can look at different ages to see if it has an effect on the dependent variable. 

Speaking of dependent variables... dependent variables are subject to the influence of the independent variable , meaning that they are not constant. Let’s say you want to test whether a person’s age affects how much sleep they need. In that case, the independent variable is age (like we mentioned above), and the dependent variable is how much sleep a person gets. 

Variables will be crucial in writing your hypothesis. You need to be able to identify which variable is which, as both the independent and dependent variables will be written into your hypothesis. For instance, in a study about exercise, the independent variable might be the speed at which the respondents walk for thirty minutes, and the dependent variable would be their heart rate. In your study and in your hypothesis, you’re trying to understand the relationship between the two variables.

Elements of a Good Hypothesis

The best hypotheses start by asking the right questions . For instance, if you’ve observed that the grass is greener when it rains twice a week, you could ask what kind of grass it is, what elevation it’s at, and if the grass across the street responds to rain in the same way. Any of these questions could become the backbone of experiments to test why the grass gets greener when it rains fairly frequently.

As you’re asking more questions about your first observation, make sure you’re also making more observations . If it doesn’t rain for two weeks and the grass still looks green, that’s an important observation that could influence your hypothesis. You'll continue observing all throughout your experiment, but until the hypothesis is finalized, every observation should be noted.

Finally, you should consult secondary research before writing your hypothesis . Secondary research is comprised of results found and published by other people. You can usually find this information online or at your library. Additionally, m ake sure the research you find is credible and related to your topic. If you’re studying the correlation between rain and grass growth, it would help you to research rain patterns over the past twenty years for your county, published by a local agricultural association. You should also research the types of grass common in your area, the type of grass in your lawn, and whether anyone else has conducted experiments about your hypothesis. Also be sure you’re checking the quality of your research . Research done by a middle school student about what minerals can be found in rainwater would be less useful than an article published by a local university.

body-pencil-notebook-writing

Writing Your Hypothesis

Once you’ve considered all of the factors above, you’re ready to start writing your hypothesis. Hypotheses usually take a certain form when they’re written out in a research report.

When you boil down your hypothesis statement, you are writing down your best guess and not the question at hand . This means that your statement should be written as if it is fact already, even though you are simply testing it.

The reason for this is that, after you have completed your study, you'll either accept or reject your if-then or your null hypothesis. All hypothesis testing examples should be measurable and able to be confirmed or denied. You cannot confirm a question, only a statement! 

In fact, you come up with hypothesis examples all the time! For instance, when you guess on the outcome of a basketball game, you don’t say, “Will the Miami Heat beat the Boston Celtics?” but instead, “I think the Miami Heat will beat the Boston Celtics.” You state it as if it is already true, even if it turns out you’re wrong. You do the same thing when writing your hypothesis.

Additionally, keep in mind that hypotheses can range from very specific to very broad.  These hypotheses can be specific, but if your hypothesis testing examples involve a broad range of causes and effects, your hypothesis can also be broad.  

body-hand-number-two

The Two Types of Hypotheses

Now that you understand what goes into a hypothesis, it’s time to look more closely at the two most common types of hypothesis: the if-then hypothesis and the null hypothesis.

#1: If-Then Hypotheses

First of all, if-then hypotheses typically follow this formula:

If ____ happens, then ____ will happen.

The goal of this type of hypothesis is to test the causal relationship between the independent and dependent variable. It’s fairly simple, and each hypothesis can vary in how detailed it can be. We create if-then hypotheses all the time with our daily predictions. Here are some examples of hypotheses that use an if-then structure from daily life: 

  • If I get enough sleep, I’ll be able to get more work done tomorrow.
  • If the bus is on time, I can make it to my friend’s birthday party. 
  • If I study every night this week, I’ll get a better grade on my exam. 

In each of these situations, you’re making a guess on how an independent variable (sleep, time, or studying) will affect a dependent variable (the amount of work you can do, making it to a party on time, or getting better grades). 

You may still be asking, “What is an example of a hypothesis used in scientific research?” Take one of the hypothesis examples from a real-world study on whether using technology before bed affects children’s sleep patterns. The hypothesis read s:

“We hypothesized that increased hours of tablet- and phone-based screen time at bedtime would be inversely correlated with sleep quality and child attention.”

It might not look like it, but this is an if-then statement. The researchers basically said, “If children have more screen usage at bedtime, then their quality of sleep and attention will be worse.” The sleep quality and attention are the dependent variables and the screen usage is the independent variable. (Usually, the independent variable comes after the “if” and the dependent variable comes after the “then,” as it is the independent variable that affects the dependent variable.) This is an excellent example of how flexible hypothesis statements can be, as long as the general idea of “if-then” and the independent and dependent variables are present.

#2: Null Hypotheses

Your if-then hypothesis is not the only one needed to complete a successful experiment, however. You also need a null hypothesis to test it against. In its most basic form, the null hypothesis is the opposite of your if-then hypothesis . When you write your null hypothesis, you are writing a hypothesis that suggests that your guess is not true, and that the independent and dependent variables have no relationship .

One null hypothesis for the cell phone and sleep study from the last section might say: 

“If children have more screen usage at bedtime, their quality of sleep and attention will not be worse.” 

In this case, this is a null hypothesis because it’s asking the opposite of the original thesis! 

Conversely, if your if-then hypothesis suggests that your two variables have no relationship, then your null hypothesis would suggest that there is one. So, pretend that there is a study that is asking the question, “Does the amount of followers on Instagram influence how long people spend on the app?” The independent variable is the amount of followers, and the dependent variable is the time spent. But if you, as the researcher, don’t think there is a relationship between the number of followers and time spent, you might write an if-then hypothesis that reads:

“If people have many followers on Instagram, they will not spend more time on the app than people who have less.”

In this case, the if-then suggests there isn’t a relationship between the variables. In that case, one of the null hypothesis examples might say:

“If people have many followers on Instagram, they will spend more time on the app than people who have less.”

You then test both the if-then and the null hypothesis to gauge if there is a relationship between the variables, and if so, how much of a relationship. 

feature_tips

4 Tips to Write the Best Hypothesis

If you’re going to take the time to hold an experiment, whether in school or by yourself, you’re also going to want to take the time to make sure your hypothesis is a good one. The best hypotheses have four major elements in common: plausibility, defined concepts, observability, and general explanation.

#1: Plausibility

At first glance, this quality of a hypothesis might seem obvious. When your hypothesis is plausible, that means it’s possible given what we know about science and general common sense. However, improbable hypotheses are more common than you might think. 

Imagine you’re studying weight gain and television watching habits. If you hypothesize that people who watch more than  twenty hours of television a week will gain two hundred pounds or more over the course of a year, this might be improbable (though it’s potentially possible). Consequently, c ommon sense can tell us the results of the study before the study even begins.

Improbable hypotheses generally go against  science, as well. Take this hypothesis example: 

“If a person smokes one cigarette a day, then they will have lungs just as healthy as the average person’s.” 

This hypothesis is obviously untrue, as studies have shown again and again that cigarettes negatively affect lung health. You must be careful that your hypotheses do not reflect your own personal opinion more than they do scientifically-supported findings. This plausibility points to the necessity of research before the hypothesis is written to make sure that your hypothesis has not already been disproven.

#2: Defined Concepts

The more advanced you are in your studies, the more likely that the terms you’re using in your hypothesis are specific to a limited set of knowledge. One of the hypothesis testing examples might include the readability of printed text in newspapers, where you might use words like “kerning” and “x-height.” Unless your readers have a background in graphic design, it’s likely that they won’t know what you mean by these terms. Thus, it’s important to either write what they mean in the hypothesis itself or in the report before the hypothesis.

Here’s what we mean. Which of the following sentences makes more sense to the common person?

If the kerning is greater than average, more words will be read per minute.

If the space between letters is greater than average, more words will be read per minute.

For people reading your report that are not experts in typography, simply adding a few more words will be helpful in clarifying exactly what the experiment is all about. It’s always a good idea to make your research and findings as accessible as possible. 

body-blue-eye

Good hypotheses ensure that you can observe the results. 

#3: Observability

In order to measure the truth or falsity of your hypothesis, you must be able to see your variables and the way they interact. For instance, if your hypothesis is that the flight patterns of satellites affect the strength of certain television signals, yet you don’t have a telescope to view the satellites or a television to monitor the signal strength, you cannot properly observe your hypothesis and thus cannot continue your study.

Some variables may seem easy to observe, but if you do not have a system of measurement in place, you cannot observe your hypothesis properly. Here’s an example: if you’re experimenting on the effect of healthy food on overall happiness, but you don’t have a way to monitor and measure what “overall happiness” means, your results will not reflect the truth. Monitoring how often someone smiles for a whole day is not reasonably observable, but having the participants state how happy they feel on a scale of one to ten is more observable. 

In writing your hypothesis, always keep in mind how you'll execute the experiment.

#4: Generalizability 

Perhaps you’d like to study what color your best friend wears the most often by observing and documenting the colors she wears each day of the week. This might be fun information for her and you to know, but beyond you two, there aren’t many people who could benefit from this experiment. When you start an experiment, you should note how generalizable your findings may be if they are confirmed. Generalizability is basically how common a particular phenomenon is to other people’s everyday life.

Let’s say you’re asking a question about the health benefits of eating an apple for one day only, you need to realize that the experiment may be too specific to be helpful. It does not help to explain a phenomenon that many people experience. If you find yourself with too specific of a hypothesis, go back to asking the big question: what is it that you want to know, and what do you think will happen between your two variables?

body-experiment-chemistry

Hypothesis Testing Examples

We know it can be hard to write a good hypothesis unless you’ve seen some good hypothesis examples. We’ve included four hypothesis examples based on some made-up experiments. Use these as templates or launch pads for coming up with your own hypotheses.

Experiment #1: Students Studying Outside (Writing a Hypothesis)

You are a student at PrepScholar University. When you walk around campus, you notice that, when the temperature is above 60 degrees, more students study in the quad. You want to know when your fellow students are more likely to study outside. With this information, how do you make the best hypothesis possible?

You must remember to make additional observations and do secondary research before writing your hypothesis. In doing so, you notice that no one studies outside when it’s 75 degrees and raining, so this should be included in your experiment. Also, studies done on the topic beforehand suggested that students are more likely to study in temperatures less than 85 degrees. With this in mind, you feel confident that you can identify your variables and write your hypotheses:

If-then: “If the temperature in Fahrenheit is less than 60 degrees, significantly fewer students will study outside.”

Null: “If the temperature in Fahrenheit is less than 60 degrees, the same number of students will study outside as when it is more than 60 degrees.”

These hypotheses are plausible, as the temperatures are reasonably within the bounds of what is possible. The number of people in the quad is also easily observable. It is also not a phenomenon specific to only one person or at one time, but instead can explain a phenomenon for a broader group of people.

To complete this experiment, you pick the month of October to observe the quad. Every day (except on the days where it’s raining)from 3 to 4 PM, when most classes have released for the day, you observe how many people are on the quad. You measure how many people come  and how many leave. You also write down the temperature on the hour. 

After writing down all of your observations and putting them on a graph, you find that the most students study on the quad when it is 70 degrees outside, and that the number of students drops a lot once the temperature reaches 60 degrees or below. In this case, your research report would state that you accept or “failed to reject” your first hypothesis with your findings.

Experiment #2: The Cupcake Store (Forming a Simple Experiment)

Let’s say that you work at a bakery. You specialize in cupcakes, and you make only two colors of frosting: yellow and purple. You want to know what kind of customers are more likely to buy what kind of cupcake, so you set up an experiment. Your independent variable is the customer’s gender, and the dependent variable is the color of the frosting. What is an example of a hypothesis that might answer the question of this study?

Here’s what your hypotheses might look like: 

If-then: “If customers’ gender is female, then they will buy more yellow cupcakes than purple cupcakes.”

Null: “If customers’ gender is female, then they will be just as likely to buy purple cupcakes as yellow cupcakes.”

This is a pretty simple experiment! It passes the test of plausibility (there could easily be a difference), defined concepts (there’s nothing complicated about cupcakes!), observability (both color and gender can be easily observed), and general explanation ( this would potentially help you make better business decisions ).

body-bird-feeder

Experiment #3: Backyard Bird Feeders (Integrating Multiple Variables and Rejecting the If-Then Hypothesis)

While watching your backyard bird feeder, you realized that different birds come on the days when you change the types of seeds. You decide that you want to see more cardinals in your backyard, so you decide to see what type of food they like the best and set up an experiment. 

However, one morning, you notice that, while some cardinals are present, blue jays are eating out of your backyard feeder filled with millet. You decide that, of all of the other birds, you would like to see the blue jays the least. This means you'll have more than one variable in your hypothesis. Your new hypotheses might look like this: 

If-then: “If sunflower seeds are placed in the bird feeders, then more cardinals will come than blue jays. If millet is placed in the bird feeders, then more blue jays will come than cardinals.”

Null: “If either sunflower seeds or millet are placed in the bird, equal numbers of cardinals and blue jays will come.”

Through simple observation, you actually find that cardinals come as often as blue jays when sunflower seeds or millet is in the bird feeder. In this case, you would reject your “if-then” hypothesis and “fail to reject” your null hypothesis . You cannot accept your first hypothesis, because it’s clearly not true. Instead you found that there was actually no relation between your different variables. Consequently, you would need to run more experiments with different variables to see if the new variables impact the results.

Experiment #4: In-Class Survey (Including an Alternative Hypothesis)

You’re about to give a speech in one of your classes about the importance of paying attention. You want to take this opportunity to test a hypothesis you’ve had for a while: 

If-then: If students sit in the first two rows of the classroom, then they will listen better than students who do not.

Null: If students sit in the first two rows of the classroom, then they will not listen better or worse than students who do not.

You give your speech and then ask your teacher if you can hand out a short survey to the class. On the survey, you’ve included questions about some of the topics you talked about. When you get back the results, you’re surprised to see that not only do the students in the first two rows not pay better attention, but they also scored worse than students in other parts of the classroom! Here, both your if-then and your null hypotheses are not representative of your findings. What do you do?

This is when you reject both your if-then and null hypotheses and instead create an alternative hypothesis . This type of hypothesis is used in the rare circumstance that neither of your hypotheses is able to capture your findings . Now you can use what you’ve learned to draft new hypotheses and test again! 

Key Takeaways: Hypothesis Writing

The more comfortable you become with writing hypotheses, the better they will become. The structure of hypotheses is flexible and may need to be changed depending on what topic you are studying. The most important thing to remember is the purpose of your hypothesis and the difference between the if-then and the null . From there, in forming your hypothesis, you should constantly be asking questions, making observations, doing secondary research, and considering your variables. After you have written your hypothesis, be sure to edit it so that it is plausible, clearly defined, observable, and helpful in explaining a general phenomenon.

Writing a hypothesis is something that everyone, from elementary school children competing in a science fair to professional scientists in a lab, needs to know how to do. Hypotheses are vital in experiments and in properly executing the scientific method . When done correctly, hypotheses will set up your studies for success and help you to understand the world a little better, one experiment at a time.

body-whats-next-post-it-note

What’s Next?

If you’re studying for the science portion of the ACT, there’s definitely a lot you need to know. We’ve got the tools to help, though! Start by checking out our ultimate study guide for the ACT Science subject test. Once you read through that, be sure to download our recommended ACT Science practice tests , since they’re one of the most foolproof ways to improve your score. (And don’t forget to check out our expert guide book , too.)

If you love science and want to major in a scientific field, you should start preparing in high school . Here are the science classes you should take to set yourself up for success.

If you’re trying to think of science experiments you can do for class (or for a science fair!), here’s a list of 37 awesome science experiments you can do at home

Trending Now

How to Get Into Harvard and the Ivy League

How to Get a Perfect 4.0 GPA

How to Write an Amazing College Essay

What Exactly Are Colleges Looking For?

ACT vs. SAT: Which Test Should You Take?

When should you take the SAT or ACT?

Get Your Free

PrepScholar

Find Your Target SAT Score

Free Complete Official SAT Practice Tests

How to Get a Perfect SAT Score, by an Expert Full Scorer

Score 800 on SAT Math

Score 800 on SAT Reading and Writing

How to Improve Your Low SAT Score

Score 600 on SAT Math

Score 600 on SAT Reading and Writing

Find Your Target ACT Score

Complete Official Free ACT Practice Tests

How to Get a Perfect ACT Score, by a 36 Full Scorer

Get a 36 on ACT English

Get a 36 on ACT Math

Get a 36 on ACT Reading

Get a 36 on ACT Science

How to Improve Your Low ACT Score

Get a 24 on ACT English

Get a 24 on ACT Math

Get a 24 on ACT Reading

Get a 24 on ACT Science

Stay Informed

Get the latest articles and test prep tips!

Follow us on Facebook (icon)

Ashley Sufflé Robinson has a Ph.D. in 19th Century English Literature. As a content writer for PrepScholar, Ashley is passionate about giving college-bound students the in-depth information they need to get into the school of their dreams.

Ask a Question Below

Have any questions about this article or other topics? Ask below and we'll reply!

How to Identify a Hypothesis

Pharaba witt.

Three person using laptops while sitting on ladder.jpg

Identifying a hypothesis allows students to know what is being proven by a particular experiment or paper. Being able to determine the overall point not only makes you a more effective reader but also better at formulating your own theories when writing your own paper. By asking a few simple questions while you read, you should be able to pick out the intent of the author and identify the hypothesis.

Explore this article

  • Read over the beginning of the material
  • Look for if-then statements
  • Ask if the if-then statement
  • Read through the rest of the paper

1 Read over the beginning of the material

Read over the beginning of the material while asking what the purpose of the introduction is.

2 Look for if-then statements

Look for if-then statements. This type of wording is usually the hypothesis. It lays out a position for the overall paper or project.

3 Ask if the if-then statement

Ask if the if-then statement is testable or provable. Is this the type of statement you could supply evidence for in order to prove? Decide if you agree with the hypothesis. This puts you in a position to be convinced as you read the paper or follow the experiment.

4 Read through the rest of the paper

Read through the rest of the paper to determine if it is going in the direction you suspect. If you get to a point where the words seem to be proving something entirely different, revisit the first paragraph to see if there is another if-then statement.

  • Try not to jump to conclusions. Read the paragraph thoroughly through a few times to be certain you have not missed any other potential hypothesis.
  • When presented with the information, ask yourself what you would aim to prove. Oftentimes you will formulate a similar question. While your expectations might be different, picking out the hypothesis can be easier.
  • Not every hypothesis is accurate. Part of testing a theory is determining if the expectation is accurate. By the end of the paper the writer might draw a new conclusion. The author could even take that space to formulate an entirely new hypothesis.
  • Practice writing if-then statements. The more familiar you are with formulating hypothesis statements the better you will be at identifying the hypothesis.
  • 1 SlideShare: Hypothesis Conclusion (Geometry)
  • 2 Cornell University: Null Hypothesis vs. Alternative Hypothesis

About the Author

Pharaba Witt has worked as a writer in Los Angeles for more than 10 years. She has written for websites such as USA Today, Red Beacon, LIVESTRONG, WiseGeek, Web Series Network, Nursing Daily and major film studios. When not traveling she enjoys outdoor activities such as backpacking, snowboarding, ice climbing and scuba diving. She is constantly researching equipment and seeking new challenges.

Related Articles

How to Write a Rationale

How to Write a Rationale

How to Start a Thesis Statement

How to Start a Thesis Statement

How to Find a Thesis in an Essay

How to Find a Thesis in an Essay

How to Write a Thesis Statement in High School Essays

How to Write a Thesis Statement in High School Essays

Research Paper Thesis Topics

Research Paper Thesis Topics

What Is a Lead-in Statement?

What Is a Lead-in Statement?

Comprehension Skills That Require Critical Thinking

Comprehension Skills That Require Critical Thinking

How to Improve Adult Reading Comprehension

How to Improve Adult Reading Comprehension

Steps in Writing a Report

Steps in Writing a Report

How to Answer Open-Ended Essay Questions

How to Answer Open-Ended Essay Questions

How to Write a DBQ Essay

How to Write a DBQ Essay

How to Write a Paper: Title, Introduction, Body & Conclusion

How to Write a Paper: Title, Introduction, Body & Conclusion

How to Write a Thesis Statement for an Article Critique

How to Write a Thesis Statement for an Article Critique

How to Write an Analytical Book Report

How to Write an Analytical Book Report

How to Write a Hypothesis to an Analytical Essay

How to Write a Hypothesis to an Analytical Essay

How to Write an Introduction Paragraph With Thesis Statement

How to Write an Introduction Paragraph With Thesis...

How to Write a Good High School English Essay

How to Write a Good High School English Essay

How to Make an Introduction to an Informative Essay

How to Make an Introduction to an Informative Essay

What Are the Differences Between Bias & Fallacy?

What Are the Differences Between Bias & Fallacy?

How to Write a Persuasive Essay

How to Write a Persuasive Essay

Regardless of how old we are, we never stop learning. Classroom is the educational resource for people of all ages. Whether you’re studying times tables or applying to college, Classroom has the answers.

  • Accessibility
  • Terms of Use
  • Privacy Policy
  • Copyright Policy
  • Manage Preferences

© 2020 Leaf Group Ltd. / Leaf Group Media, All Rights Reserved. Based on the Word Net lexical database for the English Language. See disclaimer .

Pardon Our Interruption

As you were browsing something about your browser made us think you were a bot. There are a few reasons this might happen:

  • You've disabled JavaScript in your web browser.
  • You're a power user moving through this website with super-human speed.
  • You've disabled cookies in your web browser.
  • A third-party browser plugin, such as Ghostery or NoScript, is preventing JavaScript from running. Additional information is available in this support article .

To regain access, please make sure that cookies and JavaScript are enabled before reloading the page.

Existing newborn screenings may be able to identify risk of sudden infant death syndrome, study finds

Doctor listening to chest of baby boy with stethoscope

It’s a tragedy with few answers: Sudden infant death syndrome is the leading cause of death among babies from 1 month to 1 year old in the U.S. 

Affected infants generally appear healthy but die suddenly, often in their sleep, with no obvious explanation. The Centers for Disease Control and Prevention attributed nearly 1,400 infant deaths in 2020 to SIDS, as the condition is known — the latest available data.

Currently, there’s no way to tell whether a baby might develop SIDS. But a new study has found that a particular group of chemicals called metabolites, which are tested for as part of routine newborn screenings, could identify babies with an elevated risk.

The “heel stick” test is mandated for infants in all 50 states and involves collecting a blood sample from a baby’s heel shortly after birth. That is used to screen for genetic disorders like sickle cell disease via certain markers in the blood.

The new study, published Monday in the journal JAMA Pediatrics, found that a group of eight metabolites included on the newborn screening panel was associated with SIDS. The metabolites are produced as the body breaks down nutrients.

The results indicated that infants with particular levels of those metabolites in their blood had a higher risk of SIDS — up to 14 times the odds compared to infants with the lowest risk.

Laura Jelliffe-Pawlowski, one of the study’s authors and a professor at New York University, said the research suggests that “babies who die unexpectedly are more likely to be metabolically different than those who don’t.” 

Jelliffe-Pawlowski conducted the research while working as a professor of epidemiology and biostatistics at the University of California, San Francisco.

“We found that, at birth, we’re able to stratify kids as being very low risk — not zero risk, but very low risk — versus relatively very high risk for SIDS,” she said, adding that the screenings could indicate which babies need closer monitoring. 

The findings are based on data from infants born in California from 2005 to 2011. The researchers compared the results of newborn screening tests for 354 infants who died of SIDS with 1,416 infants who did not. They ran the data through a model to control for external factors that could influence a baby’s risk, like the mother’s age, race or health status.

Jelliffe-Pawlowski said the research indicates that babies with an increased risk of SIDS may have some difficulty using and breaking down sugars or fats.

“Maybe we’re looking at some food sensitivities,” she said, but added that much more research is needed into the link between SIDS risk and metabolism. “It’s impossible to tell at this point.”

Even if further studies confirm that metabolic abnormalities are a risk factor, the challenge is what to do if they appear on a baby’s newborn screening results. For the most part, SIDS is hard to prevent.

“I worry a little bit about what this could do to stress and anxiety, if we say, ‘Hey, my kid’s at an increased odds for this, but there’s nothing I can do,’” said Dr. Stephanie Napolitano, a neonatology physician at Nationwide Children’s Hospital who was not involved in the new study.

Parents can lower the risk of SIDS by placing babies on their backs when they sleep and making sure their room isn’t too hot, but those interventions aren’t necessarily sufficient.

Dr. Joanna Parga-Belinkie, a neonatologist at Children’s Hospital of Philadelphia who also wasn’t involved, similarly questioned whether newborn screenings can provide enough answers.

“It’s likely that newborn screening itself is not really going to be sensitive or specific enough to be a great screen for SIDS,” she said, adding that, at best, it might tip off doctors that they need to do additional testing for babies with an abnormal metabolic profile.

Researchers generally think that SIDS results from a combination of factors, not just one. It is more likely to occur when infants are at a critical stage of development, making them more vulnerable, and when they’re exposed to a stressor, like sleeping face down, which can lower oxygen and raise carbon dioxide in their blood. Many experts also think that some underlying abnormality, such as a genetic, metabolic or neurological issue, is likely at play.

The new study “doesn’t knock out the possibility that there’s an underlying genetic phenomenon,” said Dr. Debra Weese-Mayer, chief of the pediatric autonomic medicine division at Lurie Children’s Hospital of Chicago, who wasn’t involved in the research. 

“But every baby that’s born isn’t going to get a deep-dive genetic evaluation — they do get newborn screenings,” she added.

Some recent research on SIDS has pointed to other risk factors, including serotonin, which helps regulate heart rate and breathing. A study last year suggested that an altered brain receptor involved in the serotonin system could prevent some infants from gasping for air when they don’t get enough oxygen during sleep. 

A 2022 study, meanwhile, suggested that babies who died of SIDS had lower levels of a chemical messenger involved in the autonomic nervous system, which regulates involuntary processes like blood pressure and breathing.

Experts said it’s too soon to say whether the metabolic differences detected in the new study are related to the neurological differences identified in previous research.

“Your body is so interconnected. Your autonomic nervous system obviously has an impact and plays a role in your metabolism,” Napolitano said. “Figuring out how all of those pieces fit together is still the question.”

how to identify the hypothesis in a research study

Aria Bendix is the breaking health reporter for NBC News Digital.

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • Open access
  • Published: 09 September 2024

Trends of Toxoplasma gondii and common transfusable venereal infections among blood donors in Menoufia Province, Egypt

  • Marwa A. Gouda   ORCID: orcid.org/0000-0003-1723-6792 1 ,
  • Sara A. Saied 2 ,
  • Walaa Mohamed Omar Ashry 3 ,
  • Raafat Abd-Rabow Abd-Eltwab 4 ,
  • Mohamed Morshdy Aldesoky 4 ,
  • Omnia Ahmed El-dydamoni 5 ,
  • Marwa Yousef 6 &
  • Mona M. El-Derbawy 7  

Scientific Reports volume  14 , Article number:  20920 ( 2024 ) Cite this article

Metrics details

  • Epidemiology
  • Microbiology

Blood transfusion has a hazard of transmission of many pathogens, including Toxoplasma gondii ( T. gondii ) and other venereal infections. It is crucial to conduct epidemiological surveillance to detect the prevalence of these pathogens. The study aimed to assess the seroprevalence of T. gondii and common transfusable venereal infections among healthy blood donors in Menoufia Province, Egypt, and identify associated risk factors. Four hundred twenty individuals were recruited between January and April 2023 for cross-sectional descriptive research from the blood banks of Menoufia University medical hospitals. Collected blood samples were screened for anti- T. gondii IgM and IgG, HBsAg, anti-HCV antibodies, HIV p24 antigen and anti-HIV antibodies, and anti- Treponema pallidum antibodies. 46 (11.0%) and 22 donors (5.2%) individuals tested positive for anti- T. gondii IgG with a 95% CI (8.3–14.6) and IgM with a 95% CI (3.5–8.1), respectively, while one patient (0.2%) was positive for both antibodies. Regarding venereal infections, 12 (2.9%) were positive for HBV, 6 (1.4%) were positive for HCV, 7 (1.7%) were positive for HIV, and none of the tested population showed positivity for syphilis. Female gender, consumption of raw meat, agricultural environment, poor awareness about T. gondii , and blood group type (especially AB and O groups) were identified as independent risk factors for T. gondii infection. The study highlights the importance of testing blood donors for T. gondii and common transfusable venereal illnesses. Starting health education programs and preventative measures, such as suitable meat handling and cleanliness practices, is critical for minimizing the occurrence of these illnesses. Larger-scale additional study is advised to confirm these results and provide guidance for public health initiatives.

Introduction

Blood transfusion is a critical medical procedure vital for patients’ treatment. Every year, millions of people are exposed to avoidable life-threatening risks as a result of hazardous blood transfusions. The major transfusion-transmitted infections are Hepatitis B virus (HBV), Hepatitis C virus (HCV), human immunodeficiency virus (HIV), and syphilis, which pose significant threats to recipient safety 1 .

Toxoplasma gondii is a food-borne zoonotic protozoan parasite capable of infecting all homoeothermic vertebrates; however, felids, which are members of the Felidae family, serve as the definitive hosts for ( T. gondii ) infection, as both the sexual (intestinal) and asexual (tissue) cycles occur simultaneously in these animals (cats), resulting in un-sporulated non-infectious oocyst elimination and excretion 2 .

Oocysts may shed in vast numbers, even though they typically shed within 1–3 weeks. Oocysts sporulate in the environment in one to five days and spread infection. Warmer settings can facilitate sporulation more quickly, which increases the rate at which oocysts are found in the environment 3 . Temperature, humidity, and precipitation patterns all influence the survival and dissemination of T. gondii oocysts in the environment 4 . Warmer temperatures and greater rainfall can help oocysts survive and spread, potentially boosting infection rates in both animal and human populations 5 .

The infection with T. gondii usually appears as mild manifestations observed on exposure in immunocompetent people, such as warmth, tiredness, and cervical lymphadenopathy, which are self-limited; however, pneumonitis and encephalitis are complications of the infection, which is severe in immunocompromised people (such as AIDS patients) and blood recipients (such as those with thalassemia, haemophilia, dialysis patients, organ transplant recipients, and neonatal jaundice) 6 , 7 .

Co-infections can increase the severity of some infectious disorders. It has the potential to affect immune responses, and disease severity, and increase inflammatory cytokines 8 . Since T. gondii is considered one of the most successful parasites on the planet, the T. gondii disease burden has been classified as one of the most significant parasitic disorders. In order to reduce the occurrence of T. gondii infection among humans, it is urgent to understand the current status of this pathogen. Our study aimed to estimate the current situation of T. gondii and other transfusable venereal infections among blood donors in Menoufia Province, reflecting previously unknown regional outlines. Also, the study evaluated possible risk factors linked to T. gondii exposure in the population. Finally, the study intended to propose community-wide methods to raise awareness and prevent T. gondii infection.

Subjects and methods

Ethical approval and consent to participate.

This study was conducted in accordance with the ethical principles outlined in the Declaration of Helsinki and was approved by the National Liver Disease Institute’s research ethics committee (NLI IRB procedure N. 00,422/2022). All subjects have given informed consent after being informed about the study’s objectives, the importance of participation as part of the community, and any potential adverse side effects of puncture. All subjects gave informed consent after being informed about the study’s objectives, the importance of participation as part of the community, and any potential negative side effects of puncture.

Study design

This cross-sectional descriptive study involved 420 blood donors’ serum samples. Samples were gathered randomly from blood donor volunteers in Menoufia University hospitals’ blood banks between January and April 2023. The inclusion criteria included individuals aged 18 and above who volunteered to participate by giving blood and providing informed permission. Individuals with a history of chronic diseases, recent infections, or who refused to participate were excluded from the study. Menoufia Province is a governorate in northern Egypt near the Nile Delta. Its surface area is about 2,543.03 km 2 , with 4,366,000 people in total, as reported in 2018, and its longitude and latitude are 30.52° N and 30.99° E. The governorate is considered one of Egypt’s regions with the highest population densities and is an important center for liver transplantation at the National Liver Institute.

Sample size estimation

The present sample size was calculated according to Yılmaz et al. (2021) 9 , who revealed 2.3% T. gondii IgM seropositivity at alpha error 0.05 and the power of the study 90%; the estimated sample size was 396 participants. Under the following formula,

e2,where n = sample size, z = standard error with the chosen level of confidence (1.96), p  = proportion detected in the reference study, q = 1 −  p , and e = acceptable sample error (0.05).

Questionnaire

A predesigned questionnaire was taken from each participant. It included:

Socio-demographic data.

Awareness about T. gondii infection: was assessed through a series of questions assessing the fundamental understanding of the disease, the transmission routes, hosts, the role of raw meat consumption in transmission, agricultural-related activities and other suggested risk factors, and possible complications of T. gondii infection, particularly for pregnant women and persons with weakened immune systems. Through 15 questions that were scored as (2, for correct answer; 1, for incomplete answer; and 0, for wrong answer, with a total score of 30; the good awareness level was at a score of 15 or above while the score less than 15 was considered as poor awareness.

Risk factors associated with T. gondii infection: including dealing with cats, agricultural environment-related activity, eating or dealing with raw meat as well as hand washing before eating, it also included other data, including blood group type, and previous blood transfusion.

Blood Sampling

Each person donated three mL of venous blood, centrifuged for five minutes at 3000 rpm to extract the serum and kept at − 20 °C for further laboratory analysis.

Enzyme-linked immunosorbent assay (ELISA)

Serum samples were transferred to the Parasitology Laboratory, Department of Clinical and Molecular Parasitology, National Liver Institute, Menoufia University, Egypt, to detect T. gondii -specific IgM and IgG antibodies. All were analyzed using an ELISA kit that is available commercially (Cat No. SL2055Hu_1 and SL2054Hu-1, SunLong Biotec). The manufacturer’s guidelines were fulfilled for running the analysis. Based on ELISA kits, positive samples were considered at titers above 1 and 3 IU for IgM and IgG, respectively. Negative samples were defined at values below 0.8 and 1 IU for IgM and IgG, respectively. Between the two ranges, a grey zone is reported. The optical density (OD) was measured under a 450 nm wave.

Venereal infection screening

All samples were tested for HBV surface antigen (HBsAg), anti-HCV antibodies, HIV p24 antigen, anti-HIV antibodies, and anti- T. pallidum antibodies. The venereal infection screening was conducted using an immunoassay Cobas e 601 immunoassay analyzer (Roche Diagnostics, Germany), which employs electrochemiluminescence (ELC) technology. The tests used were Elecsys HBSAGII (Cat No. 07251076190), Elecsys AHCVII (Cat No. 06427405190), Elecsys HIV Duo test (Cat No. 07229542190), and Elecsys Syphilis (Cat No. 07251378190), all provided by COBAS (Roche Diagnostics) and performed according to the manufacturer’s instructions.

Statistical analysis

Categorical and quantitative data were analyzed using SPSS (Statistical Package Software for Social Science) version 20.0 (SPSS Inc., Chicago, IL, USA). The prevalence of T. gondii antibodies and positivity to other transfusable venereal infections were assessed through frequency, percentage, and a 95% confidence interval (CI). Comparing positive and negative T. gondii antibody groups regarding qualitative variables by chi-squared test and quantitative normally distributed data was tested by student’s t-test. The study employed multivariate binary logistic regression analysis to calculate adjusted odds ratios (ORs) and 95% confidence intervals (CIs) to determine independent risk factors for T. gondii infection. A p-value of less than 0.05 determined a statistically significant result.

Prevalence of transfusable venereal infections

Regarding the prevalence of transfusable venereal infections, initial screenings (for HBV, HCV, HIV, and syphilis) detected 12 cases (2.9%) positive for HBsAg, six positive cases for anti-HCV antibodies (1.4%), seven cases positive for HIV p24 antigen and anti-HIV antibodies (1.7%), and nonpositive for syphilis (Fig.  1 ,B).

figure 1

( A ): Prevalence of T. gondii among blood donors ( B ): Prevalence of transfusable venereal diseases.

Seropositivity of T. gondii infection

The ELISA test screened 420 blood samples for T. gondii- specific IgG and IgM antibodies. Out of them, 69 (16.4%) blood donors had anti- T. gondii antibodies in their sera (IgG, IgM, or both) (Fig.  1 , A). Forty-six cases (11%) were IgG-only seropositive, 22 cases (5.2%) were IgM-positive, and one case was positive for both IgG and IgM (0.2%) (Table 1 ).

Demographic characteristics of the studied population

Among the healthy blood donors enlisted in this research, the respondents’ average age was 32.39 ± 10.51 years (with a range of 17–66 years). Ages 21–40 comprised the largest age cohort of blood donors (68.1%). The vast bulk of the subjects (97.1%) were men. Sixty-six-point two percent (66.2%) of the volunteers were highly educated (Table 2 ).

Significant risk factors

Sixty-three (15.4%) of male-positive cases and six (50%) of female-positive cases indicated that the female sex was a major risk factor. Also, dealing with cats, eating rand, dealing with row meat, the agricultural environment, poor awareness about T. gondii infection, and blood groups were significant risk factors for T. gondii infection. Age, residence, educational level, and the presence of other transfusable venereal infections weren’t associated with the T. gondii infection (Table 3 ). There was no significant association between seropositivity for T. gondii and venereal infections (Table 4 ).

Multivariate analysis of independent risk factors associated with T. gondii infection

Multivariate regression analysis revealed that female gender, consumption of raw meat, agriculture environment and poor T. gondii infection awareness were independent risk factors for T. gondii infection with an odds ratio (95% CI): 3.1 (1.81–9.45), 32.62 (13.14–81.0), 4.57 (2.01–10.41), 12.66 (4.53–35.42) for the female gender, consumption of raw meat, agriculture environment, lack of T. gondii infection awareness respectively while for ABO grouping with taking B group as a reference, AB and O groups were independent risk groups with odds ratio (95% CI): 3.26 (1.92–7.84) & 4.58 (2.11–11.47) respectively (Table 5 ).

Understanding the prevalence of T. gondii and venereal infectious pathogens and risk factors among blood donors in Menoufia Province is crucial for public health strategies. This research is an epidemiologic report on seropositivity to T. gondii infection among healthy blood donors in Menoufia blood banks, Egypt. Menoufia Governorate had a low prevalence compared to most worldwide studies. In this research, the authors reported a total seroprevalence of 16.4% (95% CI 13–20.3); IgM-positive cases represented 5.5%, posing a risk of transmitting the infection to blood recipients. By integrating molecular approaches, supplementary serological markers, and direct proof of parasitemia, the hypothesis can be substantially reinforced, leading to a more thorough evaluation of the risk of T. gondii infection by blood transfusion, which is undertaken currently in epidemiological national research funded by STDF aiming to complete the current research.

Globally, according to estimates by Foroutan-Rad et al. 10 , T. gondii infection affects 33% of blood donors worldwide, with rates highest in Africa (46%) and lowest in Asia (29%) 10 . The prevalence rate varies by nation: 6.26% in China 11 , 9.3% in Taiwan 12 , 19.66% in India 13 , 20.5% in Serbia 14 , 25.6% in Turkey 9 , 36% in Portugal 15 , 48.1% in Brazil 16 , and 67.92% in Côte d’Ivoire 17 .

In other African countries, the seroprevalence among tested blood donors was 44.4% in South-West and Central-East Tunisia 18 and 47.7% in Sidi Bel Abbès, West Algeria 19 . The difference in serological methods used across studies is probably the main factor in the difference in reported prevalence of T. gondii infection among different nations.

Compared with previous findings from other Egyptian governorates, the current seroprevalence rates are consistent with those from El-Wadi El Gadded, which had the lowest incidence between 1 and 25% 20 . Earlier studies reported a prevalence between 33.7 and 67.4% of healthy Egyptian blood donors had antibodies to T. gondii infection, comparable to a range of 3–42.5% in the general Egyptian population. Increased seropositivity was seen. in the Lower Egypt bordering governorates of Sharqia and Qalyoubia (38.8% and 27.5% respectively), as well as in the rural Upper Egypt governorate of Beni-Suef (35.2%) 21 . Cairo also had high infection rates (between 30 and 42.5%) 21 . The studied group’s higher level of illness knowledge is probably the reason for the reduced infection prevalence when compared to estimates from throughout the world. These differences point to possible socioeconomic and geographic variables affecting T. gondii exposure in Egypt.

Multivariate regression analysis displayed that contact with cats, consuming raw or undercooked meat, and having agricultural pursuits are significant risk factors for T. gondii seropositivity, demonstrating that both infection routes—ingesting oocysts (soil contamination, contaminated water, and contaminated raw food e.g. salads, vegetables) and tissue cysts found in undercooked meat (a foodborne transmission)—showed up among the blood donors with different educational levels. These findings are supported by earlier studies 9 , 22 . From their results, domestic cats may be related to the exposure of the individuals included in the study to T. gondii . However, it is worth noting that direct contact with cats does not guarantee transmission of the parasite since T. gondii oocysts are eliminated as non-infective. In contrast to the present findings, El-Deeb and their alleles 23 found no statistically significant association between seropositivity concerning contact with domestic cats and meat consumption in Menoufia, Egypt. However, contact with soil was a considerable risk factor, which could be explained by the prevalence of domestic and stray cats, both more susceptible to parasites 23 .

Likewise, in the research done by Mahmoudvand et al. 22 , the prevalence of T. gondii infection in the current study was significantly higher in female donors (95%CI 1.71–17.52) despite the limited number of female participants in our study compared to male donors. Mahmoudvand et al. 22 , attributed this disparity to the female daily exposure to more tissue cysts and oocysts. Handling raw meat and gardening are cultural practices and household activities that may expose women to greater levels of T. gondii . Therefore, validating these findings using a more extensive sample size is necessary. These results were not supported by Hosseini and his/ her colleagues 24 , who did not find gender a significant risk factor.

Seropositivity in this research was higher in rural areas (53.6%) than in urban areas (46.4%); however, the difference was insignificant. This finding contrasts with those reported by some authors 22 , 24 . They hypothesized in their research that the overabundance of cats, inadequate sanitation of the environment, and lax hygiene standards might cause this difference.

The ABO phenotype and RhD antigen were previously associated with pathogenic protozoa of the phylum Apicomplexa. The protective effect of type O blood against severe malaria has been observed, possibly explaining the high prevalence of type O in regions where Plasmodium falciparum is endemic 25 .

Our current research discovered that blood donors carrying the type O blood group had the highest incidence of T. gondii infection and were riskier, with a significant difference between T. gondii and ( P  < 0.001), which is equivalent to the findings reported previously in northern Egypt 26 but different from those reported in Iran, where they found blood group B carriers more susceptible to infection with T. gondii infection 24 . Following the findings of Hosseini et al. research, the level of disease between Rh-positive and negative samples was not different 24 . Despite the association our study found between the blood group and seropositivity, this does not prove that the two are causally related to the onset of illness. Our study’s findings should be seen as preliminary and need more investigation in follow-up studies.

Most positive cases ranged from 21 to 40 years; however, age was not a significant risk factor in our univariate analysis. In the same vein, research done in Ardabil Province, northwestern Iran, demonstrated that most positive cases were aged 31–40 with no significant difference 27 . Unlike the current finding, other authors found that age substantially contributes to infection. Their conclusion was attributed to the cumulative effect of being exposed to the parasite over time 14 .

This research showed a higher prevalence of HBsAg (2.9%), followed by HIV and HCV (1.7% and 1.4%, respectively). Syphilis cases were absent among the studied population. The higher percent of HBsAg compared to other screened transfusion-transmissible infections was consistent with similar reports from a study among blood donors in Bahir Dar, North West, Ethiopia, where HBV was prevalent in 2.8% of cases, followed by HIV and HCV 28 .

Co-infections can worsen the symptoms of some infectious disorders. It can modulate immune responses, exacerbate disease severity, and increase inflammatory cytokines. While this study did not find a substantial prevalence of co-infection between T. gondii and the viral agents tested (HBV, HIV, and HCV), other research suggests that these pathogens may interact. In Egypt, for example, T. gondii co-infection with HBV and HCV was reported 29 . Furthermore, HIV infection may impair the immune system, increasing the risk of reactivating latent T. gondii infection 8 , 11 . T. gondii co-infection with certain viruses must be addressed to prevent, detect, and cure infections. It needs further examination and research.

Conclusion and recommendations

This cross-sectional research investigated the seroprevalence of T. gondii and common transfusable venereal infections across healthy blood donors in Egypt’s central Menoufia blood banks. According to this study, the governorate of Menoufia had a low incidence of T. gondii infection among blood donors.

Therefore, testing for T. gondii infection is required in blood donors to prevent potentially fatal outcomes for blood receivers. Building programs for health education are also required as a suitable strategy for preventing diseases.

Value-added of this research

We addressed the seroprevalence of T. gondii in the studied population, which provides a step for further studies and implementation research on a larger scale to test preventive strategies in the future.

Data availability

This article encompasses all data that was generated or evaluated.The corresponding author will provide any additional inquiries.

Abbreviations

Complete blood picture

Hepatitis B virus

Treponema pallidum

Hepatitis C virus

Human immunodeficiency virus

Enzyme-linked immunosorbent assay

Immunoglobulin G

Immunoglobulin M

Sultan, S. et al. Trends of venereal infections among healthy blood donors at Karachi. 19 , 192–196 (2016).

Pozio, E. How globalization and climate change could affect foodborne parasites. Exp. Parasitol. 208 , 107807 (2020).

Article   PubMed   Google Scholar  

Cantey, P. T., Montgomery, S. P. & Straily, A. Neglected parasitic infections: What family physicians need to know—A CDC update. Am. Fam. Physician. 104 (3), 277–287 (2021).

PubMed   PubMed Central   Google Scholar  

Yan, C., Liang, L.-J., Zheng, K.-Y. & Zhu, X.-Q. Impact of environmental factors on the emergence, transmission and distribution of Toxoplasma gondii . Parasit. Vectors 9 , 137 (2016).

Article   PubMed   PubMed Central   Google Scholar  

Shapiro, K. et al. Environmental transmission of Toxoplasma gondii : Oocysts in water, soil and food. Food waterborne Parasitol. 15 , e00049 (2019).

Elhence, P., Agarwal, P., Prasad, K. N. & Chaudhary, R. K. Seroprevalence of Toxoplasma gondii antibodies in North Indian blood donors: Implications for transfusion transmissible toxoplasmosis. Transfus. Apher. Sci. Off. J. World Apher Assoc. Off. J. Eur. Soc. Haemapheresis 43 , 37–40 (2010).

Google Scholar  

Arefkhah, N. et al. Molecular genotyping and serological evaluation of Toxoplasma gondii in mothers and their spontaneous aborted fetuses in Southwest of Iran. Comp. Immunol. Microbiol. Infect. Dis. 66 , 101342 (2019).

Bazmjoo, A. et al. Toxoplasma gondii , HBV, and HCV co- infection and their correlation with CD4 cells among Iranian HIV-positive patients. Immunity. Inflamm. Dis. 11 , 794 (2023).

Article   Google Scholar  

Yılmaz, A., Yazıcı, E. & Turk, C. Assessment of seroprevalence of Toxoplasma gondii in blood donors applied to the blood center of Gazi University Hospital. Iran. J. Microbiol. 13 , 243–247 (2021).

Foroutan-Rad, M. et al. Toxoplasmosis in blood donors: A systematic review and meta-analysis. Transfus. Med. Rev. 30 , 116–122 (2016).

Wang, T. et al. Seroprevalence of Toxoplasma gondii infection in blood donors in mainland China: A systematic review and meta-analysis. Parasite https://doi.org/10.1051/parasite/2018037 (2018).

Chiang, T.-Y. et al. Seroepidemiology of Toxoplasma gondii infection among healthy blood donors in Taiwan. PLoS One 7 , e48139 (2012).

Article   ADS   PubMed   PubMed Central   Google Scholar  

Stephen, S., Pradeep, J., Anitharaj, V. & Janarthanam, V. Seroprevalence of toxoplasmosis in voluntary blood donors of Puducherry and surrounding districts of Tamil Nadu. J. Parasit. Dis. 41 , 1158–1161 (2017).

Stopić, M. et al. Epidemiology of toxoplasmosis in SERBIA: A cross-sectional study on blood donors. Microorganisms 10 , 492 (2022).

Rodrigues, F. T. et al. Seroepidemiology of Toxoplasma gondii in blood donors in Portugal. Transfus. Apher. Sci. 59 , 102777 (2020).

Nakashima, F. et al. Serum IgG anti- Toxoplasma gondii antibody concentrations do not correlate nested PCR results in blood donors. Front. Cell. Infect. Microbiol. 9 , 461 (2019).

Siransy, L. et al. Immunity status of blood donors regarding Toxoplasma gondii infection in a Low-Income district of Abidjan, Côte d’Ivoire. West Africa. J. Immunol. Res. 2016 , 6830895 (2016).

PubMed   Google Scholar  

Lachkhem, A. et al. Seroprevalence of Toxoplasma gondii among healthy blood donors in two locations in Tunisia and associated risk factors. Parasite 27 , 51 (2020).

Belkacemi, M. & Heddi, B. Toxoplasmosis immunity status of blood donors in Sidi Bel Abbès. West Algeria. Cureus 14 , e28826 (2022).

Bayoumy, A., Ibrahim, W. L. F., Abou El Nour, B. M. & Said, A. A. A. The parasitic profile among school children in El-wadi El-gadded governorate. Egypt. J. Egypt. Soc. Parasitol. 46 , 605–612 (2016).

Abou Elez, R. M. M., Hassanen, E. A. A., Tolba, H. M. N. & Elsohaby, I. Seroprevalence and risk factors associated with Toxoplasma gondii infection in domestic rabbits and humans. Vet. Parasitol. Reg. Stud. Rep. 8 , 133–137 (2017).

Mahmoudvand, H. et al. Seroprevalence and risk factors of Toxoplasma gondii infection among healthy blood donors in south-east of Iran. Parasite Immunol. 37 , 362–367 (2015).

El Deeb, H. K., Salah-Eldin, H., Khodeer, S. & Allah, A. A. Prevalence of Toxoplasma gondii infection in antenatal population in Menoufia governorate. Egypt. Acta Trop. 124 , 185–191 (2012).

Hosseini, S. A. et al. A serological investigation and genotyping of Toxoplasma gondii among Iranian blood donors indicates threat to health of blood recipients. Transfus. Apher. Sci. 59 , 102723 (2020).

Jajosky, R. P. et al. The impact of ABO and RhD blood types on Babesia microti infection. PLoS Negl. Trop. Dis. 17 , e0011060 (2023).

Elsheikha, H. M. et al. Seroprevalence of and risk factors for Toxoplasma gondii antibodies among asymptomatic blood donors in Egypt. Parasitol. Res. 104 , 1471–1476 (2009).

Asfaram, S. et al. High occurrence of Toxoplasma gondii infection among blood donors in Ardabil Province as main focus of zoonotic visceral leishmaniosis, northwestern Iran. Ann. Parasitol. 67 , 611–617 (2021).

Legese, B. et al. Association of ABO and rhesus blood types with transfusion-transmitted infections (TTIs) among apparently healthy blood donors at Bahir Dar blood bank, Bahir Dar, North West, Ethiopia: A retrospective cross-sectional study. J. Blood Med. 13 , 581–587 (2022).

El-sayed, N. M., Ramadan, M. E. & Ramadan, M. E. Toxoplasma gondii infection and chronic liver diseases: Evidence of an association. Tropical Med. Infect. Dis. https://doi.org/10.3390/tropicalmed1010007 (2016).

Download references

Acknowledgements

This work was created at the National Liver Institute and Faculty of Medicine at Menoufia University in Shebin El Kom City, Egypt. We appreciate the blood donors who took part in our research.

Open access funding provided by The Science, Technology & Innovation Funding Authority (STDF) in cooperation with The Egyptian Knowledge Bank (EKB). The research paper, writing, and publication were done without receiving any financial assistance.

Author information

Authors and affiliations.

Department of Clinical and Molecular Parasitology, National Liver Institute, Menoufia University, Menoufia, Egypt

Marwa A. Gouda

Department of Clinical Pathology, National Liver Institute, Menoufia University, Menoufia, Egypt

Sara A. Saied

Department of Medical Microbiology and Immunology, Damietta Faculty of Medicine (Girls), Al-Azhar University, Damietta, Egypt

Walaa Mohamed Omar Ashry

Department of Medical Microbiology and Immunology, Damietta Faculty of Medicine, Al-Azhar University, Damietta, Egypt

Raafat Abd-Rabow Abd-Eltwab & Mohamed Morshdy Aldesoky

Department of Medical Microbiology and Immunology, Faculty of Medicine for Girls (Cairo), Al-Azhar University, Cairo, Egypt

Omnia Ahmed El-dydamoni

Department of Epidemiology and Preventive Medicine, High Institute of Public Health, Alexandria University, Alexandria, Egypt

Marwa Yousef

Department of Medical Parasitology New Damietta Faculty of Medicine (Girls), Al-Azhar University, Damietta, Egypt

Mona M. El-Derbawy

You can also search for this author in PubMed   Google Scholar

Contributions

All authors contributed to the design and conception of the research. M.A.G., W.M.O.A., R.A.A., M.M.A., O.A.E., M.Y., S.A.S., and M.M.E. gathered and analyzed the data. The first draft of the manuscript was written by M.A.G., and all other authors offered comments on previous drafts. All authors have reviewed and approved the final draft ready for publication and agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Corresponding author

Correspondence to Marwa A. Gouda .

Ethics declarations

Competing interests.

The authors declare no competing interests.

Additional information

Publisher's note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Cite this article.

Gouda, M.A., Saied, S.A., Ashry, W.M.O. et al. Trends of Toxoplasma gondii and common transfusable venereal infections among blood donors in Menoufia Province, Egypt. Sci Rep 14 , 20920 (2024). https://doi.org/10.1038/s41598-024-70740-9

Download citation

Received : 24 March 2024

Accepted : 20 August 2024

Published : 09 September 2024

DOI : https://doi.org/10.1038/s41598-024-70740-9

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Toxoplasma gondii Prevalence
  • Blood group antigens

By submitting a comment you agree to abide by our Terms and Community Guidelines . If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

how to identify the hypothesis in a research study

Your cart is empty. Let's change that.

Theragun

ProCare Device Coverage

Decorative Image for Procare product

ProCare is the easiest way to protect your device from the unexpected. Only available at time of checkout.

  • Enjoy a one-time Total Peace of Mind device replacement, no questions asked, with shipping costs covered both ways.

TheraFace Depuffing Wand: Clinically Proven to Enhance Skin Health, According to New Study 

Clinical Study Partner: Media Lab Science, Los Angeles   Authors : Therabody Scientists: Tim Roberts, MSc; Rachelle Reed, PhD, MS, ACSM-EP; Kyle Silvey, PhD, CSCS; Michelle Darian, MS, MPH, RD, LDN 

Therabody’s ® latest innovation, the TheraFace Depuffing Wand, is making waves in the skincare industry. This ultra-portable, heat and cold treatment device is clinically proven to enhance elasticity and radiance at home and on the go.   

Media Lab Science, Therabody’s research partner for beauty and skincare devices, conducted a study to assess the TheraFace Depuffing Wand device’s clinical efficacy. [ 1 ]  

This article outlines clinical findings after just one use of the TheraFace Depuffing Wand.  As results from the four-week trial of the daily use of TheraFace Depuffing Wand are available, they will also be included in this blog.  

Keep reading to learn more about how the TheraFace Depuffing Wand is clinically proven to enhance objective skin elasticity, radiance, and firmness. Plus, hear what study participants noticed following a single treatment. 

What Does TheraFace Depuffing Wand Do?  

The TheraFace Depuffing Wand is a single skincare device with two powerful, science-backed modalities — heat and cold therapy.  

Each modality has three temperature settings: low, medium, and high. Unlike ice, which can be too cold and damage your face’s delicate skin, TheraFace Depuffing Wand uses safe, science-backed temperatures. This skincare device reaches desired temperatures in seconds and actively works to maintain the temperature for the entire treatment. 

So, why were these two modalities included? Let’s dive into the science-backed benefits of heat and cold therapy and their application to the skin.  

Heat Therapy 

Heat therapy , also known as thermotherapy, exposes a treatment area to high temperatures for therapeutic purposes. A rise in skin temperature leads to the widening of blood vessels (vasodilation), increasing blood flow and boosting circulation to the treatment area. This allows heat to help relieve facial tension. [ 2 ]  

When heat is applied to the face , blood flow and increased circulation can improve measures of facial health like fine lines. It also stimulates fibroblasts to enhance collagen production and target skin tightness and fine lines further. [ 3 , 4 ] 

A recent systematic review also suggests that heat may positively benefit lymphatic circulation (the movement of fluids that contribute to puffiness) in those with lymphodema. [ 5 ] 

Cold Therapy 

Cold therapy , or cryotherapy, exposes a treatment area to low temperatures for therapeutic purposes. Cold therapy is traditionally used to decrease inflammation and swelling, such as a rolled ankle, but it can also be used on the face, where puffiness and undereye bags can arise. In fact, the American Academy of Ophthalmology recommends using a cold compress to help reduce under-eye bags. [ 6 ] 

When cold is applied locally to a treatment area, it decreases skin and tissue temperature, effectively limiting blood flow to the area. This is especially beneficial because temporarily limiting blood flow can decrease the formation of swelling. When cold is applied to the skin, it can limit blood flow, decreasing inflammation levels. [ 7 , 8 ] 

Study Purpose 

Using a 10-minute protocol that includes both heat and cold therapy, the study aimed to investigate the impact of TheraFace Depuffing Wand device for its ability to improve both objective clinical measurements and self-reported facial health outcomes.  

The primary goal of the study was to measure the immediate, acute benefits of the Wand on outcomes related to depuffing, radiance, dark circles, and related measures – both objectively and subjectively. 

To better understand long-term benefits of using the TheraFace Depuffing Wand, the study also aimed to measure the chronic benefits of 4 weeks of daily use of the Wand on outcomes related to depuffing, radiance, dark circles, and related measures – both objectively and subjectively. 

Study Hypothesis 

After following a heat and cold protocol, TheraFace Depuffing Wand will yield both immediate improvements and improvements after 4-weeks of use in objective and subjective outcomes. 

Study Methods 

Study participants  .

The study included 58 healthy adults ages 25-65 years old, with an average age of 44. Participants skewed female (88%). All Fitzpatrick Skin Types were represented in the sample. At baseline, the participants presented with either dark circles, puffiness, or both.   

Research Design 

A comprehensive clinical study on the efficacy of the TheraFace Depuffing Wand was conducted to understand both acute benefits of one time use of the product, as well as long-term benefits after using the device daily. Clinical assessments were performed on study participants at two time periods: after a single use of the device and after using the device daily for four weeks.  

Study Protocol 

Participants followed a study protocol that included both heat and cold therapy. The 8-10 minute treatment was performed on clean, dry skin. Participants were instructed to follow the protocol below.  

foam roller

Data Collection 

Clinical data was collected from participants through multiple collection modalities: Visia®-CR imaging, expert grading, and Cutometer® MPA 580 instrumental device.  

Visia®-CR imaging is a quantitative skin complexion analysis and visual assessment of facial features like facial contour, spots, and pores. [ 9 ] The Cutometer® MPA 580 instrumental device measured skin elasticity and firmness. [ 10 ] 

Participants completed self-assessment perceptual surveys, including 21 questions at baseline and 28 questions after week 4, each assessed on a 5-point Likert scale. The questions asked about self-perceived skin appearance, including outcomes like changes in fine lines and wrinkles, puffiness, and radiance.   

Surveys were administered twice, after the first treatment and after four weeks of consistent treatment. The results discussed here reflect only the survey responses after the first treatment. 

Clinical before and after images, as well as UGC-style content, were also collected.   

Data Analysis  

The data was analyzed using descriptive statistics and a paired t-test to compare average baseline measurements to those after a single treatment. Questionnaire data was analyzed using a z-test for proportions. The confidence level was set at 95%. 

This study was conducted in compliance with the Declaration of Helsinki principles, the applicable regulatory requirements, and according to the Good Clinical Practices (Document of the Americas and ICH E6: Good Clinical Practices). 

Study Findings + Discussion 

This clinical trial found that skin and facial health improved after a single treatment using the TheraFace Depuffing Wand device following the protocol above.  

The TheraFace Depuffing Wand device demonstrated its ability to improve radiance around the eyes and elasticity and firmness in the cheekbone areas.    

Participants also self-reported notable improvements across all 21 questions related to changes in their skin following use of the device.   

Depuffing Wand Improves Radiance Around the Eyes 

Expert clinical grading found that skin around the eyes appeared more radiant after using the TheraFace Depuffing Wand (p<0.001). Skin visually improved in radiance by an average of 3.2%, with 21.4% of participants improving immediately after using the device.   

Participants also self-reported improvements in radiance, with 56.9% reporting notable improvements. 

Depuffing Wand Improves Elasticity in the Eye Area 

Based on expert clinical grading, skin elasticity significantly improved after a single use of the device. The elasticity in the cheekbone area improved by an average of 1.6%, with 12.5% of participants showing improvement (p=0.048).  

The elasticity of the epidermis (the top layer of skin) was also assessed using the Cutometer device viscoelastic measurements. After a single treatment, skin elasticity improved by 13.6%, with 91.2% of participants showing clinical improvements (p<0.001). 

Depuffing Wand Improves Firmness in the Eye Area 

Through expert clinical grading, the visual firmness of the skin in the cheekbone area improved after a single use of the device (p=0.003). The appearance of skin firmness improved by an average of 4% (p<0.001), with 25% of participants showing improvement.   

The Cutometer device viscoelastic measurements were also used to assess skin firmness. After a single treatment, skin firmness increased by 7.9%, with 78.9% of participants showing clinical improvements (p<0.001).  

Participants also self-reported improvements in visual firmness of the skin, with 77.6% reporting notable improvements after a single use.   

Participants Self-Reported Improvements in 21 Outcomes After Using the Depuffing Wand 

After their first use of the Depuffing Wand, participants completed a 21-item survey that asked about their reported experience using the product. Here’s what they noticed:  

Reduced Puffiness 

  • 65.5% of participants felt their eyes seemed depuffed (less puffy) 
  • 53.4% of participants reported a decrease in under-eye puffiness 

Eyes Looked More Well-Rested and Awake 

  • 72.4% of participants perceived that their eyes looked more rested and more awake 

Eyes Felt Lifted and/or Contoured 

  • 69.0% of participants reported that their eyebrows felt lifted 
  • 65.5% of participants reported that their eye area is lifted 
  • 60.3% of participants reported their eye areas being more contoured 

Reduced Dark Circles 

  • 43.1% of participants felt using the device improved discoloration under their eyes 
  • 43.1% of participants reported that their under-eye dark circles were reduced 

Ease of Use 

  • 94.8% of participants said the device was easy to use 

Good for Massage + Less Facial Tension 

  • 87.9% of participants reported this is a good tool to use for massage 
  • 74.1% of participants reported they have less facial tension 
  • 67.2% of participants reported less discomfort in their faces and jawlines 

Improve Skin Firmness 

  • 77.6% of participants felt their eye areas looked and/or felt firmer 
  • 75.9% of participants felt their eye area appeared less saggy 

Enhance Radiance, Revitalize, and Rejuvenate 

  • 89.7% of participants reported that their eye area felt more rejuvenated (i.e.: refreshed) 
  • 89.7% of participants reported their eye areas felt revitalized (i.e.: restored) 
  • 84.5% of participants reported their tired eyes felt revitalized 
  • 60.3% of participants perceived that the device instantly brightened their eye areas 
  • 56.9% of participants felt their eye areas were more radiant and luminous 

Smoother, Less Fine Lines and Wrinkles 

  • 67.2% of participants say their under-eye area is smoother 
  • 43.1% of participants reported a reduction in fine lines around eye area / crow’s feet 

Key Takeaways 

This study showed that the TheraFace Depuffing Wand, with two science-backed technologies in a single device, was clinically validated to improve objective measures of skin health after a single use. Notable improvements include elasticity and firmness around the eye area, as well as radiance around the eyes. The results of using the TheraFace Depuffing Wand daily for four weeks are coming soon!  

References 

  • https://www.medialabscience.com/clinical-testing  
  • https://pubmed.ncbi.nlm.nih.gov/26107088/  
  • https://pubmed.ncbi.nlm.nih.gov/19415313/  
  • https://www.sciencedirect.com/science/article/abs/pii/   
  • https://pubmed.ncbi.nlm.nih.gov/37431170/   
  • https://www.aao.org/eye-health/tips-prevention/bags-under-eyes  
  • https://pubmed.ncbi.nlm.nih.gov/11302460/  
  • https://pubmed.ncbi.nlm.nih.gov/16558673/  
  • https://www.canfieldsci.com/imaging-systems/visia-complexion-analysis/  
  • https://www.courage-khazaka.de/en/  

Your browser's Javascript functionality is turned off. Please turn it on so that you can experience the full capabilities of this site.

  • Alzheimer's disease & dementia
  • Arthritis & Rheumatism
  • Attention deficit disorders
  • Autism spectrum disorders
  • Biomedical technology
  • Diseases, Conditions, Syndromes
  • Endocrinology & Metabolism
  • Gastroenterology
  • Gerontology & Geriatrics
  • Health informatics
  • Inflammatory disorders
  • Medical economics
  • Medical research
  • Medications
  • Neuroscience
  • Obstetrics & gynaecology
  • Oncology & Cancer
  • Ophthalmology
  • Overweight & Obesity
  • Parkinson's & Movement disorders
  • Psychology & Psychiatry
  • Radiology & Imaging
  • Sleep disorders
  • Sports medicine & Kinesiology
  • Vaccination
  • Breast cancer
  • Cardiovascular disease
  • Chronic obstructive pulmonary disease
  • Colon cancer
  • Coronary artery disease
  • Heart attack
  • Heart disease
  • High blood pressure
  • Kidney disease
  • Lung cancer
  • Multiple sclerosis
  • Myocardial infarction
  • Ovarian cancer
  • Post traumatic stress disorder
  • Rheumatoid arthritis
  • Schizophrenia
  • Skin cancer
  • Type 2 diabetes
  • Full List »

share this!

September 3, 2024

This article has been reviewed according to Science X's editorial process and policies . Editors have highlighted the following attributes while ensuring the content's credibility:

fact-checked

peer-reviewed publication

trusted source

Scientists identify potential new immune system target to head off the spread of breast cancer cells

by Johns Hopkins University School of Medicine

Scientists identify potential new immune system target to head off the spread of breast cancer cells

In a study using human breast cancer cells, scientists say they have potentially identified immune system white blood cells that appear to be the closest neighbors of breast cancer cells that are likely to spread. The researchers say the finding, focused on a white blood cell called a macrophage, may provide a new biological target for immunotherapies designed to destroy spreading cancer cells that are often markers for worsening disease.

A report on the findings is published in the journal Oncogene .

For the study, researchers at the Johns Hopkins Kimmel Cancer Center used special imaging techniques to see the organization of individual cells within tumors, and built on work by colleagues at the Johns Hopkins Giovanis Institute, whose previous work focused on identifying biomarkers on breast cancer cells that are likely to spread.

"One of the most exciting developments in cancer treatment is immunotherapy—drugs that help the immune system attack a tumor," says Andrew Ewald, Ph.D., professor and director of the Department of Cell Biology and director of the Johns Hopkins Giovanis Institute. But he notes that such immunotherapies so far work only for a subset of patients, a clear indication that more—and more specific—cellular targets must be identified to broaden the effectiveness of such therapies.

The researchers' focus on immune system cells is logical, because such cells start their work by getting up close to cancer cells, says Ewald. Touches between cells start a kind of "handshake" process that lets immune cells such as macrophages identify a cell they encounter.

When those encounters occur, the immune system biologically "tags" some as "foreign" to the body and ripe for destruction, while leaving others alone. But one of the hallmarks of cancer cells is their ability to mask their identity and trick the immune system into leaving them alone to grow, change and spread.

In an effort to better determine which cells are closest to breast cancer cells, the Johns Hopkins scientists analyzed primary and metastatic breast cancer tissue samples from 24 people who died from breast cancer and who donated their tissues to Johns Hopkins researchers through a rapid autopsy program.

Kimmel Cancer Center oncologist and imaging expert Won Jin Ho, M.D., used an imaging tool called mass cytometry to analyze and map cells in the tissue samples.

Other scientists have mapped cells in such tissues, but the Johns Hopkins researchers say their study focused not on what surrounds an average cancer cell, but what is closest to those cancer cells that are most likely to spread.

Hundreds of cells span the width of a single tissue sample. "When we analyze dissociated cells, it's like looking at a smoothie of cells, all blended together, but with imaging, we get to see where all of the pieces are," says Ho, an assistant professor of oncology and director of the Mass Cytometry Facility at Johns Hopkins.

Ewald and former postdoctoral fellow Eloïse Grasset, Ph.D., now at the National Centre for Scientific Research in France, had previously identified the biomarker signature common to breast cancer cells that are likely to spread, or metastasize.

The researchers used 36 such biomarkers to pinpoint metastasis-initiating cells and other "signatures" to identify cells next to them—those that were up close (within about 10–20 microns), others about three to four cells out, and cells further away.

"What popped out at us, among immune system cells, was a subset of macrophages very close to or touching metastasis-initiating cells in the primary and metastatic tissue samples," says Ho. The macrophage subsets are a minority—about 1%–5%—of the cells present in the tumor.

The research team confirmed the presence of key macrophage subsets in another set of more than 100 breast cancer samples from a tumor bank published in a previous study , showing that such distinct macrophage subtypes are indeed components of the breast cancer microenvironment.

A type of white blood cell, macrophages can swallow and destroy "foreign" cells on their own, but can also recruit other immune system cells to fight off cells they identify as foreign to the body. Ho says that other studies have shown that tumors with many macrophages may indicate a poorer prognosis and lower response to immunotherapy.

"As discovery-based scientists, we're looking for ways to change the immune system's spatial organization in the microenvironment surrounding cancer cells," says Ewald. "Eventually, we could develop biologic therapies to change how neighborhoods of cancer cells are organized."

Other researchers involved in the study are Atul Deshpande, Jae Lee, Yeonju Cho, Sarah Shin, Erin Coyne, Alexei Hernandez, Xuan Yuan, Zhehao Zhang and Ashley Cimino-Mathews from Johns Hopkins.

Explore further

Feedback to editors

how to identify the hypothesis in a research study

Off-label drugs prescribed for breathlessness may do more harm than good, warn scientists

8 hours ago

how to identify the hypothesis in a research study

Interactive AI framework provides fast and flexible approach to help doctors annotate medical scans

9 hours ago

how to identify the hypothesis in a research study

Double trouble for triple-negative breast cancer: Two-pronged strategy restores immunotherapy sensitivity

how to identify the hypothesis in a research study

Urate transporter structures reveal the mechanism behind important drug target for gout

how to identify the hypothesis in a research study

Prevalence of firearms in US drives public health crisis of gun deaths, study finds

how to identify the hypothesis in a research study

Diagnostic tool identifies puzzling inflammatory diseases in kids

10 hours ago

how to identify the hypothesis in a research study

How the scars of demolished brain tumors seed relapse

how to identify the hypothesis in a research study

Advanced fMRI techniques reveal the brain's dynamic architecture

how to identify the hypothesis in a research study

Sickle cell patients given Lactated Ringer's solution for pain improve more easily than those given normal saline

how to identify the hypothesis in a research study

Researchers report encouraging first evidence of effective new gene therapy to treat multiple sulfatase deficiency

11 hours ago

Related Stories

how to identify the hypothesis in a research study

Metformin may help the immune system better identify breast cancer cells

Apr 12, 2024

how to identify the hypothesis in a research study

Eliminating senescent cells could help treat breast, pancreatic cancers

Jul 19, 2024

how to identify the hypothesis in a research study

Cancer cells take over blood vessels to spread

Sep 1, 2020

how to identify the hypothesis in a research study

Study shows drug helps reprogram macrophage immune cells, suppress prostate and bladder tumor growth

May 21, 2024

how to identify the hypothesis in a research study

Breast cancer cells turn killer immune cells into allies

Jul 9, 2020

how to identify the hypothesis in a research study

Keys to making immunotherapy work against pancreatic cancer found in tumor microenvironment

Jan 26, 2023

Recommended for you

how to identify the hypothesis in a research study

Discovery could help treat fatal, drug-resistant pneumonia and sepsis

14 hours ago

how to identify the hypothesis in a research study

New study reveals specialization of immune cells in different tissues

15 hours ago

how to identify the hypothesis in a research study

'Draw me a cell': Generative AI takes on clinical predictions in cancer

16 hours ago

how to identify the hypothesis in a research study

'Synthetic immune niche' approach enhances T-cell proliferation without compromising cancer-killing ability

Let us know if there is a problem with our content.

Use this form if you have come across a typo, inaccuracy or would like to send an edit request for the content on this page. For general inquiries, please use our contact form . For general feedback, use the public comments section below (please adhere to guidelines ).

Please select the most appropriate category to facilitate processing of your request

Thank you for taking time to provide your feedback to the editors.

Your feedback is important to us. However, we do not guarantee individual replies due to the high volume of messages.

E-mail the story

Your email address is used only to let the recipient know who sent the email. Neither your address nor the recipient's address will be used for any other purpose. The information you enter will appear in your e-mail message and is not retained by Medical Xpress in any form.

Newsletter sign up

Get weekly and/or daily updates delivered to your inbox. You can unsubscribe at any time and we'll never share your details to third parties.

More information Privacy policy

Donate and enjoy an ad-free experience

We keep our content available to everyone. Consider supporting Science X's mission by getting a premium account.

E-mail newsletter

IMAGES

  1. Research Hypothesis: Definition, Types, Examples and Quick Tips (2022)

    how to identify the hypothesis in a research study

  2. How To Write A Science Hypothesis Examples

    how to identify the hypothesis in a research study

  3. Research Hypothesis: Definition, Types, Examples and Quick Tips

    how to identify the hypothesis in a research study

  4. 13 Different Types of Hypothesis (2024)

    how to identify the hypothesis in a research study

  5. How to Write a Hypothesis: The Ultimate Guide with Examples

    how to identify the hypothesis in a research study

  6. Research Hypothesis: Definition, Types, Examples and Quick Tips

    how to identify the hypothesis in a research study

VIDEO

  1. THE RESEARCH HYPOTHESIS-ACADEMIC RESEARCH WRITING BASIC GUIDELINES

  2. NEGATIVE RESEARCH HYPOTHESIS STATEMENTS l 3 EXAMPLES l RESEARCH PAPER WRITING GUIDE l THESIS TIPS

  3. What Is A Hypothesis?

  4. How To Formulate The Hypothesis/What is Hypothesis?

  5. Research Hypothesis and its Types with examples /urdu/hindi

  6. How to write a hypothesis

COMMENTS

  1. How to Write a Strong Hypothesis

    How to Write a Strong Hypothesis | Steps & Examples

  2. Research Hypothesis: Definition, Types, Examples and Quick Tips

    Research Hypothesis: Definition, Types, Examples and ...

  3. How to Formulate a Hypothesis: Example and Explanation

    Complex Hypothesis Examples. A complex hypothesis involves more than two variables. An example could be, "If students sleep for at least 8 hours and eat a healthy breakfast, then their test scores and overall well-being will improve." This type of hypothesis examines multiple factors and their combined effects.

  4. What is a Research Hypothesis: How to Write it, Types, and Examples

    What is a research hypothesis: How to write it, types, and ...

  5. How to Write a Strong Hypothesis

    How to Write a Strong Hypothesis | Guide & Examples - Scribbr

  6. How to Write a Hypothesis

    How to Write a Hypothesis | Guide, Examples & Tips

  7. What Is the Correct Way to Write a Hypothesis? Best ...

    Steps to Formulate a Hypothesis. Identify the Research Problem: Start by clearly stating the problem you aim to address. This will guide your entire research process. ... This helps you understand the existing research and identify gaps your study can fill. Make sure your hypothesis is specific and testable. If it's too broad, narrow it down.

  8. How To Write A Hypotheses

    Identify the variables involved. Formulate a clear and testable prediction. Use specific and measurable terms. Align the hypothesis with the research question. Distinguish between the null hypothesis (no effect) and alternative hypothesis (expected effect). Ensure the hypothesis is falsifiable and subject to empirical testing.

  9. Step-by-Step Guide: How to Craft a Strong Research Hypothesis

    What is and How to Write a Good Hypothesis in Research?

  10. How to Write a Hypothesis

    Developing a hypothesis is easy. Most research studies have two or more variables in the hypothesis, particularly studies involving correlational and experimental research. ... Try to use "if"… and "then"… to identify the variables. The independent variable should be present in the first part of the hypothesis, while the dependent ...

  11. What is a Hypothesis

    Here are the steps to follow when writing a hypothesis: Identify the Research Question. The first step is to identify the research question that you want to answer through your study. This question should be clear, specific, and focused. It should be something that can be investigated empirically and that has some relevance or significance in ...

  12. Research Hypothesis: What It Is, Types + How to Develop?

    Research Hypothesis: What It Is, Types How to Develop?

  13. Hypothesis Testing

    Hypothesis Testing | A Step-by-Step Guide with Easy ...

  14. What Is A Research Hypothesis? A Simple Definition

    What Is A Research Hypothesis? A Simple Definition

  15. How to Write a Hypothesis in 6 Steps, With Examples

    How to Write a Hypothesis in 6 Steps, With Examples

  16. Hypothesis: Definition, Examples, and Types

    Hypothesis: Definition, Examples, and Types

  17. Writing Your Dissertation Hypothesis: A Comprehensive Guide for

    Once you have formulated your hypothesis, you will design an experiment or study to test it this is the primary research phase of your dissertation. This involves choosing a research design, selecting a sample, and collecting data. 1. Choose a Research Design. Decide on a research design that suits your hypothesis.

  18. What is a Research Hypothesis and How to Write a Hypothesis

    How to Develop a Good Research Hypothesis

  19. Research Questions & Hypotheses

    Research Questions & Hypotheses - U.OSU

  20. How to Write a Research Hypothesis: Good & Bad Examples

    How to Write a Research Hypothesis: Good & Bad Examples

  21. A Practical Guide to Writing Quantitative and Qualitative Research

    A Practical Guide to Writing Quantitative and Qualitative ...

  22. What Is a Hypothesis and How Do I Write One? · PrepScholar

    Merriam Webster defines a hypothesis as "an assumption or concession made for the sake of argument.". In other words, a hypothesis is an educated guess. Scientists make a reasonable assumption--or a hypothesis--then design an experiment to test whether it's true or not.

  23. How to Identify a Hypothesis

    Identifying a hypothesis allows students to know what is being proven by a particular experiment or paper. Being able to determine the overall point not only makes you a more effective reader but also better at formulating your own theories when writing your own paper. By asking a few simple questions while you read, ...

  24. Exploring Hypothesis Testing in Research Studies

    In statistics, a hypothesis is a statement that makes a claim about the parameters of one or more populations. Hypothesis testing is the formal process by which a hypothesis is retained or rejected. Hypothesis testing compares two competing hypotheses about a population, the null hypothesis and the alternative hypothesis. A null hypothesis, denoted , is a statement assumed to be true unless ...

  25. Existing newborn screenings may be able to identify risk of sudden

    Currently, there's no way to tell whether a baby might develop SIDS. But a new study has found that a particular group of chemicals called metabolites, which are tested for as part of routine ...

  26. Trends of Toxoplasma gondii and common transfusable venereal infections

    The study aimed to assess the seroprevalence of T. gondii and common transfusable venereal infections among healthy blood donors in Menoufia Province, Egypt, and identify associated risk factors.

  27. TheraFace Depuffing Wand: Clinically Proven to Enhance Skin Health

    Study Hypothesis After following a heat and cold protocol, TheraFace Depuffing Wand will yield both immediate improvements and improvements after 4-weeks of use in objective and subjective outcomes. Study Methods Study Participants The study included 58 healthy adults ages 25-65 years old, with an average age of 44.

  28. Scientists identify potential new immune system target to head off the

    The research team confirmed the presence of key macrophage subsets in another set of more than 100 breast cancer samples from a tumor bank published in a previous study, showing that such distinct ...